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The topic of holomorphic isometries of Kähler manifolds with real-analytic Kähler
metrics into complex space forms is a classical one going back to Bochner and Calabi. In
the seminal work of Calabi’s ([Ca], 1953) problems of existence, uniqueness and analytic
continuation of germs of holomorphic isometries were established. They are applicable
even to complex space forms of countably infinite dimensions.

For the purpose of studying holomorphic isometries, Calabi introduced the power-
ful notion of the diastasis on a Kähler manifold (X, g), where g is real-analytic. Fixing
a base point x ∈ X the diastasis δ(x, z) is a special potential function for the Kähler
metric on some neighborhood of x. Regarding holomorphic isometries, among Calabi’s
results of particular relevance to us are those where the target manifold is the complex
projective space PN , 1 ≤ N ≤ ∞, equipped with the Fubini-Study metric ds2

FS , nor-
malized here to be of constant holomorphic sectional curvature equal to 2. For a simply
connected complex manifold X equipped with a real-analytic Kähler metric g, it was
proven in [Ca] that every germ of holomorphic isometry at any base point x0 ∈ X to
(PN , ds2

FS) extends holomorphically and isometrically to X.

Every irreducible Hermitian symmetric manifold (S, h) of the compact type can be
holomorphically and isometrically embedded into (PN , λds2

FS) for some λ > 0, hence
the study of holomorphic isometries into an irreducible Hermitian symmetric manifold
(S, h) reduces in principle to that of holomorphic isometries into finite-dimensional pro-
jective spaces equipped with the Fubini-Study metric; for instance it follows readily
that any germ of holomorphic isometry f : (S1, h1; x1) → (S2, h2; x2) between two
such manifolds is necessarily equivariant, i.e., arising from a group homomorphism
Φ : Aut0(S1, h1) → Aut0(S2, h2). From a geometric perspective, notably from the
duality between Hermitian symmetric manifolds of the noncompact type and those of
the compact type, it is natural to study holomorphic isometries between Hermitian
symmetric manifolds of the noncompact type, which are realized as bounded symmetric
domains with respect to Harish-Chandra realizations. Here the n-dimensional complex
unit ball Bn, equipped with the Bergman metric, is dual to the projective space Pn.
However, by contrast to the case of compact type, Bn does not act as a universal target
space. In fact, by the monotonicity on holomorphic bisectional curvatures for complex
submanifolds, a bounded symmetric domain Ω of rank ≥ 2 cannot be holomorphically
and isometrically embedded into the complex unit ball.

It turns out that for the study of holomorphic isometries into bounded symmetric
domains the universal target space should still be the projective space. More precisely,
a bounded symmetric domain Ω equipped with the Bergman metric ds2

Ω should rather
be regarded as being embedded holomorphically and isometrically into the projective
space P∞ of countably infinite dimensions by means of any choice of an orthonormal
basis of the Hilbert space of square-integrable holomorphic functions H2(Ω). In this
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context one can study more generally germs of holomorphic isometries up to normaliz-
ing constants between any two bounded domains equipped with the Bergman metric.
Since biholomorphisms between bounded domains are holomorphic isometries with re-
spect to the Bergman metric, the study of holomorphic isometries may be regarded as a
non-equidimensional generalization of the study of biholomorphisms. For strictly pseu-
doconvex domains the principal interest is on boundary regularity, and Fefferman’s the-
orem ([Fe, 1974]) on such domains is based on the asymptotic behavior of the Bergman
metric. Here in the non-equidimensional situation we deal with the special case of
bounded domains D b Cn where the Bergman kernel KD(z, w) can be extended real-
analytically to a neighborhood of D×D. The latter property is special, but is satisfied
by bounded symmetric domains in their Harish-Chandra realizations, which have been a
focus of study from the very beginning of our investigation, more generally for complete
bounded circular domains D under a mild condition, and for Siegel domains in their
canonical bounded realizations. The analogous problem on boundary regularity can
be posed for bounded domains D b Cn where the Bergman kernel KD(z, w) extends
smoothly to D ×D, as is satisfied whenever D is a strictly pseudoconvex domain with
smooth boundary (Kerzman [Ker]). A study of the latter problem, which goes beyond
this article, would require additional techniques yet to be developed.

The author’s interest on the study of germs of holomorphic maps between bounded
symmetric domains was first of all prompted by the work of Clozel-Ullmo [CU, 2003]
in Arithmetic Geometry on commutators of modular correspondences on quotients
X := Ω/Γ of an irreducible bounded symmetric domain Ω by torsion-free lattices Γ
of automorphisms. Under certain conditions on the modular correspondence Z they
asked the question whether an algebraic correspondence Y ⊂ X ×X commuting with
Z is necessarily modular in the sense that Y ⊂ X × X is a totally geodesic complex
submanifold which descends from the graph of an automorphism of Ω. The problem is
dynamical in nature. Write pri : Y → Xi for the canonical projection of Y ⊂ X × X

to the i-th factor. Iterating the commutation relation, the characterization problem
on commutators is reduced in [CU] first of all to a differential-geometric problem on
the characterization of germs of measure-preserving holomorphic maps. Here by taking
inverse images with respect to pr2 at a general point x ∈ X, pr−1

2 (x) = {y1, · · · , yd2},
from the algebraic correspondence Y ⊂ X × X we have a germ of holomorphic map
h : (X; x) → (X, y1) × · · · × (X, yd2), which can be identified with a germ of map
f : (Ω; 0) → (Ω; 0)×· · ·×(Ω; 0) by lifting base points to 0 ∈ Ω. Denoting by πα : Ωd2 → Ω
the canonical projection onto the α-th direct factor; 1 ≤ α ≤ d2; and by dµΩ the volume
form of Ω with respect to the Bergman metric, the algebraic correspondence Y ⊂ X×X

is said to be measure-preserving if and only if f?(π?
1dµΩ + · · ·+ π?

d2
dµΩ) = d1 dµΩ.

