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DEGREE ESTIMATE FOR SUBALGEBRAS

YUN-CHANG LI AND JIE-TAI YU

Abstract. Based on Bergman’s Lemma on centralizers, we ob-
tain a sharp lower degree bound for nonconstant elements in a
subalgebra generated by two elements of a free associative algebra
over an arbitrary field.

1. Introduction and the main result

Let An = K〈x1, · · · , xn〉 be the free associative algebra of rank n over
a field K, B a subalgebra of An generated by two elements in An\K.

Based on Bergman’s Lemma on radicals [5] that if the leading monomial
of an element in a Malcev-Neumann (power series) algebra ([1, 2, 3, 7])
over a field of characteristic 0 has n−th roots, then so does the element
itself, Makar-Limanov and Yu [8] gave a sharp lower degree bound for
nonconstant elements in B when the characteristic of K is zero.

However, in the case of positive characteristic, the Lemma on radical is
not true, which can be shown by the following simple example that x2+
x has no square roots in the Malcev-Neumann (power series) algebra
F ((x1, · · · , xn)) in free case over a field F of characteristic 2. Therefore,
the method in [8] is no longer applicable.

In this paper, based on Bergman’s Lemma on centralizers [5], we gen-
eralize the degree estimate in [8] for any characteristic.

Theorem 1.1. Let An = K〈x1, · · · , xk〉 be a free associative algebra
over a field K and let f, g ∈ An be algebraically independent elements
over F . Suppose the leading monomials v(f) and v(g) are algebraically
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dependent over K, and, neither deg(f) divides deg(g) nor deg(g) di-
vides deg(f). Then for any P (x, y) ∈ K〈x, y〉\K,

deg(P (f, g)) ≥ wdeg(f),deg(g)(P (x, y))
deg([f, g])

deg(f) + deg(g)
.

2. Proof of the main result

First we introduce some terminologies. Let K be a field of charac-
teristic r(zero or prime), An the free associative algebra generated
by X = {x1, · · · , xn} over K where n ≥ 2, and F = 〈X〉 be the
free group generated by X . By a group order, we mean that it is a
total order of the group as a set, and coincides to the operation of
the group as well; namely, if a group G has a group order, then G
is totally ordered as a set, and to any a, b, c ∈ G, if a > b, we al-
ways have ca > cb and ac > bc. Since it is possible to equip F a
group order which is an extension of the partial order of the total
degree [3], namely if deg(a(x1, · · · , xn)) > deg(b(x1, · · · , xn)) where
a(x1, · · · , xn), b(x1, · · · , xn) ∈ F , then a(x1, · · · , xn) > b(x1, · · · , xn),
K((F )) forms a Malcev-Neumann algebra [1, 2, 7] under this order.
Any element f ∈ An can be viewed as an element of K((F )). Let
the leading term (namely the least element in the support) of f be
c · h with c ∈ K∗ and h ∈ F , we denote h by v(f) and c by c(f).
For the degree functions, let deg be the total degree, or homogeneous
degree, of a polynomial in K((F )) and degxi

be the partial degree
relative to xi. Here we will restate the definition of weighted de-
gree of a polynomial which has been defined in [5, 6] just for con-
venience. The weighted degree wk1,··· ,kn(m(x1, · · · , xn)) of a monomial
m is equal to

∑n

i=1 ki · degxi
(m), and for a polynomial p(x1, · · · , xn),

wk1,··· ,kn(p) = max{wk1,··· ,kn(m)|m ∈ supp(p)}. Obviously we have
deg(m) = w1,··· ,1(m) and degxi

(m) = w0,··· ,0,1,0,··· ,0 where 1 is the i−th

coordinite.
Let f, g ∈ An be algebraically independent where v(f) and v(g) are

algbraically dependent but deg(f) ∤ deg(g), deg(g) ∤ deg(f), and we
assume that deg(g) = n > m = deg(f).

Crucial to the proof of Theorem 1.1 is the following Bergman’s Lemma
on Centralizers [5, 6].

