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Abstract. We prove that all the meromorphic solutions of
the nonlinear differential equation c0u

′′′ + 6u4 + c1u
′′ + c2uu′ +

c3u
3+c4u

′+c5u
2+c6u+c7 = 0 are elliptic or degenerate elliptic,

and we build them explicitly.
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1 Introduction

When a system is governed by an autonomous nonlinear algebraic partial differential
equation (PDE), it frequently admits some permanent profile structures such as
fronts, pulses, kinks, etc [16], and usually these profiles are mathematically some
single-valued solutions of the travelling wave reduction (x, t) → x − ct of the PDE
to an ordinary differential equation (ODE). The physical motivation of the present
work is to find such solutions in closed form. Since this is a difficult mathematical
problem, we restrict here to a simple case (a third order nonlinear ODE) and solve
it completely. The method we used here is a refinement of Eremenko’s method
used in [4] as well as [5] and [6] which is based on the local singularity analysis
of the meromorphic solutions of the given differential equations as well as the zero
distribution and growth rate of the meromorphic solutions by using Nevanlinna
theory. This is a very powerful method. For example, it was used by Eremenko [5] to
characterize all meromorphic traveling wave solutions of the Kuramoto-Sivashinsky
(KS) equations. In fact, Eremenko showed that all the meromorphic traveling wave
solutions of the KS equations belong to the class W (like Weierstrass), which consists
of elliptic functions and their successive degeneracies, i.e.: elliptic functions, rational
functions of one exponential exp(kz), k ∈ C and rational functions of z.

In general, even if we know that the solutions belong to the class W , it is still
difficult to find their explicit form. To overcome this problem, we shall apply the
subequation method introduced in [13] and developed in [3]. In order to emphasize
the method, we will choose a test equation according to the following criteria:

1. to have a small differential order n,

2. to have only nonrational Fuchs indices, apart from the ever present −1 index,

3. to be of the form u(n) = P (u(n−1), . . . , u′, u), with P a polynomial of its argu-
ments,

4. to have movable poles of order one,

5. to be complete in the classical sense [15] (see details in [2, p. 122]) i.e. to
include all admissible nondominant terms,

The requirement for nonrational Fuchs indices sets n ≥ 3. Let us take the
complete autonomous third order polynomial ODE with simple poles,

d0u
′′′ + d1uu′′ + d2u

′2 + d3u
2u′ + d4u

4

+c1u
′′ + c2uu′ + c3u

3 + c4u
′ + c5u

2 + c6u + c7 = 0. (1)
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This equation is indeed complete in the sense that it includes all polynomial terms
having a singularity degree at most equal to four, as seen from the generating func-
tion

1

(1− tu)(1− t2u′)(1− t3u′′)

= 1 + ut + (u2 + u′)t2 + (u3 + uu′ + u′′)t3

+ (u4 + u2u′ + u′2 + uu′′)t4 + O(t5). (2)

Let us choose one particular set of dominant terms (the ones with coefficients dj,
which have quadruple poles) so as to enforce from the beginning the condition that
the Fuchs indices be nonrational. After setting c3 = 0 without loss of generality, our
test equation will be normalized as

c0u
′′′ + 6u4 + c1u

′′ + c2uu′ + c4u
′ + c5u

2 + c6u + c7 = 0, (3)

Let u be a meromorphic solution of the ODE (3). We first check that if u has
a movable pole at z = z0, then u has only three distinct Laurent series expansions
at z0. Note that if z0 is a pole of u, it must be a simple pole. Therefore, in a
neighbourhood of z = z0, the Laurent series of the meromorphic solution u is of the
form

u(z) = u−1(z − z0)
−1 + u0 + u1(z − z0) + · · · , u−1 6= 0. (4)

Denote a any one of the cubic roots of c0. Substituting the above Laurent series
into the ODE (3) and balancing the leading terms, we obtain u−1 = a, and u0 =
(−2c1a + c2a

2)/(24c0). We are going to prove that there are at most three distinct
Laurent series expansions at z0. If one linearizes the ODE (3) around the movable
singularity z = z0 [2, p. 114], the resulting linear ODE has the Fuchsian type at z0,
and its three Fuchs indices r are defined by

(r + 1)(r2 − 7r + 18) = 0. (5)

Hence, the Fuchs indices are equal to r = −1, (7 ± √−23)/2. Because of the
absence of any positive integer in the set of values of r, all other cofficients ui are
uniquely determined [2, p. 90] by the leading coefficient u−1. Hence, there are at
most three meromorphic functions with poles at z = z0 satisfying the ODE (3).