When Ω is the unit disk ∆ ⊂ C, a germ of measure-preserving holomorphic map
f : (∆; 0) → (∆; 0) × · · · × (∆; 0) is equivalently a germ of holomorphic isometry f :
(∆, d1 ds2

∆; 0) → (∆, ds2
∆; 0)d2 , where ds2

∆ stands for the Bergman metric on ∆. In
this case Clozel-Ullmo [CU] showed that Graph(f) ⊂ C × Cd2 extends to an affine-
algebraic subvariety in C × Cd2 , and argued that f is totally geodesic whenever it
arises from an algebraic correspondence Y ⊂ X ×X owing to the action of the lattice
Γ. When Ω is an irreducible bounded symmetric domain of dimension > 1, Clozel-
Ullmo [CU] did not solve the characterization problem on germs of measure-preserving
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holomorphic maps, but instead reduced the problem of characterizing commutators
of modular correspondences to the characterization problem on germs of holomorphic
isometries f : (Ω, λ ds2

Ω; 0) → (Ω, ds2
Ω; 0) × · · · × (Ω, ds2

Ω; 0), where ds2
Ω stands for the

Bergman metric on Ω, and where a priori the normalizing constant λ is only known to
be a positive real number. While in the case where rank(Ω) ≥ 2 a solution to the latter
problem can readily be derived from the arguments on Hermitian metric rigidity of the
author’s (cf. [Mk1, 1987] and [Mk2, 1989]), in the case of the complex unit ball Bn,
n ≥ 2, the problem remained unsolved in [CU].

This was the state of affairs when the author started to consider general questions
on the geometry of germs of holomorphic maps between bounded symmetric domains
and more generally on bounded domains and even on complex manifolds admitting non-
degenerate Bergman metrics. In this article we survey on recent results on holomorphic
isometries of Mok [Mk4, 6, 7], Ng [Ng1, 2] and Mok-Ng [MN1], and those on measure-
preserving maps of Mok-Ng [MN2]. The starting point of Clozel-Ullmo [CU] was the use
of a real-analytic functional identity on potential functions for a holomorphic isometry
from the Poincaré disk into a product of Poincaré disks. The functional identity is
a special case of Calabi’s functional identity on diastases for holomorphic isometries
between Kähler manifolds equipped with real-analytic Kähler metrics. We essentially
solved the characterization problem on commutators of modular correspondences on the
complex unit ball Bn in ([Mk4, 2002]) by proving first of all an extension theorem on
the graph of a germ of holomorphic map f : (Bn; 0) → (Bn; 0) × · · · × (Bn; 0) arising
from an algebraic correspondence, which is an isometry up to a normalizing constant
with respect to the Bergman metric. We polarize the real-analytic functional identity
to get a family of holomorphic functional identities, and the proof in [Mk4] relies on the
local rigidity of the set of common solutions to holomorphic functional identities and on
Alexander’s theorem on the characterization of automorphisms of Bn, n ≥ 2 by local
properties on the boundary sphere. As in the case of rank(Ω) ≥ 2 the total geodesy
of f follows without any reference to the action of a lattice. In contrast, in the case of
n = 1, we produced in [Mk7, 2009] non-standard holomorphic isometries from the unit
disk into polydisks, showing that in the case of n = 1, contrary to a conjecture of [CU,
Conjecture 2.2], the property of being a holomorphic isometry is not enough to force
total geodesy.

In [Mk7] we consider the general question of extension of a germ of holomorphic
isometry up to a normalizing constant between bounded domains equipped with the
Bergman metric, denoted by f : (D; λ ds2

Dx0) → (Ω, ds2
Ω; y0), showing in general that ex-

tendibility of Graph(f) beyond the boundary can be established whenever the Bergman
kernel KD(z, w) can be extended meromorphically in (z, w) to some neighborhood of
D × D (where D denotes the topological closure of D) and the analogue holds true
for Ω. The same result holds true for a canonically embeddable Bergman manifold X

realized as a bounded domain on a complex manifold M . Denoting by ωX the canonical
line bundle on X and by H2(X,ωX) the Hilbert space of square-integrable holomorphic
n-forms on X, n := dim(X), by the assumption the Bergman metric is non-degenerate
on X and the canonical map ΦX : X ↪→ P(H2(X,ωX)?) is an embedding. For the
extension result beyond the boundary, the key difficulty arises when the set of common
solutions to the holomorphic functional identities arising from polarizing equations on
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diastases fails to be locally rigid. In this case we force analytic continuation beyond the
boundary by imposing additional constraints. These additional constraints arise from
infinitesimal variations of deformations ζ = ft(z) of common solutions of the holomor-
phic functional identities, and they amount to requiring the image of f to lie in the
common zero set of a family of square-integrable holomorphic n-forms. Such functions
are in some sense extremal and they can be derived from the Bergman kernel form, and
as such they extend meromorphically beyond the boundary if the same holds true for
the Bergman kernel form.

