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Abstract. In a series of works one of the authors has developed with J.-M.
Hwang a geometric theory of uniruled projective manifolds basing on the
study of varieties of minimal rational tangents, and the geometric theory
has especially been applied to rational homogeneous manifolds of Picard
number 1. In Mok [25] and Hong-Mok [8] the authors have started the
study of uniruled projective subvarieties, and a method was developed in [8]
for characterizing certain subvarieties of rational homogeneous manifolds.
The method relies on non-equidimensional Cartan-Fubini extension and a
notion of parallel transport of varieties of minimal rational tangents.

In the current article we apply the notion of parallel transport to a char-
acterization of smooth Schubert varieties of rational homogeneous manifolds
of Picard number 1. Given a pair (S, S0) consisting of a rational homoge-
neous manifold S of Picard number 1 and a smooth Schubert variety S0

of S, where no restrictions are placed on S0 when S = G/P is associated
to a long root (while necessarily some cases have to be excluded when S is
associated to a short root), we prove that any subvariety of S having the
same homology class as S0 must be gS0 for some g ∈ Aut(S).

We reduce the problem first of all to a characterization of local defor-
mations St of S0 as a subvariety of S. By Kodaira stability, St is uniruled by
minimal rational curves of S lying on St. We establish a biholomorphism be-
tween St and S0 which extends to a global automorphism by reconstructing
St by means of a repeated use of parallel transport of varieties of minimal
rational tangents along minimal rational curves issuing from a general base
point. Our method is applicable also to the case of singular Schubert va-
rieties provided that there exists a minimal rational curve on the smooth
locus of the variety.
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1 Introduction

In this article we consider rational homogeneous manifolds over the complex
field. A rational homogeneous manifold S = G/P is a projective manifold
where a connected semisimple (complex) Lie group G acts transitively. For
any submanifold Z of S, by applying g ∈ G we can deform Z to a subman-
ifold gZ of S, all having the same homology class as Z in S. The question
is whether these are the only subvarieties of S having the same homology
class as Z.

The answer is indeed positive for sub-Grassmannians of Grassmannians.
The Grassmannian S = Gr(k, V ) of k-planes of a complex vector space V is
a rational homogeneous manifold on which G = PSL(V ) acts transitively.
By a sub-Grassmannian S0 of S we mean a subvariety of Gr(k, V ) consist-
ing of k-planes of V which contain one fixed subspace of V and which are
contained in another fixed subspace of V . By a result of Bryant [4] and
Walters [28] based on differential-geometric methods, any subvariety of the
Grassmannian S having the same homology class as a sub-Grassmannian
S0 is again a sub-Grassmannian. Equivalently, there is only one irreducible
component in the Chow variety where the homology class (of any member)
agrees with the homology class of S0, and it consists precisely of one closed
orbit of G.

In the current article we consider the general situation of a pair (S, S0)
consisting of a rational homogeneous manifold S of Picard number 1 and a
smooth Schubert variety S0 of S. We say that homological rigidity holds
for the pair (S, S0) whenever any subvariety X of S having the same homol-
ogy class as S0 must be gS0 for some g ∈ Aut0(S). By an entirely differ-
ent method we determine completely whether homological rigidity holds for
(S, S0) in the case where S0 ⊂ S is a homogeneous submanifold associated
to a sub-diagram of the marked Dynkin diagram corresponding to S.

Theorem 1.1. Let S = G/P be a rational homogeneous manifold associated
to a simple root and let S0 = G0/P0 be a homogeneous submanifold asso-
ciated to a subdiagram D(G0) of the marked Dynkin diagram D(G) of S.
Then any subvariety of S having the same homology class as S0 is induced
by the action of Aut0(S), excepting when (S, S0) is given by

(a) S = (Cn, {αk}), Λ = {αk−1, αb}, 2 ≤ k < b ≤ n;

(b) S = (F4, {α3}), Λ = {α1, α4} or {α2, α4};
(c) S = (F4, {α4}), Λ = {α2} or {α3}.
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where Λ denotes the set of simple roots in D(G)\D(G0) which are adjacent
to the subdiagram D(G0).

This covers all smooth Schubert subvarieties S0 ⊂ S whenever S = G/P
is associated to a long simple root (Proposition 3.7). We settle the same
problem for non-homogeneous smooth Schubert varieties S0 when S is a
symplectic Grassmannian which is a prototype for the short-root case. (For
notations see Section 4.2.1.)

Theorem 1.2. Let S be the symplectic Grassmannian Grω(k, V ) and let S0

be a smooth Schubert variety of the form Grω(k, V ; Fa, F2n−1−a) for 0 ≤ a ≤
k − 2. Then any subvariety of S having the same homology class as S0 is
induced by the action of Aut0(S) = PSp(V, ω).

Our approach is based on a method of parallel transport of varieties
of minimal rational tangents along minimal rational curves developed in
Mok [25] and Hong-Mok [8], in analogy with the notion of parallel transport
along a geodesic in Riemannian geometry, in the framework of a theory of
geometric structures of uniruled projective manifolds modeled on varieties
of minimal rational tangents (Hwang-Mok [11], Hwang [17], Mok [25]).

Using the fact that the action of G := Aut0(S) on each irreducible
component of the Chow variety of S must have a closed orbit, the problem
of characterizing a smooth Schubert variety S0 ⊂ S is first of all reduced
to a problem on local deformations of S0 in S as a subvariety. The prob-
lem is whether local deformations of S0 are necessarily of the form gS0 for
some g ∈ G. We will call this the local characterization problem. From the
local nature of the problem, an obvious approach is cohomological. More
precisely, the answer to the local characterization problem is affirmative
whenever H1(S0, NS0|S) = 0, and dimH0(S0, NS0|S) is equal to the dimen-
sion of the orbit G.[S0] in Chow(S). Although such an approach can be
implemented by means of the Borel-Weil-Bott Theorem in the case where
S0 ⊂ S is itself a homogeneous submanifold, the cohomological method be-
comes inaccessible when S0 is only almost homogeneous. A more conceptual
approach is therefore desirable.

We introduce a geometric and completely different approach to the local
characterization problem by reconstructing local deformations St of S0 in S
from their varieties of minimal rational tangents. By Kodaira stability, St is
uniruled by minimal rational curves of S lying on St. For appropriate pairs
(S, S0) we establish a biholomorphism between St and S0 which extends to
an automorphism of S by identifying varieties of minimal rational tangents
at a general point of St with those of S0 and by a repeated use of parallel
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transport of varieties of minimal rational tangents along minimal rational
curves issuing from a general base point. Such a notion of parallel transport
is made possible by the deformation theory of rational curves and, at least in
the case where S0 ⊂ S is a homogeneous submanifold, by the compactness of
the orbit of the Chow point corresponding to the variety Cx(S0) ⊂ PTx(S0)
of minimal rational tangents at x under the action of the isotropy subgroup
of G at x.

As compared to the differential-geometric method of Bryant [4] and
adopted later by Hong [9] based on the use of explicit differential forms,
in the method of the current article we make use of differential geometry
of a different kind, which is based on notions derived from (tangents to)
holomorphic families of distinguished local holomorphic curves, and as such
it is applicable to any rational homogeneous manifold of Picard number
1. Verifications of the necessary geometric hypotheses are elementary even
in cases pertaining to exceptional Lie groups, a situation which would in
general require formidable computational machinery.

In earlier works on deformation rigidity of rational homogeneous mani-
folds, triviality of local deformations is guaranteed by local rigidity theorems,
and the focus has always been placed on the limiting behavior of varieties
of minimal rational tangents. By contrast, in the current work a homolog-
ical rigidity problem on smooth Schubert varieties is first reduced to the
study of local deformations of such varieties, and our approach adds a new
dimension to the applicability of the geometric theory of varieties of min-
imal rational tangents by a further reduction of the problem to the study
of local deformations of varieties of minimal rational tangents. By the very
nature of our geometric approach revolving around the deformation of min-
imal rational curves, our method remains applicable to the case of singular
Schubert varieties S0 provided that there exists a minimal rational curve on
the smooth locus of S0, a situation which we will deal with in a forthcoming
article under preparation.

In Section 2, we characterize a Schubert variety as an irreducible sub-
variety of S = G/P such that the orbit G.[Z] is closed in the Chow variety
of S and reduce the problem to proving that any local deformation of S0 in
S is induced by G (Proposition 2.2). In Section 3 we develop a method to
characterize a smooth Schubert variety by the variety of minimal rational
tangents at a general point x ∈ S0. Denoting by Px ⊂ G the isotropy sub-
group at x, our method reduces the problem to the local non-deformability
modulo the action of Px of the variety of minimal rational tangents of S0

at x ∈ S0 in that of S (Proposition 3.2 (2)). This local characterization
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problem is solved in Section 4.

2 Schubert varieties

Let G be a connected simple group. Take a Borel subgroup B of G and
a maximal torus T in B. Denote by ∆+ the system of positive roots of G
and by S = {α1, · · · , α`} the system of simple roots of G. For a root α,
denote by gα the root space of the root α and by Uα the root subgroup of
the root α. Then the unipotent part U of B is isomorphic to the product
Πα∈∆+Uα and the unipotent part U− of the Borel subgroup B− opposite to
B is isomorphic to the product Πα∈∆+U−α. For each j = 1, · · · , `, denote
by nj(α) the coefficient in αj of α =

∑`
i=1 niαi.

Let t be the Lie algebra of T . To each simple root αk we associate
a parabolic subgroup P of G, whose Lie algebra p is given by p = t +∑

nk(α)≥0 gα. (In opposition to Hwang-Mok [10] we choose the parabolic
subgroup P ⊂ G in such a way that the tangent space To(S) at the base point
o = eP of S = G/P is spanned by root spaces belonging to negative roots.)
The homogeneous manifold S = G/P is called the rational homogeneous
manifold associated to the simple root αk. The Levi decomposition of p is
given by p = l + n, where l = t +

∑
nk(α)=0 gα is the reductive part of p and

n =
∑

nk(α)>0 gα is the nilpotent part of p. Put ∆(n) = {α ∈ ∆+ : nk(α) >
0}.