We shall study the third order nonlinear differential equation (3) and show that
all meromorphic solutions of this differential equation belong to the class W . More
specifically, our results are the following.

Theorem 1. If the ODE (3) has a particular meromorphic solution u, then u belongs
to the class W . Moreover, a necessary and sufficient condition for the ODE (3) to
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admit a particular meromorphic solution is to belong to the following list,

S3a : c1, c6 = arbitrary, c2 = 0, c5 = 0, c7 = 0, c4 =
c2
1

12c0

; (6)

S3b : c5, c6 = arbitrary, c1 = 0, c2 = 0, c4 = 0, c7 =
c2
5

128
; (7)

S2A : c1, c4 = arbitrary, c2 = 0, c5 =
c2
1 − 12a3c4

4a4
, c6 = −c1(c

2
1 + 36a3c4)

144a6
,

c7 =
(12a3c4 − c2

1)(36a3c4 − 11c2
1)

1536a8
; (8)

S2B : c1, c2 = arbitrary, c4 =
44c2

1 + 8ac1c2 − a2c2
2

144a3
,

c5 =
−32c2

1 − 24ac1c2 − 7a2c2
2

48a4
, c6 = −(c1 + ac2)(12c2

1 + 6ac1c2 + a2c2
2)

144a6
,

c7 = −(4c1 + 3ac2)(48c2
1 + 20ac1c2 + a2c2

2)

55296a7
; (9)

S1 : c1, c2, c4, c5 = arbitrary,

1152a6c6 = −56c3
1 + 60ac2

1c2 − 18a2c1c
2
2 + a3c3

2 + 288a3c1c4

− 144a4c2c4 − 96a4c1c5 + 48a5c2c5,

21332a8c7 = −176c4
1 + 128ac3

1c2 + 24a2c2
1c

2
2 − 32a3c1c

3
2

+ 5a4c4
2 + 2688a3c2

1c4 − 1536a4c1c2c4 + 96a5c2
2c4 − 6912a6c2

4

+ 128a4c2
1c5 − 512a5c1c2c5 + 224a6c2

2c5

+ 4608a7c4c5 + 2304a8c2
5. (10)

We shall apply Eremenko’s method [5] to prove the first part of Theorem 1. Here,
we shall assume the readers are familiar with the standard terminology and results
of Nevanlinna theory. The standard reference of this theory are [8] and [12, 14] (see
also [5] for a quick introduction). Our argument is slightly different from that of
Eremenko and it makes use of the following version of Clunie’s Lemma ([12, Lemma
2.4.2], see also [17]).

Lemma 1. Let f be a transcendental meromorphic solution of

fnP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are polynomials in f and its derivatives with meromorphic
coefficients {aλ|λ ∈ I} such that m(r, aλ) = S(r, f) for all λ ∈ I. If the total degree
of Q(z, f) as a polynomial in f and its derivatives is less than or equal to n, then

m(r, P (r, f)) = S(r, f).
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Now let u be a function meromorphic in the complex plane which satisfies the
above ODE (3). If u is rational, then we are done. So suppose u is a transcendental
meromorphic solution of equation (3), then we have

−6u4 = c0u
′′′ + c1u

′′ + c2uu′ + c4u
′ + c5u

2 + c6u + c7, (11)

Take f = u, P = u, n = 3 and apply Clunie’s lemma (Lemma 1) to the above
equation, we conclude that m(r, u) = S(r, u) and hence (1− o(1))T (r, u) = N(r, u).
We claim that u must have infinitely many poles. Assume it is not the case, then
N(r, u) = O(log r). Therefore, T (r, u) = O(log r) which is impossible as u is tran-
scendental.

Secondly, we prove that if u is a transcendental meromorphic solution, then u
is a periodic function. Recall that there are at most three meromorphic functions
with poles at z = z0 satisfying the ODE (3). Now let zj, j = 1, 2, 3, · · · be the poles
of u(z), then the functions wj(z) = u(z + zj − z0) are meromorphic solutions of the
ODE (3) with a pole at z0. Thus some of them must be equal. Consequently, u is
a periodic function.

Without loss generality, we may assume that u has a period of 2πi. Let D =
{z : 0 ≤ Imz < 2π}. If u has more than three poles in D, then by the previous
argument, we can conclude that u is periodic in D and hence it is indeed an elliptic
function and we are done.

