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Abstract. Let G be a connected semi-simple algebraic group of
adjoint type over an algebraically closed field, and let G be the
wonderful compactification of G. For a fixed pair (B,B−) of op-
posite Borel subgroups of G, we look at intersections of Lusztig’s
G-stable pieces and the B−×B-orbits in G, as well as intersections
of B ×B-orbits and B− ×B−-orbits in G. We give explicit condi-
tions for such intersections to be non-empty, and in each case, we
show that every non-empty intersection is smooth and irreducible,
that the closure of the intersection is equal to the intersection of
the closures, and that the non-empty intersections form a strongly
admissible partition of G.

1. Introduction

1.1. Let Z be an irreducible algebraic variety over an algebraically
closed field k. By a partition of Z we mean a finite disjoint union
Z =

⊔
i∈I Xi such that each Xi is a smooth irreducible locally closed

subset of Z and that the closure of each Xi in Z is the union of some
Xi′ ’s for i′ ∈ I.

Throughout the paper, if a group M acts on a set S, we use m·s to
denote the action of m ∈ M on s ∈ S, and for a subset M ′ of M and
s ∈ S, we set M ′

· s = {m·s : m ∈ M ′}.
1.2. Let G be a connected semi-simple algebraic group of adjoint type
over an algebraically closed field k. Regard G as a G×G homogeneous
space by the action

(g1, g2)·g = g1gg−1
2 , g1, g2, g ∈ G.

The De Concini-Procesi wonderful compactification G of G is a smooth
(G×G)-equivariant compactification of G (see [2, 3]).

Let B and B− be a pair of opposite Borel subgroups of G. The
partition of G into the B×B-orbits was studied in [1, 25]. In his study
of parabolic character sheaves on G in [19, 20], G. Lusztig introduced
a decomposition of G into finitely many G-stable pieces, where G is
identified with the diagonal Gdiag of G×G. It was later proved in [10]
that Lusztig’s G-stable pieces form a partition of G.

This paper concerns with
1) intersections of B ×B-orbits and B− ×B−-orbits in G,
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2) intersections of the G-stable pieces with B− ×B-orbits in G.
Our motivation partially comes from Poisson geometry. Let H =

B∩B−. When k = C, there is [5, 18] a natural H×H-invariant Poisson
structure Π1 on G whose H×H-orbits of symplectic leaves are the non-
empty intersections of B × B and B− × B−-orbits. Similarly, there is
natural Hdiag-invariant Poisson structure Π2 on G whose Hdiag-orbits
of symplectic leaves are the non-empty intersections of Gdiag-orbits and
B− × B-orbits. The restrictions of Π1 and Π2 to G ⊂ G are closely
related to the quantized universal enveloping algebra of the Lie algebra
of G and its dual (as a Hopf algebra). See [6, 16].

The closures of such intersections also appear in the study of algebro-
geometric properties of G. In the joint work [13] of He and Thomsen,
it was proved that in positive characteristics, there exists a Frobenius
splitting on G which compatibly splits all the nonempty intersections
of the closures of B×B-orbits and B−×B−-orbits in G. In particular,
all such closures are weakly normal and reduced. Moreover, the closure
of a B × B-orbit is globally F-regular in positive characteristic and is
normal and Cohen-Macaulay for arbitrary characteristic.

Later, in the joint work [14] of He and Thomsen, it was proved that
in positive characteristics, there exists a Frobenius splitting on G which
compatibly splits all the nonempty intersections of the closures of G-
stable pieces and B− × B-orbits in G. In particular, all such closures
are weakly normal and reduced. However, the closure of a G-stable
piece is not normal in general [14, No. 11.2].

We would like to point out that analogs of Lusztig’s G-stable pieces
in reductive monoids and in some G × G-compactifications of G have
been studied by M. Putcha [21] using the work of L. Renner [22] on
B × B-orbits in such settings. The resulting posets of the G-stable
pieces can sometimes be worked out explicitly. See [21] for detail.

1.3. To state our results more precisely, we introduce some notation.
Let NG(H) be the normalizer of H in G, and let W = NG(H)/H be
the Weyl group. Let Γ be the set of simple roots determined by the
pair (H,B). For J ⊂ Γ, let WJ be the subgroup of W generated by J ,
and let W J ⊂ W the set of minimal length representatives of W/WJ

in W . If J ′ is a another subset of Γ, and x ∈ W , let min(WJ ′xWJ) and
max(WJ ′xWJ) be respectively the unique minimal and maximal length
elements in the double coset WJ ′xWJ .

For x, y ∈ W , let x ∗ y ∈ W be such that B(x ∗ y)B is the unique
dense (B,B)-double coset in BxByB. The operation ∗ makes W into
a monoid which will be denoted by (W, ∗). See [24].

Let δ ∈ Aut(G) be such that δ(H) = H and δ(B) = B. Let Gδ =
{(g, δ(g)) : g ∈ G} ⊂ G × G be the graph of δ. We will in fact work
with Gδ-stable pieces in G (see definition below).
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Recall that the G×G-orbits in G are in one to one correspondence
with subsets of Γ. For J ⊂ Γ, let ZJ be the corresponding G×G-orbit
in G. One has ZJ =

⊔
K⊂J ZK , and ZJ is smooth [2, 3]. Let hJ be a

distinguished point in ZJ (see §3.1). For w ∈ W J and (x, y) ∈ W J×W ,
let

ZJ,δ,w = Gδ(B ×B)(w, 1)·hJ ,

[J, x, y] = (B ×B)(x, y)·hJ ,

[J, x, y]−,+ = (B− ×B)(x, y)·hJ ,

[J, x, y]−,− = (B− ×B−)(x, y)·hJ .

The ZJ,δ,w’s are called the Gδ-stable pieces in G. By [10, 25], one has
the following partitions of G:

G =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y] =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,−(1)

=
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,+ =
⊔

J⊂Γ,w∈W J

ZJ,δ,w.

For a subset X of G, let X be the Zariski closure of X in G.
We prove (see Proposition 3.1, Theorem 3.2, and Theorem 3.3) that

for any J ⊂ Γ, w ∈ W J , and (x, y), (u, v) ∈ W J ×W ,
1) [J, x, y] ∩ [J, u, v]−,− 6= ∅ if and only if x 6 u and v 6 max(yWJ),

and in this case, [J, x, y] ∩ [J, u, v]−,− is smooth and irreducible, and

[J, x, y] ∩ [J, u, v]−,− = [J, x, y] ∩ [J, u, v]−,−.

2) ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅ if and only if min(WJ δ(w)) 6 y−1 ∗ δ(x),
and in this case, ZJ,δ,w ∩ [J, x, y]−,+ is smooth and irreducible, and

ZJ,δ,w ∩ [J, x, y]−,+ = ZJ,δ,w ∩ [J, x, y]−,+.

Let

J = {(J, x, y, u, v) : J ⊂ Γ, (x, y), (u, v) ∈ W J ×W,

x 6 u, v 6 max(yWJ)},
K = {(J, w, x, y) : J ⊂ Γ, (w, x, y) ∈ W J ×W J ×W,

min(WJ δ(w)) 6 y−1 ∗ δ(x)}.
One then has two more partitions of G:

G =
⊔

(J,x,y,u,v)∈J
[J, x, y] ∩ [J, u, v]−,−(2)

=
⊔

(J,w,x,y)∈K
ZJ,δ,w ∩ [J, x, y]−,+

We introduce the notion of admissible partitions and strongly admis-
sible partitions of G (see Definition 3.1) and show that the six partitions
in (1) and (2) are all strongly admissible (Proposition 3.2, Theorem 3.2,
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and Theorem 3.3). Moreover, the first two partitions in (1), as well as
the last two in (1), are shown to be compatible. As consequences, we
prove

1) if J ⊂ Γ and if X is a subvariety of ZJ appearing in any of the
six partitions in (1) and (2), then for any K ⊂ J , X ∩ ZK 6= ∅, and X
and ZK intersect properly in ZJ . Moreover, we describe the irreducible
components of X∩ZK in each case (Corollaries 3.3 and 3.4). This result
for G =

⊔
J⊂Γ,(x,y)∈W J×W [J, x, y]−,+ was also obtained by M. Brion [1];

2) if X = [J, x, y] and Y = [K, u, v]−,− with J,K ⊂ Γ, (x, y) ∈
W J ×W , and (u, v) ∈ WK ×W , or if X = ZJ,δ,w and Y = [K,x, y]−,+

with J,K ⊂ Γ, w ∈ W J and (x, y) ∈ WK ×W , and if X ∩ Y 6= ∅, we
show that X and Y intersect properly in ZJ∪K (Corollary 3.5).