Lemma 2.1 (on centralizers). Let R be a commutative ring, S an
ordered semigroup (the group order), and an element of R((S)) with
invertible leading term auu. (Thus, u is invertible in S, and au in



DEGREE ESTIMATE FOR SUBALGEBRAS 3

R). Then there exists an element f with leading term 1, such that
the element c = f−1af (which clearly also has leading term auu) has
support entirely in the centralizer of u in S.

Now we re-present the proof of Lemma on centralizers in [5, 6] for self-
contain-ness of this paper as the journal that [5, 6] appeared is not well
circulated.

Proof. Clearly, we may assume without loss of generality that au = 1.
Let ∞ be a symbol outside of S with the property ∀s ∈ S, s <∞, and
let S ′ = S∪{∞}. Of course S ′ is a totally ordered set. By ‘the leading
term of r ∈ R((S)) is αt’, we mean that if r = 0, then t = ∞ and α
is undefined. To each pair x, y ∈ S ′, the intervals of different types are
defined as follows: [x, y] = {s ∈ S ′|x ≤ s ≤ y}; (x, y] = {s ∈ S ′|x <
s ≤ y}; [x, y) = {x ∈ S ′|x ≤ s < y}; (x, y) = {s ∈ S ′|x < s < y}.

For s, t ∈ S, s being invertible, we define t
s
= max{ts−1, s−1t}. We

also define ∞

s
= ∞. Easy to get that x > y implies x

s
> y

s
.

Let X be the set of all 3-tuples (t, b, e) where t ∈ (u,∞], b ∈ R((S))
with v(b) = u, c(b) = 1 and supp(b) ⊆ [u, t)∩Cu(S), and e is an element
with leading term 1 and support in [1, t

u
) such that v(ebe−1 − a) =

t, c(ebe−1 − a) = α(here we mean that if ebe−1 − a = 0, then t = ∞,
and if not, α ∈ R− {0}).

Now establish a partial order on X : (t, b, e) < (t′, b′, e′) if and only if
t < t′, supp(b′ − b) ⊆ [t, t′) and supp(e′ − e) ⊆ [ t

u
, t

′

u
) (here notice that

surely t
u
< t′

u
as being proved). The last two conditions say that b′, e′

”extend” b and e.

X is nonempty since (v(a − u), u, 1) ∈ X . Hence, to each ascending
chain {(tl, bl, el)|l ∈ N+}, we just ‘piece together’ bl and el as b and e,
and let t = v(ebe−1 − a) (obviously here t ≥ tl for each l), and then
(t, b, e) becomes the upper bound of the chain. Hence, according to
Zorn’s Lemma, X has a maximal one.

We now prove that if t <∞, (t, b, e) can not be a maximal element. If
not, let (t, b, e) with t < ∞ be a maximal element, and we have three
cases.

Case 1. tu−1 > u−1t. Then t
u
= tu−1. Let e′ = e − αtu−1, and hence

e′−1 = e−1+αtu−1+o(tu−1) where o(tu−1) means that it is an element of
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R((S)) each of whose support is greater that tu−1. Let b′ = b, and t′ =
v(e′b′e′−1−a). Since (e−αtu−1)b(e−1+αtu−1+o(tu−1))−a = (ebe−1−
a)+αebtu−1+ebo(tu−1)−αtu−1be−1−α2tu−1btu−1−αtu−1bo(tu−1), and
v(αebtu−1) = utu−1 > t, v(ebo(tu−1)) > utu−1 > t, v(−α2tu−1btu−1) =
tu−1utu−1 = t2u−1 > t(notice that t > u), v(−αtu−1bo(tu−1)) >
tu−1utu−1 > t, v((ebe−1 − a)− αtu−1be−1) = v((αt+ o(t))− αtu−1u+
o(t)) > t, as well as v((ebe−1 − a) +αebtu−1+ ebo(tu−1)−αtu−1be−1 −
α2tu−1btu−1 − αtu−1bo(tu−1)) ≥ max{v((ebe−1 − a)− αtu−1be−1),
v(αebtu−1), v(ebo(tu−1)), v(−α2tu−1btu−1), v(−αtu−1bo(tu−1))}, t′ > t.
It means that (t′, b′, e′) > (t, b, e) which contradicts to (t, b, e) being
maximal.