In Mok-Ng [MN2] we have now solved the original problem in [CU] about char-
acterizing germs of measure-preserving maps from an irreducible bounded symmetric
domain Ω to a Cartesian product Ω× · · · × Ω. Key ingredients in our proof are exten-
sion results in Several Complex Variables, including the theorem on algebraic extension
due to Huang [Hu] of CR-maps between strongly pseudoconvex algebraic real hyper-
surfaces, Alexander’s theorem on the characterization of automorphisms of the complex
unit ball Bn, n ≥ 2, by its local boundary behavior at a point on the unit sphere, and
Alexander-type results in the case of rank ≥ 2. On top of the well-known result of
Henkin-Tumanov [TK1, 2] concerning the Shilov boundary Sh(Ω), we have also proved
an Alexander-type theorem of independent interest concerning a smooth point of ∂Ω.

In view of the existence of non-standard holomorphic isometries of the Poincaré
disk into certain bounded symmetric domains, a natural outgrowth of our investigation
is to study such holomorphic isometries. Of particular interest is the asymptotic be-
havior of any non-standard holomorphic isometry of the Poincaré disk into a bounded
symmetric domain (equipped with the Bergman metric) which necessarily extends alge-
braically. It turns out that any such holomorphic isometry is necessarily asymptotically
totally geodesic at a general point of the boundary circle. This is in contrast to the
dual case of Hermitian symmetric spaces of the compact type, and shows that in the
case of noncompact type any equivariant holomorphic map between bounded symmet-
ric domains must be totally geodesic. Denoting by σ the second fundamental form of
the holomorphic isometry, it was established in Mok [Mk6] and Mok-Ng [MN1] that
ϕ := ‖σ‖2 must either vanish to the order 1 or 2 at a general boundary point, and that
in the case of holomorphic isometries into the polydisk ϕ must satisfy an additional
differential equation along the boundary. We also show that singularities must develop
somewhere along the boundary circle for a non-standard holomorphic isometry of the
Poincaré disk into the polydisk, and conjecture the same to hold true when the target
space is a bounded symmetric domain. Finally, preliminary results on the classifica-
tion problem of holomorphic isometries of the Poincaré disk into polydisks have been
obtained by Ng [Ng1]. They deal with low dimensions and certain extremal cases in
high dimensions. In the general case the structure of the moduli space of holomorphic
isometries is unknown, and this is a source for formulating questions on the deformation
of holomorphic isometries.

While the circle of problems considered arise originally from characterization prob-
lems on modular correspondences in connection with a problem on dynamics in Arith-
metic Geometry, the study of germs of holomorphic isometries and measure-preserving
maps on bounded symmetric domains and in more general situations has revealed a
rich interplay between techniques from Kähler Geometry and Several Complex Vari-
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ables. In the last section we collect and reformulate natural questions arising from our
study. The general circle of problem dealt with has prompted the author to examine
in a more general context the geometry of holomorphic curves in bounded symmetric
domains, and hopefully this will also serve as an interface for cross-fertilization from
problems and techniques belonging to a number of related areas of research.
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which were the point of departure of our investigation. He would also like to thank Sui-
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part of the sources for the current survey and for carefully reading a first draft of the
article. He wishes to dedicate this article to Professor Shing-Tung Yau on the occasion
of his 60th birthday.

§1 Examples of holomorphic isometries

(1.1) Examples of equivariant embeddings into the projective space On the projective
space P`, ` ≥ 1, equipped with the Fubini-Study metric ds2

P` of constant holomorphic
sectional curvature equal to 2, the Kähler form ωP` is given in terms of the homogeneous
coordinates [ζ0, · · · , ζ`] and the canonical projection π : C`+1 − {0} → P` by π?ωPn =√−1∂∂ log

∑`
k=0 |ζk|2. For integers n,m > 0 and N = (n+1)(m+1)−1 = nm+n+m

consider the Segre embedding σ : Pn × Pm ↪→ PN defined by

σ
(
[z0, · · · , zn], [w0, · · ·w1]

)
=

[(
ziwj

)
0≤i≤m,0≤j≤n

]
.

Denote by α : Pn × Pm → Pn and β : Pn → Pm the canonical projections onto the first
and the second factors. Since

log
( ∑

i,j

|ziwj |2
)

= log
( n∑

i=0

|zi|2
)( m∑

j=0

|wj |2
)

= log
( n∑

i=0

|zi|2
)

+ log
( m∑

j=0

|wj |2
)

.

we deduce readily that
σ?ωPN = α?ωPn + β?ωPm ,

so that the Segre embedding σ :
(
Pm, ds2

Pm

) × (
Pn, ds2

Pn

)
↪→ (

PN , ds2
PN

)
is a holomor-

phic isometry. When m = n, restricting to the diagonal of Pn × Pn we obtain the
Veronese embedding ν :