Our discussions in this paper, and especially that in §2.9 and §3.5,
also apply to intersections of R-stable pieces and B × B-orbits, where
R is a certain class of connected subgroups of G×G as in [17], as long
as R∩(B×B) is connected and that Lie(R)+Lie(B×B) = Lie(G×G).

1.4. We set up more notation for the rest of the paper.
For α ∈ Γ, let Uα be the one dimensional unipotent subgroup of G

defined by α. For a subset J of Γ, let PJ and P−
J be respectively the

standard parabolic subgroups of G determined by J that contain B
and B−, and let UJ and U−

J be respectively the uniradicals of PJ and
P−

J . Let MJ = PJ ∩P−
J be the common Levi factor of PJ and P−

J , and
let Cen(MJ) be the center of MJ .

The longest element in W is denoted by w0. If J ⊂ Γ, denote by wJ
0

the longest element in WJ , and let JW = {w−1 : w ∈ W J}. If J ′ is a
another subset of Γ, let J ′W J = J ′W ∩W J .

Throughout the paper,
⊔

always means disjoint union.

2. Intersections in ZC = (G×G)/RC

2.1. Following [17], an admissible quadruple for G is a quadruple C =
(J, J ′, c, L), where J and J ′ are subsets of Γ, c : J → J ′ is a bijective
map preserving the inner products between the simple roots, and L is
a connected closed subgroup of MJ ×MJ ′ of the form

L = {(m, m′) ∈ MJ ×MJ ′ : θc(mC) = m′C ′},
with C ⊂ Cen(MJ) and C ′ ⊂ Cen(MJ ′) being closed subgroups and
θc : MJ/C → MJ ′/C

′ a group isomorphism mapping H/Cen(MJ) to
H/Cen(MJ ′) and Uα to U c(α) for every α ∈ J . For an admissible
quadruple C = (J, J ′, c, L), let

RC = L(UJ × UJ ′) ⊂ PJ × PJ ′ .(3)

For example, RC = B ×B for C = (∅, ∅, Id, H ×H) and RC = Gdiag for
C = (Γ, Γ, Id, Gdiag). For an admissible quadruple C = (J, J ′, c, L), let

ZC = (G×G)/RC.
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When G is of adjoint type, the G×G-orbits in the De Concini-Procesi
compactification G of G are all of the form ZC for some admissible
quadruples C (see §3.1).

2.2. For (x, y) ∈ W J ×W , let

[C, x, y] = (B ×B)(x, y)·RC ⊂ ZC,

[C, x, y]−,+ = (B− ×B)(x, y)·RC ⊂ ZC,

[C, x, y]−,− = (B− ×B−)(x, y)·RC ⊂ ZC.

It follows from [25, Lemma 1.3] that

ZC =
⊔

(x,y)∈W J×W

[C, x, y] =
⊔

(x,y)∈W J×W

[C, x, y]−,+ =
⊔

(x,y)∈W J×W

[C, x, y]−,−

are the partitions of ZC by the B × B, B− × B, and B− × B−-orbits,
respectively.

2.3. Let δ be an automorphism of G preserving both H and B, and
let

Gδ = {(g, δ(g)) : g ∈ G} ⊂ G×G

be the graph of δ. For w ∈ W J , let

ZC,δ,w = Gδ(B ×B)(w, 1)·RC ⊂ ZC.

The sets ZC,δ,w for w ∈ W J will be called the Gδ-stable pieces in ZC.
By [10, 17, 26], each ZC,δ,w is a locally closed smooth irreducible subset
of ZC, and

ZC =
⊔

w∈W J

ZC,δ,w

is the partition of ZC by the Gδ-stable pieces.

2.4. We now recall the closure relations of the B × B-orbits and Gδ-
stable pieces in ZC. For X ⊂ ZC, let X be the closure of X in ZC.

1) For (x, y) ∈ W J × W , [C, x, y] =
⊔

[C, x′, y′], where (x′, y′) runs
over elements in W J ×W such that x′u 6 x and y′c(u) 6 y for some
u ∈ WJ . See [17, Corollary 4.1].

2) For w ∈ W J , ZC,δ,w =
⊔

ZC,δ,w′ , where w′ runs over elements in
W J such that δ−1(c(u))w′u−1 6 w for some u ∈ WJ . See [11, Corollary
5.9].

Using that facts that

[C, x, y]−,+ = (w0, 1)[C, w0xwJ
0 , ywJ ′

0 ],

[C, x, y]−,− = (w0, w0)[C, w0xwJ
0 , w0ywJ ′

0 ],

one has the following variations of 1).

3) For (x, y) ∈ W J ×W , [C, x, y]−,+ =
⊔

[C, x′, y′]−,+, where (x′, y′)
runs over elements in W J ×W such that x′u > xwJ

0 and y′c(u) 6 ywJ ′
0

for some u ∈ WJ .
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4) For (x, y) ∈ W J ×W , [C, x, y]−,− =
⊔

[C, x′, y′]−,−, where (x′, y′)
runs over elements in W J ×W such that x′u > xwJ

0 and y′c(u) > ywJ ′
0

for some u ∈ WJ .

2.5. Recall that the monoid operation ∗ on W is defined by B(x ∗ y)B=
BxByB for x, y ∈ W . Similarly, for x, y ∈ W , define x . y ∈ W and
x / y ∈ W by

BxByB− = B(x . y)B− and B−xByB = B−(x / y)B.

Then
(W, ∗)×W −→ W : (x, y) 7−→ x . y, x, y ∈ W

is a left monoid action of (W, ∗) on W , and

W × (W, ∗) −→ W : (x, y) 7−→ x / y, x, y ∈ W

is a right monoidal action of (W, ∗) on W . More properties of ∗, . and
/ are reviewed in the Appendix.

2.6. We now determine when the intersection of a B × B-orbit and a
B− ×B−-orbit in ZC is non-empty.

Proposition 2.1. For any (x, y), (u, v) ∈ W J ×W , the following con-
ditions are equivalent:

1) [C, x, y] ∩ [C, u, v]−,− 6= ∅,
2) u 6 x and min(vWJ ′) 6 y,
3) u 6 x and v 6 max(yWJ ′).

Proof. Since x ∈ W J , we have that

(B ×B)(x, y)(B ×B)·RC = (B ×B)(x, y)((B ∩MJ)× (B ∩MJ ′))·RC
= (B ×B)(x, y)((B ∩MJ)× {1})·RC
= (B ×B)(x, y)·RC = [C, x, y].

Similarly, [C, u, v]−,− = (B− × B−)(uwJ
0 , vwJ ′

0 )(B × B)·RC. Therefore,
[C, x, y] ∩ [C, u, v]−,− 6= ∅ if and only if

(BxB, ByB) ∩ (
(B− ×B−)(uwJ

0 , vwJ ′
0 )(B ×B)RC(B ×B)

) 6= ∅.
Since

(4) (B ×B)RC(B ×B) =
⋃

z∈WJ

(B ×B)(z, c(z))(B ×B),

[C, x, y] ∩ [C, u, v]−,− 6= ∅ if and only if

(5) (BxB, ByB) ∩ (B−uwJ
0 BzB, B−vwJ ′

0 Bc(z)B) 6= ∅
for some z ∈ WJ . By 1) and 6) of Lemma 4.7 in the Appendix, (5) is
the same as

uwJ
0 6 x ∗ z−1 and vwJ ′

0 6 y ∗ c(z)−1 for some z ∈ WJ .