Case 2. tu−1 < u−1t. Similar to case 1, we just let e′ = e−αu−1t, b′ =
b, and v(e′b′e′−1 − a) > t.

Case 3. tu−1 = u−1t. Then t commutes with u, so we can let e′ =
e, b′ = b − αt, and hence e′b′e′−1 − a = e(b − αt)e−1 − a = (ebe−1 −
a)−αete−1. Since ebe−1−a = αt+ o(t), v(αete−1) = t, v((ebe−1−a)−
αete−1) > t, namely t′ > t which contradicts to (t, b, e) being maximal.
Therefore, there must exist some (t, b, e) such that t = ∞, namely
ebe−1 = a, or e−1ae = b. �

Let us give an example in K((F )) to understand Bergman’s Lemma on
centralizers and its proof. Here we will use the opposite definition of
”well-ordered” on F , namely each subset has a greatest element.

Example 2.2. In F we assume x > y and xy · (x2)−1 < (x2)−1 · xy
(of course xy · (x2)−1 > (x2)−1 · xy is also feasible since they are both
extended total orders of the partial order of degree) and let a = x2+xy.
By Bergman’s method, we establish the approximation starting from
(xy, x2, 1)(b = v(a), t = v(a− v(a)), e = 1). Then e′ = e+xy · (x2)−1 =
1+xy · (x2)−1 and (e′)−1 = e−1−xy · (x2)−1+O(xy · (x2)−1) = 1−xy ·
(x2)−1 + O(xy · (x2)−1) where O(xy · (x2)−1) means all the monomials
behind are all less than xy · (x2)−1. b′ = b = x2, and since e′b′(e′)−1 =
(1+xy · (x2)−1)x2(1−xy · (x2)−1+O(xy · (x2)−1)), it is easy to get that
v(e′b′(e′)−1−a) = x2 ·xy ·(x2)−1 since x > y, namely t′ = x2 ·xy ·(x2)−1.

After k steps, we get the three-tuple (tk, bk, ek). Now we claim that to
all the t′is, if ti 6= ∞, then deg(ti) = 2, and all the e′is are homogenous
of degree 0 and bi = x2 all the way. For k = 1, we see t1 = x2 ·xy ·(x2)−1,
e1 = 1 + xy · (x2)−1, b1 = x2 and it satisfies. Assume that it is correct
for k = n − 1. If tn−1 = ∞, then en−1bn−1e

−1
n−1 = a, and we prove

it. If not, since tn−1 is a monomial of degree 2 however it is less than
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x2, so it can not commute with x2 (By Bergman [4], the centralizer of
any element ofK〈x1, . . . , xn〉\K is a polynomial algebra in one variable
over K). Hence bn = bn−1 = x2, en = en−1+αtn ·x

−2/αx−2 · tn, and the
new term of en will always has degree 0. Then en is also homogenous
of degree 0 and so is e−1

n . Obviously enbne
−1
n is homogenous of degree

2 and since a is homogenous of degree 2, enbne
−1
n − a is homogeneous

of degree 2 or equal to 0, namely deg(tn) = 2 or tn = ∞.

It means that after finite steps of the algorithm, we always get eae−1 =
x2 + t where deg(t) = 2, or we get eae−1 = x2. Now we consider
the subset S of three-tuples (t, b, e) defined in the proof of Lemma on
centralizers where e being homogeneous of degree 0 and b = x2. Since
a is homogenous of degree 2, t is also of degree 2 or ∞. Then, By
preserving the order introduced by Bergman on S, if t is not ∞, we
can always construct an ‘extension’ of b and e such that (t′, b′, e′) ∈ S is
greater. However, by the ‘piece together’, we will always get a maximal
element, and hence we get the maximal element with t = ∞, namely
there exists an e which is homogenous of degree 0 such that eae−1 = x2.

Remark 2.3. The steps in the proof of Bergman is to construct a
‘better approximative’ element to the maximal element instead of cal-
culating the maximal three-tuple.

According to the discussion in the example above, we obtain

Proposition 2.4. If an element a ∈ K((F )) is homogenous, then there
exists some e ∈ K((F )) with leading term 1 which is homogenous of
degree 0 such that eae−1 = c(a)v(a).

