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Abstract

The Siegel–Walfisz theorem states that for any B > 0, we have∑
p≤x

p≡a (mod k)

1 ∼ x

ϕ(k) log x

for k ≤ logB x and (k, a) = 1. This only gives an asymptotic formula for the number of primes
over an arithmetic progression for quite small moduli k compared with x. However, if we are only
concerned about upper bound, we have the Brun–Titchmarsh theorem, namely for any 1 ≤ k < x,∑

p≤x
p≡a (mod k)

1 � x

ϕ(k) log(x/k)
.

In this article, we prove an extension to the Brun–Titchmarsh theorem on the number of integers,
with at most s prime factors, in an arithmetic progression, namely

∑
y<n≤x+y

n≡a (mod k)
ω(n)≤s

1 � x

ϕ(k) log(x/k)

s−1∑
�=0

(log log(x/k) + K)�

�!

for any x, y > 0, s ≥ 1 and 1 ≤ k < x.
In particular, for s ≤ log log(x/k), we have

∑
y<n≤x+y

n≡a (mod k)
ω(n)≤s

1 � x

ϕ(k) log(x/k)

(log log(x/k) + K)s−1

(s − 1)!
√

log log(x/k) + K
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and for any ε ∈ (0, 1) and s ≤ (1 − ε) log log(x/k), we have

∑
y<n≤x+y

n≡a (mod k)
ω(n)≤s

1 � ε−1x

ϕ(k) log(x/k)

(log log(x/k) + K)s−1

(s − 1)! .

1. Introduction

Throughout this paper, p, p1, p2, . . ., etc. denote prime numbers.
The celebrated prime number theorem, conjectured by Gauss and proved by Hadamard and de la

Vallée Poussin, asserts that ∑
p≤x

1 = (1 + o(1))
x

log x
,

where the summation is over all primes p ≤ x. One can also consider the distribution of primes in
arithmetic progressions. For (a, k) = 1, put

∑
p≤x

p≡a (mod k)

1 = Li(x)

ϕ(k)
+ E(x; k, a), (1)

where Li(x) := ∫ x

0 (1/log t)dt and ϕ(n) is the Euler function. The Siegel–Walfisz theorem states that
for arbitrary constants A, B > 0,

max
(a,k)=1

|E(x; k, a)| � x

k
(log x)−A (2)

uniformly for k ≤ (log x)B and this only gives an asymptotic estimate (1) for quite small mod-
uli k compared with x. Furthermore, if we assume the generalized Riemann hypothesis, we can
prove that (2) holds for k ≤ x1/2(log x)−A−2. The celebrated Bombieri–Vinogradov theorem has
the same strength as the generalized Riemann hypothesis on average, and therefore enables us to
deal with various problems. It asserts that for every A > 0, there exists a constant B = B(A) > 0
such that ∑

k≤x1/2(log x)−B

max
(a,k)=1

|E(x; k, a)| � x

(log x)A
.

See [1], for instance. Although asymptotic estimate (1) can only be proved so far for quite small
moduli k, if we are only concerned about upper bound inequality for (1), we have the Brun–Titchmarsh
theorem (e.g., see [2]), namely for any 1 ≤ k < x,

∑
p≤x

p≡a (mod k)

1 � x

k log(x/k)
.

In this article, we consider an extension of the Brun–Titchmarsh theorem and study the number of
integers in short intervals with exactly s prime factors (counted with multiplicity) that lie in the
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arithmetic progression a (mod k). Let �(n) denote the number of prime factors of n (counted with
multiplicity) and ω(n) denote the number of distinct prime factors of n. Landau [5] showed that for
fixed s, the asymptotic formula

∑
n≤x

ω(n)=s

1 = (1 + o(1))
x

log x

(log log x)s−1

(s − 1)!

holds. Sathe [8] and Selberg [9] proved a more precise quantitative estimate. Let

F(z) := 1

�(z + 1)

∏
p

(
1 + z

p − 1

) (
1 − 1

p

)z

,

where the product is taken over all primes p. Then

∑
n≤x

ω(n)=s

1 = F

(
s

log log x

)
x

log x

(log log x)s−1

(s − 1)!
(

1 + O

(
1

log log x

))

holds uniformly for x ≥ 3 and 1 ≤ s ≤ C log log x for any given fixed C > 0. For more discussions,
see [4, 6].