Now suppose u has at most three poles in D. Since u is a periodic function with
period 2πi, we have N(r, u) = O(r), as r →∞. It follows from (1− o(1))T (r, u) =
N(r, u) that T (r, u) = O(r). By Nevanlinna’s First Fundamental Theorem, we
know that for any a ∈ C, N(r, 1/(u − a)) = O(r) as r → ∞. By the periodicity of
u, we conclude that u take each a finitely many times in D. Hence, the function
R(z) = u(ln z) is a single-valued analytic function in the punctured plane C\{0} and
takes each a ∈ C finitely many times. It follows that 0 is a removable singularity
of R and R can then be extended to a meromorphic function on C. Hence R is a
rational function as it takes each complex number finitely many times. Therefore,
u(z) = R(ez) belongs to the class W and this completes the proof of the first part
of Theorem 1.

Remark. From the above proof, we notice that if u is an elliptic solution, then u
has at most three (simple) poles in each fundamental polygon Ω. Recall that the
residue of u at any pole must be one of a, ωa, ω2a where ω is the cubic root of unity.
Since the sum of the residues of all the poles in any fundamental polygon Ω is zero,
u must have three distint simple poles in Ω and hence we have three distinct Laurent
series at z0.
Remark. If u(z) = R(ekz) where R is some rational function, then R has at most
three (simple) poles in C\{0}. We are going to show that R cannot have a pole at
0. Suppose we write u(z) = R(Z) = r0/Z

n +
∑3

i=1 ri/(Z − Zi) + q(Z), where q is
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a polynomial in Z = ekz. Substituting u(z) = R(Z) into ODE (3) and letting Z
tend to infinity, we can conclude that q equals to some constant C. Now letting Z
tend to 0, we can deduce that r0 = 0. Hence, u(z) =

∑3
i=1 ri/(e

kz − Zi) + C, where
Zi, C ∈ C. Finally, if u is rational, then u will have at most three (simple) poles in
C. Similarly, we can show that u must be of the form

∑3
i=1 ri/(z − zi) + C, where

ri, C ∈ C.

2 Explicit solutions in the class W

Let us determine the constraints on the coefficients cj of (3) for meromorphic solu-
tions to exist, and let us determine all these meromorphic solutions in closed form.
According to section 1, these solutions are necessarily elliptic or degenerate of ellip-
tic (i.e. rational in one exponential ekz, k ∈ C or rational in z), i.e. they belong to
the class W .

If the meromorphic solution is elliptic, by a classical theorem, the sum of the
residues of the three Laurent series for u, Eq. (4), must vanish, and similarly for any
rational function of u, u′, u′′. These necessary conditions [10] are first established in
section 2.1.

If the solution is elliptic, one knows the elliptic orders of u and u′, they are
respectively equal to three (three simple poles) and six (three double poles). There-
fore, by a classical theorem of Briot and Bouquet [1, p. 277], [7, part II, chap. IX
p. 329], [9, p. 424] the elliptic solution obeys a first order algebraic equation whose
degree in u′ is the order of u (three) and degree in u is the order of u′ (six),

F (u, u′) ≡
m∑

k=0

2m−2k∑
j=0

aj,ku
ju′k = 0, a0,m 6= 0, (12)

with m = 3. The complex constants aj,k, with a0,m 6= 0, are then determined by the
algorithm presented in [13], i.e. by requiring each of the three Laurent series (4) to
obey (12). The search for all third degree subequations (12) obeyed by the three
Laurent series is performed in section 2.2.

As to those solutions of (3) which are degenerate of elliptic, they also obey a first
order equation (12), whose degree m is at most three. Because of the singularity
structure of (3) (three distinct Laurent series), any m-th degree subequation, 1 ≤
m ≤ 3, must have m distinct Laurent series. The search for all second or first degree
subequations (12) is performed in sections (2.3) and (2.4).

Let us first establish all these first order subequations. Their general solution
may be either singlevalued (and hence in class W ) or multivalued. The explicit inte-
gration of the singlevalued subset will provide as a final output all the meromorphic
solutions of (3) in closed form.
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2.1 Residue conditions

If (3) admits an elliptic solution, it is necessary that, for any rational function of u
and its derivatives, the sum of the residues inside a period parallelogram be zero,

∀k ∈ N ∀n ∈ N res
3∑

i=1

(
u(k)

)n
= 0. (13)

The first conditions are




k = 0, n = 2 : c2 = 0,

k = 0, n = 3 : c4 =
c3
1

12a3
,

k = 0, n = 5 : c1c5 = 0,
k = 0, n = 7 : c1c7 = 0,
k = 1, n = 4 : (c6(c

2
5 − 128c7) = 0 if c1 = 0), (c7(c

3
1 + 36a2

0c6) = 0 if c1 6= 0).