By Lemma 4.1 in the Appendix, for any z ∈ WJ , x ∗ z 6 max(xWJ)
and y∗c(z) 6 max(yWJ ′) and both inequalities become equalities when
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z = wJ
0 , (5) is equivalent to uwJ

0 6 max(xWJ) and vwJ ′
0 6 max(yWJ ′)

which, by Lemma 4.5 in the Appendix, are in turn equivalent to u 6 x
and min(vWJ ′) 6 y, or u 6 x and v 6 max(yWJ ′). ¤
Example 2.1. When RC = Gdiag and ZC is identified with G, the
intersections in Proposition 2.1 are of the form ByB ∩ B−wB− for
y, w ∈ W , and are called double Bruhat cells [7]. It is well-known (see,
for example, [7]) that the intersection (ByB)∩ (B−wB−) is non-empty
for all y, w ∈ W , which can also be seen from Proposition 2.1.

2.7. We now determine when the intersection of a Gδ-stable piece and
a B− ×B-orbit in ZC is nonempty.

Proposition 2.2. For w ∈ W J and (x, y) ∈ W J ×W , the following
conditions are equivalent:

1) ZC,δ,w ∩ [C, x, y]−,+ 6= ∅,
2) y−1 . δ(x) 6 max(WJ ′ δ(w)),
3) min(WJ ′(y

−1 . δ(x))) 6 δ(w).

Proof. Using the facts that w, x ∈ W J , it is easy to see that

ZC,δ,w = Gδ(B ×B)(w, 1)(B ×B)·RC,

[C, x, y]−,+ = (B− ×B)(xwJ
0 , ywJ ′

0 )(B ×B)·RC.

Thus ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ if and only if

Gδ ∩
(
(B− ×B)(xwJ

0 , ywJ ′
0 )(B ×B)RC(B ×B)(w−1, 1)(B ×B)

)
6= ∅.

By (4), ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ if and only if

Gδ∩
(
(B− ×B)(xwJ

0 , ywJ ′
0 )(B ×B)(z, c(z))(B ×B)(w−1, 1)(B ×B)

)
6= ∅

for some z ∈ WJ , which is equivalent to

(6) (B−δ(xwJ
0 )Bδ(z)Bδ(w−1)B) ∩ (BywJ ′

0 Bc(z)B) 6= ∅.
Since l(zw−1) = l(z) + l(w−1) for every z ∈ WJ , wz−1 = w ∗ z−1 and
Bδ(z)Bδ(w−1)B = Bδ(zw−1)B. Thus (6) is equivalent to

(B−δ(xwJ
0 )Bδ(zw−1)B) ∩ (BywJ ′

0 Bc(z)B) 6= ∅
which, by 1) and 6) of Lemma 4.7 in the Appendix, is equivalent to

(7) δ(xwJ
0 ) 6 (ywJ ′

0 ) ∗ c(z) ∗ δ(w) ∗ δ(z−1)

for some z ∈ WJ . By Lemma 4.2 and Lemma 4.4 in the Appendix,

(ywJ ′
0 ) ∗ c(z) ∗ δ(w) ∗ δ(z−1) 6 (ywJ ′

0 ) ∗ c(wJ
0 ) ∗ δ(w) ∗ δ(wJ

0 )

= ((ywJ ′
0 ) ∗ wJ ′

0 ) ∗ δ(w) ∗ δ(wJ
0 ) = max(yWJ ′) ∗ δ(w) ∗ δ(wJ

0 )

= y ∗ wJ ′
0 ∗ δ(w) ∗ δ(wJ

0 ) = y ∗max(WJ ′ δ(w) Wδ(J))
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for any z ∈ WJ , and the inequality becomes an equality when z = wJ
0 .

Thus (7) is equivalent to

(8) δ(xwJ
0 ) 6 y ∗max(WJ ′ δ(w) Wδ(J)).

Since δ(x) 6 δ(xwJ
0 ), (8) leads to

(9) δ(x) 6 y ∗max(WJ ′ δ(w) Wδ(J)).

Conversely, if (9) holds, then

δ(xwJ
0 ) = δ(x) ∗ w

δ(J)
0 6 y ∗max(WJ ′ δ(w) Wδ(J)) ∗ w

δ(J)
0

= y ∗max(WJ ′ δ(w) Wδ(J)).

Thus (8) is equivalent to (9), which, by 3) of Lemma 4.3 in the Appen-
dix, is equivalent to

(10) y−1 . δ(x) 6 max(WJ ′ δ(w) Wδ(J)).

Since y−1 . δ(x) ∈ W δ(J) by Lemma 4.4 in the Appendix, and since

max(WJ ′ δ(w) Wδ(J)) = max(WJ ′ δ(w)) ∗ w
δ(J)
0 ,

(10) is equivalent to y−1 . δ(x) 6 max(WJ ′ δ(w)) by Lemma 4.5 in the
Appendix. The equivalence of 2) and 3) also follows from Lemma 4.5
in the Appendix. ¤

2.8. We now discuss some consequences of the results in §2.6 and §2.7.

Corollary 2.1. Let J ⊂ Γ. For (x, y) ∈ W J ×W . Set

wx,y = min(Wδ−1(J ′)(δ
−1(y−1) . x)).

Then wx,y ∈ δ−1(J ′)W J and for w ∈ W J ,

ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ iff ZC,δ,wx,y ⊂ ZC,δ,w.

Proof. By definition, wx,y ∈ δ−1(J ′)W . By Lemma 4.4 in the Ap-

pendix, δ−1(y−1) . x ∈ W J and wx,y = w
δ−1(J ′)
0 . (δ−1(y−1) . x) ∈ W J .

If ZC,δ,w ∩ [C, x, y]−,+ 6= ∅, by Proposition 2.2, wx,y 6 w. By §2.4, 2),
ZC,δ,wx,y ⊂ ZC,δ,w. On the other hand, if ZC,δ,wx,y ⊂ ZC,δ,w, then there

exists u ∈ WJ such that δ−1(c(u))wx,yu
−1 6 w. Since wx,y ∈ δ−1(J ′)W J ,

wx,y 6 δ−1(c(u))wx,yu
−1 6 w. By Proposition 2.2, ZC,δ,w∩[C, x, y]−,+ 6=

∅. ¤

Proposition 2.3. Let π : ZC → (G × G)/(PJ × PJ ′) be the natural
projection induced by the inclusion RC ⊂ PJ × PJ ′. Then for any
w ∈ W J and (x, y) ∈ W J ×W ,

ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ iff π(ZC,δ,w) ∩ π([C, x, y]−,+) 6= ∅.
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Proof. Clearly ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ implies that π(ZC,δ,w) ∩
π([C, x, y]−,+) 6= ∅. Assume now that π(ZC,δ,w) ∩ π([C, x, y]−,+) 6= ∅.
Let y′ = min(yWJ ′) ∈ W J ′ and w′ = min(Wδ−1(J ′)w). By Lemma 4.4

in the Appendix, w′ ∈ δ−1(J ′)W J . Then

π(ZC,δ,w) = Gδ(w
′, 1)(PJ × PJ ′),

π([C, x, y]−,+) = (B− ×B)(x, y′)(PJ × PJ ′).

By definition, max(WJ ′δ(w)) = max(WJ ′δ(w
′)). By Lemma 4.2 in the

Appendix, y−1 . δ(x) 6 (y′)−1 . δ(x). Now ZC,δ,w ∩ [C, x, y]−,+ 6= ∅
follows from Proposition 2.2 and the following Lemma 2.1. ¤

Lemma 2.1. For w ∈ δ−1(J ′)W J and (x, y) ∈ W J ×W J ′,

Gδ(w, 1)(PJ × PJ ′) ∩ (B− ×B)(x, y)(PJ × PJ ′) 6= ∅
if and only if y−1 . δ(x) 6 max(WJ ′ δ(w)).