Upper bounds for the above sum have been obtained for much wider ranges. A classical example
is the Hardy–Ramanujan inequality [3]

∑
n≤x

ω(n)=s

1 ≤ c1
x

log x

(log log x + c2)
s−1

(s − 1)! , (3)

which is valid, with suitable constants c1 and c2, for all x ≥ 3 and s ≥ 1. Warlimont and Wolke [12]
extended the Hardy–Ramanujan inequality by estimating the number of such integers in an interval
(y, x + y], namely ∑

y<n≤y+x
ω(n)=s

μ2(n) ≤ c1

ε

x

log x

(log log x + c2)
s−1

(s − 1)! (4)

for any y ≥ 0 and 0 < ε < 1/2, provided that for sufficiently large x,

1 ≤ s ≤ (1 − ε)
log log x

log log log x
.

It was mentioned in [12] that, a larger upper bound than (4) is needed if the range of s is extended
to 1 ≤ s � log log x. A further remark on this will be discussed later. Recently, Tudesq [11] showed
that the inequality (4) still holds when the square-free condition is removed but for a larger upper
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bound. He proved that for 2 ≤ x ≤ y and s ≥ 1,

∑
y<n≤y+x
ω(n)=s

1 � x

log x

(log log x + c2)s−1

(s − 1)! .

Here (t)r := t (t + 1) · · · (t + r − 1). It can be easily shown that

(t)s−1 = t s−1

(
1 + 1

t

)
· · ·

(
1 + s − 2

t

)
≤ t s−1 exp

{
(s − 2)(s − 1)

2t

}

and hence in the range 1 ≤ s � √
log log x, Tudesq’s result recovers Warlimont and Wolke’s

result (4).
By extending Selberg’s idea [9], Spiro [10] proved, among other results, that if we fix B ′ with

0 < B ′ < B (B = 2 for η = � and B is arbitrary for η = ω), select u > 0, and let a, s, k be integers
with (a, k) = 1,

1 ≤ s ≤ B ′ log log x

and
1 ≤ k < exp(

√
log x),

∏
p|k

p ≤ (log x)u,

then for η(n) = ω(n) or �(n), we have

∑
n≤x

n≡a (mod k)
η(n)=s

1 = (1 + o(1))G(y)
x

ϕ(k) log x
· (log log x)s−1

(s − 1)!
(

ϕ(k)

k

)y

(5)

uniformly in a, s and k, where y = ((s − 1)/ log log x), χ0 is the principal character modulo k,
G(z) := g(1, z, χ0; η)/�(1 + z) and

g(w, z, χ; η) :=
∏
p

( ∞∑
m=0

χ(pm)zη(pm)p−mw

)
(1 − χ(p)p−w)z

wherever the product converges.
For larger values of k, the situation is much less satisfactory and no simple asymptotic formulae

have been obtained so far. The purpose of this paper is to obtain an upper bound estimate for the
number of positive integers in the interval (y, x + y] which have exactly s prime factors and lie in
the arithmetic progression a (mod k) for a large range of k. Orazov [7] showed that for fixed s ≥ 1,

∑
y<n≤x+y

n≡a (mod k)
ω(n)=s

μ2(n) �s

τ (k)s−1x(log log x)s−1

ϕ(k) log x

provided k ≤ x1/(2s), where τ(k) is the divisor function of k.
Our main theorem is the following.
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THEOREM 1.1 Let x, y > 0 and s ≥ 1 and let a, k be coprime positive integers with 1 ≤ k < x. We
have ∑

y<n≤x+y
n≡a (mod k)

