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Abstract

In this paper, we examine the best time to sell a stock as close as possible to its
highest price over a �nite time horizon [0; T ], where the stock price is modelled by a
geometric Brownian motion and the �closeness�is measured by the relative error of the
stock price to its highest price over [0; T ]. More precisely, we want to optimize the
expression:

V � = sup
0���T

E[ V�
MT

];

where (Vt)t�0 is a geometric Brownian motion with constant drift � and constant
volatility � > 0, Mt = max0�s�t Vs is the running maximum of the stock price, and
the supremum is taken over all possible stopping times 0 � � � T adapted to the
natural �ltration (Ft)t�0 of the stock price. The above problem has been considered
by Shiryaev, Xu and Zhou (2008) and Du Toit and Peskir (2009). And in this paper
we provide a independent proof that when � = 1

2
�2, a selling strategy is optimal if and

only if it sells the stock either at the terminal time T or at the moment when the stock
price hits its maximum price so far. Besides, when � > 1

2
�2, selling the stock at the

terminal time T is the unique optimal selling strategy. Our approach to the problem is
purely probabilistic and has been inspired by relating the notion of dominant stopping
�� of a hitting time � to the optimal stopping strategy arisen in the classical "Secretary
Problem".

1 Introduction

Denote stock price process by (Vt)t�0 which is modelled by a geometric Brownian motion
with constant drift � and constant volatility � > 0, i.e.,

dVt
Vt

= �dt+ �dBt; V0 = 1.

where Bt is a standard Brownian Motion. As an application of Ito�s lemma

Vt = e
(�� 1

2�
2)t+�Bt . (1.1)

�Our research problem was motivated by a conference talk delivered by Zhou [11] in 2008 International
Conference on Mathematics of Finance and Related Applications in Hong Kong. Our approach to the
problem was inspired by the unique optimal strategy in the classical "Secretary Problem". The solution
to the problem has �rst been announced by the �rst author in the AMSS-PolyU Joint Research Workshop
2008 at late June in Hong Kong, and then later in 12th International Congress on Insurance: Mathematics
and Economics in July in Dalian and in the 4-th Sino-Japanese Optimization Meeting 2008. We thank the
participants of those conferences and seminars for their comments and suggestions.

yThe Chinese University of Hong Kong
zThe second and third authors are from The University of Hong Kong
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We consider the problem:

V � = sup
0���T

E[
V�
MT

], (1.2)

where Mt = max0�s�t Vs is the running maximum of the stock price. In �nancial terms, we
look for the best time to sell the stock as close as possible to its highest price over [0; T ];
in mathematical terms, we look for an optimal stopping time to stop a stochastic process
as close as possible to its ultimate maximum. For the purpose of presentation, in the rest
of this paper we shall use the term �selling time�(or �selling strategy�) and �stopping time�
interchangeably. To our best knowledge, the above problem was �rst formulated in the
present form by Shiryaev on the �rst Bachelier Congress held in Paris, 2000 (see Shiryaev
(2002)). Problem (1:2) and its variants, known as optimal prediction problems, were initiated
by Graversen, Peskir and Shiryaev (2001) in which the �closeness�was measured by mean
square di¤erence:

V � = inf
0���T

E
h
(B� � ST )2

i
; (1.3)

where Bt is a standard Brownian Motion, and St := max0�s�t Bs is the maximum process
of (Bt)t�0. In their paper, they �rst converted the expectation in (1:3) into an expectation
of a functional of a certain process adapted to (Ft)t�0, that is, they converted the problem
into a standard optimal stopping problem (see Peskir and Shiryaev (2006) Chap. I for
general theory of optimal stopping), and then used a change of time technique to reduce
their problem into one of solving an one-dimensional free-boundary value problem, which
leads to an explicit solution of the optimal stopping boundary. Using similar approach,
Pedersen (2003) also solved the extended problem

V � = inf
0���T

E [(ST � B� )q] ; 0 < q <1: (1.4)

However, when one considered problem (1:3) with standard Brownian motion replaced by
Brownian motion with drift, the method of time change does not work anymore, that is, the
problem