Proof. First note that

Gδ(w, 1)(PJ × PJ ′) = Gδ(B ×B)(w, 1)(PJ × PJ ′).

Thus Gδ(w, 1)(PJ × PJ ′) ∩ (B− ×B)(x, y)(PJ × PJ ′) 6= ∅ if and only if

(11) Gδ ∩ (B− ×B)(x, y)(PJ × PJ ′)(w
−1, 1)(B ×B) 6= ∅.

Using PJ × PJ ′ = ∪z∈WJ ,z′∈WJ′ (B ×B)(z, z′)(B ×B) and the fact that
BzBw−1B = Bzw−1B for any z ∈ WJ , one sees that (11) is equivalent
to ⋃

z∈WJ ,z′∈WJ′

Gδ ∩ (B−xBzw−1B ×ByBz′B) 6= ∅,

or (B−δ(x)Bδ(zw−1)B)∩(ByBz′B) 6= ∅ for some z ∈ WJ and z′ ∈ WJ ′ ,
which, by 1) and 6) of Lemma 4.7 and 3) of Lemma 4.3 in the Appendix,
is in turn equivalent to

y−1 . δ(x) 6 z′ ∗ δ(wz−1) = δ(x) 6 z′ ∗ δ(w) ∗ δ(z−1)

for some z ∈ WJ and z′ ∈ WJ ′ . Since for any z ∈ WJ and z′ ∈ WJ ′ ,

z′ ∗ δ(w) ∗ δ(z−1) 6 wJ ′
0 ∗ δ(w) ∗ w

δ(J)
0 = max(WJ ′ δ(w) Wδ(J)),

and the inequality becomes an equality when z = wJ
0 and z′ = wJ ′

0 ,
(11) is equivalent to

(12) y−1 . δ(x) 6 max(WJ ′ δ(w) Wδ(J)).

Since δ(x) ∈ W δ(J), it follows from Lemma 4.4 in the Appendix that
y−1.δ(x) ∈ W δ(J) and (12) is equivalent to y−1.δ(x) 6 max(WJ ′ δ(w)).

¤
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2.9. To study the geometry and closures of the non-empty intersections
in §2.6 and §2.7, we first recall some elementary facts on intersections
of subvarieties in an algebraic variety.

The following Lemma 2.2 is a generalization of [23, Corollary 1.5] of
Richardson. Our proof of Lemma 2.2 is essentially the same as that of
[23, Theorem 1.4].

Lemma 2.2. Let A be a connected algebraic group and let H, K and L
be closed connected subgroups of A. Assume that H ∩K is connected
and that Lie(H)+Lie(K) = Lie(A). Let Y be an irreducible subvariety
of A/L such that HY ⊂ A/L is smooth. Then for any K-orbit O in
A/L such that (HY ) ∩ O 6= ∅, HY and O intersect transversally in
A/L and HY ∩O is a smooth irreducible subvariety of A/L with

dim((HY ) ∩O) = dim HY + dim O − dim A/L.

Proof. Since HY is a union of H-orbits in A/L, it follows from
[23, Corollary 1.5] and [23, Proposition 1.2] that HY and O intersect
transversally and that the intersection (HY ) ∩ O is smooth. More-
over, each irreducible component of (HY ) ∩O has dimension equal to
dim HY + dim O − dim A/L.

It remains to show that (HY ) ∩ O is irreducible. Fix an x ∈ O and
consider the diagram

O
p←− H ×K

m−→ A
q−→ A/L,

where p(h, k) = kx, m(h, k) = h−1k, and q(a) = ax for h ∈ H, k ∈ K,
and a ∈ A. Let

E = {(h, k) ∈ H ×K : h−1kx ∈ Y } ⊂ H ×K.

Then (HY ) ∩O = p(E), so it is enough to show that E is irreducible.
Since L is connected and Y ⊂ A/L is irreducible, q−1(Y ) ⊂ A is

irreducible by [23, Lemma 1.3]. As in the proof of [23, Theorem 1.4],
HK is open in A, so HK ∩ q−1(Y ) is an irreducible subvariety of
HK. The map m induces an isomorphism m : (H × K)/D → HK,
where D = {(g, g) : g ∈ H ∩ K}. Let ν : H × K → (H × K)/D
be the natural projection. Since D is connected, by [23, Lemma 1.3],
E = ν−1(m−1(HK ∩ q−1(Y ))) is also irreducible. ¤

The following Lemma 2.3 is useful in determining the irreducible
components of intersections of algebraic varieties and will be used sev-
eral times in the paper.

Lemma 2.3. Let Y be an algebraic variety over an algebraically closed
field k. Suppose that l ≥ 0 is an integer such that every irreducible
component of Y has dimension at least l, and suppose that Y =

⊔
k∈K Yk

is a finite disjoint union, where each Yk is an irreducible subvariety of
Y with dim Yk 6 l. Then the irreducible components of Y are precisely
the closures Yk of those Yk’s, where k ∈ K for which dim Yk = l.
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Proof. Let S be any irreducible component of Y . Then

S =
⋃

k∈K:S∩Yk 6=∅
S ∩ Yk.

Since S is irreducible, S = S ∩ Yk ⊂ Yk for some k ∈ K. Since Yk

is irreducible, S = Yk, and it follows from the dimension assumptions
that dim Yk = l. Since the Yk’s are pair-wise disjoint, the closures Yk

with dim Yk = l are pair-wise distinct irreducible components. ¤

Lemma 2.4. Let Z be a smooth irreducible algebraic variety and let

Z =
⊔
i∈I

Xi =
⊔
j∈J

Yj

be two partitions of Z such that each non-empty intersection Xi∩Yj is
transversal and irreducible. Then for any (i, j) ∈ I × J , Xi ∩ Yj 6= ∅
if and only if Xi ∩ Yj 6= ∅, and in this case,

Xi ∩ Yj = Xi ∩ Yj.

In particular, Z =
⊔

(i,j)∈K(Xi ∩ Yj) is again a partition of Z. Here

K = {(i, j) ∈ I × J : Xi ∩ Yj 6= ∅}.
Proof. Let (i, j) ∈ I × J be such that Xi ∩ Yj 6= ∅, and let

Kij = {(i′, j′) ∈ I × J : Xi′ ⊂ Xi, Yj′ ⊂ Yj, Xi′ ∩ Yj′ 6= ∅}.
Then

Xi ∩ Yj =
⊔

(i′,j′)∈Kij

Xi′ ∩ Yj′

is a disjoint union. By [8, Page 222], every irreducible component of
Xi ∩ Yj has dimension at least dim Xi + dim Yj − dim Z. On the other
hand, for any (i′, j′) ∈ Kij,

dim Xi′ ∩ Yj′ = dim Xi′ + dim Yj′ − dim Z(13)

6 dim Xi + dim Yj − dim Z.

Since Xi is irreducible, dim Xi′ < dim Xi for any i′ ∈ I such that
Xi′ ⊂ Xi and i′ 6= i. Similarly, dim Yj′ < dim Yj for any j′ ∈ J
such that Yj′ ⊂ Yj and j′ 6= j. Thus the inequality in (13) is an
equality if and only if (i′, j′) = (i, j). By Lemma 2.3, Xi ∩ Yj 6= ∅ and
Xi ∩ Yj = Xi ∩ Yj. ¤

Theorem 2.1. Let w ∈ W J and (x, y), (u, v) ∈ W J ×W . Then

1) ZC,δ,w ∩ [C, x, y]−,+ 6= ∅ if and only if ZC,δ,w ∩ [C, x, y]−,+ 6= ∅.
In this case, ZC,δ,w and [C, x, y]−,+ intersect transversally in ZC, the
intersection is smooth and irreducible, and

ZC,δ,w ∩ [C, x, y]−,+ = ZC,δ,w ∩ [C, x, y]−,+.
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2) [C, x, y] ∩ [C, u, v]−,− 6= ∅ if and only if [C, x, y] ∩ [C, u, v]−,− 6= ∅.
In this case, [C, x, y] and [C, u, v]−,− intersect transversally in ZC, the
intersection is smooth and irreducible, and

[C, x, y] ∩ [C, u, v]−,− = [C, x, y] ∩ [C, u, v]−,−.