ω(n)≤s

1 ≤ Kx

ϕ(k) log(x/k)

s−1∑
�=0

(log log(x/k) + K)�

�! . (6)

In particular, for s ≤ log log(x/k), the right-hand side of (6) is

≤ Kx

ϕ(k) log(x/k)

(log log(x/k) + K)s−1

(s − 1)!
√

log log
(x

k

)
+ K,

and for any ε ∈ (0, 1) and s ≤ (1 − ε) log log(x/k), the right-hand side is

≤ Kε−1x

ϕ(k) log(x/k)

(log log(x/k) + K)s−1

(s − 1)! .

For any L ≥ 1, it is not difficult to show that

L∑
�=0

L�

�! �
∑

|�−L|≤√
L

L�

�! � √
L

LL

L! � eL.

Hence, when s ≥ log log(x/k) + K , the sum in the right-hand side of (6) is � log(x/k), yielding
a trivial bound for the sum in the left-hand side. Thus, the main interest of our result concerns the
range 1 ≤ s ≤ log log(x/k).

Clearly, Theorem 1.1 includes the following.

THEOREM 1.2 Let x, y > 0 and let a, k be coprime positive integers with 1 ≤ k < x. For η(n) = ω(n)

or �(n), we have

∑
y<n≤x+y

n≡a (mod k)
η(n)=s

1 ≤ Kx

ϕ(k) log(x/k)

s−1∑
�=0

(log log(x/k) + K)�

�! .

In particular, for s ≤ log log(x/k), we have

∑
y<n≤x+y

n≡a (mod k)
η(n)=s

1 ≤ Kx

ϕ(k) log(x/k)

(log log
(

x
k

) + K)s−1

(s − 1)!
√

log log
(x

k

)
+ K,

and for any ε ∈ (0, 1) and s ≤ (1 − ε) log log(x/k), we have

∑
y<n≤x+y

n≡a (mod k)
η(n)=s

1 ≤ Kε−1x

ϕ(k) log(x/k)

(log log(x/k) + K)s−1

(s − 1)! . (7)
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Theorem 1.2 improves Warlimont and Wolke’s, Tudesq’s and Orazov’s results.
We remark that in the range 1 ≤ s ≤ (1 − ε) log log(x/k), (5) shows that our upper bound

in Theorem 1.2 is of the correct order of magnitude, at least when x is a sufficiently large
function of y.

It is very tempting to extend (7) in our Theorem 1.2 to the more natural range 1 ≤ s ≤ (1 + ε)

log log(x/k). However, similar to the comment of Warlimont and Wolke [12], this cannot be done.
We prove this in the following proposition.

PROPOSITION 1.3 For any A and ε > 0, there exist constants c0(A, ε) and c1(A, ε) with the following
property: let x ≥ c0, 1 ≤ k ≤ exp(

√
log x − 1

2 ),
∏

p|k p ≤ log x and

log log
(x

k

)
+ 2

√
log log

(x

k

)
log

(
2k

ϕ(k)

)
+ c1

√
log log

(x

k

)
≤ s ≤ (2 − ε) log log

(x

k

)
. (8)

Then for any positive integer a coprime with k, there exists y > 0 such that

∑
y<n≤y+x

n≡a (mod k)
�(n)=s

1 ≥ A
x

ϕ(k) log(x/k)

(log log(x/k))s−1

(s − 1)! .

Proof . Since 1 ≤ k ≤ exp(
√

log x − 1
2 ), we have 1 ≤ k ≤ exp(

√
log(x/k)). Then we apply Spiro’s

result in (5) with Y = exp((log(x/k))1+δ) in place of x, where δ > 0 is to be determined later.
We note that (cf. Lemma 3 in [10]) for s satisfying condition (8), we have (s − 1)/ log log Y <

(2 − ε)/(1 + δ) < 2 − ε and

1 � G

(
s − 1

log log Y

)
= �

(
1 + s − 1

log log Y

)−1

g

(
1,

s − 1

log log Y
, χ0; �

)
� 1.

