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In Several Complex Variables the subject of proper holomorphic maps on bounded
domains is well studied in the case of strictly pseudoconvex domains, especially in the
case of complex unit balls Bn, which are precisely the bounded symmetric domains
of rank 1. By contrast proper holomorphic maps on irreducible bounded symmetric
domains Ω of rank ≥ 2 are not well understood. Earlier works include the work of
Henkin-Novikov [HN, 1984] on proper holomorphic maps on classical domains. In Mok-
Tsai [MT, 1992] one of the authors introduced in a joint work with Tsai a method for the
study of proper holomorphic maps on irreducible bounded symmetric domains of rank
≥ 2 by considering boundary values of the holomorphic map and associated bounded
holomorphic functions defined on totally geodesic complex submanifolds which are bi-
holomorphic to reducible bounded symmetric domains. By the Polydisk Theorem (Wolf
[Wo]) the existence of such subspaces is a main feature which distinguishes the case of
rank ≥ 2 from the rank-1 case. Inspired by results on strong rigidity concerning har-
monic maps and on Hermitian metric rigidity, Mok [Mk1, 1989] formulated a conjecture
on proper holomorphic maps from an irreducible bounded symmetric domain Ω of rank
r ≥ 2 into a bounded symmetric domain Ω′ of rank r′ ≤ r, according to which r′ must
agree with r and such maps must necessarily be totally geodesic. This conjecture was
resolved in the affirmative by Tsai [Ts, 1993] which exploited further the method of con-
sidering radial limits of bounded holomorphic functions in conjunction with methods
from Kähler geometry. A new proof illustrated by the case of Type-I classical symmetric
domains was recently devised by Mok [Mk4, 2008] in which methods of Kähler geome-
try were replaced by methods concerning geometric structures for non-equidimensional
holomorphic maps between uniruled projective manifolds.

Other results on proper holomorphic maps were obtained by Tu [Tu1, 2002] in the
equidimensional case and Tu [Tu2, 2002] in the non-equidimensional case. In [Tu1] it
was proven that any surjective proper holomorphic map F : Ω → Ω′ between bounded
symmetric domains must necessarily be a biholomorphism provided that Ω is irreducible
and of rank ≥ 2. In [Tu2] rigidity results were obtained for proper holomorphic maps
F : Ω → Ω′ for certain special pairs of irreducible bounded symmetric domain (Ω, Ω′)
in which rank(Ω) ≥ 2 and rank(Ω′) − rank(Ω) = 1, and nonexistence results of proper
holomorphic maps were also established for certain pairs of (Ω, Ω′) with the same gap
of 1 between their ranks. In Mok [Mk5] nonexistence results were further established
for certain pairs (Ω, Ω′) of irreducible bounded symmetric domains of rank ≥ 2 with
an arbitrarily large gap between their ranks. The general structure theory of proper
holomorphic maps in the case of unequal rank and of rank ≥ 2 remains unexplored.

In this article we consider rigidity results on proper holomorphic maps F : Ω → Z
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for an irreducible bounded symmetric domain of rank ≥ 2 into any complex space Z.
Replacing Z by the normalization of the image Y ⊂ Z of Ω under the proper map F

we may assume that Z is a normal complex space and that F is surjective. In this case
we prove that F is the canonical holomorphic map onto the quotient space Z = Ω/H of
Ω by the action of a finite group of automorphisms of Ω. Thus, our general result is a
factorization theorem for proper holomorphic maps of Ω onto any complex space, and
we obtain rigidity results when additional conditions are imposed on the target space.
When the target space is assumed to be smooth, for instance itself biholomorphic to
a bounded domain, then excepting for a series of explicit examples we show that F is
necessarily a biholomorphism. The series of exceptions are branched double covers of
an irreducible bounded symmetric domain DIV

n of Type-IV and of dimension n ≥ 3,
and the double covers are restrictions to open subsets of the standard branched double
cover of the hyperquadric Qn onto the projective space Pn ramified along a smooth
hyperplane section of the hyperquadric. This result strengthens the equidimensional
result of Tu [Tu1] in which the target space is assumed to be also a bounded symmetric
domain. Combined with the rigidity results of Mok-Tsai [MT] on convex realizations of
irreducible bounded symmetric domains of rank ≥ 2, our factorization result also says
that with the same exceptions of DIV

n , n ≥ 3, any proper holomorphic map from Ω onto
a bounded convex domain is necessarily the Harish-Chandra realization up to an affine
linear transformation on the target space.

As no conditions are imposed on the target complex space Z, the latter also plays
no role in the proof, and our approach is to translate the study of the proper holo-
morphic map F : Ω → Z to the problem of characterizing the proper holomorphic
correspondence S ⊂ Ω × Ω defined by declaring (x, y) ∈ S if and only if F (x) = F (y).
Whereas the approach of Mok-Tsai [MT] and Tsai [Ts] is to consider boundary val-
ues of F and associated bounded holomorphic maps when restricted to totally geodesic
complex submanifolds which are product domains, working with proper holomorphic
correspondences on Ω our task is to devise a method for defining boundary values of
holomorphic families of proper holomorphic correspondences obtained by restricting to
fibers of product domains. Interpreting the correspondences as multivalent maps the
principal difficulty of taking radial limits arises from the discriminant locus. In the case
of bona fide holomorphic maps as in Tsai [Ts], the starting point is to prove that, taking
radial boundary values, boundary components lying on certain product domains are
transformed into boundary components. In the Harish-Chandra realization boundary
components are domains on affine-linear subspaces, and to show that they are trans-
formed under boundary maps to boundary components one is led to prove that the
image lies on affine-linear subspaces, a property that can be checked by testing the lin-
ear dependence of sets of vectors obtained by taking derivatives in the fiber directions.
This produces by Cauchy estimates bounded holomorphic functions, but in the presence
of the discriminant locus the corresponding functions, even if well-defined, need not be
bounded. By elementary estimates on the domain of univalence of holomorphic maps
restricted to fibers of product domains we show that it is still possible to derive bounded
holomorphic functions from the multivalent maps making it still possible to apply Fa-
tou’s Theorem on radial limits, and this allows us to show that boundary components
are still transformed to boundary components under the “multivalent” boundary maps.
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From the latter statement we conclude a proof of the Main Theorem by applying re-
sults on analytic continuation concerning G-structures modeled on irreducible Hermitian
symmetric manifolds of the compact type and of rank ≥ 2 due to Ochiai [Oc, 1970],
which allows us to recover a finite group of automorphisms from the intertwining maps
of the proper holomorphic map F : Ω → Z defined by switching connected components
of inverse images of small open sets.

It is hoped that the general structural result obtained in the current article on
proper holomorphic maps on irreducible bounded symmetric domains of rank ≥ 2 can
serve as a motivation for the further study of proper holomorphic maps between bounded
symmetric domains of unequal rank.

Acknowledgement The first author wishes to thank the organizers of the Interna-
tional Conference on Complex Analysis and Related Topics, held August 2009 at the
Chinese Academy of Sciences, Beijing, especially Professor Wang Yuefei, for their kind
invitation and for the opportunity to take part in the memorable event in honor of
Professor Yang Lo. The authors wish to dedicate this article to Professor Yang Lo on
the occasion of his 70th birthday.