Proof. Since RC is connected, Gδ ∩ (B− ×B) is connected, and

Lie(Gδ) + Lie(B− ×B) = Lie(G×G),

Lemma 2.2 applies. By taking A = G×G,

H = Gδ, K = B− ×B, L = RC, and Y = (B ×B)(w, 1)·RC

in Lemma 2.2, one sees that when ZC,δ,w ∩ [C, x, y]−,+ 6= ∅, ZC,δ,w

and [C, x, y]−,+ intersect transversally in ZC, and that the intersection
ZC,δ,w ∩ [C, x, y]−,+ is smooth and irreducible. By applying Lemma 2.4
to the two partitions

ZC =
⊔

w∈W J

ZC,δ,w =
⊔

(x,y)∈W J×W

(B− ×B)(x, y)·RC

of ZC, one proves part 1). Part 2) can be proved in the same way. ¤
Remark 2.1. In both 1) and 2) in Theorem 2.1, the fact that the
intersection is non-empty if and only if the intersection of the closures
is non-empty can also been obtained using §2.4 and Proposition 2.1
and Proposition 2.2. However, the proof we give is more conceptual.

3. Intersections in G

3.1. Let G be a connected semi-simple adjoint group and G be the De
Concini-Procesi compactification. It is known [2] that the G×G-orbits
in G are in one to one correspondence with subsets of Γ. For J ⊂ Γ,
let ZJ be the corresponding G × G-orbit in G. A distinguished point
hJ ∈ ZJ can be chosen such that the stabilizer subgroup of G × G at
hJ is

R−
J

def
= (U−

J × UJ){(m1,m2) ∈ MJ ×MJ : πJ(m1) = πJ(m2)},
where πJ : MJ → MJ/Cen(MJ) is the natural projection and Cen(MJ)
is the center of MJ .

For J ⊂ Γ, let CJ = (J∗, J, c, L), where J∗ = −w0(J), c = (w0w
J
0 )−1,

and

L = {(ẇ0ẇ
J
0 m1(ẇ0ẇ

J
0 )−1, m2) : m1,m2 ∈ MJ , πJ(m1) = πJ(m2)}

with ẇ0 and ẇJ
0 being any representatives of w0 and wJ

0 in NG(H). By
[17, Section 5], CJ is an admissible quadruple for G, and

RCJ
= (ẇ0ẇ

J
0 , 1)R−

J (ẇ0ẇ
J
0 , 1)−1.

One thus has the isomorphism

(14) ZJ −→ ZCJ
: (g, g′)·hJ 7−→ (gwJ

0 w0, g
′)·RCJ

, g, g′ ∈ G.
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3.2. For J ⊂ Γ and (x, y) ∈ W J ×W , let

[J, x, y] = (B ×B)(x, y)·hJ ,(15)

[J, x, y]−,+ = (B− ×B)(x, y)·hJ = (w0, 1)[J, w0xwJ
0 , ywJ

0 ],(16)

[J, x, y]−,− = (B− ×B−)(x, y)·hJ = (w0, w0)[J, w0xwJ
0 , w0ywJ

0 ].(17)

For J ⊂ Γ and w ∈ W J , let

ZJ,δ,w = Gδ(B ×B)(w, 1)·hJ .

The ZJ,δ,w’s will be called the Gδ-stable pieces in G. By [25, Lemma
1.3] and [20, 12.3], one has the following partitions of G:

G =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y] =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,−

=
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,+ =
⊔

J⊂Γ,w∈W J

ZJ,δ,w.

For a an irreducible subvariety X ⊂ ZJ , let CodimZJ
(X) be the

codimension of X in ZJ . Let l be the length function of W . One has,
for any J ⊂ Γ and w ∈ W J ,

1) dim ZJ = dim G − dim Cen(MJ) = dim G − |Γ| + |J |. See [2,
Theorem 3.1].

2) CodimZJ
[J, x, y] = l(w0) + l(x)− l(y). See [25, Lemma 1.3].

3) CodimZJ
ZJ,δ,w = l(w). See [20, Section 8].

By (16) and (17), one also has
4) CodimZJ

[J, x, y]−,+ = 2l(w0)− l(xwJ
0 )− l(ywJ

0 ).
5) CodimZJ

[J, x, y]−,− = l(w0)− l(xwJ
0 ) + l(ywJ

0 ).

3.3. The closure of a G × G-orbit is described in [2, Theorem 3.1 &
Theorem 5.2] as follows.

1) For J ⊂ Γ, ZJ =
⊔

K⊂J ZK is a smooth subvariety of G.
The closure of a B × B-orbit is described in [25, Proposition 2.4],

and the following simplified version in 2) is found in [13, Proposition
6.3] and [17, Example 1.3]. The following 3) and 4) are obtained using
(16) and (17).

2) For J ⊂ Γ and (x, y) ∈ W J × W , [J, x, y] =
⊔

[K,x′, y′], where
K ⊂ J , (x′, y′) ∈ WK ×W and there exists u ∈ WJ such that xu 6
x′, y′ 6 yu.

3) For J ⊂ Γ and (x, y) ∈ W J × W , [J, x, y]−,+ =
⊔

[K,x′, y′]−,+,
where K ⊂ J , (x′, y′) ∈ WK ×W and there exists u ∈ WJ such that
x′wK

0 6 xu, y′wK
0 6 yu.

4) For J ⊂ Γ and (x, y) ∈ W J × W , [J, x, y]−,− =
⊔

[K,x′, y′]−,−,
where K ⊂ J , (x′, y′) ∈ WK ×W and there exists u ∈ WJ such that
x′wK

0 6 xu, y′wK
0 > yu.

For J ⊂ Γ and w ∈ W , let

CJ(w) = {δ−1(u)wu−1 : u ∈ WJ},
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and denote by Min(CJ(w)) the set of minimal length elements in CJ(w).
It is easy to see that w ∈ Min(CJ(w)) for any w ∈ W J . The closure of
a Gδ-stable piece is described in [10, Sections 3 and 4] as follows:

5) For J ⊂ Γ and w ∈ W J , ZJ,δ,w =
⊔

ZK,δ,w′ , where K ⊂ J, w′ ∈
WK , and w′ > w1 for some w1 ∈ Min(CJ(w)).

3.4. We can now prove our first main result in this paper.

Proposition 3.1. For J ⊂ Γ, w ∈ W J , and (x, y), (u, v) ∈ W J ×W ,

[J, x, y] ∩ [J, u, v]−,− 6= ∅ iff x 6 u, v 6 max(yWJ),(18)

ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅ iff min(WJ δ(w)) 6 y−1 ∗ δ(x).(19)

Proof. Let CJ be as in §3.1 and recall the isomorphism ZJ → ZCJ

in (14). Since W J∗ = W JwJ
0 w0, one has

[J, x, y] ∩ [J, u, v]−,− 6= ∅ iff [CJ , xwJ
0 w0, y] ∩ [CJ , uwJ

0 w0, v]−,− 6= ∅,
which, by Proposition 2.1, is equivalent to uwJ

0 w0 6 xwJ
0 w0 and v 6

max(yWJ). Note that uwJ
0 w0 6 xwJ

0 w0 if and only if uwJ
0 > xwJ

0 ,
which is equivalent to u > x since x, u ∈ W J . Thus (18) is proved.

Similarly, ZJ,δ,w∩ [J, x, y]−,+ 6= ∅ iff ZC,δ,wwJ
0 w0

∩ [C, xwJ
0 w0, y]−,+ 6= ∅,

which, by Proposition 2.2, is equivalent to

(20) y−1 . (δ(x)w
δ(J)
0 w0) 6 max(WJδ(w)w

δ(J)
0 w0).