Hence, by (5)

∑
n≤Y

n≡a (mod k)
�(n)=s

1 ≥ c3
Y

ϕ(k) log Y

(log log Y )s−1

(s − 1)!
(

ϕ(k)

k

)(s−1)/ log log Y

,

for some constant c3(ε) > 0.
Partition the interval (0, Y ] into ≤ [Y/x] + 1 subintervals of the form (0, x], (x, 2x], (2x, 3x], . . . .

Then there exists y = jx > 0 for some j such that

∑
y<n≤y+x

n≡a (mod k)
�(n)=s

1 ≥ 1

[Y/x] + 1

∑
n≤Y

n≡a (mod k)
�(n)=s

1

≥ c3

2

x

ϕ(k) log Y

(log log Y )s−1

(s − 1)!
(

ϕ(k)

k

)(s−1)/ log log Y

.
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Comparing the right-hand side with the desired lower bound in our proposition, we see that our
proposition would follow if

s − 1 ≥
(

δ log log
(x

k

)
+ log

(
2A

c3

) )(
log(1 + δ) − 1

log log Y
log

(
k

ϕ(k)

) )−1

holds. Using now the inequalities log(1 + δ) ≥ δ − 1
2δ2 and log log Y > log log(x/k), the right-hand

side above is

≤
(

δ log log
(x

k

)
+ log

(
2A

c3

) )(
δ − 1

2
δ2 − log(k/ϕ(k))

log log(x/k)

)−1

.

By taking δ satisfying

1

2
δ2 = log(2k/ϕ(k))

log log(x/k)
,

we find that the last expression is

≤ log log(x/k) + 2

√
log log

(x

k

)
log

(
2k

ϕ(k)

)
+ 2 log

(
2A

c3

) √
log log

(x

k

)
.

This proves our proposition.

Our argument in Proposition 1.3 does not work if the interval (y, y + x] is replaced
by the interval (1, x]. In fact, the counterexample occurs when y is quite large, namely
log y = (log(x/k))1+δ .

The main idea of proof of our Theorem 1.1 is the classification of positive integers n =(
p

α1
1 · · · pαj−1

j−1

) (
p

αj

j · · · pα�

�

)
= rw, say where j is determined by

p
α1
1 p

α2
2 · · · pαj−1+1

j−1 <
x

k
≤ p

α1
1 p

α2
2 · · · pαj +1

j .

Then
∑

n = ∑
r

∑
w. In each w, either pj is large or p

αj

j is a large prime power. In the former case,∑
w can be estimated by sieve method. When p

αj

j is a large prime power, there are at most two
possibilities for the exponent αj and a trivial estimate for the

∑
w then suffices. The sum

∑
r can be

estimated by Hardy–Ramanujan-type argument in [3]. This yields the (j − 1)! in the denominator in
Lemma 2.5.

2. Lemmas

We need the following results to prove our Theorem 1.1. Throughout, we let K denote a positive
absolute constant which need not have the same value at each occurrence, but K is effectively
computable.
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LEMMA 2.1 For 2 ≤ y < z < X, we have

∑
y<p≤z

1

p log(X/p)
= 1

log X

(
log

(
log z

log(X/z)

)
− log

(
log y

log(X/y)

))

+ O

(
1

log z log(X/z)
+ 1

log y log(X/y)

)
.

In particular, for 2 ≤ z ≤ √
X, we have

∑
p≤z

1

p log(X/p)
≤ log log z + K

log X
. (9)

Proof . This lemma can be proved by the partial summation that

∑
y<p≤z

1

p log(X/p)
= 1

log(X/t)

∑
p≤t

1

p

∣∣∣∣∣
z

y

−
∫ z

y

(∑
p≤t

1

p

)
dt

t log2(X/t)

and the well-known estimate

∑
p≤t

1

p
= log log t + c + O

(
1

log t

)

for t ≥ 2 and some constant c.