(
Pn, ds2

Pn) ↪→ (
P`, ds2

P`), where ` = n(n+3)
2 . The latter is a

special case of the the Veronese embeddings νk : Pn ↪→ P`k , k ≥ 2, which are the
equivariant embedding defined by νk([η]) = [η ⊗ · · · ⊗ η], noting that the image of νk

lies in P(SkCn+1). Another standard example of an equivariant isometric embedding is
given by the Plücker embedding. Given a finite-dimensional complex vector space W

and 1 ≤ p ≤ dim(W )− 1 the Plücker embedding on the Grassmann manifold Gr(p,W ),
denoted by τ : Gr(p,W ) ↪→ P(ΛpW ), is defined by setting τ([E]) = [e1 ∧ · · · ∧ ep],
where (e1, · · · , ep) is a basis of the p-dimensional vector subspace E ⊂ W . The exam-
ples discussed are special cases of equivariant holomorphic isometric embeddings into the
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projective space. Let (X, g) and (X ′, g′) be Kähler manifolds. Suppose G := Aut0(X, g)
acts transitively on X and likewise G′ := Aut0(X ′, g′) acts transitively on X ′, a map-
ping F : X → X ′ will be said to be equivariant if and only if there exists a group
homomorphism Φ : G → G′ such that F (γ(z)) = Φ(γ)(z) whenever γ ∈ G. It follows
readily from Calabi [Ca] that for any Hermitian symmetric manifold (X, g) of the com-
pact type, any germ of holomorphic isometry f : (X, g;x0) →

(
PN , ds2

PN ; y0

)
necessarily

extends to an equivariant holomorphic isometric embedding, cf. (2.1).

In the verification that the Segre embedding is a holomorphic isometry we equate
two potential functions for the Kähler forms, after lifting to affine spaces. The same ver-
ification could have been done using inhomogeneous coordinates by checking that local
potential functions for σ?ωPN and for α?ωPm + β?ωPn agree. On P` with homogeneous
coordinates [ζ0, · · · , ζ`] we will write (ζ ′1, · · · , ζ ′`) for inhomogeneous coordinates at the
point [1, 0, · · · , 0] (corresponding to 0 in inhomogeneous coordinates), and the same ap-
plies to [z0, · · · , zm] and [w0, · · · , wn]. We have ωP`

∣∣
C` =

√−1∂∂ log
(
1 +

∑`
k=1 |ζ ′k|2

)
.

Then, the equality on potentials can be reformulated as

log
(

1 +
m∑

i=1

|z′i|2 +
n∑

j=1

|w′j |2 +
m∑

i=1

n∑

j=1

|z′iw′j |2
)

= log
(

1 +
n∑

i=1

|z′i|2
)

+ log
(

1 +
m∑

j=0

|w′j |2
)

.

As will be seen in (2.1), this verification on potential functions is the same as verifying a
functional identity for holomorphic isometries on the diastasis, a notion introduced by
Bochner [Bo, 1947] and Calabi [Ca, 1953], which are in some sense potential functions
in normal form.

Consider irreducible Hermitian symmetric manifolds (X, g) and (X ′, g′) of the
compact type. (X ′, g′) can be holomorphically and isometrically embedded into a
finite-dimensional projective space by some σ : (X ′, g′) → (

PN , µ ds2
PN

)
for some

µ > 0. Hence, given any λ > 0, the study of germs of holomorphic isometries f :
(X,λg;x0) → (X ′, g′; x′0) can in principle be reduced to the study of σ◦f : (X, λg; x0) →(
PN , µ ds2

PN ; σ(x′0)
)
. In place of Hermitian symmetric manifolds of the compact type,

one can pose in the case of dual manifolds the problem of classifying holomorphic isome-
tries between Hermitian symmetric manifolds of the noncompact type. Here the picture
is not really dual to the case of compact type. While the projective space acts as a
universal target space for irreducible Hermitian symmetric spaces of the compact type,
the analogue is not true for the complex unit ball B`. In fact, by the monotonicity
on holomorphic bisectional curvatures, any bounded symmetric domain D cannot be
holomorphically and isometrically immersed in B` unless D is itself of rank 1. Further-
more, any germ of holomorphic isometry from (Bk; 0) into (B`; 0) is necessarily totally
geodesic, by Umehara [Um]. As it turns out, germs of holomorphic isometries between
bounded symmetric domains should still be studied through holomorphic isometries into
the projective space P∞ of countably infinite dimension, as will be explained in (2.3).

(1.2) Non-standard holomorphic isometries of the Poincaré disk into polydisks The
unit disk is conformally equivalent to the upper half-plane, the unbounded realization
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of the unit disk by means of the inverse Cayley transform. For our construction it is
essential to make use of the Euclidean coordinate of the upper half-plane H. For τ ∈ H,
τ = reiθ, where r > 0, 0 < θ < π, and for p ≥ 2 a positive integer, we write τ

1
p = r

1
p e

iθ
p .

Then, we have

Proposition 1.2.1 (Mok [Mk7, Prop.3.2.1]). Let p ≥ 2 be a positive integer. Equip
the upper half-plane H with the Poincaré metric ds2

H = 2Re dτ⊗dτ
2(Imτ)2 of constant Gaussian

curvature −1 and Hp with the product metric. Then, writing γ = e
πi
p , the proper

holomorphic mapping ρp :
(H, ds2

H) → (H, ds2
H)p defined by

ρp(τ) =
(
τ

1
p , γτ

1
p , . . . , γp−1τ

1
p
)
,

called the p-th root map, is a holomorphic isometric embedding.

Write τ = s + it; where s and t are real variables. Then,
√−1∂∂(−2 log t) =√−1dτ∧dτ

2t2 is the Kähler form ωH of ds2
H. Write ωHp for the Kähler form on Hp with

respect to the product metric ds2
Hp . In the simplest case of p = 2, the fact that the

square root map ρ2 is an isometry follows readily from

ρ?
2(ωH2) = −2

√−1∂∂
(

log
(
Im(

√
τ)

)
+ log

(
Im(i

√
τ)

))

= −2
√−1∂∂ log

((
Im(

√
τ)

)(
Im(i

√
τ)

))
,

and from the identity Im(
√

τ)Im(i
√

τ) = 1
2 Im(τ). The general case of Proposition 1.2.1

follows from the trigonometric identity

sin θ sin
(π

p
+ θ

)
· · · sin

( (p− 1)π
p

+ θ
)

= cp sin(pθ)

for some positive constant cp.