�

Then according to Lemma on centralizers, there exists some t ∈ K((F ))
with c(t)v(t) = 1 such that the support of tft−1 is in CF (v(f)). Let
v(f) = hq where h is the generator of CF (h), and then tft−1 =∑q

i=−∞
aih

i with ai ∈ K. Let f ′ = tft−1, g′ = tgt−1, and we have
the following

Lemma 2.5. For any P (x, y) ∈ K〈x, y〉, P (f ′, g′) = tP (f, g)t−1.

Proof. Let P (x, y) =
∑m

i=0

∑n

j=0 aijx
iyj for some nonnegative integers

i and j where aij ∈ K. Then

P (f ′, g′) =
m∑

i=0

n∑

j=0

aijf
′ig′j =

m∑

i=0

n∑

j=0

aij(tft
−1)i(tgt−1)j

=
∑m

i=0

∑n

j=0 aijtf
igjt−1 = t(

∑m

i=0

∑n

j=0 aijf
igj)t−1 = tP (f, g)t−1. �
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Since v(t) = 1, deg(P (f, g)) = deg(P (f ′, g′)) where the degree function
is the homogenous degree of K((F )). So we can just do degree estimate
for P (f ′, g′).

Two elements of An are called algebraically independent over K if they
generate a subalgebra of rank two. If v(f) and v(g) are algebraically
independent, then for all P (x, y) ∈ K〈x, y〉\K,
deg(P (f, g)) = wdeg(f),deg(g)(P (x, y)), so we may assume without loss of
generality that v(f) and v(g) are algebraically dependent. However, if
deg(f) | deg(g) or deg(g) | deg(f), then deg(f)+deg(g) can be reduced
by some automorphism, so we also assume deg(f) ∤ deg(g) as well as
deg(g) ∤ deg(f). We assume that f and g are algebraically independent
over K but v(f) and v(g) are not. Hence since v(f ′) = v(f) and
v(g′) = v(g), f ′ and g′ are algebraically independent but v(f ′) and v(g′)
are algebraically dependent. Then since h generates its own centralizer
in An, v(g

′) = hp for some positive integer p. Let g′ = hp + g′1 where
v(g′1) < hp, and if v(g′1) and h are dependent, then v(g′1) = hp1 for some
integer p1 which is less than p. This can be done inductively.

Lemma 2.6 (on steps). The above process will stop after a finite
number of steps.

Proof. After k steps, let g′ =
∑k

i=1 aih
mi +g′k. Obviously deg([f ′, g′]) =

deg([f ′, g′k]) ≤ deg(f ′) + deg(g′k), so deg(g′k) ≥ deg([f ′, g′])− deg(f ′) =
deg([f, g])− deg(f). Here notice that deg(h) > 0, so after each step, if
possible, the deg(g′i) decreases by at least 1 which means after at most

deg(g)− (deg([f, g])− deg(f)) = deg(fg)− deg([f, g])

steps, the process will stop. �

Hence, after a finite number of steps we get g′ =
∑p

i=p−k aih
i+ s where

v(s) and h are algebraically independent.

Let C be the subalgebra generated by h, h−1 and s, and equip it with
the weighted degree function w1,p where w1,p(h) = 1 and w1,p(s) = p.

Of course f ′, g′ ∈ C, and we write f̃ ′, g̃′ as the leading parts of f ′ and g′

respectively relative to w1,p. To any polynomial P (x, y), let P denote
the leading part relative to the weighted degree function wq,p. Let deg
be the homogenous degree of An, and we have:

Lemma 2.7 (on degrees). P (f̃ ′, g̃′) 6= 0 and

deg(P (f ′, g′)) ≥ deg(P (f̃ ′, g̃′)).
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Proof. Consider P (f ′, g′) = Q(h, h−1, s) as well as P (f̃ ′, g̃′) = R(h, h−1, s)
as the element of C, and then R is the leading part of Q relative
to w1,p, so all the monomials of R appear in Q with nonzero coeffi-
cients. Since h and v(s) are algebraically independent, deg(P (f ′, g′)) =

wdeg(h),deg(s)(Q(h, h
−1, s)) and deg(P (f̃ ′, g̃′)) = wdeg(h),deg(s)(R(h, h

−1, s)).
We conclude by the definition of weighted degree. �

Now we only need to estimate deg(P (f̃ ′, g̃′)).