V � = inf
0���T

E
h
(B�� � S

�
T )
2
i

(1.5)

can-not be solved using old techniques, where B�t = �t + Bt is a drifted Brownian Motion
and S�t = max0�s�t B�s . To attack this problem, Du Toit and Peskir (2007) adopted a
new approach: they �rst convert the problem to a standard optimal stopping problem, an
extended version of Ito-Tanaka�s formula with local time on curves (See Peskir (2005a))
was then applied to characterize the optimal stopping boundary as a unique solution to a
coupled system of nonlinear Volterra integral equations of the second kind, which in turn
leads to a characterization of the optimal value. However to apply the extended version of
Ito-Tanaka�s formula, one has to deduce the general shape of the stopping region in advance,
which in general is itself a di¢ cult problem.
For our present problem (1:2), it seems that all previous techniques did not work. To

solve the problem we developed a conceptual and intuitive approach. With no doubt, the
optimal random time (not only stopping time) for Problem (1:2) is the last time the stock
price reaches its running maximum; this motivates us that, for any selling time � , it might be
more optimal (than �) to postpone the time of selling until the �rst time after (or at) � that
the stock price reaches its running maximum no later than T . In mathematical language,
for any stopping time � , we shall consider a new stopping time after � :

�� , inff� � t : Vt =M�g ^ T: (1.6)

For if after � , the stock price can reach its running maximum before T , i.e. V�� = M� ,
selling the stock at �� is at least not worse than selling it at � ; however, there is a possibility
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Figure 1: An graphical illustration of the new stopping time �� .

that the stock price never reaches its running maximum again before T and in this case
V�� = VT may be smaller than V� . Therefore, it is not clear in general whether �� is a
better selling strategy than � . However, it will be proven later that for all � � 1

2�
2, ��

always dominates � , i.e.,

E[
V�
MT

] � E[
V��
MT

]. (1.7)

with the equality in (1:7) holds if and only if

� = �� a:s: (1.8)

Hence one may think that the optimal stopping time should be �� for some special � . In fact
we proved that when � = 1

2�
2, �� is an optimal selling strategy if and only if �� satis�es

(1:7), that is, for any � , �� is optimal stopping time and they are the only ones. Hence in
this case, an selling strategy is optimal if and only if one sells either at terminal time T or
at the moment when the stock price hit its running maximum. Therefore we successfully
identify all optimal selling strategies for this critical case. Note that our result in particular
implies 0 and T are optimal (since by de�nition of �� , �0 = 0 and �T = T ). And suppose
one adopted the following strategy: waiting for a period of �T with 0 < � < 1 and selling
the stock at the �rst time after �T that the stock price reaches the running maximum, then
our result implies this strategy is also optimal for all 0 < � < 1. This kind of strategy had
appeared before in the Secretary Problem in which the optimal strategy is not to consider
the �rst r� � 1 candidates but to accept the �rst candidate thereafter who is better than
all previous ones. And for the case � > 1

2�
2, we shall prove �� = T is the unique optimal

selling strategy, that is, the only optimal stopping time is �� with � = T .
The problem (1:2) for arbitrary value of � has been arisen within both circles of re-

searchers and practitioners several years ago. We �rst heard of the formulation of the
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problem in a conference talk delivered by Zhou (2008a) at the 2008 International Confer-
ence on Mathematics of Finance and Related Applications in Hong Kong. In the talk, he
announced that for � � �2, �� = T is the unique optimal stopping time while � � 0, �� = 0
is the unique optimal stopping time. But there was no clue on the solution in the case when
0 < � < �2, and from that time on, we proceeded to attack the whole problem altogether
from a new perspective as stated above. After we �nished our work for the case � � 1

2�
2 in

early April, we later found that, after communication with Shiryaev, Xu and Zhou (2008),
Du Toit and Peskir (2009) has solved this problem for general � and Shiryaev, Xu and Zhou
(2008) has solved it for � � 0 and � � �2

2 . Du Toit and Peskir (2009) has proved that

(see Theorem 2 there) when � � �2

2 , the optimal stopping time �
� � T , when � � �2

2 , the

optimal stopping time �� � 0, then when � = �2

2 both �� � 0 and �� � T are optimal. Our
work provided a independent proof for the case � � �2

2 and revealed that the solution to
the problem (1:2) for all cases should be given by

�� =

8<: T; if � � 1
2�

2

any stopping time � satisfies (1:8) ; if � = 1
2�

2

0; if � � 1
2�

2

Hence correspondingly, a stock with drift � and volatility � is called

1. Superior if � > 1
2�

2

2. Neutral if � = 1
2�

2

3. Inferior if � < 1
2�

2

To resolve the problem (1:2), let us �rst reduce it to a standard form. In view of (1:1),
problem (1:2) is equivalent to

V � = sup
0���T

E[exp
��
�� 1

2
�2
�
� + �B� � max

0�s�T

��
�� 1

2
�2
�
s+ �Bs

��
],

which by the scaling property of Brownian motion, is equivalent to

V � = sup
0�� 0�T 0

E[exp

 �
�� 1

2�
2
�

�2
� 0 + B� 0 � max

0�s0�T 0

 �
�� 1

2�
2
�

�2
s0 + Bs0

!!
],

where � 0 = �2� , T 0 = �2T and s0 = �2s:Therefore to solve problem (1:2), it su¢ ces to solve
the following problem