For any w > 1, we let

P(w) :=
∏
p<w

p,

where the product is over all primes less than w.

LEMMA 2.2 For any X ≥ 1, Y > 0 and any integers a and k > 0 such that (a, k) = 1, we have

∑
Y<n≤X+Y
(n,P (w))=1
n≡a (mod k)

1 ≤ K

(
X

ϕ(k) log w
+ kw2

ϕ(k) log2 w

)
.

Proof . This is Theorem 3.6 of [2] or Theorem 3.8 of [6].

LEMMA 2.3 Let X, Y > 0 and let a, k be coprime positive integers with 1 ≤ k < X. We have

∑
Y<pα≤X+Y
pα≡a (mod k)

1 ≤ KX

ϕ(k) log(X/k)
.

Here the summation on the left-hand side is over all prime powers pα .
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Proof . For k > X/2, the result is trivial. We may henceforth assume k ≤ X/2. If p >
√

X/k, then
the sieve bound Lemma 2.2 yields our result as before.

For any prime p, let 1 ≤ β1 < β2 < · · · be such that

Y < pβi ≤ X + Y, pβi ≡ a (mod k), i = 1, 2, . . . . (10)

Then for j > i, pβj − pβi is a multiple of k and so is (pβj −βi − 1) since (p, k) = (a, k) = 1. Also,

X > pβj − pβi = pβi (pβj −βi − 1) > 0.

Hence

pβi <
X

k
.

In other words, all but one of the prime powers pα in the sum of the lemma satisfy

pα <
X

k
.

In particular, for each p there are � log(X/k) + 1 powers of p satisfying (10). Thus

∑
Y<pα≤X+Y
pα≡a (mod k)

p≤√
X/k

1 �
∑

p≤√
X/k

(
log

X

k
+ 1

)
�

√
X

k
.

This completes the proof of our lemma.

For any positive integer m = p
α1
1 p

α2
2 · · · pαj

j , where p1 < p2 < · · · < pj are primes and
α1, α2, . . . , αj ≥ 1, we let

u(m) := p
α1
1 p

α2
2 · · · pαj−1

j−1 p
αj +1
j

and

v(m) := p
α1
1 p

α2
2 · · · pαj−1

j−1 p2
j .

Define u(1) = v(1) = 1.

LEMMA 2.4 Let ξ ≥ 2. Define P0(ξ) := 1/log ξ . For h ≥ 1, we have

Ph(ξ) :=
∑

m=p
α1
1 ···pαh

h

u(m)≤ξ

(
m log

(
ξ

m

))−1

≤ 1

h! log ξ
(log log ξ + K)h

and

Qh(ξ) :=
∑

m=p
α1
1 ···pαh

h

u(m)>ξ
v(m)≤ξ

m−1 ≤ K

(h − 1)! log ξ
(log log ξ + K)h−1.
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Proof . First,

P1(ξ) =
∑
pα s.t.

pα+1≤ξ

(pα log(ξp−α))−1

=
∑

p≤√
ξ

(p log(ξp−1))−1 +
∑

p≤ξ 1/3

[log ξ/p/log p]∑
α=2

(pα log(ξp−α))−1

= 1

log ξ

(
log

(
log ξ 1/2

log ξ 1/2

)
− log

(
log 2

log(ξ/2)

))
+ O

(
1

log ξ

)

+ O

⎛
⎝ ∑

p≤ξ 1/3

[log ξ/p/log p]∑
α=2

α + 1

log ξ
p−α

⎞
⎠

≤ 1

log ξ
(log log ξ + K) + O

⎛
⎝ ∑

p≤ξ 1/3

1

p2 log ξ

⎞
⎠

≤ 1

log ξ
(log log ξ + K)

by Lemma 2.1. We now use mathematical induction on h ≥ 1. For each prime power pα, α ≥ 1, let

L(pa) := {mpα : (p, m) = 1, ω(m) = h, u(mpα) ≤ ξ}.
For each n counted in the sum Ph+1(ξ), we have n = p

α1
1 p

α2
2 · · · pαh+1

h+1 , u(n) ≤ ξ . Hence, n belongs
to L(p

αi

i ) for i = 1, 2, . . . , h + 1 and

(h + 1)Ph+1(ξ) =
∑
pα

∑
n∈L(pα)

(
n log

ξ

n

)−1

.