The following procedure is similar to the counterparts in [8].

Now we can write f̃ = tm and g̃ = tn + s just for convenience since
deg(f) = m and deg(g) = n. Then deg(t) = 1 and to each polynomial
m(x, y), deg(m(t, s)) = deg1,deg(s)(m(x, y)), or we can say that v(t) and
v(s) are algebraically independent over K.

Let N = wm,n(P (x, y)), and q be the greatest integer among the inte-
gers which are not greater than N

m+n
(or we can denote it by q = [ N

m+n
]).

Define Q(t, s) = P (tm, tn + s), and we have

Lemma 2.8 (on monomials). There is a monomial u(t, s) in supp(Q)
such that degs(u) ≤ q.

Proof. Choose a monomial z(x, y) in supp(P (x, y)) such that
(1) degy(z) is the greatest;
(2) Among all the monomials whose degree related to y is equal to
degy(z), z is the greatest under the lexicographic order x >> y.

Let z(x, y) = xα1yβ1 · · ·xαkyβk with α1, βk ≥ 0 and αi ≥ 1, 2 ≤ i ≤ k,
βj ≥ 1, 1 ≤ j ≤ k − 1. Let I = degx(z) and J = degy(z). If J ≤ q,
then the degrees related to s of all the monomials in supp(Q) are not
greater than q, and since in Proposition 2.4 it is proved that supp(Q) is
not empty, we prove the lemma. Hence assume J > q, or J ≥ q+ 1. If
I + J ≥ 2q+2, then since N = mI +nJ , N = m(I + J) + (n−m)J ≥
m(2q + 2) + (n − m)(q + 1) = (m + n)(q + 1) which contradicts to
N

m+n
< q + 1, and hence I + J ≤ 2q + 1.

Now for z(x, y) = xα1yβ1 · · ·xαkyβk , replace x by tm, and, if βi = 2σi,
replace yβi by (stn)σi ; if βi = 2σi + 1, replace yβi by (stn)σis. Then we
get a monomial u(t, s). It is easy to verify that u(t, s) is a monomial
in the extension of z(tm, tn + s) = tmα1(tn + s)β1 · · · tmαk(tn + s)βk , and
the coefficient of u is just the coefficient of z in supp(P ) and hence
nonzero.
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Now we are going to prove that u(t, s) cannot come from other exten-
sions of the monomials in supp(P ) after replacement.

We divide z(x, y) into different parts first: xα1 ; yβixαi+1 where 1 ≤ i ≤
k−1; yβk . Let l(x, y) be a part of z(x, y), and we define ψ(l(x, y)) being
the corresponding part in u(s, t) after replacement. So ψ(xα1) = tmα1

and so on. If u(s, t) is also in the extension of z1(t
m, tn + s) where

z1(x, y) ∈ supp(P (x, y)), then let l1(x, y) be a part of z1(x, y), and
we define ψ1(l(x, y)) to be the corresponding part in u(s, t). Hence
z1(x, y) can also be divided in to

∏
i+1k+1 hi(x, y) with ψ1(h1) = ψ(xα1),

ψ1(hi) = ψ(yβixαi+1) where 1 ≤ i ≤ k − 1, and ψ1(hk+1) = ψ(yβk).
Obviously degy(h1) ≥ degy(x

α1). To each i, 1 ≤ i ≤ k − 1, if βi is odd,
then ψ1(hi+1) = (stn)σis ·tmαi+1 , and since n < m, the tn between two s
has to come from g̃, so hi+1 = yβi·h′i+1) where ψ1(h

′

i+1) = tmαi+1 , namely

degy(hi+1) ≥ βi. If βi is even, then ψhi+1
= (stn)σ · tmαi+1 = (stn)σ−1s ·

tmαi+1+n. Hence hi+1 = yβi−1h′i+1 where ψ1(h
′

i+1) = tmαi+1+n. However,
since n < m, h′i+1 cannot be of the form xp for some integer p, and hence
degy(h