Let W be the Weyl group of G with respect to T . For each w ∈ W,
define a subset ∆(w) of ∆+ by ∆(w) = {β ∈ ∆+ : w(β) ∈ −∆+}. Then the
Borel subgroup B acts on S and has only finitely many orbits, indexed by
the subset WP of W defined by WP := {w ∈ W : ∆(w) ⊂ ∆(n)}, i.e.,

S =
∐

w∈WP

Bew

where ew = wP,w ∈ WP are T -fixed points in S. For each w ∈ WP , Bew =
UwP = w(w−1Uw∩U−)P = w(Πβ∈∆(w)U−β)P is isomorphic to a cell C`(w)

of dimension `(w) = |∆(w)|. The closure S(w) of Bew is called a Schubert
variety of type w. By the cell decomposition, the integral homology space
H∗(S,Z) is freely generated by the homology classes of Schubert varieties
S(w), where w ∈ WP . For details about the Schubert varieties of S = G/P ,
cf. Demazure [5] or Springer [26].

Considering S(w) as a point [S(w)] in the Chow variety of S, the G-orbit
of [S(w)] consists of Schubert varieties with respect to Borel subgroups of
G, which have the same homology classes as S(w). It is clear that gS(w) for
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g ∈ G is a Schubert variety with respect to the Borel subgroup B′ = gBg−1

of G and S(w) and gS(w) have the same homology class. To see the other
inclusion, take another Borel subgroup B′ of G. Then there is g ∈ G such
that B′ = gBg−1. Take P ′ := gPg−1 as a base point of S associated to the
Borel subgroup B′. Identify the Weyl group W of G with respect to T with
the Weyl group W ′ of G with respect to T ′ = gTg−1 and let WP ′ be the
subset of W ′ corresponding to the subset WP of W. Then S is the disjoint
union of B′-orbits B′e′w′ of e′w′ = w′P ′ for w′ ∈ WP ′ and their closures
S(w′)′ are Schubert varieties (with respect to B′). If a Schubert variety
S(w) for w ∈ WP and a Schubert variety S(w′)′ for w′ ∈ WP ′ have the
same homology class, then w′ corresponds to w and S(w′)′ = gS(w). (For,
otherwise, w′ ∈ WP ′ corresponds to an element v ∈ WP which is different
from w, and then the homology class of S(w′)′ = gS(v) is different from the
homology class of S(w), a contradiction.)

The algebraic group G acts algebraically on (each irreducible component
of) Chow(S). An algebraic subgroup H ⊂ G is parabolic if and only if G/H
is projective-algebraic. Since S(w) is invariant under the action of B, the
isotropy group of the action of G at [S(w)] contains B, i.e., is a parabolic
subgroup of G, and thus the G-orbit of [S(w)] is closed. Conversely, we have

Proposition 2.1. Let S = G/P be a rational homogeneous manifold asso-
ciated to a simple root. Let Z be an irreducible subvariety of S. Consider
Z as a point [Z] in the Chow variety Chow(S) of S. If the G-orbit of [Z] is
closed, then Z is a Schubert variety.

Proof. Since G.[Z] is closed (and hence a projective subvariety of Chow(S)),
the isotropy subgroup Q of G at [Z] is a parabolic subgroup of G. Take a
Borel subgroup B of G which is contained in Q. Then B acts on Z. The
Borel subgroup B has only finitely many orbits in Z because it has only
finitely many orbits in S. Hence, B has an open orbit in Z, which is unique
because Z is irreducible. Thus Z is the closure of its open B-orbit, i.e., a
Schubert variety in S.

Proposition 2.2. Let S = G/P be a rational homogeneous manifold as-
sociated to a simple root and let S0 be a smooth Schubert variety. Suppose
that any local deformation of S0 in S is induced by the action of G. Then
any subvariety of S having the same homology class as S0 is induced by the
action of G.

Proof. Recall that the integral homology space H∗(S,Z) is freely generated
by the homology classes of Schubert varieties S(w) of S (cf. the third para-
graph of Section 2). Let Z be a subvariety of S having the same homology
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class as S0. Since the homology class of a (complex) subvariety of S is
a unique linear combination of the homology classes of Schubert varieties
with nonnegative integral coefficients (Proposition 1.3.6 (ii) of [2] and the
remark after it), the homology class of S0 cannot be the sum of two or
more homology classes of (complex) subvarieties. Thus Z is irreducible and
reduced.

Consider Z as a point [Z] in the Chow variety Chow(S) of S, on which
G acts algebraically. The closure of the G-orbit G.[Z] contains a closed
orbit G.[Y ] for some [Y ] ∈ Chow(S). Then Y is irreducible and has the
same homology class as S0. Since the orbit G.[Y ] is closed, Y is a Schubert
variety by Proposition 2.1, and is of the same type as S0 because Schubert
varieties of different types cannot have the same homology class. Thus we
may assume that Y = S0 up to the action of G. By the assumption, there
is a neighborhood of [S0] which consists of G-translates of S0. But any
neighborhood of [Y ] intersects G.[Z] because [Y ] lies in the closure of G.[Z].
Therefore Z is gS0 for some g ∈ G.

Remarks.
(a) Here and in the rest of the article by a neighborhood we will always
mean an open neighborhood in the complex topology.
(b) As is evident from the proofs, the analogues of both Proposition 2.1 and
Proposition 2.2 hold true for any rational homogeneous manifold.

Example 1. To each rational homogeneous manifold S = G/P associated
to a simple root αk we associate the marked Dynkin diagram (D(G), {αk}),
whereD(G) is the Dynkin diagram of G. A marked subdiagram (D(G0), {αk})
of (D(G), {αk}) defines a homogeneous submanifold S0 = G0/P0 of S, the
G0-orbit of the base point o ∈ S. We call it the homogeneous submanifold
associated to the subdiagram D(G0) of the marked Dynkin diagram of S.
Let Λ be the set of simple roots in D(G)\D(G0) which are adjacent to the
subdiagram. Then the stabilizer of S0 in G is the parabolic subgroup of
G whose Lie algebra is t +

∑
α∈∆∩Z(S\Λ) gα +

∑
α∈∆+\Z(S\Λ) gα (Tits [27]).

Thus S0 is a smooth Schubert variety in S.

Remarks The identity component Aut0(S) of the automorphism group of
S = G/P is equal to G excepting the cases where (G, {αk}) is (B`, {α`}),
(C`, {α1}) or (G2, {α1}). In these cases, we can think of S = G/P as a
rational homogeneous manifold G′/P ′ with Aut0(S) = G′ ) G. By the
same reason, if there is a subdiagram (D(G1), {αk}) of (D(G), {αk}) con-
taining (D(G0), {αk}) properly, whose type is (B`, {α`}) or (C`, {α1}), then,
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(a) S = (Cn, {αk})

d d d × d d d d<

(b) S = (F4, {α3}) (c) S = (F4, {α4})

d d × d> d d d ×>

Fig. 1

The small box represents the subdiagram (D(G0), {αk}) and the large box repre-
sents the subdiagram (D(G1), {αk}) containing (D(G0), {αk}) properly, whose type
is (a) (Cn−k+1, {α1}) and (b) (B3, {α3}) and (c) (C3, {α1}), respectively.

denoting by S1 the homogeneous manifold associated to (D(G1), {αk}), G1

is a proper subgroup of Aut0(S1) and Aut0(S1) is not contained in Aut0(S).
Thus there exists a nontrivial deformation of S0 in S1 (hence in S) which is
not induced by the action of Aut0(S). These are the cases where (S, S0) are
of types (a) – (c) in Theorem 1.1 (Fig. 1).

From now on we will assume that G is the connected component Aut0(S)
of the automorphism group of S = G/P .

3 Local characterizations of smooth Schubert va-
rieties

3.1 Varieties of minimal rational tangents

Let (X,L) be a polarized uniruled projective manifold, where L stands for an
ample line bundle on X. By a (parametrized) rational curve on X we mean
a nonconstant holomorphic map f : P1 → X. The latter is said to be a free
rational curve if the holomorphic vector bundle f∗TX on P1 is semipositive,
i.e., it splits holomorphically into a direct sum of holomorphic line bundles of
degree ≥ 0. Let Hom(P1, X) be the scheme of all rational curves f : P1 → X
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on X, and denote by [f ] ∈ Hom(P1, X) the member corresponding to f .
Note that Hom(P1, X) is smooth at any [f ] corresponding to a free rational
curve. A free rational curve f : P1 → X such that the degree degL(f) :=
deg(f∗L) is minimum among all free rational curves on X will be called a
minimal rational curve. Let f0 : P1 → X be a minimal rational curve (which
is by definition necessarily free). Denote by Hom[f0](P1, X) the irreducible
component of Hom(P1, X) containing [f0], and by H ⊂ Hom[f0](P1, X) the
Zariski-open subscheme consisting of all free rational curves f : P1 → X
belonging to Hom[f0](P1, X). Denote by K := H/Aut(P1) the associated
quotient space of unparameterized free rational curves. From minimality it
follows that Aut(P1) acts freely on H, and the quotient space K is a quasi-
projective manifold. We call K a minimal rational component. In what
follows we assume that a minimal rational component K on X has been
chosen, and by a minimal rational curve on X we will mean implicitly a
minimal rational curve belonging to K. The latter is sometimes also just
referred to as a K-curve, or as a K-line if X is of Picard number 1 and the
homology class of a K-curve is the positive generator of Hz(X,Z) ∼= Z. For
a standard reference on the deformation theory of rational curves from an
algebro-geometric perspective the reader is referred to Kollár [22].