For n = mpα ∈ L(pα), the condition u(mpα) ≤ ξ implies u(m) ≤ ξ/pα . Also L(pα) is an empty set
unless pα+1 ≤ ξ . Thus, the last double sum is

≤
∑
pα s.t.

pα+1≤ξ

p−αPh

(
ξ

pα

)

≤ 1

h!
∑

pα+1≤ξ

p−α (log log(ξ/pα) + K)h

log(ξ/pα)
,

by induction hypothesis on Ph(ξ/pα). Then by P1(ξ), we find that

Ph+1(ξ) ≤ 1

(h + 1)! (log log ξ + K)h
∑

pα+1≤ξ

(
pα log

(
ξ

pα

))−1

≤ 1

(h + 1)! log ξ
(log log ξ + K)h+1,

as desired.
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Next we prove the bound for Qj(ξ).

Q1(ξ) =
∑
pα s.t.

pα+1>ξ

p2≤ξ

p−α =
∑

p≤√
ξ

∑
α+1>log ξ/log p

p−α

≤
∑

p≤√
ξ

p2ξ−1

p − 1
= ξ−1

∑
p≤√

ξ

(
p + 1 + 1

p − 1

)
≤ K

log ξ
.

For h ≥ 2, using the above bound for Q1(ξ), we have

Qh(ξ) =
∑

m=p
α1
1 ···pαh

h

u(m)>ξ
v(m)≤ξ

m−1 ≤
∑

n=p
α1
1 ···pαh−1

h−1
u(n)≤ξ

n−1
∑

p
αh
h s.t.

p
αh+1
h >ξn−1

p2
h≤ξn−1

p
−αh

h

=
∑

n=p
α1
1 ···pαh−1

h−1
u(n)≤ξ

n−1Q1(ξn−1)

≤ K
∑

n=p
α1
1 ···pαh−1

h−1
u(n)≤ξ

n−1(log ξn−1)−1

= KPh−1(ξ) ≤ K

(h − 1)! log ξ
(log log ξ + K)h−1,

as desired.

For each integer n > 1, let n = p
α1
1 · · · pαt

t denote its canonical factorization in which p1 < p2 <

· · · < pt . For any ξ > 1, define the following sets:
H1 = H1(ξ) := {n : ω(n) ≥ 1, p

α1+1
1 > ξ}

H2 = H2(ξ) := {n : ω(n) ≥ 2, p
α1+1
1 ≤ ξ, p

α1
1 p

α2+1
2 > ξ}

H3 = H3(ξ) := {n : ω(n) ≥ 3, p
α1
1 p

α2+1
2 ≤ ξ, p

α1
1 p

α2
2 p

α3+1
3 > ξ}

and in general, for j ≥ 1,

Hj = Hj(ξ) =
{
n : ω(n) ≥ j, p

α1
1 · · · pαj−2

j−2 p
αj−1+1
j−1 ≤ ξ, p

α1
1 · · · pαj−1

j−1 p
αj +1
j > ξ

}
.