§1 Statement of results

In this article we prove a general result on the structure of proper holomorphic
maps defined on irreducible bounded symmetric domains Ω of rank ≥ 2, where the
target space is an arbitrary complex space. Our principal result is given by

Main Theorem. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2, Z

be a complex space and F : Ω → Z be a proper holomorphic map. Then, there exists a
finite group H of automorphisms of Ω such that, denoting by X = Ω/H the quotient
space equipped with the unique structure as a normal complex space with respect to which
the canonical projection π : Ω → X is holomorphic, we have the factorization F = ν ◦ π

of the proper holomorphic map F : Ω → Z, where ν : X → Z is the normalization of its
image Y := F (Ω) (which is a complex-analytic subvariety of Z).

When the target space is a complex manifold and the proper holomorphic mapping
F : Ω → Z is surjective, we deduce from the Main Theorem the following result.

Theorem 1. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2, Z be a
complex manifold, and F : Ω → Z be a surjective proper holomorphic map. Then,

(a) If Ω is not isomorphic to a Type-IV classical symmetric domain DIV
n of dimension

n ≥ 3, then F : Ω → Z is necessarily a biholomorphic map.

(b) If Ω = DIV
n , n ≥ 3, then either F : DIV

n → Z is a biholomorphism, or F is a
two-fold branched covering of Z ramified along a totally geodesic smooth complex
hypersurface J ⊂ DIV

n (which is necessarily biholomorphic to DIV
n−1 and embedded

in DIV
n in the standard way).

Combining Theorem 1 with the rigidity results of Mok-Tsai [MT] on convex real-
izations of irreducible bounded symmetric domains of rank ≥ 2 we have
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Corollary 1. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2 which is
not isomorphic to a Type-IV classical symmetric domain DIV

n of dimension n ≥ 3. Let
F : Ω → D be a proper holomorphic map onto a bounded convex domain D. Then, F is
a biholomorphism and D is up to an affine-linear transformation the Harish-Chandra
realization of Ω.

§2 Background on characteristic subdomains of irreducible bounded sym-
metric domains

Let Ω b Cn ⊂ S be an irreducible bounded symmetric domain of rank ≥ 2 in
its Harish-Chandra realization, where Ω ⊂ S is the Borel embedding. Let α ∈ T0(Ω)
be a non-zero highest weight vector of the isotropy representation of K := Aut0(Ω; 0)
at 0, equivalently a minimal rational tangent of S as a uniruled projective manifold
of Picard number 1. Thus, there exists a minimal rational curve Cα on S passing
through 0 such that T0(Cα) = Cα. (We refer the reader to Hwang-Mok [HM] for the
notion of minimal rational tangents, and to Mok [Mk2] for minimal rational tangents
on irreducible Hermitian symmetric manifolds of the compact type.) Denote by R

the curvature tensor of (Ω, g) with respect to the Bergman metric on Ω. Denote by
Nα ⊂ T0(Ω) the null-space associated to α, i.e., the vector subspace consisting of all
(1,0)-tangent vectors ζ at 0 such that Rααζζ = 0. Then Nα is orthogonal to α. Write
q = dim(Nα). There is a q-dimensional totally geodesic complex submanifold Θα ⊂ Ω
such that T0(Θα) = Nα. Θα ⊂ Ω will be called a maximal characteristic subdomain
on Ω passing through 0. A maximal characteristic subdomain on Ω is by definition
given by γ(Θα) for some Θα as in the above and for some γ ∈ Aut(Ω). There is a
(q + 1)−dimensional totally geodesic complex submanifold Πα ⊂ Ω passing through
0 ∈ Ω such that T0(Πα) = Cα ⊕ Nα. Πα is a domain on a complex vector subspace
Vα ⊂ Cn. Moreover, there exists a complex linear isometry η : Vα

∼= Cq+1 such that
η(Πα) = ∆ × Ω′, and η(Θα) = {0} × Ω′ where Ω′ b Cq is a bounded domain in its
Harish-Chandra realization.

Replacing Ω by any Θα we obtain analogously maximal characteristic subdomains
on Θα. Proceeding inductively we have obtained the characteristic subdomains Θ ⊂ Ω
passing through 0. Their images under automorphisms of Ω will be referred to as
characteristic subdomains on Ω. Characteristic subdomains on Ω enjoy the remarkable
property that given any γ ∈ Aut(Ω), γ(Θ) is the intersection of Ω with an affine-linear
subspace A ⊂ Cn. The latter property defines the more general notion of invariantly
affine-linear subdomains, which were introduced and completely classified in Tsai [Ts].

A minimal rational tangent on Ω will be referred to as a maximal characteristic
vector. For a general reference on the role of such vectors in Hermitian metric rigidity
cf. Mok [Mk1, Chapter 6] (called characteristic vectors there) and [Mk3. (2.1)]. For
the notion of (maximal) characteristic subdomains of a bounded symmetric domain we
refer the reader to Mok-Tsai [MT], where the notion is introduced.

On an irreducible Hermitian symmetric manifold S of rank ≥ 2 the varieties of
minimal rational tangents define a geometric structure called a flat (an integrable)
holomorphic S-structure. For such geometric structures we have the following result of
Ochiai [Oc, 1970] which serves as a prototype of results on analytic continuation of local
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holomorphic maps preserving varieties of minimal rational tangents.

Theorem 2 (Ochiai [Oc]). Let S be an irreducible compact Hermitian symmetric
manifold of the compact type and of rank ≥ 2; U, V ⊂ S be connected open subsets, and
g : U → V be a biholomorphism. Suppose for every x ∈ U , dg(x) preserves characteristic
vectors. Then, there exists an automorphism γ ∈ Aut(S) such that γ

∣∣
U
≡ g.

The following lemma will be needed when we apply Theorem 2 to the study of
proper holomorphic correspondences.

Lemma 1 (from Mok-Ng [MN]). Let Ω b Cn ⊂ S be an irreducible bounded sym-
metric domain of rank ≥ 2 in its Harish-Chandra realization, where furthermore Ω ⊂ S

denotes the Borel embedding. Suppose b is a smooth point on ∂Ω. Let Ub ⊂ Cn

be an open neighborhood of b in Cn and γ ∈ Aut(S) such that γ(Ub ∩ Ω) ⊂ Ω and
γ(Ub ∩ ∂Ω) ⊂ ∂Ω. Then, γ(Ω) = Ω, i.e., γ

∣∣
Ω
∈ Aut(Ω).

A much stronger statement is true. In fact, if γ ∈ Aut(S) is replaced by a holomor-
phic map f : Ub → Cn such that f(Ub ∩ Ω) ⊂ Ω and f(Ub ∩ ∂Ω) ⊂ ∂Ω, then we have
proved in Mok-Ng [MN, (3.1), Theorem 2] that f is the restriction of some γ ∈ Aut(Ω)
to Ub. The latter result is an Alexander-type extension result which is based on the
method of taking radial limits of bounded holomorphic functions on totally geodesic
complex submanifolds of Ω of the form ∆ × Ω′ ⊂ Ω, where Ω′ ⊂ Ω is a maximal
characteristic subdomain on Ω, together with an application of Ochiai’s Theorem on
S-structures in the above. The special case of Lemma 1 is used in the final step of the
proof of [(3.1), Theorem 2]. For a proof of Lemma 1 we refer the reader to [MN, (3.3),
last paragraph].