(14)

When the computation is limited to k ≤ 4, n ≤ 10, this defines three and only
three distinct sets of fixed coefficients for a possible elliptic solution,

c2 = 0, c1 = 0, c4 = 0, c6 6= 0, c7 =
c2
5

128
, (15)

c2 = 0, c1 = 0, c4 = 0, c6 = 0, (16)

c2 = 0, c1 6= 0, c4 =
c2
1

12a3
, c5 = 0, c7 = 0. (17)

2.2 Subequations of degree three

Denoting ωk, k = 1, 2, 3, cubic roots of unity, each such subequation has the neces-
sary form

F (u, u′) ≡ −(ω1au′ + u2)(ω2au′ + u2)(ω3au′ + u2)

+ b1u
′2u + b2u

′u3 + b3u
5 + b4u

′2 + b5u
′u2 + b6u

4

+ b7u
′u + b8u

3 + b9u
′ + bbu

2 + bau + bc + b0 = 0, (18)

with all ωj distinct and the additional condition to be irreducible.
The first order third degree subequation is precisely defined as

F (u, u′) ≡ −a3u′3 − u6 + b1u
′2u + b2u

′u3 + b3u
5 + b4u

′2 + b5u
′u2 + b6u

4

+ b7u
′u + b8u

3 + b9u
′ + bbu

2 + bau + bc + b0 = 0. (19)

The algorithm [13] to compute the coefficients bk is to substitute u by one of the
Laurent series (4), which makes the right hand side of (19) become a Laurent series

F (u, u′) ≡
+∞∑
j=0

Fj(z − z0)
j−6, (20)
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then to solve the infinite set of equations

∀a ∀j : Fj = 0. (21)

The practical resolution is as follows. First, the 21 equations Fj = 0, j = 0, ..., 6
define a linear system for the bk, which admits a unique solution and generates six
nonlinear constraints among the six ck. By considering slightly more equations in
(21) (in the present case, going to j = 8 is enough), the set of nonlinear constraints
among the ck’s admits exactly two solutions, and all the remaining equations Fj = 0
identically vanish. These two solutions are





S3a : c1, c6 = arbitrary, c2 = 0, c5 = 0, c7 = 0, c4 =
c2
1

12a0

,

S3b : c5, c6 = arbitrary, c1 = 0, c2 = 0, c4 = 0, c7 =
c2
5

128
,

(22)

and they are identical to the two residue conditions (17) and (15).
The corresponding subequations have genus one

(au′ + 4k1u)2(au′ − 2k1u) + (u3 + 20k3
1 + k6)

2 = 0, c1 = 12a2k1, c6 = 4k6, (23)

(au′)3 + (u3 − 3k2
5u + k6)

2 = 0, c5 = −16k2
5, c6 = 4k6. (24)

The method to integrate them [1, §249 p. 393] is to build a birational transformation
to the canonical equation of Weierstrass

℘′2 = 4(℘− e1)(℘− e2)(℘− e3) = 4℘3 − g2℘− g3. (25)

To do that, it proves convenient to introduce one of the roots e0 of the cubic poly-
nomial of u(x) appearing as a square in (23) and (24), i.e. to redefine k6 by the
respective relations

e3
0 + 20k3

1 + k6 = 0 and e3
0 − 3k2

5e0 + k6 = 0. (26)

The subequation (24) is one of the five first order binomial equations of Briot
and Bouquet [2, p. 122], its general solution is classical

1

u− e0

=
℘′(z − z0, g2, g3)− A

N1

, g2 = 0, g3 =
(e2

0 − k2
5)

2(e2
0 − 4k2

5)

243a6
,

N1 =
2(e2

0 − k2
5)

2

3a3
, A =

e0(e
2
0 − k2

5)

3a3
. (27)

The subequation (23) has been integrated by Briot and Bouquet [1, §250 p. 395]
by introducing a function w defined by

au′ + 4k1u =
u3 − e3

0

u− e0

w, (28)
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then by establishing the birational tranformation

w =
au′ + 4k1u

u2 + e0u + e2
0

, u =
−3aww′ − e0w

3 + 6k1w
2 + 2e0

2(w3 + 1)
, (29)

finally by integrating the ODE for w,

w =
2k1

e0

+
A

℘−B
, g2 =

4k1(k
3
1 − e3

0)