Let ρ : U → K be the universal P1-bundle of K-curves, and µ : U → X
be the evaluation map. We write Ux := µ−1(x). For a member u of Kx,
represented by f : P1 → X, f(0) = x, which is an immersion at the marking
at x, the tangent map τx associates u to the tangent line [df(T0(P1))] ∈
PTx(X) at the marking. By Kebekus [20] any minimal rational curve passing
through a general point x ∈ X is immersed, so that the tangent map τx :
Ux → PTx(X) at x is holomorphic. Its image Cx := τx(Ux) is called the
variety of minimal rational tangents at x, and by Hwang-Mok [12], [14] the
map τx : Ux → Cx is a normalization. The closure of the union of Cx over
general points x ∈ X gives the fibered space π : C → X of varieties of
minimal rational tangents associated to K. For surveys on the theory of
geometric structures modeled on varieties of minimal rational tangents at
various stages of its development the reader may consult Hwang-Mok [11],
Hwang [17] and Mok [25].

When we speak of the variety of minimal rational tangents of a rational
homogeneous manifold S associated to a simple root, we will assume that
S is equipped with the minimal rational component K consisting of lines
P1 contained in S after we embed S into PN by the ample generator of the
Picard group of S. The variety of minimal rational tangents of a rational
homogeneous manifold S was used to prove global rigidity of S in Hwang-
Mok [10], [13], [15] and [16]. The article Hwang [18] contains discussions on
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rigidity phenomena of rational homogeneous manifolds studied by means of
varieties of minimal rational tangents. In this paper we will use the variety
of minimal rational tangents of a smooth Schubert variety S0 of S to prove
that a local deformation of S0 in S is of the form gS0 for some g ∈ G.

By the homogeneity of S = G/P a G-orbit in K is uniquely determined
by a P -orbit of the varieties of minimal rational tangents Co at the base
point o = eP and vice versa. Thus K has an open dense G-orbit, and
consists of one G-orbit if S is associated to a long root, cf. Hwang-Mok
[13], Proposition 1, for the long-root case, and Hwang-Mok [11], end of the
first paragraph in p. 380, for the short-root cases. (For a more explicit
description of the short-root cases the reader may consult Hwang-Mok [15],
[16]. See also Theorem 4.3 of [23].)

Example 2. Let S = G/P be a rational homogeneous manifold associated
to a long root αk. Let L be the reductive part of the isotropy of G at a
base point x ∈ S. Then the variety Cx(S) of minimal rational tangents of S
at x ∈ S is a rational homogeneous manifold L/R with the marked Dynkin
diagram (D(L),Υ), where Υ is the set of simple roots αj with αj 6= αk

and 〈αj , αk〉 6= 0. In particular, Cx(S) is a Hermitian symmetric space of
compact type. The following is the list of Cx(S) and its embedding into
P(TxS) (p.176 of Hwang-Mok [13]):

I. A ⊂ P(V ), an irreducible Hermitian symmetric space of the compact
type in the first canonical embedding,

II. P(E1) × P(E2) ⊂ P(E1 ⊗ E2), the Segre embedding of the product of
two projective spaces P(E1) and P(E2),

III. ν2(P(E)) ⊂ P(S2E), the second Veronese embedding of a projective
space P(E),

IV. P(E1) × A2 ⊂ P(E1 ⊗ E2), the Segre embedding of the product of a
projective space P(E1) and an irreducible Hermitian symmetric space
of the compact type, A2 ⊂ P(E2), in the first canonical embedding,

V. P(E1)×ν2(P(E2)) ⊂ P(E1⊗S2(E2)), the Segre embedding of the prod-
uct of a projective space P(E1) and a projective space, ν2(P(E2)) ⊂
P(S2(E2)), in the second Veronese embedding,

VI. P(E1) × P(E2) × P(E3) ⊂ P(E1 ⊗ E2 ⊗ E3), the Segre embedding of
the product of three projective spaces P(E1) and P(E2) and P(E3),
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VII. ν3(P(E)) ⊂ P(S3E), the third Veronese embedding of a projective
space P(E).

If S0 is a homogeneous submanifold associated to a subdiagram (D(G0), αk)
of the marked Dynkin diagram (D(G), αk) of S = G/P , then the variety
Cx(S0) of minimal rational tangents of S0 at x ∈ S0 is a homogeneous sub-
manifold of Cx(S) associated to the subdiagram (D(G0) ∩ D(L), Υ) of the
marked Dynkin diagram (D(L), Υ) of X.

For an irreducible projective variety M , by a general point on M in
the standard usage we mean a point lying outside some subvariety E (M ,
equivalently a point lying on the subset U = M − E which is open and
dense in the Zariski topology. In some situations it is convenient to slightly
modify the usage of the term “general” and to speak of a general point with
an implicit understanding that a specific Zariski open subset U ⊂ M has
been chosen, by spelling out the conditions defining the set U .

In the sequel, for a projective submanifold Z ⊂ S uniruled by lines lying
on Z, by a general point of Z we will mean a point z ∈ Z such that all lines
on Z passing through z are free rational curves. Endowing Z with a minimal
rational component K(Z) consisting of projective lines on S lying on Z, and
denoting by ρ : U(Z) → K(Z) the associated universal P1-bundle over K(Z),
and by µ : U(Z) → Z the evaluation map, for a general point z ∈ Z the
fiber Uz(Z) = µ−1(z) of the evaluation map is projective due to minimality
(as follows from Mori’s Breaking-up Lemma) and smooth because of the
freeness of every K(Z)-curve passing through z. (Here K(Z) is taken to be
any connected component of the (not necessarily connected) moduli space of
free rational curves on Z which are projective lines of S, thus the reference
to ‘a minimal rational component’ in place of ‘the rational component’.)

For any line C lying on Z, the tangent bundle TZ|C restricted to C
is a subbundle of TPN = O(2) ⊕ O(1)N−1. Thus, if C is a free rational
curve in Z, the nonnegative holomorphic vector bundle TZ|C ⊂ TPN |C
must be of the form O(2) ⊕ O(1)p ⊕ Oq; in other words C is a standard
rational curve in Z. Thus, for a general point z ∈ Z, every K(Z)-line passing
through z is standard, and the tangent map τz : Uz(Z) → Cz(Z) ⊂ PTz(Z)
is a biholomorphic embedding (cf. Lemma 3 of Mok [25]) of the smooth
projective manifold Uz(Z) onto the variety of minimal rational tangents
Cz(Z) ⊂ PTz(Z). Thus Cz(Z) ⊂ PTz(Z) is a projective submanifold.

Concerning smooth Schubert varieties S0 ⊂ S we have the following
result regarding projective lines and associated varieties of minimal rational
tangents on S0.
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Proposition 3.1. Let S = G/P be a rational homogeneous manifold associ-
ated to a simple root and let S0 be a smooth Schubert variety. Then S0 is of
Picard number 1 and it is uniruled by lines of S lying on S0. Furthermore,
for a general point x of S0, the variety Cx(S0) of minimal rational tangents
of S0 at x is a smooth linear section of the variety Cx(S) of minimal rational
tangents of S at x.

Proof. The map Pic(S) → Pic(S0) defined by restricting holomorphic line
bundles from S to S0 is a surjective homomorphism (Brion [2]). Since S is
of Picard number 1, so is S0.

For w ∈ WP we have w−1Bew = (Πβ∈∆(w)U−β)P (See Section 2). Let
w = sβr · · · sβ1 be a reduced expression of w ∈ WP . Here, sβi denotes
the reflection relative to a simple root βi for i = 1, · · · , r. Then ∆(w)
is {β1, sβ1(β2), · · · , sβ1 · · · sβr−1(βr)} (Lemma 8.3.2 of Springer [26]). Thus
for any w1 ∈ WP such that w = sγt · · · sγ1w1 for some simple roots γj

(j = 1, · · · , t) with `(w) = `(w1) + t, ∆(w1) is contained in ∆(w) and hence
w1

−1Bew1 is contained in w−1Bew. (For, if w1 = sβ′s · · · sβ′1 is a reduced
expression of w1, then w = sγt · · · sγ1sβ′s · · · sβ′1 is a reduced expression of
w because `(w) = `(w1) + t.) In particular, for w = sβr · · · sβ1 ∈ WP

such that S0 = S(w) and for w1 = sβ1 , we have w−1
1 Bew1 ⊂ w−1Bew, or

equivalently, ww−1
1 (Bew1) ⊂ Bew. The Schubert variety S(w1) is a line P1.

Put g = ww−1
1 ∈ G. Then the line gS(w1) intersects B.ew in C ⊂ P1. By

letting B act on the line gS(w1) we get a family of lines covering an open
dense subset of S(w).

Since S0 itself is a linear section of S (Brion [2], Jantzen [19]), any line in
S tangent to S0 is contained in S0. Thus Cx(S0) is equal to the intersection
of Cx(S) with P(TxS0). Since S0 is uniruled by projective lines, the tangent
map τx : Ux(S0) → Cx(S0) at x is a biholomorphism of the smooth projective
manifold Ux(S0) onto the variety of minimal rational tangents Cx(S0) (cf.
last paragraph preceding Proposition 3.1).

We note that any point x in the open B-orbit of S0 ⊂ S is a general
point on S0, to which the second half of Proposition 3.1 applies.

3.2 Reduction to local characterizations of varieties of min-
imal rational tangents

Recall the minimal rational component K on S = G/P fixed in Section 3.1.
By a K-line we will mean a member of K. In the sequel, by a general K-line
we will mean a member of the open G-orbit in K. Let S0 ⊂ S be a smooth
Schubert cycle, and Q ⊂ G be the (parabolic) subgroup of G preserving S0 as

12



a set. S0 is almost homogeneous under the action of some Borel subgroup
B ⊂ G and a fortiori under the action of Q, hence it contains a unique
Zariski open Q-orbit W (S0). A point x ∈ W (S0) is necessarily a general
point of S0 (in the sense of the paragraph preceding Proposition 3.1).

By Proposition 3.1, S0 is uniruled by projective lines. In general, S0 may
not contain any general K-line. In the case where S0 contains a general K-
line, then for x ∈ W (S0), there exists α ∈ Cx(S0) such that α is tangent to a
general K-line. In fact, the set of such elements α constitutes a dense Zariski
open subset of Cx(S0), and α will be called a general point of Cx(S0). When
S0 does not contain a general K-line, any point in Cx(S0) for x ∈ W (S0)
will be called a general point of Cx(S0). (For those S0 ⊂ S discussed in the
current article, the latter occurs only for certain homogeneous submanifolds
S0 ⊂ S such that the isotropy at any point x ∈ S0 acts transitively on
Cx(S0), cf. the proof of Proposition 3.5.)