V � = sup
0���T

E[exp (B�� � S
�
T )], (1.9)

with � = (�� 1
2�

2)
�2 , B�t = �t + Bt, and S�t = max0�s�t B�s . That is, it su¢ ces to solve

the problem (1:2) with � = 1. Clearly the three cases � > 1
2�

2, � = 1
2�

2 and � < 1
2�

2

correspond to � > 0, � = 0 and � < 0 respectively.
In the rest of this paper, we shall �rst associate to each stopping time � a new stopping

time �� (see (2:1)), and prove that �� always dominates � in accordance with Theorem 3:1.
This suggests us to seek for the optimal stopping time in the form �� for some stopping time
� . We shall further prove that if � = 0, every � such that � = �� a:s: is an optimal stopping
time, and henceforth we identify all optimal stopping times for this particular case; if � > 0,
the �nal time T is the only optimal stopping time, which coincides with the conventional
wisdom that one should hold superior stocks. In the next section we �rst establish a few
lemmas and then conclude with our main result in Section 3.
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2 Some preliminary results

Given � � 0;for each stopping time � , de�ne

�� , inf
t
f� � t : B�t = S�� g ^ T (2.1)

then �� is also a stopping time. We will show in the sequel that whenever � � 0; �� always
dominate � in the sense that the expectation (2:3) will never be smaller than the expectation
(2:2), and �nd out the optimal stopping time with the help of �� . The next lemma states
that our optimal prediction problem can be converted into an standard optimal stopping
problem and allows us to compare the following expectations (2:2) and (2:3) evaluated at
times � and �� respectively.

Lemma 2.1 For any stopping time � , we have

E[exp fB�� � S
�
T g] = E[G(� ;X

�
� )] (2.2)

and
E[exp fB��� � S

�
T g] = E[F (� ;X

�
� )]; (2.3)

where
X�
t , S�t � B�t ; (2.4)

G (t; x) = E
�
exp

�
�
�
x_S�T�t

���
(2.5)

F (t; x) = E[ex�S
�
T�t 1fS�T�t�xg + e

B�T�t�x 1fS�T�t<xg] (2.6)

Proof. We denote E[Z;A] to be E[Z IA] where I is the indicator function. Then using
the fact that for each stopping time � � T , the post-� process of standard Brownian motion
is still a standard Brownian motion independent of the �-algebra F� , we have

E [exp (B�� � S
�
T ) jF� ]

= E
�
exp

�
B���

�
S�� _ max

��t�T
B�t
��

jF�
�

= E
�
exp

�
X�
� _ max

��t�T
(B�t � B�� )

�
jF�
�

= E
�
exp

�
�
�
x_S�T�t

�����
x=X�

� ; t=�

= G (� ;X�
� )

where X�
t = S

�
t � B

�
t . Hence

E [exp (B�� � S
�
T )] = E [G(� ;X

�
� )] :

Similarly, we also have

E
h
exp

�
B��� � S

�
T

�
jF�
i

= E
�
exp

�
B����

�
S�� _ max

��t�T
B�t
��

; max
��t�T

B�t � S�� jF�
�

+E
�
exp

�
B����

�
S�� _ max

��t�T
B�t
��

; max
��t�T

B�t < S�� jF�
�

= E
�
exp

�
S�� � max

��t�T
B�t
�
; max
��t�T

B�t � S�� jF�
�

+E
�
exp (B�T � S

�
� ) ; max

��t�T
B�t < S�� jF�

�
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= E
�
exp

�
(S�� � B�� )� ( max

��t�T
B�t � B�� )

�
; max
��t�T

B�t � B�� � S�� � B�� jF�
�

+E
�
exp ((B�T � B

�
� )� (S�� � B�� )) ; max

��t�T
B�t � B�� < S�� � B�� jF�

�
= E

h
exp

�
x� eS�t �g; eS�t � xi���

x=S���B�� ; t=T��

+ E
h
exp

�eB�t � x� ; eS�T�� < xi���
x=S���B�� ; t=T��

= F (� ;X�
� ) ;

where eB�t is a drifted Brownian motion independent of the ��algebra F� , eS�t = max0�s�t eB�s ,
and X�

t = S
�
t � B

�
t . Therefore

E
h
exp fB�(��^T ) � S

�
T g
i
= E [F (� ;X�

� )] :

Remark 1 In accordance with the above lemma, we deduce that

V � = sup
0���T

E [G (� ;X�
� )] (2.7)