3a4
, g3 =

e6
0 − 20e3

0k
3
1 − 8k6

1

17a6
,

g3
2 − 27g2

3 = −(8k3
1 + e3

0)
3e3

0

27a12
, A = −e3

0 + 8k3
1

3a2
, B = −k2

1

a2
. (30)

More generally, birational transformations from (u, u′) to (℘, ℘′) are obtained
with an algorithm due to Poincaré, implemented for instance by the command
Weierstrassform of the computer algebra package algcurves [11].

2.3 Subequations of degree two

Let us define the second degree subequation as

F (u, u′) ≡ a2u′2 − au2u′ + u4 + b4u
′u + b3u

3 + b5u
′ + b2u

2 + b1u + b0 = 0, (31)

with the additional condition to be irreducible. Computations similar to those
mentioned in section 2.2 provide two solutions,





S2A : c1, c4 = arbitrary, c2 = 0, c5 =
c2
1 − 12a3c4

4a4
,

c6 = −c1(c
2
1 + 36a3c4)

144a6
,

c7 =
(12a3c4 − c2

1)(36a3c4 − 11c2
1)

1536a8
,

u = v − k1

2
, c1 = −3a2k1, c4 = 2ab2 +

3

4
ak2

1,(
av′ − v2 − b2

2

)2

+
3

4
(v + b)(v − b)(v − k1)

2 = 0, b 6= 0,

(32)
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and




S2B : c1, c2 = arbitrary, c4 =
44c2

1 + 8ac1c2 − a2c2
2

144a3
,

c5 =
−32c2

1 − 24ac1c2 − 7a2c2
2

48a4
,

c6 = −(c1 + ac2)(12c2
1 + 6ac1c2 + a2c2

2)

144a6
,

c7 = −(4c1 + 3ac2)(48c2
1 + 20ac1c2 + a2c2

2)

55296a7
,

u = v +
b

4
+

c1

12a2
, c2 = −2

c1

a
+ 6ab,

(
av′ − v2 − b2

2

)2

+
3

4
(v + b)3(v − b) = 0, b 6= 0.

(33)

For k2
1 6= b2, the point transformation

v = k1 +
1

w
, w = − 1

k1 + b
− 1

k1 − b
+ N

(
λ− 1

λ

)
, N2 = − b2

(k2
1 − b2)2

, (34)

maps the ODE (32) to the Riccati ODE

aNλ′ −Mλ− b2

4(k2
1 − b2)

(λ2 + 1) = 0, M2 =
3b2

4(k2
1 − b2)

, (35)

whose general solution is a Möbius function of one exponential so that v is a rational
function of one exponential.

For k2
1 = b2, i.e. for instance for k1 = −b, the ODE (33) integrates as

v = −b +
2b

w
, w = 1 + 3

(
1 + eb(z−z0)/(2a)

)2
. (36)

2.4 Subequations of degree one

These first degree subequations

F (u, u′) ≡ au′ + u2 + b1u + b0 = 0, (37)
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are determined by requiring their vanishing when u is the Laurent series (4). This
results in





S1 : c1, c2, c4, c5 = arbitrary,

b1 =
2c1 − ac2

12a2
,

b0 =
44c2

1 − 32ac1c2 + 5a2c2
2 − 144a3c4 + 144a4c5

1152a4
,

1152a6c6 = −56c3
1 + 60ac2

1c2 − 18a2c1c
2
2 + a3c3

2 + 288a3c1c4

− 144a4c2c4 − 96a4c1c5 + 48a5c2c5,
21332a8c7 = −176c4

1 + 128ac3
1c2 + 24a2c2

1c
2
2 − 32a3c1c

3
2

+ 5a4c4
2 + 2688a3c2

1c4 − 1536a4c1c2c4 + 96a5c2
2c4

− 6912a6c2
4 + 128a4c2

1c5 − 512a5c1c2c5 + 224a6c2
2c5

+ 4608a7c4c5 + 2304a8c2
5.

(38)

The solution of this Riccati equation is either a rational function of one expo-
nential or a rational function,

u =




−b1

2
+ a

k

2
coth

k

2
(z − z0), k2 =

b2
1 − 4b0

2a2
6= 0,

−b1

2
+

a

z − z0

, b2
1 − 4b0 = 0.

(39)
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