By Lemma 4.5 and Lemma 4.3 in the Appendix, (20) is equivalent to

min(WJδ(w)w
δ(J)
0 ) 6 y−1 ∗ (δ(x)w

δ(J)
0 ),

which is in turn equivalent to min(WJδ(w)) 6 y−1 ∗ δ(x). ¤

3.5. Admissible partitions of G. In order to generalize Theorem
2.1 to G, we will introduce the notion “admissible partitions” and dis-
cuss some of their properties.

Definition 3.1. A partition of G is said to be admissible if it is of the
form

(21) G =
⊔
J⊂Γ

⊔
α∈AJ

XJ,α,

where for each J ⊂ Γ, AJ is a finite index set, and for each α ∈ AJ ,
XJ,α ⊂ ZJ and

CodimZK
XK,α′ > CodimZJ

XJ,α

for every K ⊂ J and α′ ∈ AK such that XK,α′ ⊂ Xα ∩ ZK . An
admissible partition is said to be strongly admissible if XJ,α ∩ ZK 6= ∅
for every K ⊂ J and α ∈ AJ .

Note that the partition G =
⊔

J⊂Γ ZJ is strongly admissible.
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Proposition 3.2. The partitions

G =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y] =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,−(22)

=
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,+ =
⊔

J⊂Γ,w∈W J

ZJ,δ,w

are strongly admissible.

Proof. Let K ⊂ J ⊂ Γ and (x, y) ∈ W J ×W . If (x′, y′) ∈ WK ×W

is such that [K, x′, y′] ⊂ [J, x, y], one knows from §3.3 that there exists
u ∈ WJ such that x′ > xu and y′ 6 yu. By 2) of §3.2,

CodimZK
[K, x′, y′] = l(w0) + l(x′)− l(y′) > l(w0) + l(xu)− l(yu)

= l(w0) + l(x) + l(u)− l(yu) > l(w0) + l(x)− l(y)

= CodimZJ
[J, x, y].

Regard x as in WK . By §3.3, [K,x, y] ⊂ [J, x, y] ∩ ZK . Thus the first
partition in (22) is strongly admissible. The second and third partitions
of G in (22), being the translations by (w0, 1) and by (w0, w0) of the
first one, are thus also strongly admissible.

Consider now the partition of G into the Gδ-stable pieces. Let K ⊂
J ⊂ Γ and w ∈ W J . If w′ ∈ WK is such that ZK,δ,w′ ⊂ ZJ,δ,w, one
knows from §3.3 that there exists w1 ∈ Min(CJ(w)) such that w′ > w1.
By 3) of §3.2,

CodimZK
(ZK,δ,w′) = l(w′) > l(w1) = l(w) = CodimZJ

(ZJ,δ,w).

Regard w as in WK . By §3.3, ZK,δ,w ⊂ ZJ,δ,w ∩ZK . Thus the partition
G =

⊔
J⊂Γ,w∈W J ZJ,δ,w is strongly admissible. ¤

Definition-Notation 3.1. Two admissible partitions

(23) G =
⊔
J⊂Γ

⊔
α∈AJ

XJ,α =
⊔
J⊂Γ

⊔

β∈BJ

YJ,β

of G are said to be compatible if for any J ⊂ Γ, α ∈ AJ , and β ∈ BJ

with XJ,α ∩ YJ,β 6= ∅, XJ,α and YJ,β intersect transversally in ZJ and
XJ,α ∩ YJ,β is irreducible. For two such partitions of G, and for K ⊂
J ⊂ Γ, α ∈ AJ , and β ∈ BJ , let

Aα
K = {α′ ∈ AK : XK, α′ ⊂ XJ, α, CodimZK

XK,α′ = CodimZJ
XJ,α},

Bβ
K = {β′ ∈ BK : YK, β′ ⊂ YJ, β, CodimZK

YK,β′ = CodimZJ
YJ,β}.

Proposition 3.3. 1) Any admissible partition of G is compatible with
the partition of G into G×G-orbits;

2) The partitions of G into Gδ-stable pieces and into B− ×B-orbits
are compatible;

3) The partitions of G into B × B-orbits and into B− × B−-orbits
are compatible.
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Proof. Part 1) follows directly from the definition.
2) Notice that a Gδ-stable piece ZJ,δ,w and a B−×B-orbit [K,x, y]−,+

intersect only if J = K. Applying Lemma 2.2 to the two subvarieties
ZJ,δ,w and [J, x, y]−,+ of ZJ , we have that the intersection is transversal
and irreducible.

Part 3) can be proved in the same way. ¤

Recall [9, Page 427] that two irreducible subvarieties X and Y of
a smooth irreducible variety Z with X ∩ Y 6= ∅ are said to intersect
properly in Z if every irreducible component of X ∩ Y has dimension
equal to dim X + dim Y − dim Z.

Theorem 3.1. Let two compatible admissible partitions of G be given
as in (23). Then for any J,K ⊂ Γ and α ∈ AJ and β ∈ BK, if
XJ,α ∩ YK,β 6= ∅, then XJ,α and YK,β intersect properly in ZJ∪K, and

XJ,α ∩ YK,β =
⋃

(α′,β′)∈Iα, β
J∩K

XJ∩K, α′ ∩ YJ∩K, β′

is the decomposition of XJ,α ∩ YK,β into (distinct) irreducible compo-
nents, where

Iα, β
J∩K = {(α′, β′) ∈ Aα

J∩K × Bβ
J∩K : XJ∩K, α′ ∩ YJ∩K, β′ 6= ∅}.

In particular, Iα, β
J∩K 6= ∅.

Proof. Let J,K ⊂ Γ, α ∈ AJ , and β ∈ BK be such that XJ,α ∩
YK,β 6= ∅. Regard both XJ,α and YK,β as subvarieties of ZJ∪K . Since
ZJ∪K is smooth and irreducible with

dim ZJ∪K = dim ZJ + dim ZK − dim ZJ∩K ,

every irreducible component of XJ,α ∩ YK,β has dimension at least

l = dim XJ,α + dim YK,β − dim ZJ∪K

= dim ZJ∩K − CodimZJ
XJ, α − CodimZK

YK, β.

On the other hand,

(24) XJ,α ∩ YK,β =
⊔

I ⊂ J ∩K, α′ ∈ AI , β
′ ∈ BI

XI,α′ ⊂ XJ,α, YI,β′ ⊂ YK,β

XI,α′ ∩ YI,β′ .

For each non-empty intersection on the right hand side of (24),

dim XI,α′ ∩ YI,β′ = dim ZI − CodimZI
XI,α′ − CodimZI

YI,β′(25)

6 dim ZI − CodimZJ
XJ,α − CodimZK

YK,β

6 dim ZJ∩K − CodimZJ
XJ,α − CodimZK

YK,β

= l.
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By Lemma 2.3 and 1) of Proposition 3.3, every irreducible component
of XJ,α ∩ YK,β has dimension l, and the irreducible components are
exactly as described in Theorem 3.1. ¤

By taking the second admissible partition in Theorem 3.1 to be the
one by G×G-orbits, we have the following Corollary 3.1.

Corollary 3.1. Let a strongly admissible partition of G be given as in
(21), and let J ⊂ Γ and α ∈ AJ . Then for any K ⊂ Γ, XJ,α ∩ ZK 6= ∅
and XJ,α and ZK intersect properly in ZJ∪K. Moreover,

XJ,α ∩ ZK =
⋃

α′∈Aα
J∩K

XJ∩K, α′

is the decomposition of XJ,α∩ZK into (distinct) irreducible components.

Corollary 3.2. Let two compatible partitions of G be given as in (23).
Then for any J ⊂ Γ and α, β ∈ AJ , XJ,α ∩ YJ,β 6= ∅ if and only if
XJ,α ∩ YJ,β 6= ∅, and in this case,

(26) XJ,α ∩ YJ,β = XJ,α ∩ YJ,β.