A holomorphic map of the form Φ ◦ ρp ◦ ϕ, where ϕ ∈ Aut(∆) and Φ ∈ Aut(∆p)
will be referred to as being congruent to ρp. Composing a map congruent to the p-th
root map with a map congruent to the q-th root acting on an individual factor of ∆p

and iterating the process one obtains families of holomorphic isometries of the Poincaré
disk into polydisks. It is not known whether all holomorphic isometries of the Poincaré
disk into polydisks are generated by the set of p-th root maps in the way described.
Some results on classification in low dimensions and in some extreme cases are obtained
by Ng [Ng1], cf. (3.4).

(1.3) A non-standard holomorphic isometry of the Poincaré disk into a Siegel upper
half-plane In Mok [Mk7] we also constructed an example of a holomorphic isometry
of the Poincaré disk into the Siegel upper half-plane H3 of genus 3, given by

Proposition 1.3.1 (Mok [Mk7, Prop.3.3.1]. For ζ ∈ H, ζ = ρeiϕ, ρ > 0, 0 <

ϕ < π, n a positive integer, we write ζ
1
n := ρ

1
n e

iϕ
n . Then, the holomorphic mapping

G : H → Ms(3,C) defined by

G(τ) =




e
πi
6 τ

2
3

√
2e−

πi
6 τ

1
3 0√

2e−
πi
6 τ

1
3 i 0

0 0 e
πi
3 τ

1
3



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maps H into H3, and G :
(H, 2ds2

H
) → (H3, ds2

H3

)
is a holomorphic isometry.

By considering the boundary behavior of holomorphic isometries of the Poincaré
disk, it can be shown that the image of the holomorphic isometric embedding G : H →
H3 is not contained in any maximal polydisk, cf. (3.3), especially Proposition 3.3.1.

(1.4) Examples of holomorphic isometries with arbitrary normalizing constants λ > 1
Examples of holomorphic isometric embeddings F : D → Ω up to normalizing constants
with respect to the Bergman metric are given by holomorphic totally geodesic isometric
embeddings between bounded symmetric domains, where D is assumed to be irreducible.
For such holomorphic embeddings, which have been classified by Satake [Sa1] and Ihara
[Ih], the normalizing constants are necessarily rational numbers λ ≥ 1.

Let D b Cn be an irreducible bounded symmetric domain in its Harish-Chandra
realization. For any real number α > 0 we have constructed in Mok [Mk7] a totally
geodesic holomorphic embedding F : D → Ω from D into a bounded domain Ωα b Cn+1

such that F : (D, (1 + α)ds2
D) → (Ωα, ds2

Ωα
) is a holomorphic isometry. Ωα ⊂ D ×∆ b

CN are bounded domains on which the Bergman metric is complete and they are realized
as disk bundles on D homogeneous under a natural action of Aut(D).

More precisely, denote by π : L → D the anti-canonical line bundle on D, which is
equipped with the Hermitian metric h induced by the Bergman kernel, and identify L

with D×C in the obvious way using the Harish-Chandra coordinates on D. The action
of the automorphism group Aut(D) on D induces an action on L. Thus, given any
z ∈ D and γ ∈ Aut(D) we have γ∗

(
∂

∂z1
∧· · ·∧ ∂

∂zn

)
(z) = det(dγ(z)) · ∂

∂z1
∧· · ·∧ ∂

∂zn
, and

the action of Aut(D) on L is given by Φ(γ)(z, t) = (γ(z), det(dγ(z)) · t). We write e for
the holomorphic section of π : L → D corresponding to (z, 1), and define h0 := h(e, e).
Let Ω ⊂ L be the unit disk bundle, i.e., the open subset of all n-vectors η of length
< 1 with respect to h. Let now α > 0 be a real number, and define Lα := D × C set-
theoretically to be the same as L, but regard πα : Lα → D as being equipped with the
Hermitian metric hα, such that, writing eα for the holomorphic section of πα : Lα → D

corresponding to (z, 1), we have hα(eα, eα) = (h0)α. Let Ωα ⊂ Lα be the unit disk
bundle with respect to hα, Ωα b Cn+1, noting that L = L1 and Ω1 = Ω. With this
set-up we have

Proposition 1.4.1 (Mok [Mk7, Proposition 3.1.2]. Let α be a positive real num-
ber and F : D → Ωα be the embedding given by F (z) = (z, 0). Then, F : (D,λds2

D) →
(Ωα, ds2

Ωα
) is a totally geodesic holomorphic isometric embedding for λ = 1 + α. Fur-

thermore, (D, ds2
D) and (Ωα, ds2

Ωα
) are complete Kähler manifolds.