Regarding characteristic subdomains Θ ⊂ Ω the following discussion in relation to
invariantly affine-linear subdomains is helpful to streamline our discussion on bound-
ary values of proper holomorphic correspondences on Ω. We briefly recall the basic
notions that can be read from Mok-Tsai [MT] and Tsai [Ts]. Let Ω b Cn ⊂ S de-
note simultaneously the Harish-Chandra realization Ω b Cn and the Borel embedding
Ω ⊂ S of an irreducible bounded symmetric domain Ω of arbitrary rank. Let g be
the canonical Kähler-Einstein metric on Ω and gc be the dual Kähler-Einstein metric
on S. A complex submanifold Q ⊂ S is said to be invariantly geodesic if and only if(
γ(Q), gc

∣∣
γ(Q)

)
↪→ (S, gc) is a totally geodesic submanifold for any γ ∈ Aut(S). Invari-

antly geodesic complex submanifolds on S can be determined in Lie-theoretic terms.
For any such complex submanifold Q ⊂ S either Q ∩ Cn is empty or it is an affine-
linear subspace of Cn. In the latter case we call W := Q ∩ Cn an invariantly geodesic
affine-linear subspace. Furthermore, Q ∩ Ω is either empty or it is a bounded domain
on the affine-linear subspace W . In the latter case we call Γ := Q ∩ Ω an invariantly
affine-linear subdomain. In this case

(
Γ, g

∣∣
Γ

)
↪→ (Ω, g) is a totally geodesic submanifold.

By [MT] the characteristic subdomains Γ ⊂ Ω are examples of invariantly affine-linear
subdomains. The set of invariantly geodesic complex submanifolds Q ⊂ S are com-
pletely classified. They form a finite number of connected components in the Chow
space Chow(S) of the projective manifold S. Each of these connected component is a
projective manifold which is an Aut(S)-orbit in Chow(S).

As an illustration consider S = G(p, q), the Grassmannian of p−planes in Cp+q.
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Then, up to automorphisms of G(p, q), an invariantly geodesic complex submanifold
Q ⊂ G(p, q) is precisely of the form G(r, s) ↪→ G(p, q), where 1 ≤ r ≤ p. 1 ≤ s ≤
q, embedded by the standard embedding. The maximal characteristic subspaces in
G(p, q) are up to biholomorphisms of G(p, q) given by G(p − 1, q − 1) ↪→ G(p, q). If
q = p + 1, then there are precisely two connected components of invariantly geodesic
complex submanifolds of dimension p(p − 1), given up to an automorphism of G(p, q)
by G(p − 1, p) ↪→ G(p, p + 1) and G(p, p − 1) ↪→ G(p, p + 1) embedded by standard
embeddings. The first connected component corresponds to the maximal characteristic
subspaces.

§3 On boundary values of holomorphic correspondences

In this section we lay out the scheme for the proof of the Main Theorem. Recall
that Ω is an irreducible bounded symmetric domain of rank ≥ 2, and F : Ω → Z

is a proper holomorphic map into a complex space Z. For each point z ∈ Z, by
properness the inverse image F−1(z) ⊂ Ω is a compact complex-analytic subvariety,
which is necessarily finite since Ω is a domain. By the Proper Mapping Theorem,
Y := F (Ω) ⊂ Z is a complex-analytic subvariety. For the proof of the Main Theorem,
replacing Z by Y ⊂ Z if necessarily without loss of generality we may assume that
the finite proper holomorphic map F : Ω → Z is also surjective. Let B ⊂ Z be union
of the branching locus of F and the singular part of Z and let R = F−1(B). Then
F : Ω − R → Z − B is a finite unbranched holomorphic covering map. Suppose F is
not generically one-to-one. Choose a point a ∈ Z − B, and x, y ∈ Ω − R, x 6= y, such
that F (x) = F (y) = a. By our choice, there exist neighborhoods Ux and Uy of x and
y respectively such that Fx : Ux → F (Ux) and Fy : Uy → F (Uy) are biholomorphisms,
where Fx = F |Ux

and Fy = F |Uy
. We can define the intertwining map ϕx,y : Ux → Uy

by ϕx,y(z) = F−1
y (Fx(z)).

Our main goal is to show that the intertwining map ϕx,y preserves the space of
maximal characteristic vectors. We will adopt a similar approach as in the work of
Mok-Tsai [MT, 1992] and Tsai [T, 1993]. One of the main steps in these works is to
consider radial limits of certain bounded holomorphic functions, which are the restric-
tions of a proper holomorphic map of Ω into its subdomains of the form ∆×Ω′, where
Ω′ is a maximal characteristic subdomain of Ω. In our situation, the intertwining map
ϕx,y is only locally defined and its extension is a “multivalent” map in general and hence
we have difficulty in taking the radial limit of it. To bypass this difficulty, we consider
the underlying correspondences, and device a method for taking radial limits of such
correspondences. In so doing, there is the difficulty caused by the discriminant loci asso-
ciated to the correspondences, and the holomorphic functions arising from considering
boundary behavior of such correspondences may no longer be bounded. We solve the
problem nonetheless by an estimate of such functions which allows us to derive from
them bounded holomorphic functions, making it possible still to apply Fatou’s Theorem.

First of all we consider the correspondence S ⊂ Ω × Ω associated to the map
F : Ω → Z defined by (x, y) ∈ S ⇐⇒ F (x) = F (y). S is an analytic subvariety of Ω×Ω
and it is symmetric in the sense that it is invariant by the transformation of Ω×Ω given
by (x, y) 7→ (y, x). For i = 1, 2 the restriction on S of the projection map onto the ith
direct factor ρi : Ω × Ω → Ω is finite as f is finite. We will still use ρi to denote the
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restriction, and write ρ for ρ1. Let p be the number of elements in ρ−1(x) for a general
point x ∈ Ω. Note that S can be considered as the graph of the multivalent extension
of ϕx,y over Ω. From now on we will forget about our initial choice of (x, y) and view
S as a graph of a multivalent map f from Ω into Ω. There is a subset R ⊂ S ⊂ Ω× Ω
consisting of points where either ρ1 or ρ2 fails to be a local biholomorphism. We call
R ⊂ S the ramification locus of the correspondence S, and its image B = ρ(R) ⊂ Ω will
be called the branching locus of S. (In §2, following standard conventions the symbol
S was used as a generic symbol for an irreducible Hermitian symmetric space of the
compact type and of rank ≥ 2, e.g., in the term ‘S−structure’. From now on the symbol
S will stand for the holomorphic correspondence as defined. For the irreducible bounded
symmetric domain Ω of rank ≥ 2 we will use Ω ⊂ M to denote the Borel embedding of
Ω into its dual compact manifold M .)

Taking the correspondence S ⊂ Ω × Ω as the graph of a multivalent holomorphic
map we will define boundary values of the correspondence S and formulate a reduction
of the proof of the Main Theorem. The proof of the Main Theorem will be given in §4.