We will use the same notation for g ∈ G and for the differential of the
action g : S → S at x ∈ S on TxS, mapping to TgxS, or its projectivization
PTx(S) → PTgx(S), e.g., hCx(S0) for h ∈ Px as in the following proposition.

Proposition 3.2. Let S = G/P be a rational homogeneous manifold asso-
ciated to a simple root and let S0 ⊂ S be a smooth Schubert variety. Let x
be a general point of S0 belonging to W (S0) and denote by Px the isotropy
of G at x. Assume that

(I) at a general point α ∈ Cx(S0), for any h ∈ Px sufficiently close to the
identity element e ∈ Px and satisfying α ∈ hCx(S0) and Tα (hCx(S0)) =
Tα (Cx(S0)) we must have hCx(S0) = Cx(S0), and

(II) any local deformation of Cx(S0) in Cx(S) is induced by the action of
Px.

Let Z be a smooth subvariety of S which is uniruled by lines of S lying on Z.
If x is a general point of Z and Cx(Z) equals Cx(S0), then S0 is contained
in Z.

By a local deformation of Cx(S0) in Cx(S) we mean the germ of a regular
family π : A → ∆ of projective submanifolds of Cx(S) over the germ of unit
disk ∆ at 0 such that the fiberA0 over 0 ∈ ∆ is Cx(S0). Thus, A ⊂ Cx(S)×∆,
π : A → ∆ is the restriction of the canonical projection pr∆ : Cx(S)×∆ → ∆
onto the second factor, and π : A → ∆ is abstractly a regular family of
compact complex manifolds.

Proof. We will adapt the arguments in the proof of Theorem 1.2 of Hong-
Mok [8] to show that S0 is contained in Z.
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By the assumption that Cx(Z) equals Cx(S0), the locus of K-lines in
S0 passing through x is contained in Z. Take a general K-line C though
x contained in S0, and let C ′ be the subset of C consisting of all points y
which are general points on Z and which belong to the open Q-orbit W (S0),
where Q is the subgroup of G preserving S0 as a set. Hence each y ∈ C ′ is a
fortiori also general point of S0. C ′ ⊂ C is a Zariski open subset containing
x. We will interpret Cy(Z) as a deformation of Cy(S0) in Cy(S), as follows.

Let H ⊂ Q be the isotropy subgroup at x ∈ S0, and define V :={
(y, γ) ∈ C ′ × Q : γx = y}. and denote by ν : V → C ′ the canonical

projection. For y ∈ C ′ ⊂ W (S0), there exists by definition γ ∈ Q such
that γx = y. An element δ ∈ H acts on V by δ(y, γ) = (y, γ ◦ δ−1). Thus,
ν : V → C ′ is in fact a holomorphic principal bundle with structure group
H. Given y ∈ C ′ let D ⊂ C ′ be a domain on C ′ biholomorphic to the
unit disk ∆ and containing both x and y. The holomorphic H-principal
bundle ν : V → C ′ is topologically trivial over D, hence holomorphically
trivial on D since D is a Stein manifold, by the Oka-Grauert Principle
(Grauert [6]). Consequently ν|D : V |D → D admits a holomorphic section
Φ : D → V such that Φ(x) = id. Write Φy := Φ(y). From Φy ∈ Vy it
follows that Φ−1

y Cy(S0) = Cx(S0). On the other hand, Φ−1
y Cy(Z) ⊂ PTx(S),

and Φ−1
x Cx(Z) = Cx(Z) = Cx(S0), and the regular family ξ : A → D where

Aw := Φ−1
w Cw(Z) ⊂ Cx(S) for w ∈ D gives a deformation of Cx(S0) to

Φ−1
y Cy(Z) inside Cx(S). Equivalently, over y the regular family η : B → D

with fibers Bw := ΦyAw for w ∈ D gives a deformation of Bx = Cy(S0) to
By = Cy(Z), which gives our interpretation.

By the hypothesis (II), for any point y ∈ C sufficiently near to x, there
is h in the isotropy subgroup Py of G at y such that Cy(Z) = hCy(S0).
Let α ∈ TyC. Then α lies both in the affine cone C̃y(S0) and in the affine
cone C̃y(Z). By the deformation theory of rational curves, the tangent space
TyΣ can be identified with the tangent space Tα(C̃y(S0)) and also with the
tangent space Tα(C̃y(Z)) (Lemma 2.8 of [8]). By the hypothesis (I) we
have Cy(S0) = Cy(Z) and thus the locus of lines in S0 passing through y is
contained in Z.

Since S0 is uniruled and is of Picard number 1, we have a sequence of
locally closed submanifolds V0 = {x} ( V1 ( · · · ( Vm of S0 such that
dimVm = dimS0 and any point in Vk can be connected to a point in Vk−1

by a line (Section 4.3 of [10], Section 3 of [25]). Applying the arguments
repeatedly we get that a dense open subset of S0 wiped out by lines is
contained in Z. Therefore S0 is contained in Z.
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Remarks
(a) If S is associated to a long root (cf. Example 2 in Section 3.1), then the
unipotent part of the isotropy subgroup Px acts on Cx(S) trivially so that
we may replace the isotropy Px by its reductive part in Proposition 3.2.
(b) In the interpretation of Cy(Z) as a deformation of Cy(S0) it is enough
to consider points y ∈ C sufficiently close to x in the complex topology.
Since the existence of a germ of holomorphic section at x of ν : Φ → C ′ with
Φ(0) = id already follows from the description of the latter as an H-principal
bundle, the use of Oka-Grauert Principle is not strictly necessary.

The hypothesis (I) in Proposition 3.2 says that for a general point
α ∈ Cx(S0), hCx(S0) is completely determined by Tα(hCx(S0)) for h ∈ Px

sufficiently close to the identity e ∈ Px. In the case where S0 ⊂ S is a ho-
mogeneous submanifold associated to a subdiagram of the marked Dynkin
diagram of S, we will verify the hypothesis by using the compactness of the
orbit of the Chow point corresponding to the variety Cx(S0) ⊂ PTx(S0) of
minimal rational tangents at x under the action of Px, as follows.

Proposition 3.3. Let S = G/P be a rational homogeneous manifold asso-
ciated to a simple root and S0 ⊂ S be a Schubert variety which is a homoge-
neous submanifold associated to a subdiagram of the marked Dynkin diagram
of S. Let x ∈ S0 be a point and Px be the isotropy of the action of G at x.
Let α ∈ Cx(S0) be a general point and h ∈ Px be a group element sufficiently
close to the identity element e ∈ Px such that α is contained in hCx(S0) and
such that hCx(S0) is tangent to Cx(S0) at α. Then, hCx(S0) = Cx(S0).

The special case of Proposition 3.3 where S is associated to a long
simple root was established in Proposition 3.6 of [8] by the determination
of isotropy subgroups by means of calculations in terms of root spaces. The
proof there does not apply to the short root case. Here for the general case
where S = G/P associated to any simple root we give a more geometric and
conceptual proof of Proposition 3.3 based on the following lemma arising
from the theory of exceptional sets of Grauert [7].

Lemma 3.4. Let T be an irreducible and reduced compact complex space,
and π : X → T be a regular family of compact complex manifolds Xt :=
π−1(t) over T equipped with a holomorphic section σ : T → X . Let Y be
a complex manifold and f : X → Y be a holomorphic map such that for
every t ∈ T , the restriction f

∣∣
Xt

: Xt → Y is an embedding. Suppose for
any t ∈ T , f(σ(t)) is the same point y0 ∈ Y and df

(
Tσ(t)(Xt)

) ⊂ Ty0(Y )
is the same vector subspace. Then, f(Xt) is the same subvariety Y0 ⊂ Y
independent of t ∈ T .
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Proof. We prove by contradiction. Suppose otherwise. Then, Z := f(X ) ⊂
Y is a compact complex-analytic subvariety which contains Zt := f(Xt)
as a proper subset for any t ∈ T . Writing 0 ∈ T for any base point, let
g be a holomorphic function defined on some neighborhood U of y0 on Y
such that g|U∩Z0 ≡ 0 and such that the germ of g|U∩Z at y0 is non-zero.
The latter means equivalently that the germ of g|U∩Zt at y0 ∈ Zt is non-
zero for a general point t ∈ T . Suppose g|U∩Zt vanishes precisely to the
order k ≥ 1 for a general point t ∈ T . Consider the holomorphic function
h = f∗g = g ◦ f defined on U := f−1(U). Then h vanishes on S := σ(T ).
Moreover, for a general point t ∈ T , h|Xt∩U vanishes exactly to the order k
at xt := σ(t) ∈ Xt.

Fix t ∈ T . For any k tangent vectors ξ1, · · · , ξk ∈ Txt(Xt) the k-th
order partial derivative ∂ξ1 · · · ∂ξk

ht of ht := h|U∩Xt at xt is defined as
follows. Taking a coordinate system (z1, · · · , zm) of Xt at xt, we write
ξi =

∑m
j=1 ξj

i
∂

∂zj
|xt . For each i extend ξi to a vector field ξ̃i :=

∑m
j=1 ξj

i
∂

∂zj

defined in a neighborhood of xt. Then the value of ξ̃1 · · · ξ̃kht at xt is∑
j1,···jk

ξj1
1 · · · ξjk

k
∂kht

∂zj1
···∂zjk

(xt) because ht vanishes to the order k at xt. Thus

ξ̃1 · · · ξ̃kht(xt) is independent of the choice of a coordinate system. Define
∂ξ1 · · · ∂ξk

ht by ξ̃1 · · · ξ̃kht(xt).
For any t ∈ T , df |Txt (Xt) : Txt(Xt) → Ty0(Zt) is a linear isomorphism.

and Ty0(Zt) is the same as Ty0(Z0). For any k vectors ξ1, · · · , ξk ∈ Ty0(Z0),
writing ξi(t) ∈ Txt(Xt) for the unique tangent vector such that df(ξi(t)) = ξi

for i = 1, · · · , k. Then s(t) := ∂ξ1(t) · · · ∂ξk(t)ht varies holomorphically in t.
Since T is compact, s must be a constant by the maximum principle. Since
g|U∩Z0 ≡ 0, for x ∈ U ∩X0 we have h0(x) = g(f(x)) = 0. Hence, s(0) = 0
and s ≡ 0. Since ξ1, · · · , ξk ∈ Ty0(Z0) are arbitrary, ht must vanish to the
order ≥ k + 1 at any xt for any t ∈ T , a plain contradiction.