It has been shown that that (for example, see Graversen and Shiryaev (2000)) the process
(X�

t )0�t�T is equal in law as a process to a re�ecting Brownian Motion with drift (��)
which we now denote by X�. Therefore, the random variables X�

� and X� are identically
distributed for any hitting time � . Since an optimal stopping time in (2:7) is the �rst entry
time of the process to a closed set, therefore in Problem (2:7) we can replace the process X�

by a re�ecting Brownian Motion with drift (��), i.e.,

V � = sup
0���T

E[G (� ;X� )]: (2.8)

Therefore, the stock selling problem (1:2) can be converted into a standard optimal stopping
problem (2:8) with the underlying process being a re�ecting Brownian Motion with drift (��).
One way of solving V � is to study the extended problem

V (t; x) = sup
0���T�t

Et;x [G (� ;X� )] = sup
0���T�t

E [G (t+ � ;Xx
� )]

where (Xx
t )t�0 is a re�ecting Brownian Motion with drift (��) starting at x and it can

be explicitly constructed as (S�t _ x � B
�
t )t�0 (see Peskir (2005b), Theorem 2:1). Although

solving for the value function V (t; x) is desirable, it is not necessary to tackle the problem
(2:8) where the process (t; Xt) only starts at (0; 0). With the aid of the stopping time ��
and the function F , we shall �nd out the optimal value V � and the optimal stopping time
�� directly. See Remark 2 for further relevant discussions.

To investigate the order of magnitude of the functions F and G, we �rst establish some
properties for the function F that will be used in the proof of our Theorem 3:1.

Lemma 2.2 For any � (not necessarily non-negative), the function F satis�es the partial
di¤erential equation ,

(LF ) (t; x) = 0;
for any 0 � t < T;, x > 0; with L being the parabolic partial di¤erential operator

L = @

@t
� � @

@x
+
1

2

@2

@x2
:

And for any � > 0; Fx(t; 0) > 0 for all 0 � t < T where Fx denotes @F
@x ; and for � = 0,

Fx(t; 0) = 0 for any 0 � t < T .
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Proof. Recall that the joint density of

�
B�T�t; S

�
T�t
�
,
�
� (T � t) + BT�t; max

0�s�T�t
(�s+ Bs)

�
(2.9)

is given by (see, e.g., Karatzas and Shreve (1998), page 368)

f�(t; b; s) =

r
2

�
(T � t)�

3
2 (2s� b) exp

 
� (2s� b)

2

2 (T � t) + �
�
b� � (T � t)

2

�!
; (2.10)

and consequently the density of S�T�t is

f�S (t; s) =

Z s

�1
f�(t; b; s)db

= 2 exp (2s�) � 
1p

2� (T � t)
exp

�
� (s+ �t)

2

2 (T � t)

�
� ��

�
�s+ � (T � t)p

T � t

�!
(2.11)

with � (x) denotes the distribution function for standard normal variable.
Our proof hinges on the the following three identities (which can be veri�ed by direct cal-
culation):

ebf�(t; b; s) = e(�+
1
2 )(T�t)f�+1(t; b; s) (2.12)�

@

@t
� � @

@s
+
1

2

@2

@s2

�
f�S (t; s) = 0 (2.13)�

@

@t
� � @

@s
+
1

2

@2

@s2

�
Pr
�
S�T�t � s

�
= 0: (2.14)

If we write

F1(t; x) = E
h
ex�S

�
T�t 1fS�T�t�xg

i
F2(t; x) = E

h
eB

�
T�t�x 1fS�T�t<xg

i
;

then
F (t; x) = F1(t; x) + F2(t; x)

and using (2:12) they can be simpli�ed into

F1(t; x) = e
x

Z 1

x

e�sf�S (t; s)ds

F2(t; x) = e
�x
Z x

0

Z s

�1
ebf�(t; b; s)dbds

= e�xe(�+
1
2 )(T�t)

Z x

0

Z s

�1
f�+1(t; b; s)dbds

= e�xe(�+
1
2 )(T�t)

Z x

0

f�+1S (t; s)ds

= e�xe(�+
1
2 )(T�t) Pr

�
S�+1T�t � x

�
:
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If (t; x) is an interior point, then using (2:13) and (2:14), we have:

@

@t
F1(t; x) = e

x

Z 1

x

e�s
@

@t
f�S (t; s)ds

= �ex
Z 1

x

e�s(�� @
@s
+
1

2

@2

@s2
)f�S (t; s) ds

= �ex
�
e�sf�S (t; s)

��1
x
+

Z 1

x

e�sf�S (t; s)ds

�
� 1
2
ex
�
e�s

@

@s
f�S (t; s)