Let Ω′ be a maximal characteristic symmetric subspace of Ω (c.f. [MT] and [Ts]).
We have rank(Ω′) = rank(Ω)− 1 = r − 1. There are totally geodesic subdomains of Ω
biholomorphic to ∆×Ω′ and Ω is a union of such subdomains. Fix a subdomain ∆×Ω′

containing 0 ∈ Ω and for each {x}×Ω′ ⊂ ∆×Ω′, we define Sx = S ∩ (({x} × Ω′)× Ω).
In other words, Sx is the restriction of the correspondence to the maximal symmetric
subdomain {x} × Ω′. Following the line of thought in [MT] and [Ts], we would like to
consider the radial limit of Sx towards the boundary of ∆. That is, to obtain a limiting
correspondence Sb defined on ({b} × Ω′)× Cn when x tends to b ∈ ∂∆ radially.

For a generic point z ∈ Ω, we can find p branches of f over a neighborhood Uz of
z. We may take z = 0 and denote the branches by f (α) : U0 → Ω, 1 ≤ α ≤ p, where
U0 is an open neighborhood of 0 ∈ Ω. Denote also the component functions of each
f (α) by f

(α)
j , 1 ≤ j ≤ n. For the purpose of proving the Main Theorem we want to

study boundary values of the proper holomorphic correspondence when restricted to
fibers {x} × Ω′ of ∆ × Ω′ as x converges radially to a boundary point b ∈ ∂∆. For
this purpose we are free to perform linear transformations on the target domain Ω. We
will now choose Euclidean coordinates (ζ1, · · · , ζn) of the target domain Ω such that,
writing f = (f1, · · · , f`), more precisely f (α) = (f (α)

1 , · · · , f
(α)
n ), for 1 ≤ ` ≤ n and for a

general point z ∈ Ω − B, the complex numbers f
(1)
` (z), · · · , f

(p)
` (z) are distinct. Thus,

we are in general using different coordinates for the two factors of Ω × Ω. This choice
of coordinates is for convenience only and not absolutely necessary in the argument. It
is chosen so that the discriminant function D` for each of the multivalent holomorphic
function f`, 1 ≤ ` ≤ n, defined by D` =

∏
α 6=β

(
f

(α)
` − f

(β)
`

)
does not vanish identically

on Ω. Define D := D1 · · ·Dn. We may assume that D 6= 0 on the neighborhood U0 of
0 ∈ Ω.

To study the radial limits of the correspondence S ⊂ Ω × Ω we first “enlarge” S

to a bigger correspondence so as to facilitate the limiting process. Fix a component
index j, we can form the elementary symmetric polynomials σk

` , 1 ≤ k ≤ p, so that
{f (α)

` : 1 ≤ α ≤ n} are the solutions of the equation

ξp − σ1
` ξp−1 + σ2

` ξp−2 − · · ·+ (−1)pσp
` = 0.

7



Note that the elementary symmetric polynomials are globally defined holomorphic func-
tions on Ω. Now we define a correspondence S̃ ⊂ Ω× Cn by

(z, ξ) ∈ S̃ ⇐⇒ ξp
` − σ1

` (z)ξp−1
` + σ2

` (z)ξp−2
` − · · ·+ (−1)pσp

` (z) = 0,

where ξ = (ξ1, . . . , ξn). By our construction, we obviously have S ⊂ S̃. Fix a maximal
symmetric subdomain {x}×Ω′ ⊂ ∆×Ω′, we similarly define S̃x = S̃∩(({x} × Ω′)× Cn).
If we write the coordinates in ({x}×Ω′)×Cn as ((x, w), ξ), then S̃x is the correspondence
in ({x} × Ω′)× Cn defined by the equations

ξp
` − σ1

` (x, w)ξp−1
` + σ2

` (x,w)ξp−2
` − · · ·+ (−1)pσp

` (x,w) = 0,

where ξ = (ξ1, . . . , ξn).

Regarding bounded holomorphic functions on the unit disk we will use the following
version of Fatou’s Theorem (cf. Rudin [Ru, Theorem 11.32 and Theorem 17.18]).

Lemma 2. To every bounded holomorphic function h defined on the unit disk ∆,
there corresponds a function h? ∈ L∞(∂∆), defined almost everywhere by h?(eiθ) =
lim
r→1

h(reiθ). The Cauchy Integral Formula is valid for h in terms of the radial limits
h?. In other words, for z ∈ ∆ we have

h(z) =
1

2πi

∫

∂∆

h?(ζ)dζ

ζ − z
.

Moreover, if h is not identically zero on ∆, we have h?(ζ) 6= 0 for almost all ζ ∈ ∂∆.

An application of Fatou’s Theorem on the disk gives the following result for a
product domain ∆×W (cf. Mok-Tsai [MT, Proposition 2.2]).

Lemma 3. Suppose f is a bounded holomorphic function defined on the space ∆×W ,
and W is a bounded domain in Ck. Write (z, w), w = (w1, . . . , wk), for the holomorphic
coordinates of ∆ × W . Define fr(eiθ, w) = f(reiθ, w) for r < 1. Then there exists a
measurable function f?(eiθ, w) which is defined on ∂∆×W and satisfies

lim
r→1

fr(eiθ, w) = f?(eiθ, w)

for almost everywhere on ∂∆×W . As a consequence, lim
r→1

fr(eiθ, ·) = f?(eiθ, ·) in L1(W )

for almost all θ. Moreover, for almost all θ, the function f?(eiθ, w) is holomorphic in
w.

We can now define the radial limit of S̃x by applying the above proposition on
the elementary symmetric functions σk

` (x,w), where (x,w) ∈ ∆ × Ω′. Write σk?
` (b, w)

as the limit functions given by Lemma 3, where (b, w) ∈ ∂∆ × Ω′. For almost all b,
σk?

` (b, w) are holomorphic in w. We define the correspondence S̃b ⊂ ({b}×Ω′)×Cn by
the equations

ξp
` − σ1?

` (b, w)ξp−1
` + σ2?

` (b, w)ξp−2
` − · · ·+ (−1)pσp?

` (b, w) = 0,

where ((b, w), ξ) ∈ ({b}×Ω′)×Cn and ξ = (ξ1, . . . , ξn). Obviously S̃b lies in the closure
of S̃.
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Since D = D1 · · ·Dn is non-zero on the neighborhood U0 ⊂ Ω of 0, restricting
from Ω to ∆ × Ω′ and applying Lemmas 2 and 3 from Fatou’s Theorem, the radial
limits D?

`,b(w) := D?
` (b, w) as bounded holomorphic functions on Ω′ are defined and

non-zero for almost every b ∈ ∂∆. By avoiding the zero sets of D?
` (b, w), for almost all

b ∈ ∂∆ we can choose a point w ∈ Ω′ and a sufficiently small open neighborhood Vw

of w in Ω′, such that S̃b ∩ (({b} × Vw) × Cn) =
s⋃

i=1

Wi, s = pn, where Wi are disjoint

and they are graphs of holomorphic maps from {b} × Vw into Cn. Let 0 < ε < 1 and

Iε = {rb : r ∈ (1 − ε, 1)}. We have S̃ ∩ ((Iε × Vw) × Cn) =
s⋃

i=1

Wε;i, where Wε;i are

disjoint and for every i ∈ {1, . . . , s} and every t ∈ (1− ε, 1), Wε;i ∩ (({rb} × Vw)× Cn)
is the graph of some holomorphic map from {rb} × Vw into Cn. Furthermore, by
renumbering if necessary, Wi lies in the closure of Wε;i for every i ∈ {1, . . . , s}. Among
the branches Wε;i, 1 ≤ i ≤ s, we may assume without loss of generality that Wε;i ⊂ S,
for 1 ≤ i ≤ p ≤ s. Now we define Sb ⊂ S̃b to be the union of the irreducible components
of S̃b which contains at least one of the Wi, where 1 ≤ i ≤ p. We have the following
description for Sb:

Proposition 1. Sb ⊂ ({b} × Ω′) × ∂Ω, i.e., Sb is a correspondence from {b} × Ω′ to
∂Ω.