We will explain here only the verification that F : (D, (1 + α)ds2
D) → (Ωα, ds2

Ωα
)

is a holomorphic isometry. Since D is simply connected, a holomorphic logarithm
log

(
det(dγ(z))

)
can be defined, and ϕ(z, η) :=

(
γ(z), exp (αlog (det(dγ(z))) η

)
defines

an automorphism of πα : Lα → D as a holomorphic line bundle which preserves the
Hermitian metric hα. Identifying D as the zero section of πα : Lα → D, D ⊂ Lα is
homogeneous under the action of the automorphism group Aut(Ωα). In particular, the
restriction of the Bergman kernel KΩα to D can be computed from a single point. For
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z ∈ D, let γ ∈ Aut(D) be such that γ(0) = z. Then,

KΩα
((z, 0), (z, 0)) =

∣∣det(dγ(0))
∣∣−2(1+α)

KΩα
(0, 0) ;

KD(z, z) =
∣∣det(dγ(0))

∣∣−2
KD(0, 0) .

Hence, for some positive constant cα we have

KΩα
((z, 0), (z, 0)) = cα ·KD(z, z)1+α .

Taking logarithms and applying ∂∂ we conclude that F ?ωΩα
= (1+α)ωD for the Kähler

form ωD of (D, ds2
D) and the Kähler form ωΩα

of (Ω, ds2
Ωα

), hence F ?ds2
Ωα

= (1+α)ds2
D.

As an example of Ωα, the (n + 1)-ball Bn+1 b Cn+1 can be regarded as the unit
disk bundle of L

1
n+1 over Bn b Cn.

§2 Analytic continuation of germs of holomorphic isometries

(2.1) Analytic continuation of holomorphic isometries into the projective space equipped
with the Fubini-Study metric Let G ⊂ Cn be a Euclidean domain equipped with a
Kähler metric g with Kähler form ωg. If G is Stein and H2(G,R) = 0, there exists a
smooth function ϕ on G such that

√−1∂∂ϕ = ωg. In what follows we assume that g is
real-analytic, in which case ϕ is necessarily real-analytic. In general for any real-analytic
function ϕ on a Euclidean domain G there exists a function Φ(z, w) defined on some
neighborhood of the diagonal of G×G which is holomorphic in z and anti-holomorphic
in w such that ϕ(z) = Φ(z, z). If 0 ∈ G and ϕ(z) =

∑
aIJzIzJ in a neighborhood of

0, then Φ(z, w) =
∑

aIJzIwJ . Here the summations are performed over multi-indexes
I = (i1, · · · , in) and J = (j1, · · · , jn) of nonnegative integers.

Returning to our situation of real-analytic potential functions ϕ for real-analytic
Kähler metrics g, the functions ϕ are uniquely determined only up to a pluriharmonic
function. Assume in what follows also H1(G,R) = 0. If ψ also solves

√−1∂∂ψ = ωg

on G, then ψ = ϕ + h + h for some holomorphic function h on G. In Calabi [Ca,
1953], following Bochner [Bo, 1947], the diastasis δG(x, y) on (G, ds2

G) is defined by
δG(x, y) = Φ(x, x) − Φ(x, y) − Φ(y, x) + Φ(y, y). If we replace ϕ by ψ = ϕ + 2Re(h),
then Φ is replaced by Ψ = Φ + H where H(x, y) = h(x) + h(y). If we tentatively
denote by δ′G(x, y) the function analogous to δG(x, y) defined using ψ in place of ϕ,
then, substituting H(x, y) = h(x) + h(y), we have obviously δ′G(x, y) − δG(x, y) =
H(x, x)−H(x, y)−H(y, x) + H(y, y) = 0, showing that δ′G(x, y) = δG(x, y) and hence
that the diastasis is well-defined independent of the choice of potential function ϕ. It
follows that given any Kähler manifold (X, g) with a real-analytic metric (X, g), we
have a well-defined diastasis δX(x, y) defined on a neighborhood U of the diagonal of
X ×X. Actually, δX resembles the square of the distance function dX(x, y) on (X, g).
For an open subset V b X and for a neighborhood V of diag(V × V ) such that V b U
we have δX(x, y) = dX(x, y)2 +O

(
dX(x, y)4

)
for (x, y) ∈ V, cf. Calabi [Ca, Proposition

4].

The diastasis is especially suited for the study of holomorphic isometries between
complex manifolds endowed with real-analytic Kähler metrics. Suppose (X, g) and
(Y, h) are two such manifolds, x0 ∈ X, y0 ∈ Y and f : (X, g;x0) → (Y, h; y0) is a germ
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of holomorphic isometry. Then, by pulling back potential functions it follows from the
definition of the diastasis that we have δY (f(x1), f(x2)) = δX(x1, x2) for x1 and x2

sufficiently close to the base point x0.

Given x0 ∈ X, and a local potential ϕ of the real-analytic Kähler metric g on a
neighborhood of x0, let ϕ(z) =

∑
aIJzIzJ be the Taylor expansion of ϕ at x0 in terms

of local holomorphic coordinates (z1, · · · , zn), with respect to which x0 corresponds to
the origin, on a neighborhood of x0. Then, δX(z, x0) is the potential function ϕ′(z) =∑

I,J 6=0 aIJzIzJ . We may call ϕ′ the normal form of the potential function of (X, g) at
x0. In the Taylor expansion in (z, z), a term is called a pure term if it is a constant, or if
it is attached to either zI or zJ , otherwise it is called a mixed term. From the definition
of the diastasis it follows that δX(z, x0) is the unique germ of potential function at x0

whose Taylor expansion at x0 consists solely of mixed terms, i.e., it is devoid of pure
terms. As an example, the potential function ϕ(z) = log