����1
x

+

Z 1

x

e�s
@

@s
f�S (t; s)ds

�
= �ex

�
�e�xf�S (t; x) +

Z 1

x

e�sf�S (t; s)ds

�
� 1
2
ex
�
� e�x @

@s
f�S (t; s)

����
s=x

+ e�sf�S (t; s)
��1
x
+

Z 1

x

e�sf�S (t; s)ds

�
= � [F1(t; x)� f�S (t; x)]�

1

2
[F1(t; x)� f�S (t; x)�

@

@x
f�S (t; x)];

@

@x
F1(t; x) = F1(t; x)� f�S (t; x);

@2

@x2
F1(t; x) =

@

@x
F1(t; x)�

@

@x
f�S (t; x);

= F1(t; x)� f�S (t; x)�
@

@x
f�S (t; x):

Therefore
@

@t
F1(t; x)� �

@

@x
F1(t; x) +

1

2

@2

@x2
F1(t; x) = 0;

and

@

@t
F2(t; x) = �(�+

1

2
)F2 (t; x) + e

�xe(�+
1
2 )(T�t)

@

@t
Pr
�
S�+1T�t � x

�
= �(�+ 1

2
)F2 (t; x)� e�xe(�+

1
2 )(T�t)

�
�(�+ 1) @

@x
+
1

2

@2

@x2

�
Pr
�
S�+1t � x

�
= �

�
�F2(t; x) + e�xe(�+

1
2 )(T�t)

@

@x
Pr
�
S�+1t � x

��
� 1
2

�
F2(t; x)� 2e�xe(�+

1
2 )(T�t)

@

@x
Pr
�
S�+1t � x

�
+ e�xe(�+

1
2 )(T�t)

@2

@x2
Pr
�
S�+1t � x

��
@

@x
F2(t; x) = �F2(t; x) + e�xe(�+

1
2 )(T�t)

@

@x
Pr
�
S�+1t � x

�
@2

@x2
F2(t; x) = �

@

@x
F2(t; x)� e�xe(�+

1
2 )(T�t)

@

@x
Pr
�
S�+1t � x

�
+ e�xe(�+

1
2 )(T�t)

@2

@x2
Pr
�
S�+1t � x

�
= F2(t; x)� 2e�xe(�+

1
2 )(T�t)

@

@x
Pr
�
S�+1t � x

�
+ e�xe(�+

1
2 )(T�t)

@2

@x2
Pr
�
S�+1t � x

�
:

Hence,
@

@t
F2(t; x)� �

@

@x
F2(t; x) +

1

2

@2

@x2
F2(t; x) = 0;

and thus, as a whole, we have

@

@t
F (t; x)� � @

@x
F (t; x) +

1

2

@2

@x2
F (t; x) = 0:
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For our second assertion, direct calculation yields

Fx(t; 0) = E
h
e�S

�
T�t

i
�
Z 0

�1
f�(t; b; 0)db+

Z 0

�1
ebf�(t; b; 0)db

= E
h
e�S

�
T�t

i
�
�Z 0

�1

�
1� eb

�
f�(t; b; 0)db

�

Let�s write K1 (t; �) = E
h
e�S

�
T�t

i
and K2 (t; �) =

R 0
�1

�
1� eb

�
f�(t; b; 0)db, then we have

K1 (t; �) =

Z 1

0

e�s
�Z s

�1
f�(t; b; s)db

�
ds; (2.15)

and

K2 (t; �) =

Z 0

�1

�
1� eb

�
f�(t; b; 0)db

=

Z 0

�1

 Z �b

0

e�sds

!
f�(t; b; 0)db

=

Z 1

0

e�s
�Z �s

�1
f�(t; b; 0)db

�
ds

=

Z 1

0

e�s
�Z s

�1
f�(t; b0 � 2s; 0)db0

�
ds;

where we�ve used the change of variable b0 = b + 2s. Since b0 is just a dummy variable,
we can write

K2 (t; �) =

Z 1

0

e�s
�Z s

�1
f�(t; b� 2s; 0)db

�
ds: (2.16)

Comparing (2:15) and (2:16), we can see in order to establish K1 (t; �) � K2 (t; �), it
su¢ ces to show f�(t; b; s) � f�(t; b� 2s; 0). By (2:10),

f�(t; b; s) =

r
2

�
(T � t)�

3
2 (2s� b) exp

 
� (2s� b)

2

2 (T � t) + �b�
�2 (T � t)

2

!
;

f�(t; b� 2s; 0) =
r
2

�
(T � t)�

3
2 (2s� b) exp

 
� (2s� b)