In particular,

G =
⊔

J⊂Γ, XJ,α∩YJ,β 6=∅
XJ,α ∩ YJ,β

is an admissible partition of G.

Proof. Take K = J in Theorem 3.1. If XJ,α ∩ YJ,β 6= ∅, then Iα, β
J

consists of one element, namely, (α, β). Thus XJ,α ∩ YJ,β 6= ∅ and (26)
holds. The condition on codimensions in Definition 3.1 follows from
(25) in the proof of Theorem 3.1. ¤

3.6. We now prove our second main result in this paper. Let

J = {(J, x, y, u, v) : J ⊂ Γ, (x, y), (u, v) ∈ W J ×W,

[J, x, y] ∩ [J, u, v]−,− 6= ∅}
= {(J, x, y, u, v) : J ⊂ Γ, x, u ∈ W J , y, v ∈ W,

x 6 u, v 6 max(yWJ)},
K = {(J, w, x, y) : J ⊂ Γ, (w, x, y) ∈ W J ×W J ×W,

ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅}
= {(J, w, x, y) : J ⊂ Γ, (w, x, y) ∈ W J ×W J ×W,

min(WJ δ(w)) 6 y−1 ∗ δ(x)}.
Theorem 3.2. Let J ⊂ Γ and (x, y), (u, v) ∈ W J ×W . Then

[J, x, y] ∩ [J, u, v]−,− 6= ∅ iff [J, x, y] ∩ [J, u, v]−,− 6= ∅,
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and in this case,

(27) [J, x, y] ∩ [J, u, v]−,− = [J, x, y] ∩ [J, u, v]−,−.

In particular,

(28) G =
⊔

(J,x,y,u,v)∈J
[J, x, y] ∩ [J, u, v]−,−

is a strongly admissible partition of G.

Proof. Assume that [J, x, y] ∩ [J, u, v]−,− 6= ∅. It follows from 3)
of Proposition 3.3 and Corollary 3.2 that [J, x, y] ∩ [J, u, v]−,− 6= ∅ and
(27) holds.

By Corollary 3.2, the partition (28) of G is admissible. To show that
it is also strongly admissible, let (J, x, y, u, v) ∈ J and let K ⊂ J .
By definition, there exists z ∈ WJ such that yz = max(yWJ). Set
z′ = min(zWK) ∈ WK . Then xz′, uz′ ∈ WK and

vz′ 6 max(vWJ) 6 max(yWJ) = yz 6 max(yz′WK).

By Proposition 3.1, [K, xz′, yz′] ∩ [K, uz′, vz′]−,− 6= ∅. By 2) and 4) of

§3.3, [K,xz′, yz′] ⊂ [J, x, y] and [K, uz′, vz′]−,− ⊂ [J, u, v]−,−. Therefore

[J, x, y] ∩ [J, u, v]−,− ∩ ZK ⊃ [K,xz′, yz′] ∩ [K, uz′, vz′]−,− 6= ∅.
This shows that the partition (28) is strongly admissible. ¤
Theorem 3.3. Let J ⊂ Γ, w ∈ W J , and (x, y) ∈ W J ×W . Then

ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅ iff ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅,
and in this case,

(29) ZJ,δ,w ∩ [J, x, y]−,+ = ZJ,δ,w ∩ [J, x, y]−,+.

In particular,

(30) G =
⊔

(J,w,x,y)∈K
ZJ,δ,w ∩ [J, x, y]−,+

is a strongly admissible partition of G.

Proof. Assume that ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅. It follows from 2) of
Proposition 3.3 and Corollary 3.2 that ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅ and (29)
holds.

By Corollary 3.2, the partition (30) of G is admissible. To show
that it is also strongly admissible, let (J, w, x, y) ∈ K and let K ⊂ J .
By definition, there exists z ∈ WJ such that yz = max(yWJ). Set
z′ = min(zWK) ∈ WK ∩ WJ . Then xz′ ∈ WK and xz′ > x. Let
z = z′z′′ with z′′ ∈ WK . By Lemma 4.4 in the Appendix,

wK
0 ∗ (yz′)−1 = max(WK(yz′)−1) = max(WK(yz)−1)

= max(WK max(WJy−1)) = max(WJy−1) = wJ
0 ∗ y−1.
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By Lemma 4.2 and Lemma 4.4 in the Appendix,

wK
0 ∗ (yz′)−1 ∗ δ(xz′) = wJ

0 ∗ y−1 ∗ δ(xz′) > wJ
0 ∗ (y−1 ∗ δ(x))

= max(WJ(y−1 ∗ δ(x)).

Since min(WJδ(w)) 6 y−1 ∗ δ(x), one has

δ(w) 6 max(WJ(y−1 ∗ δ(x)) 6 wK
0 ∗ ((yz′)−1 ∗ δ(xz′))

= max(WK(yz′)−1 ∗ δ(xz′)).

By Lemma 4.5 in the Appendix, min(WKδ(w)) 6 (yz′)−1 ∗ δ(xz′), and

ZJ,δ,w ∩ [J, x, y]−,+ ∩ ZK ⊃ ZK,δ,w ∩ [K, xz′, yz′]−,+ 6= ∅.
This shows that the partition (30) of G is strongly admissible. ¤

Remark 3.1. Assume that [J, x, y] ∩ [J, u, v]−,− 6= ∅, we can also use
Proposition 3.1 to prove directly that [J, x, y] ∩ [J, u, v]−,− 6= ∅. Simi-

larly, assume that ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅. One can use Proposition 3.1
to prove directly that ZJ,δ,w ∩ [J, x, y]−,+ 6= ∅. We omit the details.

Consider now the following four strongly admissible partitions of G:

G =
⊔

J⊂Γ,(x,y)∈W J×W

[J, x, y]−,+ =
⊔

J⊂Γ,w∈W J

ZJ,δ,w

(31)

=
⊔

(J,x,y,u,v)∈J
[J, x, y] ∩ [J, u, v]−,− =

⊔

(J,x,y,u,v)∈K
ZJ,δ,w ∩ [J, x, y]−,+.

As a direct consequence of Corollary 3.1, we have

Corollary 3.3. Let J ⊂ Γ and let X be any of the subvarieties of ZJ

appearing in either one of the four partitions in (31). Then for any
K ⊂ Γ, X ∩ ZK 6= ∅, and X and ZK intersect properly in ZJ∪K.

Corollary 3.1 also allows us to describe the irreducible components
of the non-empty intersections in Corollary 3.3.

Corollary 3.4. 1) For any J ⊂ Γ, (x, y) ∈ W J × W , and K ⊂ Γ,

the irreducible components of [J, x, y]−,+ ∩ZK are precisely of the form

[J ∩K, xu, yu]−,+, where u ∈ WJ ∩W J∩K and l(yu) = l(y) + l(u).
2) For any J ⊂ Γ, w ∈ W J , and K ⊂ Γ, the irreducible components

of ZJ,δ,w ∩ ZK are precisely of the form ZJ∩K,δ,w′ with w′ ∈ W J∩K ∩
Min(CJ(w)).

3) For any (J, x, y, u, v) ∈ J and K ⊂ Γ, the irreducible components

of the intersection [J, x, y] ∩ [J, u, v]−,− ∩ ZK are the non-empty inter-

sections of irreducible components of [J, x, y] ∩ ZK and the irreducible

components of [J, u, v]−,− ∩ ZK.
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4) For any (J, w, x, y) ∈ K and K ⊂ Γ, the irreducible components

of ZJ,δ,w ∩ [J, x, y]−,+ ∩ ZK are the non-empty intersections of irre-
ducible components of ZJ,δ,w ∩ ZK and the irreducible components of

[J, x, y]−,+ ∩ ZK.

Remark 3.2. Corollary 3.3 and Corollary 3.4 in the case of the inter-
sections [J, x, y]−,+ ∩ ZK have also been obtained by M. Brion in [1]
(using B ×B−-orbits instead of B− ×B-orbits).