(
1 + ‖z‖2) at 0 ∈ CN for the

Fubini-Study metric ds2
FS of constant holomorphic sectional curvature equal to 2 on PN

is such a function, so that it equals to δPN (z, 0) with respect to ds2
FS , and the verification

in (1.1) that the Segre embedding σ : Pn × Pm → Pnm+n+m is a holomorphic isometry
up to a normalizing constant is in fact the verification that δY (f(z), 0) = δX(z, 0), a
condition which is, as we have seen, not only sufficient but also necessary for f to be
a holomorphic isometry. A sufficient condition for a potential function ϕ to be in the
normal form at x0 ∈ X is to have ϕ =

∑
k ±|fk|2 as a convergent sum, where each fk is

a holomorphic function vanishing at x0. In particular, by Taylor expansion this is the
case for ϕ = log

(
1 +

∑
k |hk|2

)
where each hk is a holomorphic function vanishing at

x0 ∈ X and the infinite sum is convergent. As an example, this is the case at 0 for the
Bergman metric ds2

D on a bounded symmetric domain D b Cn in its Harish-Chandra
realization, and more generally when D is a complete bounded circular domain, cf.
(2.3).

Let b ∈ R, 1 ≤ N ≤ ∞, and F (N, b) be the Fubini-Study space of constant
holomorphic sectional curvature 2b according to Calabi [Ca, Chapter 4]. Given a Kähler
manifold (X, g) with a real-analytic metric g, the local and global existence problem
of holomorphic isometries from (X, g) into F (N, b) is solved in [Ca, Theorems 8-11] in
terms of the notion of b-resolvability. In what follows we consider only the case b > 0.
In this case F (N, b) is the projective space PN equipped with the Fubini-Study metric of
constant holomorphic sectional curvature 2b, where by P∞ we mean the projectivization
of the Hilbert space of countably infinite dimension. In a nutshell, given x0 ∈ X it
is proven in [Ca, Theorem 8] that the existence of a germ of holomorphic isometry
f : (X, g; x0) →

(
PN , 1

b ds2
FS ; y0

)
, where y0 ∈ PN is arbitrary, is equivalent to the

statement that the real-analytic Kähler metric g is b-resolvable of rank N , a condition
which is defined in terms of coefficients of the Taylor expansions of the diastasis. This
condition is then proved to be global in nature, i.e., the condition is valid at every base
point x ∈ X if and only if it is valid at one base point x0 ∈ X, by [Ca, Theorem 10].
Thus, the existence of a germ of holomorphic isometry f : (X, g;x0) →

(
PN , 1

b ds2
FS ; y0

)

implies the same when x0 is replaced by any base point x ∈ X. Furthermore, in [Ca,
Theorem 9] a local rigidity theorem for holomorphic isometric embeddings is proved
to the effect that, assuming that the image of the germ of map f above in PN is not
contained in any proper closed linear subspace, then f is uniquely determined up to a
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unitary transformation. The latter uniqueness result modulo unitary transformations
can then be used to find a global holomorphic isometry by means of the developing map,
assuming that there is no topological obstruction, e.g., when X is simply connected,
yielding

Theorem 2.1.1 (Calabi [Ca, Theorem 11]). Let (X, g) be a simply connected com-
plex manifold equipped with a real-analytic Kähler metric. Let b > 0, 1 ≤ N ≤ ∞, and
f : (X, g;x0) →

(
PN , 1

b ds2
FS ; y0

)
be a germ of holomorphic isometry. Then, f admits

an extension to a holomorphic isometry F : (X, g) → (
PN , 1

b ds2
FS

)
.

In the proof we note that, replacing PN by the topological closure of the projective-
linear span of f(U) for an open neighborhood U of x0 in X on which the germ of map f

is defined, without loss of generality we may assume that the image of f is not contained
in any proper closed linear subspace, so that results on local rigidity can be applied.

As we will be discussing in this article extension results on germs of holomor-
phic isometries up to normalizing constants between bounded domains equipped with
the Bergman metric, Theorem 2.1.1 becomes relevant. In fact, for any bounded Eu-
clidean domain G b Cn, there is a canonical embedding ΦG : G ↪→ P(H2(G)?)
which can be defined in terms of any choice of orthonormal basis (hi)

∞
i=0 by ΦG(z) =

[h0(z), · · · , hk(z), · · · ], and the Bergman metric ds2
G on G is the pull-back of ds2

FS by
ΦG. Thus, in the case where we have a germ f : (D, λ ds2

D; x0) → (Ω, ds2
Ω; y0) of holo-

morphic isometry between bounded domains equipped with Bergman metric up to the
normalizing constant λ > 0, we have by composition with the canonical embedding a
germ of holomorphic isometry ΦΩ ◦ f : (D, ds2

D; x0) →
(
P(H2(Ω)?), 1

λ ds2
FS ; ΦΩ(y0)

)
.

Results about holomorphic isometries into P∞ then becomes relevant for the study
of germs of holomorphic isometries up to a normalizing constant with respect to the
Bergman metric. Actually, we can apply the following precise result.

Theorem 2.1.2 (Calabi [Ca, Theorem 12]). Let (X, g) be a complex manifold
equipped with a real-analytic Kähler metric. Let b > 0, 1 ≤ N ≤ ∞, and ϕ : (X, g; x0) →(
PN , 1

b ds2
FS ; y0

)
be a germ of holomorphic isometry. Suppose for each x ∈ X, the

maximal analytic extension of the diastasis δX(x, y) is single-valued. Then, f admits
an extension to a holomorphic isometry Φ : (X, g) → (

PN , 1
b ds2

FS

)
. Furthermore, as-

suming that δX(x, y) = 0 if and only if x = y, then F is injective. In other words, F is
a holomorphic isometric embedding.