We are ready to prove Proposition 3.3.

Proof of Proposition 3.3. Let Q ⊂ G be the stabilizer subgroup of S0 as
a set. Then, Q ⊂ G is a parabolic subgroup, i.e., R := G/Q is compact
(cf. Example 1 after Proposition 2.2). Identify R as a subset of Chow(S)
containing [S0]. Let x ∈ S0, Px be the isotropy subgroup of G at x, and
define Rx := {[gS0] : x ∈ gS0} ⊂ R. Given [T ] ∈ R and y ∈ T , there exists
g ∈ G such that T = gS0 and g(x) = y since the stabilizer Q ⊂ G of S0

acts transitively on S0. Specializing to the cases where y = x we conclude
that the compact subvariety Rx ⊂ R is {[gS0] : g ∈ Px}. In other words,
the Px-orbit of S0 in Chow(S) is compact. (It does not hold if S0 is not
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homogeneous. It is here that we make use of the assumption that S0 is
homogeneous.)

Let X be the variety Cx(S) of minimal rational tangents of S at x and
let X0 be the variety Cx(S0) of minimal rational tangents of S0 at x. Note
that neither X nor X0 need be a rational homogeneous manifold (when
S = G/P is associated to a short simple root). But both X and X0 are
smooth (Proposition 3.1). The isotropy action of Px on PTx(S) leaves X
invariant. Thus, Px acts on X and the latter action induces naturally an
action of Px on the Chow variety Chow(X) of X. Then the Px-orbit R

of [X0] in Chow(X) is compact because it is the image of the holomorphic
mapping [gS0] ∈ Rx 7→ Cx(gS0) = gX0.

Now consider the double fibration R
π←− U

f−→ X, where U is defined
by {([gX0], α) ∈ R×X : α ∈ gX0} and π and f are natural projections. Let
α ∈ X0 be a general point and let B ⊂ R be the subset consisting of all [gX0]
belonging to R such that α ∈ gX0. Then B is compact. The assignment
[gX0] 7→ Tα(gX0) defines a holomorphic map τ : B → Gr(r, Tα(X)) of
r-planes in the tangent space Tα(X), where r = dim X0.

If Proposition 3.3 fails for (S, S0), then there exists a positive-dimensional
compact irreducible reduced complex space T ⊂ B ⊂ R such that τ(t1) =
τ(t2) for any t1, t2 ∈ T . By restricting π to π−1(T ) → T we get a regular
family π : X → T of compact complex manifolds Xt = π−1(t) equipped
with a holomorphic section σ : T → X corresponding to the common base
point α ∈ X0. The restriction of f to Xt is a holomorphic embedding and
f(σ(t)) = α, and df(Tσ(t)Xt) = Tα(Xt) ⊂ TαX is the same vector space by
the definition of the holomorphic map τ : B → Gr(r, Tα(X)) and the defi-
nition of T . Thus, the hypotheses of Lemma 3.4 are satisfied, and it follows
from the latter lemma that Xt = X0 for every t ∈ T , a plain contradiction
to the definition of R as a subvariety of Chow(X).

Proposition 3.3 covers all pairs (S, S0) in Theorem 1.1. In the remain-
ing case where S is the symplectic Grassmannian Grω(k, V ) and S0 is the
Schubert variety Grω(k, V ;Fa, F2n−1−a) as in Theorem 1.2, we will give a
direct argument in Section 4.2 (Proposition 4.3).

Concerning the verification of the hypothesis (II) in Proposition 3.2 we
will show

Proposition 3.5. Let S = G/P be a rational homogeneous manifold asso-
ciated to a simple root and S0 be a smooth Schubert variety. Let x ∈ S0 be
a point and Px be the isotropy of the action G at x. Then any local defor-
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mation of Cx(S0) in Cx(S) is induced by the action of the isotropy subgroup
Px at x in the following cases:

(A) S is associated to a long root and S0 is a homogeneous submanifold as-
sociated to a subdiagram of the Dynkin diagram of the marked diagram
of S,

(B) S is the symplectic Grassmannian Grω(k, V ) and S0 is the Schubert
variety of the form Grω(k, V ;Fa, Fb), where 2 ≤ k < 1

2 dimV and
0 ≤ a ≤ k − 2 and 2n− 1− a ≤ b ≤ 2n− a,

(C) S is of type (F4, α3) (respectively, of type (F4, α4)) and S0 is a homo-
geneous submanifold associated to a subdiagram of the marked diagram
of S corresponding to Λ = {α4} or Λ = {α1} (respectively, Λ = {α1})

Proof. In case (A) (respectively, (B) and (C)) it follows from Lemma 4.1
(respectively, Lemma 4.4 and Lemma 4.6).

Proposition 3.5 covers all pairs (S, S0) in Theorems 1.1 and 1.2 excepting
when

(B′) S is the symplectic Grassmannian Grω(k, V ) and S0 is the Schubert
variety of the form Grω(k, V ; Fa, Fb), where 0 ≤ a ≤ k−2 and k +1 ≤
b ≤ n,

(C′) S is of type (F4, α3) and S0 is a homogeneous submanifold associated to
a subdiagram of the marked diagram of S corresponding to Λ = {α2}.

Recall that a rational homogeneous manifold S associated to a short root
is of type (B`, α`), (C`, αk) for 1 ≤ k ≤ ` − 1, (F4, α3), (F4, α4), (G2, α1).
We exclude the case that S is of type (B`, α`) or of type (C`, α1) or of type
(G2, α1) because in these cases S is isomorphic to the rational homogeneous
manifold of type (D`+1, α`+1) or of type (A2`−1, α1) or of type (B3, α1).

In the cases (B′) and (C′) S is a subvariety of another rational homoge-
neous manifold S̃ = G̃/P̃ and S0 may be considered as a Schubert variety
of S̃:

(B′) S̃ = the Grassmanninan Gr(k, V ) consisting of k-subspaces in V ;

(C′) S̃ = the rational homogeneous manifold of type (E6, α2).

The description of the embedding of S into S̃ is obvious in case (B′).
For the description of the embedding of S into S̃ in case (C′) we will use the
geometric realization of the rational homogeneous manifolds of type (E6, α2)
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and (F4, α3) in Section 6 of [23]. Let J3(O) be the space of 3×3 O-Hermitian
symmetric matrices. Then S̃ is P{A ∧ B : A,B ∈ J3(O), rank A = rank
B = 1} and S is P{A ∧B : A,B ∈ J3(O), rank A = rank B = 1 and trA =
trB = 0 and AB = 0}. S0 is P{A ∧ B : A,B ∈ J3(O), rank A = rank
B = 1, 〈A,B〉 ⊂ 〈α, β, γ〉} for some α, β, γ ∈ J3(O) with rank α = rank β =
rank γ = 1 and trα = trβ = trγ = 0 and αβ = βγ = γα = 0.

Proposition 3.6. Let S = G/P be a rational homogeneous manifold associ-
ated to a simple root and let S0 be a smooth Schubert variety as in Theorem
1.1 and in Theorem 1.2.

(1) Let x be a general point of S0. If a smooth subvariety Z of S is uniruled
by lines and contains x as a general point with Cx(Z) = Cx(S0), then
S0 is contained in Z.

(2) Any local deformation of S0 in S is induced by the action of G.

Proof. (1) By Proposition 3.2 it suffices to check that (I) and (II) in Propo-
sition 3.2 hold. By Propositions 3.3 and 4.3 and 3.5 we have the desired
results in cases (A) and (B) and (C). In the remaining cases (B′) and (C′)
S is a subvariety of another rational homogeneous manifold S̃ = G̃/P̃ and
S0 (respectively, Z) may be considered as a Schubert variety (respectively,
as a subvariety) of S̃: In these cases (1) follows from the results for S̃.

(2) By Proposition 3.1, S0 is of Picard number 1 and it is uniruled by
lines. Let {St ⊂ S}t∈∆ be a local deformation of S0 in S. By Kodaira
stability [21] we get a regular family of minimal rational components Kt on
St consisting of lines contained in St for t ∈ ∆. In particular, St is uniruled
by lines of S lying on St.

Since G acts transitively on S, for t sufficiently small, replacing St by
γtSt with γt ∈ G varying holomorphically in t, without loss of generality
we may assume that x is a general point of St for any t. Then, the variety
Cx(St) of minimal rational tangents of St at x is a deformation of Cx(S0) in
Cx(S). In cases (A) and (B) and (C), by Proposition 3.5, for t sufficiently
small, we may assume that Cx(St) is equal to gtCx(S0) = Cx(gtSt) for some
gt ∈ Px. By (1), St equals gtS0.

It remains to consider the cases (B′) and (C′). When S is the sym-
plectic Grassmannian Grω(k, V ) and S0 is the Schubert variety of the form
Grω(k, V ; Fa, Fb), where 0 ≤ a ≤ k − 2 and k + 1 ≤ b ≤ n, any local
deformation St of S0 in S can be thought of as a local deformation of
S0 in the Grassmannian Gr(k, V ), and thus, is again a sub-Grassmannian
Gr(k, V ;Wa,t,Wb,t) = {E ∈ Gr(k, V ) : Wa,t ⊂ E ⊂ Wb,t} for some sub-
spaces Wa,t and Wb,t of V such that Wa,t ⊂ Wb,t and dim Wa,t = a and
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dimWb,t = b. For a sub-Grassmannian Gr(k, V ; Wa,t, Wb,t) to be con-
tained in the symplectic Grassmannian S = Grω(k, V ), Wb,t should be
isotropic if a ≤ k − 2. Therefore, St = Gr(k, V ; Wa,t, Wb,t) is equal to
Grω(k, V ; Wa,t,Wb,t) and St equals gtS0 for some gt ∈ G.