′

i+1) ≥ 1, namely degy(hi+1) ≥ βi. To hk+1, since ψ1(hk+1) =

ψyβk = stnstn · · · s or stnstn · · · stn, it has to equal to yβk . Hence,

degy(z1(x, y)) =
∑k+1

i=1 degy(hi) ≥
∑k

i=1 βi = degy(z(x, y)). However

degy(z(x, y)) is the greatest one among the monomials in supp((P )),
degy(z1(x, y)) = degy(z(x, y)), and the only case is that h1(x, y) = xα1 ,
and for 1 ≤ i ≤ k − 1, h′i+1 = xαi+1 if βi is odd and deg(h′i+1) = 1
if βi is even. Let h′j+1 be the monomial with least j such that βj is
even but h′j+1 6= yxαj+1 , then since degy(h

′

j+1) = 1, h′j+1 = xryxαj+1−r

for 1 ≤ r ≤ αj+1. But if so, z1(x, y) > z(x, y) under the lexicographic
order x >> y which contradicts to z(x, y) being maximal, hence no such
h′j+1 exists, namely each h′j+1 of this kind is equal to yxαj+1. Hence
z1(x, y) = z(x, y) and the coefficient of u(s, t) is not zero.

According to the definition of u(s, t), we see that

degs(u) ≤

k∑

i=1

βi + 1

2
=
J + k

2
.

Obviously that I ≥ k − 1, and hence J+k
2

≤ I+J+1
2

≤ 2q+2
2

= q + 1(be
reminded that I+J ≤ q+1). Notice that degs(u) = q+1 only if all the
βis’ are odd and I = k − 1, and z(x, y) = y2σ1+1xy2σ2+1 · · ·xy2σk+1 or
y2σ1+1xy2σ2+1 · · ·xy2σk−1+1x. Then in z(tm, tn+s) we replace y2σ1+1x by
(tns)σ1tn · tm and choose u(t, s) = (tns)σ1tntm(stn)σ2s · · · . We denote
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z(x, y) = y2σ1+1x · h(x, y) and if u(s, t) can also come from another
monomial z1(x, y), then z1(x, y) = y2σ2h1(x, y)h(x, y) with ψ1(h1) =
tm+n. Hence h1(x, y) = xy or yx. Notice again that z(x, y) is the
maximal element under the lexicographic order x >> y, and hence
h1(x, y) = yx which means z1(x, y) = z(x, y). Then the coefficient of
u(s, t) is nonzero and degs(u) = q + 1− 1 = q. �

Proof of Theorem 1.1. Recall that deg(f) = m, deg(g) = n,
deg(t) = 1, deg(s) = deg([f, g]) − deg(f) = deg([f, g]) − m, N =
wm,n(P (x, y)). We have proved that there exists some
u(s, t) ∈ supp(P (tm, tn + s)) such that degs(u) ≤ N/(m + n). Since
N = degt(u) + n · degs(u), then deg(u) = degt(u(t, s)) + degs(u(t, s)) ·
(deg([f, g])−m) = N+degs(u(s, t))(deg([f, g])−m−n). Since deg([f, g])−
m− n ≤ 0, we get

deg(P (f, g)) ≥ deg(P (f̃ , g̃)) ≥ deg(u) ≥ N +
N(deg([f, g])−m− n)

m+ n

=
deg([f, g])

m+ n
wm,n(P ).

Since m+ n = deg(fg), we get

deg(P (f, g)) ≥
deg([f, g])

deg(fg)
wdeg(f),deg(g)(P ).

�

Example 2.9. Let f = xn, g = xm + y, P = [x, y]k. Then

deg(P (f, g)) = k(n+ 1) =
deg([f, g])

deg(fg)
wdeg(f),deg(g)(P ),

which shows the estimate is sharp.

Remark 2.10. The methodology in this paper, unlike that in [8], is
not applicable for commutative case, as in that case there is no invari-
ant to judge whether two polynomials are algebraically dependent or
independent over a field of positive characteristic, and in fact to find
such an invariant is an interesting question, and it is also interesting
to get a sharp degree estimate for the commutative case for positive
characteristic.
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