2

2 (T � t) + � (b� 2s)�
�2 (T � t)

2

!
:

Therefore whenever � > 0, f�(t; b; s) > f�(t; b� 2s; 0) except at the single point s = 0,
hence K1 (t; �) > K2 (t; �), which means Fx(t; 0) > 0 for any t > 0. And when � = 0,
f�(t; b; s) = f�(t; b � 2s; 0), hence K1 (t; �) = K2 (t; �), which means Fx(t; 0) = 0 for any
t > 0.
Our next lemma reveals that for � � 0; we always have F � G with the equality holds

only on the x� and t�axes. It further leads us to our main result that any stopping time �
is dominated by �� in the sense in accordance with Theorem 3:1.

Lemma 2.3 F (t; x) > G(t; x) for any t > 0; x > 0, while F (t; x) = G(t; x) if either t = 0
or x = 0.

Proof. We are going to prove our claim by contradiction. Suppose that there is some
(t; x) such that

F (t; x) < G (t; x) :

9



We �rst note that for x = 0, we have

F (t; x) = G(t; x) = E
h
e�S

�
T�t

i
;

while for t = 0, we also have
F (t; x) = G(t; x) = e�x:

Henceforth, we have F �G = 0 on the boundaries t = 0 and x = 0. Since for each 0 � t � T ,

lim
x!1

(F �G)(t; x) = 0;

so there is a �nite point (t0; x0) at which F � G attains its minimum value that must be
strictly less than 0. As (t0; x0) is a local minimum point, we must have

Fx(t0; x0) = Gx(t0; x0):

On the other hand, from (2:5) we have

Gx(t; x) = �E[e�x 1fS�T�t<xg]

In Lemma 2:1 we already de�ne

F1(t; x) = E
h
ex�S

�
T�t 1fS�T�t�xg

i
F2(t; x) = E

h
eB

�
T�t�x 1fS�T�t<xg

i
;

Then in terms of F1; F2 and Gx, (2:5) and (2:6) becomes:

F (t; x) = F1(t; x) + F2(t; x) (2.17)

G(t; x) = F1(t; x)e
�x �Gx(t; x): (2.18)

we next claim that '(t; x) = F2(t; x) + Fx(t; x) � 0 for all t > 0 and x > 0. Lemma 2.2
suggests that

(L') (t; x) = 0; (2.19)

with L = @
@t � �

@
@x +

1
2
@2

@x2 : Since on the boundary,

lim
x!1

'(t; x) = lim
x!1

(F2(t; x) + Fx(t; x))

= lim
x!1

�
F1(t; x)� f�S (t; x) + e

�xe(�+
1
2 )(T�t)

@

@x
Pr
�
S�+1T�t � x

��
= 0 (2.20)

'(T; x) = lim
t!T

(F2(t; x) + Fx(t; x))

= lim
t!0

�
F1(t; x)� f�S (t; x) + e

�xe(�+
1
2 )(T�t)

@

@x
Pr
�
S�+1T�t � x

��
= 0 (2.21)

'(t; 0) = Fx(t; 0) � 0; (2.22)

where (2:22) follows from Lemma 2.2. Thus minimum principle in PDE theory implies that
'(t; x) � 0 for all t > 0 and x > 0, or equivalently

F2(t; x) � �Fx(t; x) for all t > 0 and x > 0: (2.23)

10



Henceforth, at the local minimum point (t0; x0), combining (2:17), (2:18) and (2:23) we have,

F (t0; x0) < G(t0; x0)) F1(t0; x0) + F2(t0; x0) < F1(t0; x0)e
�x0 �Gx(t0; x0)

) F2(t0; x0) < �Gx(t0; x0)
) �Fx(t0; x0) � F2(t0; x0) < �Gx(t0; x0)
) Fx(t0; x0) > Gx(t0; x0);

which is a contradiction! This shows that F � G � 0 at the minimum point (t0; x0), and
hence (F �G)(t; x) � 0 for all t > 0 and x > 0.
Furthermore, using the same argument as above, we can also establish that for any x > 0
such that F (t; x) = G(t; x), we then have

Fx(t; x) > Gx(t; x):

In other words, if there is an interior point (t; x) such that (F �G) (t; x) = 0; then (F �G)
can assume a negative value in a small neighborhood of (t; x) which also contradicts to what
we have just proven. Therefore F (t; x) > G(t; x) for t > 0; x > 0.