LEMMA 2.5 Let x, y > 0. For any coprime positive integers a, k with k ≤ x/2 and ξ = x/k, we have

∑
y<n≤x+y

n≡a (mod k)
n∈Hj

1 ≤ Kx

ϕ(k) log(x/k)

(log log(x/k) + K)j−1

(j − 1)! .
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Proof . We split the set Hj into

Hj = {n : p
α1
1 · · · pαj−2

j−2 p
αj−1+1
j−1 ≤ ξ, p

α1
1 · · · pαj−1

j−1 p2
j > ξ}

∪ {n : p
α1
1 · · · pαj−1

j−1 p2
j ≤ ξ, p

α1
1 · · · pαj−1

j−1 p
αj +1
j > ξ}

=: H
(1)
j ∪ H

(2)
j ,

say. For each n ∈ Hj , write n = rw where

r = p
α1
1 · · · pαj−1

j−1 , w = n

r
.

Note w > 1, and r = 1 if j = 1. Furthermore, for n ≡ a (mod k), we have (r, k) = 1 since
(a, k) = 1. If n ∈ H

(1)
j , then the smallest prime factor in w is pj , which is bigger than

√
ξ/r . Hence

∑
y<n≤x+y

n≡a (mod k)

n∈H
(1)
j

1 ≤
∑

r

∑
yr−1<w≤(x+y)r−1

w≡ra (mod k)

(w,P (
√

x/kr))=1

1

≤ K
∑

r

x

rϕ(k) log(x/kr)
,

by applying the sieve bound in Lemma 2.2.
The summation

∑
r is exactly that in Pj−1(x/k). Thus,

∑
y<n≤x+y

n≡a (mod k)

n∈H
(1)
j

1 ≤ Kx

ϕ(k)

∑
r

(
r log

x

kr

)−1 = Kx

ϕ(k)
Pj−1

(x

k

)

≤ Kx

ϕ(k) log(x/k)

(log log(x/k) + K)j−1

(j − 1)! (11)

by Lemma 2.4. Before we move on, we take note of the following simple fact: if y < n < n′ ≤ x + y

and n ≡ a ≡ n′ (mod k), then n′ − n is divisible by k as well as gcd (n, n′). Furthermore, since
(n, k) = 1 = (n′, k), we can conclude that n′ − n is a positive multiple of k(n, n′). In particular,

(n, n′) ≤ x

k
. (12)

Now suppose n = rw and n′ = rw′ are two integers in H
(2)
j with the same r . Then by (12), we

have
(w, w′) ≤ x

kr
. (13)
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If both w and w′ have the same smallest prime factor pj , and p
αj

j ‖w, p
α′

j

j ‖w′, say, with 1 ≤ αj ≤ α′
j ,

then it follows from (13) that p
αj

j ≤ x/kr . At the same time, we also have the condition (on n)

in H
(2)
j that

r p
αj +1
j >

x

k
.

This means that αj is uniquely determined by the inequalities

p
αj

j ≤ x

kr
, p

αj +1
j >

x

kr
. (14)

We can now conclude that, for all n ∈ H
(2)
j , n = rw with a given r , either

(1) w = p
β

j · · · for one value of β, which is determined uniquely by pj , or

(2) w = p
β

j · · · , where β takes exactly two values, one of which is αj in (14) and another one
larger than this. Both of these two values are determined uniquely by pj .

We now return to the sum ∑
y<n≤x+y

n≡a (mod k)

n∈H
(2)
j

1.

Those n in case (1) contribute

� 1
≤

∑
r

∑
pj

∑
y(rp

αj

j )−1<m≤(x+y)(rp
αj

j )−1

m≡rp
αj

j a (mod k)

1.

Note that αj in the inner summation is uniquely determined by r and pj . The innermost sum is clearly

≤ x(krp
αj

j )−1 + 1.