Similarly, when S is of type (F4, α3) and S0 is a homogeneous subman-
ifold associated to a subdiagram of the marked diagram of S corresponding
to Λ = {α2}, any local deformation St of S0 in S can be thought of as a local
deformation of S0 in the rational homogeneous mainifold S̃ of type (E6, α2).
Thus St is a linear space P2

t = P{A ∧ B : A,B ∈ J3(O), rankA = rankB =
1, 〈A, B〉 ⊂ 〈αt, βt, γt〉} for some αt, βt, γt ∈ J3(O) with rank αt = rank βt =
rank γt = 1. Since St is contained in S, we have tr αt = tr βt = tr γt = 0
and αtβt = βtγt = γtαt = 0. Therefore, St equals gtS0 for some gt ∈ G.

Proof of Theorem 1.1 and Theorem 1.2 modulo results of Section 4. By
Proposition 2.2 it suffices to show that any local deformation of S0 in S is
induced by the action of G, which follows from Proposition 3.6 (2). This
completes the proof of Theorem 1.1 and Theorem 1.2.

Remarks Theorem 1.1 has already been proven if S is an irreducible Her-
mitian symmetric space of compact type by Bryant [4] and Hong [9]. The
special cases of Theorem 1.1 where S0 ⊂ S is a line follows from the descrip-
tion of the moduli space of minimal rational curves as given in Hwang-Mok
([13], [14] [16]) and Landsberg-Manivel ([23]).

3.3 Classification of smooth Schubert varieties

In the long root case the following result shows that for the study of smooth
Schubert subvarieties it suffices to consider homogeneous submanifolds. The
proof involves the deformation theory of rational curves.

Proposition 3.7. Let S = G/P be a rational homogeneous manifold as-
sociated to a long simple root. Then any smooth Schubert variety in S is
a homogeneous submanifold of S associated to a subdiagram of the marked
Dynkin diagram of S.

Proof. Let S(w) = cl(B.ew) be a smooth Schubert variety of S, where
w ∈ WP . We claim that there is a unique homogeneous submanifold S0

of S associated to a subdiagram of the marked Dynkin diagram of S such
that ew ∈ gS0 for some g ∈ G and Cew(gS0) = Cew(S(w)). Granting this, by
Proposition 3.6 (1), gS0 is contained in S(w). If dimS0 = dimS(w), then
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we have gS0 = S(w). If dimS0 < dimS(w), then B.ew − gS0 6= ∅. Take
a point e′ in B.ew − gS0. By the same arguments as above there is g′ ∈ G
such that e′ ∈ g′S0 and g′S0 is contained in S(w). In this way we have a
(possibly singular) integrable distribution W on S(w) with compact leaves
gS0 where g lies in some subvariety G′ of G, such that for a general point
g ∈ G′ and for a general point x ∈ gS0 any line in S(w) passing through
x lies in gS0. Note that the singular locus of any meromorphic foliation
on a complex manifold is necessarily of codimension ≥ 2. From the defini-
tion, at a general point x ∈ S(w), the variety of minimal rational tangents
Cx(S(w)) is contained in PWx. By Proposition 12 of [10], the existence of
W contradicts with the fact that the uniruled projective manifold S(w) is
of Picard number 1. (Wx is spanned by minimal rational tangents at a gen-
eral point x in [10], but the same applies when Wx contains the linear span
of minimal rational tangents.) By argument by contradiction, we conclude
that dimS0 is equal to dimS(w), hence S(w) is equal to gS0 for some g ∈ G.

We will prove the claim by induction. Let Lw be the reductive part of
the isotropy of G at ew. Then the variety X of minimal rational tangents
of S at ew is a Hermitian symmetric space of compact type on which Lw

acts transitively (Example 2 in Section 3.1). By the smoothness of S(w), the
variety X0 of minimal rational tangents at ew ∈ S(w) is smooth (Proposition
3.1) and B ∩ Lw acts on X0 invariantly. Since w is an element of WP , the
Borel subgroup w(B ∩L) of w(L) = Lw is contained in B ∩w(L) = B ∩Lw

and thus acts on X0 invariantly.
If Lw is simple, then X is an irreducible Hermitian symmetric space of

compact type, and X0 is a Schubert variety of X because X0 is smooth and
the Borel subgroup w(B∩L) of Lw = w(L) acts on X0 invariantly (Proposi-
tion 2.1). The dimension of X0 is smaller than the dimension of S and thus,
by the inductive assumption, X0 is a homogeneous submanifold of X associ-
ated to a subdiagram of the marked Dynkin diagram of X. Therefore, there
is a unique homogeneous submanifold S0 of S associated to a subdiagram
of the marked Dynkin diagram of S such that ew ∈ gS0 for some g ∈ G and
the variety of minimal rational tangents of gS0 at ew is equal to X0.

If Lw is not simple, then Lw is the product L1 × L2 or L1 × L2 × L3

of its simple factors Li, and X is the product X1 × X2 or X1 × X2 × X3

of irreducible Hermitian symmetric spaces Xi, and w(B ∩L) is the product
B1 × B2 or B1 × B2 × B2 of Borel subgroups Bi of Li. (The fact that
there are at most three factors Li follows from a case-by-case checking using
Dynkin diagrams of the varieties of minimal rational tangents as hightest
weight orbits, cf. Hwang-Mok [13], Section 1, corresponding to the fact
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that by removing 1 simple node from the Dynkin diagram there remains
at most 3 connected maximal subdiagrams. See Example 1 of Section 3.1.)
Since w(B ∩L) acts on X0 invariantly and X0 is smooth, X0 is the product
X1,0×X2,0 or X1,0×X2,0×X3,0 of submanifolds Xi,0 of Xi, on which Bi acts
invariantly. Applying the same arguments to each factor, we get that X0 is
the product X1,0×X2,0 or X1,0×X2,0×X3,0 of homogeneous submanifolds
Xi,0 of Xi associated to a subdiagram of the marked Dynkin diagram of Xi.
Therefore, there is a unique homogeneous submanifold S0 of S associated
to a subdiagram of the marked Dynkin diagram of S such that ew ∈ gS0

for some g ∈ G and the variety of minimal rational tangents of gS0) at ew

is equal to X0. This completes the proof of the claim and Proposition 3.7
follows from the claim by the arguments at the beginning.

Remarks Proposition 3.7 is already known for the case where S is an ir-
reducible Hermitian symmetric space of compact type (Brion-Polo [3]). In
general, given a Schubert variety one can determine its smoothness by check-
ing whether a reduced expression of the element in the Weyl group corre-
sponding to it avoids a list of patterns (Billey-Postnikov [1]). It could be
possible to prove Proposition 3.7 by using this method.

4 Local characterizations of varieties of minimal
rational tangents

In this section we will verify the hypothesis (II) in Proposition 3.2 for ev-
ery pair (S, S0) belonging to (A), (B) or (C) in Proposition 3.5, consisting
of a rational homogeneous manifold S = G/P of Picard number 1 and a
smooth Schubert variety S0 ⊂ S. Especially, we will prove that any local
deformation of the variety Cx(S0) of minimal rational tangents of S0 at x in
the variety Cx(S) of minimal rational tangents of S = G/P at x is induced
by the action of the isotropy subgroup Px of G at x for a general point
x ∈ S0. The point is that the variety of minimal rational tangents of S has
a smaller dimension and a simpler structure than S itself, so that we can
get the desired rigidity either by using induction (long root case) or by a
simpler argument (short root case).

4.1 The case where S is associated to a long root

Lemma 4.1. Let S = G/P be a rational homogeneous manifold associated
to a long simple root and let S0 = G0/P0 be a homogeneous submanifold
associated to a subdiagram of the marked Dynkin diagram of S. Let x ∈ S0.
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Then any local deformation of X0 := Cx(S0) in X := Cx(S) is induced by
the action of the isotropy subgroup of G at x.

Proof. If S is associated to a long root, then varieties of minimal rational
tangents are Hermitian symmetric spaces of lower dimension (Example 2
in Section 3.1). Thus, Lemma 4.1 follows essentially from an inductive
argument.

To be more precise, first, consider the case where X is the product
Pk−1 × Pm. Then X0 is the product B1 × B2 of two projective spaces B1 =
Pk′−1 and B2 = Pm′

. Thus any local deformation Xt of X0 is again a product
B1,t×B2,t of two projective spaces of dimension k′−1 and m′, respectively. A
priori, this product structure may not be the same as the product structure
of X = Pk−1 × Pm. To prove that this is the case let π1 : X → Pk−1 and
π2 : X → Pm be the projections. Take a holomorphic section yt ∈ B2,t

over t and take a small neighborhood of y0 ∈ Pm. Then for any t in a
small neighborhood of 0 we may think of π2 restricted to B1,t × {yt} as
a holomorphic function defined on a compact manifold B1,t × {yt}, which
should be constant. Similarly for any holomorphic section xt ∈ B1,t over
t, π1 is constant on {xt} × Bt,2 for small t. So the product structure of
Xt = Bt,1 × Bt,2 is the same as the product structure of X = Pk−1 × Pm.
Therefore there is `t ∈ L = SL(k)×SL(m+1) such that Xt = `tX0 for any t
in a small neighborhood of 0. By Proposition 3.2 (2), any local deformation
of a sub-Grassmannian S0 of a Grassmannian S is obtained by the action of
the automorphism group Aut(S) of S.

If X is the image ν(P(E)) of the Veronese embedding ν : P (E) →
P(S2E) and X0 = ν(P(F )) is the image of a projective space, then, since
any local deformation of a projective subspace in a projective space is again
a projective space, any local deformation of X0 is of the form ν(P(Ft))
for some subspace Ft of E. By Proposition 3.2 (2), any local deformation
of a Lagrangian sub-Grassmannian S0 of a Lagrangian Grassmannian S is
obtained by the action of the automorphism group Aut(S) of S.