Here and in what follows, given complex manifolds X and Y , by abuse of language,
by a correspondence from X and Y we will mean a subvariety Q ⊂ X ×Y of dimension
equal to dim(X) such that the canonical projection from Q into X is proper and finite.
(By the Proper Mapping Theorem the canonical projection is also surjective.) If E ⊂ Y

is a subset such that Q ⊂ X × E, we also speak of Q as a correspondence from X

to E even though E may not carry any natural complex structure. (For our extended
use of the term ‘correspondence’, the transpose QT ⊂ Y ×X of a correspondence (i.e.,
(y, x) ∈ QT if and only if (x, y) ∈ Q) is not necessarily a correspondence, and hence we
generally speak of a correspondence from X to Y rather than a correspondence between
X and Y .)

Proof of Proposition 1. Take an irreducible component V of Sb. We know that V

contains some Wi, where 1 ≤ i ≤ p. By our definition, Wi lies in the closure of S. Take
a point (x, y) ∈ Wi ⊂ ∂Ω × Cn and let {(xn, yn) ∈ S ⊂ Ω × Ω, n ∈ N} be a sequence
of points converging to (x, y). We have F (xn) = F (yn) by the definition of S. Since
F : Ω → Z is proper, xn → x ∈ ∂Ω implies that F (xn) = F (yn) escapes to infinity (this
means every compact subset of Z contains only a finite number of F (xn)) when n →∞.
Therefore, being the limit point of yn, y must lie on ∂Ω, hence (x, y) ∈ ∂Ω × ∂Ω and
Wi ⊂ ∂Ω × ∂Ω. Note that ∂Ω is defined by ϕ = 0, where ϕ is a real-analytic function
on Cn. As Wi ⊂ ∂Ω × ∂Ω, we have ϕ(x) = ϕ(y) = 0 if (x, y) ∈ Wi. V contains Wi

as an open subset and hence we also have ϕ(x) = ϕ(y) = 0 if (x, y) ∈ V because ϕ is
real-analytic. We finally conclude that ϕ(x) = ϕ(y) = 0 if (x, y) ∈ Sb as V is arbitrary
and the proof of the proposition is complete. ¤

By Proposition 1, in the subdomain ∆ × Ω′, for almost every b = eiθ ∈ ∂∆, there
exists an open subset U ⊂ Ω′ and ε > 0 such that any branch of f = f (α) when
restricted to {reiθ} × U , 1 − ε < r < 1, converges radially to f (α)?(b, w). Dropping
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the index (α) for specifying the branch and writing also f?
b (w) = f?(b, w), we have

f?
b (U) = f?({b} × U) ⊂ ∂Ω. For almost every b ∈ ∂∆, f?

b (U) is an open set contained
in some maximal face Γb of Ω. Thus, Sb ⊂ ({b} × Ω′) × Γb. Let dim(Ω′) = q which is
also the dimension of any maximal face of Ω.

We are going to prove

Proposition 2. For every x ∈ ∆, Sx is a correspondence between {x} × Ω′ and Lx,
where Lx is a maximal characteristic subdomain of Ω, i.e. Sx ⊂ ({x} × Ω′)× Lx.

To pinpoint the difficulty in proving Proposition 2, we consider an analogous situ-
ation in which
(a) Sx ⊂ ({x} × Ω′) × Ω is in fact the graph of f |{x}×Ω′ , where f : ∆ × Ω′ → Ω is a

(univalent) holomorphic map,
(b) for almost every b ∈ ∂∆ the boundary maps f?

∣∣
{b}×Ω′ : ({b}×Ω′) → Cn obtained by

taking radial limits is defined, f?(b, w) := lim
t→1−

f(rb, w), and f? ({b} × Ω′) ⊂ ∂Ω.

(c) for almost every b ∈ ∂∆, f?
b (w) := f?(b, w) is of maximal rank at w = 0.

The situation here is a special case of what has been dealt with in Mok-Tsai [MT]. Let G
be the Grassmannian of all q-dimensional affine-linear subspace of Cn. For the situation
described (a) − (c) in the above the conclusion is that f induces a meromorphic map
f ] : ∆ → G (cf. Mok-Tsai [MT, §2, Proposition 2.3]). Equivalently, this means that for
all but at most a discrete set of base points x ∈ ∆, f

∣∣
{x}×Ω′ maps {x} × Ω′ into the

affine-linear subspace f ](x) ∈ G, of dimension q = dim(Ω′), such that fx(w) := f(x,w)
is of rank equal to q at some point. Let γ ∈ Aut(Ω). Then, exactly the same argument
can be applied to the holomorphic map γ ◦ f : Ω → Ω. We conclude that for each
x ∈ ∆, f ](x) ∈ G is a q-dimensional affine-linear space Vx enjoying the special property
that γ(Vx) is affine-linear for every γ ∈ Aut(Ω) ↪→ Aut(M). Let H0 ⊂ G denote
the complex submanifold consisting of affine-linear subspaces W such that W ∩ Ω is a
maximal characteristic subdomain. Let Θ ⊂ Ω be a maximal characteristic subdomain
passing through 0 ∈ Ω and write Θ ⊂ Q for its Borel embedding, so that Q ⊂ M is a
maximal characteristic subspace. Denote by H the orbit of [Q] in Chow(M) under the
action of Aut(M). Then H is a projective manifold, and it is a connected component of
Chow(M). By associating [Θ] ∈ H0 to the point [Q] ∈ Chow(M) we may identify H0

as an open subset of H ⊂ Chow(M).

We have seen that (γ ◦ f)](x) = γ(f ](x)) ∈ G for any γ ∈ Aut(Ω), so that f ](x) is
an invariantly affine-linear subdomain. Equivalently, we may identify f ](x) as a point
in Chow(M) corresponding to an invariantly geodesic complex submanifold of M . For
almost every point b ∈ ∂∆, by Lemma 3 the radial limit f?

b : {b}×Ω′ → ∂Ω is defined, of
maximal rank (equal to q) at some point, and f?

b ({b} × Ω′) is contained in a boundary
component (f ])?(b) := Θb ∈ H. Thus, for almost every point b ∈ ∂∆, the points f ](rb)
converges in the natural metric topology of G to (f ])?(b) as r increases to 1. Since H is
one of the (finitely many) connected components of Chow(M) consisting of invariantly
geodesic complex submanifolds, we conclude that f ](x) ∈ H for x = rb and r < 1
sufficiently close to 1. It follows therefore that f ](x) ∈ H for every point x ∈ ∆.