Applying Theorem 3.1, we have

Corollary 3.5. 1) If J,K ⊂ Γ and (x, y) ∈ W J ×W, (u, v) ∈ WK×W

are such that [J, x, y] ∩ [K, u, v]−,− 6= ∅, then [J, x, y] and [K,u, v]−,−

intersect properly in ZJ∪K, and the irreducible components of [J, x, y]∩
[K,u, v]−,− are the non-empty intersections of irreducible components

of [J, x, y]∩ZJ∩K and the irreducible components of [K,u, v]−,−∩ZJ∩K.
2) If J,K ⊂ Γ and (w, x, y) ∈ W J ×WK ×W are such that ZJ,δ,w ∩

[K,x, y]−,+ 6= ∅, then ZJ,δ,w and [K,x, y]−,+ intersect properly in ZJ∪K,

and the irreducible components of ZJ,δ,w∩[K, x, y]−,+ are the non-empty
intersections of irreducible components of ZJ,δ,w ∩ ZJ∩K and the irre-

ducible components of [K, x, y]−,+ ∩ ZJ∩K.

4. Appendix

Recall that W is the Weyl group of G. We now prove some prop-
erties of the operations ∗, /, . on W as defined in §2.5. In fact, many
properties also hold for arbitrary Coxeter groups. See [12].

Lemma 4.1. [10, Lemma 3.3] For any x, y ∈ W ,
1) x ∗ y ∈ W is the unique maximal element in the set {uy : u 6 x}

as well as in the set {xv; v 6 y}. Moreover, x∗y = x1y = xy1 for some
x1 6 x, y1 6 y with l(x ∗ y) = l(x1) + l(y) = l(x) + l(y1);

2) x . y ∈ W is the unique minimal element in the set {uy : u 6 x},
and x . y = x1y for some x1 6 x with l(x . y) = l(y)− l(x1);

3) x / y ∈ W is the unique minimal element in the set {xv; v 6 y},
and x / y = xy1 for some y1 6 y with l(x / y) = l(x)− l(y1).

Lemma 4.2. Let x, x′, y, y′ ∈ W . If x 6 x′ and y 6 y′, then

x ∗ y 6 x′ ∗ y′, x′ . y 6 x . y′, and x / y′ 6 x′ / y.

Proof. We have that

B(x ∗ y)B = BxByB = BxB ByB ⊂ Bx′B By′B = Bx′By′B

= B(x′ ∗ y′)B.



21

Here the second equality follows from the properness of the multiplica-
tion map BxB ×B ByB → G. So x ∗ y 6 x′ ∗ y′. Similarly, since

B(x . y′)B− = BxBy′B− = BxB By′B− ⊂ Bx′B ByB− = Bx′ByB−

= B(x′ . y)B−,

one has x′ . y 6 x . y′. Similarly, x / y′ 6 x′ / y. ¤
Lemma 4.3. For any x, y, z ∈ W ,

1) x . y = (x ∗ (yw0))w0 and x / y = w0((w0x) ∗ y);
2) (x / y)−1 = y−1 . x−1 and (x ∗ y)−1 = y−1 ∗ x−1;
3) x . y 6 z if and only if y 6 x−1 ∗ z;
4) y / x 6 z if and only if y 6 z ∗ x−1;
5) (x . y) / z = x . (y / z).

Proof. 1) Since

B(x . y)B− = BxByB− = BxByw0Bw0 = B(x ∗ (yw0))Bw0

= B
(
x ∗ (yw0)

)
w0B−,

one has x . y = x . (yw0)w0. Similarly, x / y = w0((w0x) ∗ y).
2) Let τ be the inverse map of G. Then (x/y)−1 = y−1.x−1 follows by

applying τ to B−(x / y)B = B−xByB. Similarly, (x∗y)−1 = y−1 ∗x−1.
3) Since y ∈ {u(x . y) : u 6 x−1}, y 6 x−1 ∗ (x . y). If x . y 6 z,

then y 6 x−1 ∗ z by Lemma 4.2. Similarly, z ∈ {u(x−1 ∗ z) : u 6 x},
so x . (x−1 ∗ z) 6 z. If y 6 x−1 ∗ z, then by Lemma 4.2, x . y 6
x . (x−1 ∗ z) 6 z.

Part 4) can be proved in the same way as part 3).
5) By §2.5,

B((x . y) / z)B− = B(x . y)B−zB− = B(x . y)B− B−zB−

= BxByB− B−zB− = BxB ByB− B−zB−

= BxB ByB−zB− = BxB B(y / z)B−

= BxB(y / z)B− = B(x . (y / z))B−.

Thus (x . y) / z = x . (y / z). ¤
Lemma 4.4. For J, J ′ ⊂ Γ, x ∈ W , y ∈ W J and z ∈ JW , one has
x . y ∈ W J , z / x ∈ JW , and

wJ ′
0 . x / wJ

0 = min(WJ ′ xWJ), wJ ′
0 ∗ x ∗ wJ

0 = max(WJ ′ xWJ).

Proof. By Lemma 4.1, x . y = x1y for some x1 6 x and l(x . y) =
l(y) − l(x1). For any u ∈ WJ , l(x−1

1 (x . y)u) = l(yu) = l(y) + l(u) =
l(x−1

1 ) + l(x . y) + l(u). Hence l((x . y)u) = l(x . y) + l(u) for u ∈ WJ

and x1y ∈ W J . Similarly one has z / x ∈ JW . By 2) of Lemma
4.1, wJ ′

0 . x = min{ux; u 6 wJ ′
0 } = min{ux; u ∈ WJ ′} = min(WJ ′x).

Similarly, x / wJ
0 = min(xWJ) ∈ W J . Thus wJ ′

0 . x / wJ
0 ∈ J ′W J . By
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Lemma 4.1 and 5) of Lemma 4.3, wJ ′
0 . x / wJ

0 ∈ WJ ′ xWJ . Thus wJ ′
0 .

x / wJ
0 = min(WJ ′ xWJ). Similarly, wJ ′

0 ∗ x ∗ wJ
0 = max(WJ ′ xWJ). ¤

Combining Lemma 4.4 with 4) of Lemma 4.3, we have the following
consequence.

Lemma 4.5. For any J ⊂ Γ and x, y ∈ W , x 6 max(yWJ) if and only
if min(xWJ) 6 y and x 6 max(WJy) if and only if min(WJx) 6 y.

The following Lemma 4.6 can be found in [4, Corollary 1.2] and [15,
1.2].

Lemma 4.6. For x, y ∈ W , the following conditions are equivalent:
1) BxB ⊂ ByB;
2) B−yB ⊂ B−xB;
3) (B−xB) ∩ (ByB) 6= ∅;
4) B−xB ∩ByB 6= ∅;
5) x 6 y.

The following result is used several times in our paper.

Lemma 4.7. For x, y, u, v ∈ W , the following conditions are equiva-
lent:

1) (BxByB) ∩ (B−uBvB) 6= ∅;
2) BxByB ∩ (B−uBvB) 6= ∅;
3) (BxByB) ∩B−uBvB 6= ∅;
4) BxByB ∩B−uBvB 6= ∅;
5) u / v 6 x ∗ y.
6) u 6 x ∗ y ∗ v−1.

Proof. Clearly 1) implies 2) and 3), 2) or 3) implies 4), 4) implies
5) by Lemma 4.6, and 5) is equivalent to 6) by 4) of Lemma 4.3. It
suffices to show that 5) implies 1).

Suppose that u / v 6 x ∗ y. Then (B(x ∗ y)B)∩ (B−(u / v)B) 6= ∅ by
Lemma 4.6. Since B(x ∗ y)B ⊂ BxByB and B−(u / v)B ⊂ B−uBvB,
we have (BxByB) ∩ (B−uBvB) 6= ∅. Hence 5) implies 1). ¤
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