Hence,

� 1
≤ x

k

∑
r

∑
pj

1

rp
αj

j

+
∑

r

∑
pj

1

≤ x

k
Qj

(x

k

)
+

∑
r

∑
p≤ξ/r

1,

in view of the conditions in H
(2)
j and the definition of Qj . Hence, by the prime number theorem,

we have

� 1
≤ x

k
Qj

(x

k

)
+ x

k

∑
r

2

r log(x/kr)
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≤ x

k
Qj

(x

k

)
+ 2

x

k
Pj−1

(x

k

)

≤ Kx(log log(x/k) + K)j−1

k log(x/k)(j − 1)! . (15)

The contribution of those n in case (2) above is

� 2
≤

∑
r

∑
pj

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
y(rp

αj

j )−1<m≤(x+y)(rp
αj

j )−1

m≡rp
αj

j a (mod k)

1 +
∑

y(rp
α′
j

j )−1<m≤(x+y)(rp
α′
j

j )−1

m≡rp
α′
j

j a (mod k)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤
∑

r

∑
pj

⎛
⎝ x

rp
αj

j k
+ x

rp
α′

j

j k
+ 2

⎞
⎠

≤ 4
∑

r

∑
pj

x

krp
αj

j

≤ K
x

k
Qj

(x

k

)
,

as in the case of� 1
. The case that w has just one prime power can be verified separately by using

Lemma 2.3. Combining this with (15), we prove Lemma 2.5.

3. Proof of the Theorem

Again, when k > x/2, the result is trivial. Therefore, we may assume k ≤ x/2. Let s ≥ 1 be given
and set ξ = x/k(>2). By the definition of Hj(ξ), it is easy to see that if n = p

α1
1 p

α2
2 · · · pαj

j does not

belong to H1 ∪ H2 ∪ · · · ∪ Hj , then p
α1
1 p

α2
2 · · · pαj−1

j−1 p
αj +1
j ≤ ξ ; and hence n ≤ ξ . Thus,

∑
y<n≤x+y

n≡a (mod k)
ω(n)≤s

1 ≤
∑

y<n≤x+y
n≡a (mod k)
n∈H1∪···∪Hs

1 +
∑
n≤ξ

ω(n)≤s

1.

Applying Lemma 2.5 to the first sum and Hardy–Ramanujan’s inequality (3) to the second sum, we
obtain the bound

Kx

ϕ(k) log(x/k)

s−1∑
l=0

(log log(x/k) + K)l

l!

for the above right-hand side. This proves (6) in our Theorem 1.1.
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For s ≤ log log(x/k), we let λ = s/L ≤ 1 where L = log log(x/k) + K . If λ < 1, then the
summation at the right-hand side of (6) is

s−1∑
l=0

1

l!
(

log log
(x

k

)
+ K

)l = (log log(x/k) + K)s−1

(s − 1)!
s−1∑
l=0

(s − 1)(s − 2) · · · (l + 1)

(log log(x/k) + K)s−l−1

≤ (log log(x/k) + K)s−1

(s − 1)!
s−1∑
l=0

λs−l−1

≤ (log log(x/k) + K)s−1

(s − 1)!
∞∑
l=0

λl

= (1 − λ)−1(log log(x/k) + K)s−1

(s − 1)!
and if λ ≤ 1, then the summation at the right-hand side of (6) is

s−1∑
l=0

1

l!
(

log log
(x

k

)
+ K

)l = (log log(x/k) + K)s−1

(s − 1)!
s−1∑
l=0

(s − 1)(s − 2) · · · (l + 1)

(log log(x/k) + K)s−l−1

= (log log(x/k) + K)s−1

(s − 1)!
s−1∑
l=0

(
1 − 1

L

) (
1 − 2

L

)
· · ·

(
1 − s − l − 1

L

)

≤ (log log(x/k) + K)s−1

(s − 1)!
s−1∑
l=0

e−1/Le−2/L · · · e−(s−l−1)/L.

The last summation over l is

=
s−1∑
l=0

e−l(l+1)/2L ≤
∑

0≤l≤√
L

1 +
∑

√
L<l≤s−1

e−l2/2L

� √
L +

∫ ∞
√

L

e−t2/2L dt � √
L + √

L

∫ ∞

1
e−t2

dt � √
L.

This completes the proof of our Theorem 1.1.
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