As we have seen, in order to prove that f({x} × Ω) ⊂ Lx for some characteristic
subdomain Lx, it is sufficient to show that f({x}×Ω) is contained in some q-dimensional
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affine-linear subspace. This reduction remains applicable when we deal with the general
situation of Proposition 2 in which we have a proper holomorphic correspondence S ⊂
Ω × Ω which gives a multivalent holomorphic map f , say with branches f (1), · · · , f (p)

in place of a (univalent) holomorphic map f as described in the above. At almost
every boundary point b ∈ ∂∆ and a general point w ∈ Ω′ we still have for each branch
the convergence f (α)(x,w) → f (α)?(b, w) as x converges radially to b. In order to prove
Proposition 2, our task is reduced to proving that, for x = rb with r < 1 sufficiently close
to 1 and for an open neighborhood Vw of w on Ω′ such that the branch f (α) is defined
on {x} × Vw, the image f (α)({x} × Vw) is contained in a q-dimensional affine-linear
subspace.

Finally, for the purpose of making the arguments adaptable to give a proof of
Proposition 2, we recall and slightly reformulate, in the case of a univalent holomorphic
map f : ∆×Ω′ → Ω as in the above, how one proves that f ](x) ∈ G except for possibly
a discrete set of points xi. From the assumption (b), for almost every b ∈ ∂∆, we have
f?

b (Ω′) ⊂ Γb where Γb is a maximal face on ∂Ω. Γb is of dimension q := dim(Ω′), and
for almost every b, by assumption (c) the set f?

b (Ω′) contains a non-empty open subset
of Γb. Given x ∈ ∆ the statement that f ](x) ∈ G can be translated as follows.

(†) Let I = (i1, · · · , iq) be a non-zero q-tuple of nonnegative integers such that I 6= 0.

Writing |I| := i1 + · · · + iq, consider the partial derivative
∂|I|f

∂wi1
1 · · · ∂w

iq
q

(x; 0) :=

ηI(x) ∈ Cn Let Vx be the linear span of all ηI(x) as I varies over the set of non-
zero q-tuples I of nonnegative integers. Then, Vx is a q-dimensional vector space.

Moreover
∂f

∂w1
(x; 0), · · · ,

∂f

∂wq
(x; 0) are linearly independent and they span Vx.

Verification of condition (†) can further be implemented as follows. For a positive
integer s ≤ n, let I = (I1, · · · , Is) be an s-tuple of distinct non-zero multi-indexes Ik

of nonnegative integers, 1 ≤ k ≤ s, Ik = (i1(k), · · · , iq(k)). Suppose J = (j1, · · · , js)
is an s-tuple of distinct integers j`, where 1 ≤ ` ≤ s, 1 ≤ j` ≤ n. Write A = (I, J).
We say that A is an index of order s. To each index A of order s we can associate an
s-tuple of column s-vectors, such that the k-th column vector is given by the transpose
of

(
ηj1

Ik
(x), · · · , ηjs

Ik
(x)

)
. (Here we write a vector ξ in the target Euclidean space Cs as

ξ =
(
ξ1, · · · , ξs

)
.) The s-by-s matrix thus obtained will be denoted by MA(x) and its

determinant will be written as hA(x). By Cauchy estimates on derivatives with respect
to the variables w1, · · · , wq, we see that hA(x) is a bounded holomorphic function in x.
Here in the application of Cauchy estimates on derivatives, it suffices to note the trivial
fact that there exists some ρ > 0 such that for x ∈ ∆, fx(w) := f(x,w) is holomorphic
on a fixed polydisk of polyradii (ρ, · · · , ρ) centred at 0 ∈ Ω′ and each component f `

x

of fx := (f1
x , · · · , fn

x ) is uniformly bounded by a constant C independent of x ∈ ∆.
For Ek = (0, · · · , 1, 0, · · · , 0) with 1 in the k-th position, by assumption (c), for almost
every b ∈ ∂∆, for I = (E1, · · · , Eq) and for some J = (j1, · · · , jq) where j1, · · · , jq are
distinct positive integers, 1 ≤ j1, · · · , js ≤ n, we have h?

A(b) 6= 0 for A = (I, J), where
h?
A(b) denotes the radial limit at b. Since hA(rb) converges to h?

A(b) as r → 1−, we
must have hA(rb) 6= 0 for r < 1 sufficiently close to 1. Thus, by using just one choice of
J it is enough to show that fx(w) = f(x,w) is of maximal rank at w = 0 for all x ∈ ∆
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except possibly for a discrete set of points xi. To verify (†) it remains therefore to show
that hA(x) = det

(
MA(x)

)
vanishes for any A = (I, J) of order q + 1. Let now A be

of order q + 1. By assumption h?
A(b) = 0 for almost every b ∈ ∂∆. By Lemma 2, the

bounded holomorphic function hA(x) can be recovered from its boundary values h?
A(b)

by the Cauchy Integral formula, from which it follows that the (bounded) holomorphic
function hA is identically zero on ∆, and the verification of (†), and hence a proof of
the analogue of Proposition 2 in the case of univalent holomorphic maps is completed.

§4 Proof of the Main Theorem

To adapt the arguments of Mok-Tsai [MT] and Tsai [Ts] to the current situation,
the difficulty arises from the fact that in place of holomorphic maps f we have now
multivalent ‘holomorphic maps’. At a general point z ∈ Ω, the multivalent map f

consists of p distinct branches f (α), 1 ≤ α ≤ p. Here each f (α) is more precisely a germ
of holomorphic map, and may be taken as being defined on the same open neighborhood
Uz of z. Because of the presence of the branching locus B of the correspondence S, owing
to monodromy around B it is in general not possible to fix the indexing of the branches.
For the purpose of proving Proposition 2 we need to show that, outside of the branching
locus B of the correspondence S ⊂ Ω × Ω, an open subset of a maximal characteristic
subdomain Θ ⊂ Ω, of dimension q, is mapped under each branch of the multivalent
holomorphic map f into a q-dimensional affine-linear subspace of Cn (and hence into
a maximal characteristic subdomain). Recall that D = D1 · · ·Dn is the product of
the discriminants of the D`, the discriminant of the multivalent holomorphic function
f`. Here the branches are f (α) = (f (α)

1 , · · · , f
(α)
n ), and Euclidean coordinates have been

chosen for the target bounded symmetric domain Ω to guarantee that each discriminant
D` is not identically 0 on Ω. The discriminant functions D` are defined on Ω but we
will only be considering their restriction to a generic product domain Π ⊂ Ω, which is
isomorphic to ∆ × Ω′ ⊂ Ω under an automorphism of Ω. Also, we will identify x ∈ ∆
with (x; 0) ∈ ∆ × Ω′. Hence, we will write D`(x) = D`(x; 0) and D(x) = D(x; 0). We
have

Lemma 4. Let U ⊂ ∆ be a non-empty open set such that D is non-zero on U×{0}. Let
1 ≤ s ≤ n and I = (I1, · · · , Is) be an s-tuple of distinct multi-indexes of nonnegative
integers given by Ik = (i1(k), · · · , iq(k)) 6= 0 for 1 ≤ k ≤ s. Suppose J = (j1, · · · , js)
is an s-tuple of distinct integers j`, where 1 ≤ ` ≤ s, 1 ≤ j` ≤ n. Write A = (I, J).
Then, there exists a positive integer NA and a constant CA > 0 independent of U , α

such that the holomorphic function h
(α)
A (x) on U ⊂ ∆ satisfies

∣∣∣h(α)
A (x)

∣∣∣ ≤ CA

|D(x)|NA
.