3 Main theorem

We now conclude with our main theorem:

Theorem 3.1 Consider Problem (1:2) with � � 0:
(1) when � = 0, for any stopping time � ,

2e
T
2 �(�

p
T ) = E

�
exp

�
B�� � ST

��
� E [exp (B� � ST )] ; (3.1)

where the inequality becomes equality if and only if �� = ��� a:s:. Henceforth for any
stopping time � , �� is an optimal stopping time for our optimal prediction problem, i.e.,

E
�
exp

�
B�� � ST

��
= sup

0���T
E [exp (B� � ST )] ; (3.2)

where the supremum ranges over all possible stopping time � � T . And �� is an optimal
stopping time if and only if

�� = ��� a:s: (3.3)

(2) when � > 0, for any stopping time � ;

E [exp (B�T � S
�
T )] � E

h
exp

�
B��� � S

�
T

�i
� E [exp (B�� � S

�
T )] ; (3.4)

where the �rst inequality becomes equality if and only if T = �� a:s:, and the second one
becomes equality if and only if � = �� a:s:. Henceforth T is the unique optimal stopping
time for our optimal prediction problem when � > 0, i.e.,

E [exp (B�T � S
�
T )] = sup

0���T
E [exp (B�� � S

�
T )] ; (3.5)

where the supremum ranges over all possible stopping time � � T .

Proof. From Lemma 2.2,�
@

@t
� � @

@x
+
1

2

@2

@x2

�
F (t; x) = 0 (3.6)

11



for all 0 � t < T and x > 0. For any 0 � t < T , Ito formula implies that

F (t;Xt) = F (0; 0) +

Z t

0

Ft(s;Xs)ds

+

Z t

0

Fx(s;Xs)dXs

+
1

2

Z t

0

Fxx(s;Xs)d < X;X >s : (3.7)

1. When � = 0,

Xt = jBtj =
Z t

0

sign (Bs) IfBs 6=0gdBs + l
0
t (B�);

with the �rst equality holds in distribution sense, i.e., Xt equal jBtj in law as process,
and the second equality is Tanaka�s formula. Simplifying the expression (3:7) upon
using d < X;X >t= d and Pr (Bt = 0) = 0, we deduce that

F (t;Xt) = F (0; 0) +

Z t

0

�
@

@t
+
1

2

@2

@x2

�
F (s; jBsj)ds

+

Z t

0

Fx(s; jBsj)sign (Bs) IfBs 6=0gdBs

+

Z t

0

Fx(s; jBsj)dl0s (B�)

= F (0; 0) +Mt;

where

Mt =

Z t

0

Fx(s; jBsj)sign (Bs) IfBs 6=0gdBs (3.8)

is a martingale. Note that the second last equality holds because Fx(t; 0) = 0 (see
Lemma 2.2) and the local time l0� (B�) has full measure on the set fs � T : Bs = 0g.
Therefore

E[F (� ;X� )]
= F (0; 0) + E[M� ]

= F (0; 0)

upon using Optional Sampling Theorem. Hence

E[F (� ;X� )] = F (0; 0)

= 2e
T
2 �(�

p
T ) (3.9)

which is a constant for any 0 � � � T .
On the other hand, using Lemma 2.3, we also have

E[F (� ;X� )] � E [G(� ;X� )]

where the equality holds if and only if

� = �� a:s:

The only if part holds since the process X� is a continuous process, F � G equals to
zero only on the boundary and (T � � ;X� ) 2 f0g� [0;1][ [0; T ]�f0g exactly means
� = �� . Therefore, from Lemma 2.1, we have

E[exp
�
B�� � ST

�
] � E[exp (B� � ST )]; (3.10)
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with the equality holds if and only if

� = �� a:s:

Taking supremum over all stopping time � on the right hand side of (3:10) and using
(3:9), we get

2e
T
2 �(�

p
T ) = E[exp

�
B�� � ST

�
] � sup

0���T
E[exp (B� � ST )];

while �� is itself a stopping time, henceforth, we actually have the identity:

2e
T
2 �(�

p
T ) = E[exp

�
B�� � ST

�
] = sup

0���T
E[exp (B� � ST )];

for any 0 � � � T . As a consequence, �� is an optimal stopping time if and only if
�� = ��� a:s:, i.e., �

� is optimal if either B�� = S�� or �� = T .