Now consider the case where X is an irreducible Hermitian symmet-
ric space of compact type. If X is either a Grassmannian or a Lagrangian
Grassmannian, then we have already proved that any local deformation of
X0 in X can be obtained by the action of Aut(X). Otherwise, the variety
of minimal rational tangents of X at the base point is again an irreducible
Hermitian symmetric space of compact type, and thus we can use induction
on the dimension of X and Proposition 3.2 (2) to get that any local defor-
mation of X0 in X is induced by the action of Aut (X). If X is the product
X1×X2 or X1×X2×X3, we apply the same argument as in the case where
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X is the product of two linear spaces to show that any local deformation
of X0 is again a product of two or three submanifolds. Finally, we apply
the arguments as in the above to each factor of the product to obtain the
desired result.

This completes the proof of Theorem 1.1 in the case (A) (cf. Section
3.2).

4.2 The case where S is associated to a short root

4.2.1 The Cn-Case

Let V be a complex vector space of dimension 2n equipped with a nondegen-
erate skew-symmetric bilinear form ω. Take a basis {e1, · · · , e2n} of V such
that ω(en−i, en+i+1) = −ω(en+i+1, en−i) = 1 for 1 ≤ i ≤ n and all other
ω(ei, ej) are zero. Define Fj ⊂ V by the subspace generated by e1, · · · , ej

for 1 ≤ j ≤ 2n. Then F⊥
n−i = Fn+i for 1 ≤ i ≤ n and we get an isotropic

flag F• : 0 ( F1 ( · · · ( F2n = V . The subgroup of G = PSp(V ) consisting
of elements fixing this flag is a Borel subgroup B of G.

Let 2 ≤ k ≤ n − 1. Consider the symplectic Grassmannian S =
Grω(k, V ) of isotropic k-planes of V . Schubert varieties of Grω(k, V ) are
indexed by the set of ordered subsets {p1 < p2 < · · · < pk} of {1, 2, · · · , 2n}
satisfying pi +pj 6= 2n+1. For such an ordered subset {p1 < p2 < · · · < pk},

{E ∈ Grω(k, V ) : dim(E ∩ Fpj ) = j, for 1 ≤ j ≤ k}

is a B-orbit and its closure

{E ∈ Grω(k, V ) : dim(E ∩ Fpj ) ≥ j, for 1 ≤ j ≤ k}

is a Schubert variety.
For 0 ≤ a < k < b ≤ 2n− a, put Grω(k, V ;Fa, Fb) := {E ∈ Grω(k, V ) :

Fa ⊂ E ⊂ Fb}. Then Grω(k, V ; Fa, Fb) is a homogeneous manifold associ-
ated to a subdiagram of the marked Dynkin diagram of S if and only if
k < b ≤ n or b = 2n − a. If b = 2n − a − 1, then Grω(k, V ; Fa, Fb) is not
homogeneous but is a smooth Schubert variety (Mihai [24]).

For any two vector spaces E and F , denote by S̃(E ⊗ F ) the cone of
nonzero decomposable vectors in E ⊗ F . Let $ : E ⊗ F\{0} → P(E ⊗ F )
denote the canonical projection map. Then $(S̃(E ⊗ F )), the projectiviza-
tion of the cone S̃(E ⊗ F ), is isomorphic to the product P(E) × P(F ). Let
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pr1 : P(E) × P(F ) → P(E) denote the projection map to the first fac-
tor. Then the composition pr1 ◦ $ : S̃(E ⊗ F ) → P(E), which maps
e ⊗ f ∈ S̃(E ⊗ F ) to [e] ∈ P(E), can be thought of as a vector bundle
on P(E) which is trivial.

Lemma 4.2. Let S be the symplectic Grassmannian Grω(k, V ) and let S0 be
a smooth Schubert variety of the form Grω(k, V ; Fa, Fb), where 0 ≤ a ≤ k−2
and (k + 1 ≤ b ≤ n or 2n− 1− a ≤ b ≤ 2n− a).

(1) The variety of minimal rational tangents C[E](S) at [E] ∈ S is the
projectivization of the cone

{e∗ ⊗ v ∈ E∗ ⊗ (V/E) : ω(v, · ) ∈ Ce∗}\{0}

and is the projectivization of the vector bundle E = F ⊕ L on P(E∗),
where F is the trivial vector bundle on P(E∗) defined by the cone
S̃(E∗ ⊗ (E⊥/E)) and L = O(−1) is a choice of a direct summand
of F in E.

(2) The variety of minimal rational tangents C[E](S0) at a general point
[E] ∈ S0 is the projectivization of the cone

{e∗ ⊗ v ∈ (E/Fa)∗ ⊗ (Fb/E) : ω(v, · ) ∈ Ce∗}\{0}.

If k + 1 ≤ b ≤ n, then C[E](S0) is the projectivization of the trivial
vector bundle F0 on P((E/Fa)∗) defined by the cone S̃((E/Fa)∗ ⊗ (Fb/E)).
If 2n− 1− a ≤ b ≤ 2n− a, then C[E](S0) is the projectivization of the vector
bundle E0 = F0 ⊕ L, where F0 is the trivial vector bundle on P((E/Fa)∗)
defined by the cone S̃((E/Fa)∗⊗ ((Fb∩E⊥)/E)) and L = O(−1) is a choice
of a direct summand of F0 in E0.

Proof. (1) Proposition 3.2.1 of Hwang-Mok [16].
(2) The proof is essentially the same as (1) except that we should take

a general point [E]. Consider the case when a = 0 and b = 2n − 1. For
[E] ∈ S0,

T[E]S0 = {ϕ : E → F2n−1/E : ω(ϕ(v1), v2) + ω(v1, ϕ(v2)) = 0}.

Take [E] ∈ S0 such that E ∩ F1 = 0. Then the dimension of E⊥ ∩ F2n−1 is
2n− k − 1 and F2n−1/(E⊥ ∩ F2n−1) is isomorphic to E∗. Under the map

ψ : E∗ ⊗ (F2n−1/E) → E∗ ⊗ (F2n−1/(E⊥ ∩ F2n−1)) ' E∗ ⊗ E∗
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T[E]S0 is given by the inverse image ψ−1(S2E∗) of S2E∗ ⊂ E∗ ⊗ E∗.
The variety C[E](S0) of minimal rational tangents is the variety of decom-

posable vectors in T[E]S0. If a decomposable vector ϕ = e∗ ⊗ v is contained
in T[E]S0, then ω(v, w2) = −ω(e, (e∗ ⊗ v)(w2)) = (−ω(e, v))e∗(w2) for all
w2 ∈ E. Conversely, if ω(v, · ) = λe∗ for some λ ∈ C, then ϕ = e∗ ⊗ v is
contained in T[E]S0. Thus

C[E](S0) = P{e∗ ⊗ v ∈ E∗ ⊗ (F2n−1/E) : ω(v, · ) ∈ Ce∗}.
By the map e∗⊗ v 7→ e∗, C[E](S0) becomes the projectivization of the vector
bundle E0 = F0⊕L on P(E∗), where F0 is the trivial vector bundle on P(E∗)
defined by the cone S̃(E∗ ⊗ ((E⊥ ∩ F2n−1)/E)) and L is a choice of a line
bundle of the form {e∗ ⊗ ve : e∗ ∈ E∗} with ω(e, ve) 6= 0. Then we have
L = O(−1) on P(E∗).

In general, by the same arguments, we have

C[E](S0) = P{e∗ ⊗ v ∈ (E/Fa)∗ ⊗ (Fb/E) : ω(v, · ) ∈ Ce∗}.

Proposition 4.3. Let S be the symplectic Grassmannian Grω(k, V ) and let
S0 be a smooth Schubert variety of the form Grω(k, V ; Fa, F2n−1−a). Let
[E] be a general point of S0 and let α be a general point in C[E](S0). If
h is an element of the isotropy subgroup P[E] of PSp(V ) at [E] such that
α ∈ hC[E](S0) and if hC[E](S0) is tangent to C[E](S0) at α, then hC[E](S0) is
equal to C[E](S0).

Proof. Assume that a = 0. Let C̃[E](S0) be the pre-image of C[E](S0) under
the projection T[E](S0)\{0} → P(T[E](S0)). Then the affine cone

C̃[E](S0) = {e∗ ⊗ v ∈ E∗ ⊗ (F2n−1/E) : ω(v, · ) ∈ Ce∗}\{0}

with the projection C̃[E](S0) → P(E∗) defined by e∗ ⊗ v 7→ [e∗] is a vector
bundle E on P(E∗). The fiber Ee∗ at [e∗] is (F2n−1 ∩ E⊥)/E + 〈ve〉, where
ve be an element in F2n−1 such that ω(ve, · ) = e∗ on E (ve is unique up to
F2n−1 ∩ E⊥). Let αs = e∗s ⊗ vs be a curve in C̃[E](S0) such that e0 = e and
v0 = v. Then vs ∈ (F2n−1∩E⊥)/E + 〈ves〉, where ves is an element in F2n−1

such that ω(ves , · ) = e∗s on E. From ω( d
ds |s=0ves , · ) = d

ds |s=0e
∗
s, it follows

that the tangent space of C̃[E](S0) at α = e∗ ⊗ v is
{

e∗ ⊗ (F2n−1 ∩ E⊥)/E + {f∗ ⊗ v + e∗ ⊗ vf : f ∈ E} if v ∈ ve + (F2n−1 ∩ E⊥)/E

e∗ ⊗ (F2n−1 ∩ E⊥)/E + E∗ ⊗ v + 〈e∗ ⊗ ve〉 if v ∈ (F2n−1 ∩ E⊥)/E.
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Note that F2n−1 is generated by F2n−1 ∩ E⊥ and 〈vf : f ∈ E〉. Thus
we can recover F2n−1 from the tangent space of C̃[E](S0) at α = e∗ ⊗ v if
v ∈ ve + (F2n−1 ∩ E⊥)/E, or equivalently, α = e∗ ⊗ v is a general point of
C̃[E](S0).