Proof. Let δ(x) > 0 be the largest real number such that the branch f (α) as a holo-
morphic map can be defined on the q-dimensional polydisk {x} × P q(0; δ(x)), where
P q(0; r) := ∆(0, r) × · · · ×∆(0, r) is the q-dimensional polydisk of polyradii (r, · · · , r)
centred at 0. Since each component f

(α)
` is uniformly bounded in absolute values by

a positive real number, say C. By Cauchy estimates of derivatives in the variables
12



(w1, · · · , wq), it follows that there exists a constant C ′A > 0 such that

∣∣∣h(α)
A (x)

∣∣∣ ≤ C ′A
δ(x)|I1|+···+|Is| .

To prove Lemma 4 it remains to verify that there exists some constant c > 0 such that
δ(x) ≥ c |D(x)|. Now f (α) can be well-defined on {x} × P q(0; δ(x)) whenever each f

(α)
`

is well-defined there for 1 ≤ ` ≤ n. For the latter to hold true it suffices to verify that
the discriminant D`(x,w) 6= 0 whenever |w| < δ(x). Now

D`(x,w) = D`(x, 0) +
∫

Λx(0,w)

dD` .

where Λx(0, w) denotes the directed Euclidean line segment joining (x, 0) to (x,w).
Estimating dD` by Cauchy estimates for first derivatives, noting that D` is bounded, it
follows readily that there exists some c1 > 0 such that D`(x,w) 6= 0 whenever Λx(0, w)
is of length dominated by c1

∣∣D`(x,w)
∣∣. Thus we have

δ(x) ≥ c1√
q
· min
1≤`≤n

∣∣D`(x,w)
∣∣ ≥ c |D(x)|

for some c > 0. The proof of Lemma 4 is complete. ¤
By means of the estimates in Lemma 4 we have the following lemma with which

the proof of [§2, Proposition 3] can be completed.

Lemma 5. Let A is an index (I, J) of order q + 1, and x0 ∈ ∆ be a point where
D(x0) 6= 0. Let f (α), 1 ≤ α ≤ p, be the p branches of the multivalent holomorphic map
f defined on a product neighborhood U = U0 × U ′ ⊂ ∆× Ω′ of (x0, 0). For 1 ≤ α ≤ p,
define h

(α)
A (x) = det

(
M

(α)
A (x)

)
, where M

(α)
A (x) is the (q + 1)-by-(q + 1) matrix at x

associated to the index A of order q +1 as in the above and defined using the the branch
f (α) of the multivalent holomorphic map f . Then, h

(α)
A (x) = 0 for every x ∈ U0.

Proof. For a set of p indeterminates X1, · · ·Xp, for 1 ≤ e ≤ p denote by σe(X1, · · · , Xp)
the e-th elementary symmetric polynomial in p variables. As before we will identify
∆ with ∆ × {0}. At a point x ∈ ∆ where D(x) 6= 0, for 1 ≤ e ≤ p we define
ge
A(x) = σe

(
h

(1)
A (x), · · · , h

(p)
A (x)

)
. Write Z :=

{
z = (x,w) ∈ ∆ × Ω′ : D(z) = 0

}
,

and Z0 := Z ∩ (∆× {0}). Each ge
A is a holomorphic function on ∆−Z0. By Lemma 5

we have ∣∣ge
A(x)

∣∣ ≤ CA

|D(x)|eNA
.

As a consequence, for x ∈ ∆−Z0 we have

∣∣ge
ADeNA(x)

∣∣ ≤ CA .

For x ∈ ∆ − Z0 write µe
A(x) := ge

ADeNA . From the estimates in the above µe
A :

∆ − Z0 → C is a bounded holomorphic function, and hence it extends by Riemann
extension to a bounded holomorphic function on ∆, to be denoted by the same symbol.
By Fatou’s Theorem, the bounded holomorphic function µe

A admits a radial limit µe?
A (b)
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for almost every b ∈ ∂∆. By Lemma 2, for almost every b ∈ ∂∆, each radial limit
µe?
A (b), 1 ≤ e ≤ p, exists and the radial limit D?(b) of the bounded holomorphic function

D(x) on ∆ also exists and furthermore D?(b) 6= 0 for almost every b. For such b we
have lim

r→1−
D(rb) = D?(b) 6= 0. There exists then a fixed open neighborhood V0 b Ω′

of 0 ∈ Ω′, and ε > 0 such that for Iε = (1 − ε, 1), we have well-defined branches
f (1), · · · , f (p) of f such that each f (α), 1 ≤ α ≤ p, is continuous on Iε×V0 and restricts
to {rb} × V0, 1 − ε < r < 1 to give a holomorphic map f

(α)
rb : V0 → Cn, and such that

moreover f
(α)
rb converges uniformly to f

(α)?
b : V0 → ∂Ω. Thus, for an index A = (I, J)

we have lim
r→1−

h
(α)
A (rb) = h

(α)?
A (b). Now if the index A is of order q + 1 from the fact

that f (α)(V0) ⊂ Γb for some maximal face Γb on ∂Ω, of dimension q, it follows readily
that h

(α)?
A (b) = 0. As a consequence, for 1 ≤ e ≤ p,

lim
r→1−

ge
ADeNA(rb) = 0 .

Thus, the boundary values of the bounded holomorphic functions µe?
A (b), 1 ≤ e ≤ p are

all equal to 0 for almost all b. By the Cauchy Integral Formula in Lemma 2 we conclude
that µe

A ≡ 0 on ∆, hence ge
A ≡ 0 for 1 ≤ e ≤ p, implying that the branches h

(α)
A ≡ 0

wherever defined on ∆. ¤
From Lemma 4 we deduce [§3, Proposition 2].

Proof of Proposition 2. By Lemma 4, the proposition follows from the scheme of proof
given in §3 in the case where f is univalent, in which case the proof was reduced to
verifying of the condition (†) as given there. ¤

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. We first recall the setting and notations. Without loss
of generality, we may assume that F is a surjective proper holomorphic map from an
irreducible bounded symmetric domain Ω onto a complex space Z. Associated to F , the
correspondence S ⊂ Ω×Ω is defined by (x, y) ∈ S ⇐⇒ F (x) = F (y). S can be regarded
as the graph of a multivalent map f from Ω into Ω. We can assume that f is unbranched
in a neighborhood U0 of 0 ∈ Ω. From §2 for a maximal characteristic subdomain Θ ⊂ Ω,
there is a totally geodesic complex submanifold Π ⊂ Ω isomorphic to ∆×Ω′ ↪→ Ω such
that Π contains Θ as a fiber with respect to the projection map Π ∼= ∆ × Ω′ → ∆.
Ω is a union of maximal characteristic subdomains. We fix a subdomain of such type
which contains the origin, and define the restrictions Sx = S ∩ (({x} × Ω′)× Ω) of the
correspondence S.