2. When � > 0, it is known that (see Graversen and Shiryaev (2000))

Xt = jYtj;

where the equality holds in distribution sense, i.e., X and Y equal in law as process,
and Y is the unique strong solution to the stochastic di¤erential equation:

dYt = ��sign (Yt) dt+ dBt

with Y0 = 0. Thus Tanaka�s formula implies

dXt = ��IfYs 6=0gdt+ sign (Yt) IfYs 6=0gdBt + dl0t (Y�) : (3.11)

Inserting (3:11) into (3:7), and using that d < X;X >t= dt and Pr (Yt = 0) = 0, we
get

F (t;Xt) = F (0; 0) +

Z t

0

�
@

@t
� � @

@x
+
1

2

@2

@x2

�
F (s; jYsj)ds

+

Z t

0

Fx(s; jYsj)sign (Ys) dBs

+

Z t

0

Fx(s; jYsj)dl0s (Y�)

= F (0; 0) +Mt +

Z t

0

Fx(s; jYsj)dl0s (Y�) (3.12)

whereMt =
R t
0
Fx(s;Xs)sign(Ys) dBs is a martingale. Note that the last equality holds

because the local time l0� (Y�) has full measure on the set fs � T : Ys = 0g.
From (3:12) ; we have

E[F (� ;X� )] = F (0; 0) + E[M� ] + E
�Z �

0

Fx(s; 0)dl
0
s (Y�)

�
= F (0; 0) + E

�Z �

0

Fx(s; 0)dl
0
s (Y�)

�

13



upon using Optional Sampling Theorem. By Lemma 2.2, when � > 0, Fx(t; 0) > 0 for
all t > 0, hence Fx(t; 0) > 0 for all T � t > 0:Therefore

E[F (� ;X� )] = F (0; 0) + E

�Z �

0

Fx(s; 0)dl
0
s (Y�)

�
� F (0; 0) + E

"Z T

0

Fx(s; 0)dl
0
s (Y�)

#
= E[F (T;XT )]
= E[exp fB��T � S

�
T g]

= E[exp fB�T � S
�
T g]; (3.13)

where the last two equalities hold by Lemma 2.1 and the fact that �T = T a:s:.It�s
clearly that the inequality above becomes equality if and only if � = T a:s:.By Lemma
2:3, we also have

E[F (� ;X� )] � E [G(� ;X� )] (3.14)

where the equality holds if and only if

� = �� a:s:

The only if part holds since the process X� is a continuous process, F � G equals to
zero only on the boundary and (� ;X� ) 2 fTg � [0;1] [ [0; T ] � f0g exactly means
� = �� . Therefore, combining (3:13) and (3:14), and by Lemma 2.1, we get

E[exp fB�T � S
�
T g] � E[exp

�
B��� � S

�
T

�
] � E[exp (B�� � S

�
T )];

and hence
E[exp fB�T � S

�
T g] � E[exp (B

�
� � S

�
T )]; (3.15)

with the equality holds if and only if

� = T a:s:

Taking supremum over all stopping time � on the right hand side of (3:15), we get

E[exp (B�T � S
�
T )] � sup

0���T
E[exp (B�� � S

�
T )];

while T is itself a stopping time, henceforth, we actually have the identity:

E[exp (B�T � S
�
T )] = sup

0���T
E[exp (B�� � S

�
T )];

for any 0 � � � T . Therefore when � > 0, �� = T is the unique optimal stopping
time for our problem (1:2) :

Remark 2 In the case � = 0, the same argument as in above proof shows that F is the
smallest superharmonic majorant of G. Therefore, in accordance with general theory of
optimal stopping, F coincides with the value function V which is de�ned in Remark 1. And
in standard terminology of optimal stopping theory, our claims (3:1) and (3:3) is equivalent
to saying that the optimal stopping boundary b (t) for this problem equals to constant 0 when
� = 0.
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4 Conclusion

We conclude this paper by pointing out further extensions of Problem (1:9) in recent years.
For example, Yam, Yung and Zhou (2009) considered Problem (1:9) by replacing Brownian
motion by Bernoulli random walks; in the same work, they also considered maximizing the
probability that the stock price is precisely sold at the ultimate maximum, and it was shown
that the solution to both problems is also in bang-bang type. Besides, Allaart (2009a) also
extended Problem (1:9) to the case when the exponential function is replaced by an arbitrary
nonincreasing convex function while the underlying process can be either a Brownian motion
or a Bernoulli random walk. Almost the same time, Allaart (2009b) further extended his
work to a large class of general random walks and/or Levy processes. From a PDE point
of views, Dai and Zhong (2009) solved Problem (1:9) with the ultimate maximum replaced
by the ultimate average. Recently, Yam, Yung and Zhou (2010) generalized Problem (1:9)
to the case when the exponential function is replaced by a monotone convex function, while
the ultimate maximum is replaced by a general class of nonanticipative benchmark. This is
the most general result known so far that include all aforementioned formulations as special
cases. A limitation of the present formulation of Problem (1:9) is that it assumes both
the drift and volatility of the stock price process to be constant. Therefore it would be
interesting to see what one can obtain by relaxing this constant parameter assumption.
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