Let h ∈ P[E] and α = e∗ ⊗ v ∈ hC̃[E](S0). Then, since h.E = E and
v 6∈ E⊥/E, the tangent space of

hC̃[E](S0) = {e∗ ⊗ v ∈ E∗ ⊗ (hF2n−1/E) : ω(v, · ) ∈ Ce∗}\{0}

at α = e∗ ⊗ v is

e∗ ⊗ (hF2n−1 ∩ E⊥) + {f∗ ⊗ v + e∗ ⊗ vh
f : f ∈ E}

where for f ∈ E, vh
f is an element in hF2n−1 such that ω(vh

f , · ) = f∗ on E.
Then hF2n−1 is generated by hF2n−1∩E⊥ and 〈vh

f : f ∈ E〉 and thus we can
recover hF2n−1 from the tangent space of hC̃[E](S0) at α = e∗⊗v. Therefore
if α is a general point in C̃[E](S0) and if hC̃[E](S0) is tangent to C̃[E](S0) at
α, then hC̃[E](S0) is equal to C̃[E](S0).

The proof for the case where a 6= 0 will be similar.

Remarks (1) There is a positive dimensional family ht of elements in
PSp(V ) such that ht.E = E and (htF2n−1 ∩ E⊥)/E = (F2n−1 ∩ E⊥)/E.
Then htC̃[E](S0) is tangent to C̃[E](S0) along the hyperplane {e∗ ⊗ v : e∗ ∈
E∗, v ∈ (F2n−1 ∩ E⊥)/E}. Therefore, it is necessary to assume that α is a
general point.

(2) P[E]-orbit of C[E](S0) in the Chow variety of C[E](S) is not closed,
while it is closed in the case where S0 is a homogeneous submanifold asso-
ciated to a subdiagram of the marked diagram of S (Proposition 3.3). Thus
we cannot apply the arguments in the proof of Proposition 3.3 directly.

Lemma 4.4. Let S be the symplectic Grassmannian Grω(k, V ) and let S0 be
a smooth Schubert variety of the form Grω(k, V ; Fa, Fb), where 0 ≤ a ≤ k−2
and 2n−1−a ≤ b ≤ 2n−a. Let [E] be a general point of S0. Then any local
deformation of C[E](S0) in C[E](S) is induced by the action of the isotropy
subgroup of G at [E].

Proof. If b = 2n − a, then Fb = F⊥
a . Let E be the isotropic subspace

generated by e1, · · · , ek so that Fa ⊂ E. Then we have E⊥ ⊂ F⊥
a . The

variety X of minimal rational tangents of S at [E] is the projectivization of
the vector bundle E = F ⊕L, where F is the trivial vector bundle on P(E∗)
defined by the cone S̃(E∗⊗ (E⊥/E)) and L is a choice of a direct summand
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of F in E , and the variety X0 of minimal rational tangents at [E] is the
projectivization of the vector bundle E0 = F0⊕L on P((E/Fa)∗), where F0 is
the trivial bundle on P((E/Fa)∗) defined by the cone S̃((E/Fa)∗⊗(E⊥/E)).
Then F0 is the restriction of the trivial bundle F to P((E/Fa)∗).

Any local deformation Xt of X0 in X is the projectivization of a vector
bundle O2n−2k⊕O(−1) on Pk−a−1

t ⊂ P(E∗) and thus is the projectivization
of the vector bundle Et = E|Pk−a−1

t
. Hence there is `t in the reductive part

L = SL(E∗)× Sp(E⊥/E) of the isotropy of G at [E] such that Xt = `tX0.

If b = 2n−a−1, then Fb is a hyperplane of F⊥
a . We will prove the Lemma

for a = 0 (and b = 2n− 1). The proof will be similar to this case for a > 0.
Let E be the isotropic subspace generated by en−k+1, · · · , en. The variety
X of minimal rational tangents of S at [E] is the projectivization the vector
bundle E = F ⊕L on P(E∗), where F is the trivial vector bundle on P(E∗)
defined by the cone S̃(E∗ ⊗ (E⊥/E)) and L = O(−1) is a choice of a direct
summand. The variety X0 of minimal rational tangents of S0 at [E] is the
projectivization of the vector bundle E0 = F0⊕L on P(E∗), where F0 is the
trivial vector bundle on P(E∗) defined by the cone S̃(E∗⊗((F2n−1∩E⊥)/E)).
Here, we may take the same direct summand L.

Any local deformation Xt of X0 is the projectivization of a subbundle
Et of E of corank 1. Since E0 = O2n−2k−1 ⊕ O(−1), any local deformation
Et is also O2n−2k−1 ⊕ O(−1). Let Ft be the trivial factor O2n−2k−1 of Et.
Then Ft is a subbundle of F of corank one and thus Ft is defined by the
cone S̃(E∗ ⊗ ((Ft ∩ E⊥)/E)) for some subspace Ft of V of codimension 1
which contains E. For small t there is gt ∈ Sp(V ) such that gtE = E and
gtF2n−1 = Ft because the rank of the symplectic form ω restricted on F2n−1

is maximal, and thus we have Xt = gtX0 with gt in the isotropy of G at [E].
More precisely, E⊥ = 〈e1, · · · , en, en+k+1, · · · e2n〉 and F2n−1 ∩ E⊥ =

〈e1, · · · , en, en+k+1, · · · e2n−1〉. Up to the action of Sp(E⊥/E), Ft ∩ E⊥ =
F2n−1 ∩ E⊥, so that Ft = 〈e1, · · · , en, en+1,t, · · · , en+k,t, en+k+1, · · · e2n−1〉
and {e∗n ⊗ en+1,t, · · · , e∗n−k+1 ⊗ en+k,t} defines a direct summands Lt of Ft

in Et, where en+i,t = en+i + cn+i,te2n for some cn+i,t ∈ C for 1 ≤ i ≤ k.
Put e1,t = e1 − cn+1,ten − · · · − cn+k,ten−k+1. Then Ft is generated by
e1,t, e2, · · · , en, en+1,t, · · · , en+k,t, en+k+1, · · · , e2n−1 and hence there is gt ∈
Sp(V ) which fixes e2, · · · , en, en+k+1, · · · , e2n−1 and which sends e1 to e1,t

and en+i to en+i,t for 1 ≤ i ≤ k.

This completes the proof of Theorem 1.1 and Theorem 1.2 in the case
(B) (cf. Section 3.2).
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4.2.2 The F4-case

Let G be a connected simple algebraic group of type F4 and let S = G/P
be a rational homogeneous manifold associated to a short root αk. If k = 4,
then S is a smooth hyperplane section of the rational homogeneous manifold
of type (E6, α1). If k = 3, then S is the space of G-invariant lines in the
rational homogeneous space of type (F4, α4).

Lemma 4.5. Let G be a connected simple algebraic group of type F4 and
let S = G/P be a rational homogeneous manifold associated to a short root.

(1) The variety X := Cx(S) of minimal rational tangents of S at x ∈ S is
given as follows:

I. The (F4, α3)-case: X is the projectivization of the cone

{e∗ ⊗ q + (e∗1 ∧ e∗2)⊗ q2 : e ∧ e1 ∧ e2 = 0, e, e1, e2 ∈ E, q ∈ Q}\{0}

in (E∗ ⊗Q)⊕ (∧2E∗ ⊗ S2Q), where E is a complex vector space
of dimension 3 and Q is a complex vector space of dimension 2.
In other words, X is the Grassmannian bundle of 2-planes of the
vector bundle E∗ on P1 = P(Q), where E is a vector bundle of
rank 4 which splits as O(1)3 ⊕O.

II. The (F4, α4)-case: X is a smooth hyperplane section of the spinor
variety of type (D5, α5) embedded in the spin representation (D5, λ5).

(2) Homogeneous submanifolds S0 of S associated to subdiagrams of the
marked diagram of S and the varieties X0 := Cx(S0) of minimal ratio-
nal tangents of S0 at x ∈ S0 are given as follows:

I. The (F4, α3)-case II. The (F4, α4)-case

d d × d> d d d ×>

(a) Λ = {α1, α4} S0 = P3 (a) Λ = {α2} S0 = P2

X0 = P2 ⊂ a fiber of X → P(Q) X0 = P1

(b) Λ = {α4} S0 = (B3, α3) (b) Λ = {α1} S0 = P5
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X0 = Gr(2, 4) = a fiber of X → P(Q) X0 = P4

(c) Λ = {α2} S0 = P2

X0 = P1 = P(Q)

(d) Λ = {α1} S0 = (C3, α2)

X0 = P2-bundle over P1 = P(Q)

= X ∩ P((F ∗ ⊗Q)⊕ (∧2F ∗ ⊗ S2Q))

for some subspace F ⊂ E of dimension 2

Here, Λ is the set consisting of the nodes in D(G)\D(G0) which are con-
nected to the subdiagram D(G0) by an edge.

Proof. For the description of the variety X of minimal rational tangents
of S at x, see Hwang-Mok [16] in the case I and see [15] in the case II.
The description of the variety X0 of minimal rational tangents of S0 at x is
straightforward.

Lemma 4.6. Let G be a connected simple algebraic group of type F4 and
let S = G/P be a rational homogeneous manifold associated to a short root.
Let S0 be a homogeneous submanifold of S associated to a subdiagram of
the marked diagram of S. Assume that S is of type (F4, α3) and Λ is either
{α4} or {α1}, or, S is of type (F4, α4) and Λ is {α1}. Then any local
deformation of X0 := Cx(S0) in X := Cx(S) is induced by the action of the
isotropy subgroup of G at x ∈ S.

Proof. The proof is similar to the proof of Lemma 4.1 and of Lemma 4.4.

This completes the proof of Theorem 1.1 in the case (C) (cf. Section
3.2).
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32



[26] T. A. Springer, Linear algebraic groups, Progress in Mathematics 9,
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