By [§3, Proposition 2], we see that each Sx is in fact a correspondence of {x} ×Ω′

with Lx, where Lx is also a maximal characteristic symmetric subdomain of Ω. As all
the maximal characteristic symmetric subdomains are isomorphic, we can do induction
on the rank (down to rank one) by considering the induced correspondence between
{x}×Ω′ and Lx. Namely, for any z ∈ U0 and any minimal disk ∆z passing through z, if
we define the restriction S∆z := S ∩ (∆z ×Ω), we actually have S∆z ⊂ ∆z ×Dz, where
Dz is also a minimal disk in Ω. Hence each branch of f on U0 preserves characteristic
vectors for every point z ∈ U0. By [§2, Theorem 1] of Ochiai [Oc], the branches of
f extend to automorphisms of M , the compact dual of Ω. By [§2, Lemma 1] such
automorphisms of M preserve Ω and they restrict to automorphisms of Ω.
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Coming back to our original surjective proper holomorphic map F : Ω → Z, we
define H ⊂ Aut(Ω) to be the subset consisting of all automorphisms γ of Ω satisfying
F ◦ γ ≡ F on Ω. Clearly H ⊂ Aut(Ω) is a finite subgroup. Let a ∈ Z at which F is
unbranched and F−1(a) = {y1, . . . , yp}. By the above, we have proven that for each
intertwining map ϕi,j : Ui → Uj between open neighborhoods Ui of yi and Uj of yj ,
ϕi,j extends to an automorphism of Ω. It follows that H acts transitively on F−1(a).
In fact, H consists of precisely p elements, say H = {γ1,1 = idΩ, γ1,2, · · · , γ1,p}. Denote
now by X = Ω/H the quotient space, and by π : Ω → X the canonical projection
map. By a result of Cartan [Ca], X has a unique structure as a normal complex space.
For any z, z′ ∈ Ω, if π(z) = π(z′), then there exists γ ∈ H such that γ(z) = z′.
By our construction of H, γ is the extension of an intertwining map induced from
F : Ω → Z and since intertwining maps are fibre-preserving (with respect to F ), we
have F (z) = F (z′). Therefore we can define the map ν : X → Z by ν(x) = F (π−1(x)).
From the definition of the complex structure of the quotient space X, ν is holomorphic
because ν ◦π = F is holomorphic. Since any compact subvariety of Ω consists of finitely
many points, ν̃ : X → Z must be finite. Let Z̃ be the normalization of Z. We can
then lift ν to ν̃ : X → Z̃, which remains finite, proper, surjective and generically one to
one, and we have an inverse map ν : Z̃ → X which is weakly holomorphic. Since Z̃ is
normal, every weakly holomorphic function extends holomorphically and therefore we
see that ν̃ is actually biholomorphic. Thus, X is the normalization of Z.

§5 Proper holomorphic maps onto manifolds

We are ready to prove [§1, Theorem 1] regarding proper holomorphic maps F :
Ω → Z onto a complex manifold Z for an irreducible bounded symmetric domain Ω of
rank ≥ 2.

Proof of Theorem 1. Recall that Ω ⊂ M is the Borel embedding of Ω into its compact
dual M . If F is not a biholomorphism, then the ramification locus R ⊂ Ω is the fixed
point set of the group H ⊂Aut(Ω), and as such R must be a smooth totally geodesic
hypersurface. Thus, R is itself a Hermitian symmetric manifold of the semisimple and
noncompact type. Let R ⊂ Q be the Borel embedding of R into its compact dual Q.
Then, Q can be identified naturally as a complex submanifold of M . Furthermore,
the finite group H ⊂ Aut(Ω) extends as a finite group of automorphisms fixing the
hypersurface Q. The irreducible Hermitian symmetric manifold M belongs to the class
of rational homogeneous manifolds of Picard number 1. For the latter class of manifolds
we have the following general result in Hwang-Mok [HM1, Prop.15] concerning finite
groups of automorphisms proven in relation to a solution of Lazarsfeld’s Problem.

Proposition 3. Let Y be a rational homogeneous manifold of Picard number 1 of
dimension n ≥ 3 different from the projective space Pn. Suppose there exists a nontrivial
finite cyclic group H ⊂ Aut(Y ) which fixes a (smooth) hypersurface E ⊂ Y pointwise.
Then, Y is the hyperquadric Qn, E is equal to an O(1)−hypersurface, which is itself a
hyperquadric, H is a group of order 2, and the quotient of Y by H, endowed with the
standard structure as a normal complex space, is the projective space Pn.

Proof of Theorem 1 continued. If Ω is not biholomorphic to DIV
n for some n ≥ 3,

then by Proposition 3 (and the discussion on duality preceding it) any proper holo-
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morphic map F : Ω → Z onto a complex manifold Z must be a biholomorphism.
This gives the alternative (a) in Theorem 1. For alternative (b), i.e., the case where
Ω = DIV

n , it remains to identify the cases of F : DIV
n → DIV

n /H ∼= Z where H is a
non-trivial finite group of automorphisms. We will describe the non-trivial automor-
phism σ ∈ H of order 2 explicitly to check that it gives rise to an automorphism of
Ω = DIV

n by restriction. (For the description of the Harish-Chandra and Borel embed-
dings DIV

n b Cn ⊂ Qn we refer the reader to Mok [Mk1, Chapter 4, (3.1), pp.82-83].).
Represent the hyperquadric Qn ⊂ Pn+1 by (†) z2

1 + · · · + z2
n − 2zn+1zn+2 = 0 in the

homogeneous coordinates [z1, · · · , zn+2]. Then, the Euclidean space Cn is embedded in
Qn as an open subset by the mapping (z1, · · · , zn) 7→ (

z1, · · · , zn, 1, 1
2 (z2

1 + · · ·+ z2
n)

)
.

The classical domain DIV
n of Type-IV is identified via the Harish-Chandra realization

as DIV
n =

{
(z1, · · · , zn) ∈ Cn : ‖z‖2 < 2 and ‖z‖2 < 1 +

∣∣ 1
2 (z2

1 + · · ·+ z2
n)

∣∣2
}

. For
[z1, · · · , zn+2] ∈ Qn define now F ([z1, · · · , zn+2]) = [z1, · · · , zn−1, zn+1, zn+2]. By the
defining equation (†) of the hyperquadric we see that z1 = · · · , zn−1 = zn+1 = zn+2 = 0
implies zn = 0, so that F : Qn → Pn is a holomorphic map. Clearly F is a dou-
ble cover ramified precisely along the smooth hyperplane section E ⊂ Qn defined by
zn = 0, and we have F (x) = F (σ(x)) for σ ∈ Aut(Qn) given by σ([z1, z2, · · · , zn+2]) =
[z1, · · · , zn−1,−zn, zn+1, zn+2]. The involution σ generates a finite group H of order
2, and the holomorphic mapping F : Qn → Pn agrees with the canonical quotient
map Qn 7→ Qn/H ∼= Pn. Now, z = (z1, · · · , zn) ∈ DIV

n if and only if ‖z‖2 < 2
and ‖z‖2 < 1 +

∣∣ 1
2 (z2

1 + · · ·+ z2
n)

∣∣2. Obviously, for z ∈ DIV
n , the two conditions

are satisfied when z is replaced by σ(z), so that σ
∣∣
DIV

n
∈ Aut(DIV

n ). It follows that

F
∣∣
DIV

n
: DIV

n → Cn ⊂ Pn is a proper holomorphic map onto some open subset

G := F (DIV
n ) b Cn. F is ramified precisely along the totally geodesic hypersurface

J = E ∩DIV
n , and the proof of Theorem 1 is complete. ¤

Remarks Alternatively, one can show that F : Ω → Z is an isomorphism unless
Ω is biholomorphic to DIV

n , n ≥ 3 by a case-by-case checking on dimensions of totally
geodesic complex submanifolds. The proof of Proposition 3 given in [HM3] is however
more conceptual.
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