The application of Theorem 2.1.2 to the study of extension results concerning the
Bergman metric will be discussed in the first paragraphs of (2.3).

(2.2) An extension and rigidity problem arising from commutators of modular corre-
spondences We will now be dealing with bounded symmetric domains in their Harish-
Chandra realizations and more generally bounded domains for which the boundary
behavior of Bergman kernels satisfies a certain regularity property. Here and in what
follows for a bounded domain G b Cn we denote by KG(z, w) its Bergman kernel, and
by ds2

G the Bergman metric on G.

For the author the original motivation for studying germs of holomorphic isometries
and also measure-preserving maps between bounded symmetric domains stems from the
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questions raised in Clozel-Ullmo [CU] concerning a problem on dynamics in Arithmetic
Geometry. To formulate it, let Ω b CN be a bounded symmetric domain in its Harish-
Chandra realization, and Γ ⊂ Aut(Ω) be a torsion-free lattice, so that, endowing X :=
Ω/Γ with the Kähler metric g induced from the Bergman metric ds2

Ω on Ω, which is
invariant under automorphisms, we have a complete Kähler metric (X, ds2

X) of finite
volume. Thus, X is either compact, in which case it is projective-algebraic, or it is non-
compact and of finite volume, in which case it admits a minimal projective-algebraic
compactification Xmin according to Satake-Borel-Baily ([Sa1], [BB]) in the arithmetic
case and Siu-Yau [SY] in the rank-1 non-arithmetic case, such that X ⊂ Xmin is a
Zariski-open subset. In what follows by a correspondence on X, dim(X) = n, in the
projective case we mean a pure n-dimensional subvariety Y ⊂ X × X in which the
canonical projection of each irreducible component of Y to either direct factor of X×X

is of maximal rank at a general smooth point. In the general quasi-projective case we
will impose the condition that the canonical projections are proper maps.

Let g ∈ Aut(Ω) be such that Γ and g−1Γg are commensurable, in other words∣∣[Γ : Γ ∩ g−1Γg]
∣∣ < ∞. Define now ig : Ω → Ω × Ω by ig(τ) = (τ, g · τ). Passing to

quotients we have ig : Ω/Γg → X ×X. The subvariety ig(Ω/Γg) ⊂ X ×X := Yg is an
algebraic correspondence, to be called an irreducible modular correspondence (Hecke
correspondence). Given an algebraic correspondence Y ⊂ X×X, for i = 1, 2 we denote
by πi : Y → X the canonical projection onto the i-th direct factor of X × X. A
correspondence TY in the form of an operator is defined on X by TY · x = π2(π−1

1 (x)),
and its adjoint is given by T ?

Y · x = π1(π−1
2 (x)), TY and likewise T ?

Y defining thereby
operators on spaces of functions. In the case of Y = Yg, Tg := TYg is also referred to
as the Hecke correspondence. A Hecke correspondence Tg on Ω is said to be interior if
the subgroup 〈Γ, g〉 ⊂ Aut(Ω) generated by Γ and g is discrete. Otherwise it is said to
be exterior . In [CU], Clozel-Ullmo posed the following problem.

Problem 2.2.1. Let T =
∑
i

(Tgi +Tg−1
i

) be a self-adjoint modular correspondence such

that at least one of the Tgi is exterior. (We will say that T is exterior.) Let S be an
algebraic correspondence on X which commutes with T . Is S necessarily modular?

Clozel-Ullmo [CU] rendered the problem interesting from the perspective of Com-
plex Geometry by reducing it to a local differential-geometric problem of characterizing
measure-preserving germs of holomorphic maps f : (Ω; 0) → (Ω × · · · × Ω; 0), meaning
that the Bergman volume form dµΩ on Ω is up to an integral constant the pull-back by f

of the sum of the pull-backs of Bergman volume forms dµΩα from the individual Carte-
sian factors Ωα of Ω× · · · ×Ω by the canonical projection maps πα : Ω× · · · ×Ω → Ωα.
Moreover, in [CU] the latter problem is further reduced to the question of characterizing
germs of holomorphic isometries up to normalizing constants f : (Ω; 0) → (Ω×· · ·×Ω; 0)
with respect to the Bergman metric, in which the normalizing constants are a priori
only known to be positive real numbers λ. They proved

Theorem 2.2.1 (Clozel-Ullmo ([CU, 2003]). Let Ω b CN be an irreducible bounded
symmetric domain Γ ⊂ Aut(Ω) be a torsion-free lattice, X := Ω/Γ. Let T be a self-
adjoint exterior modular correspondence. Let S be an algebraic correspondence on X

which commutes with T . Then S is necessarily modular provided that either (a) Ω is
the unit disk ∆; or (b) Ω is of rank ≥ 2.
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After the reduction of the problem of characterizing commutators of the modular
correspondences considered to that of characterizing germs of holomorphic isometries
f : (Ω, λ dsΩ; 0) → (Ω, dsΩ; 0)p up to normalizing constants, the proof of (b) follows
from the work of Mok ([Mk1, 1987] and [Mk2, 1989]) on Hermitian metric rigidity. As
to the case of (a) Clozel-Ullmo made use of real-analytic functional identities which
arise from a special case of the identity on diastases of Calabi [Ca] for holomorphic
isometries. A primary difficulty of the problem is to prove algebraic extension of the
germ of variety Graph(f) ⊂ ∆ × ∆p, i.e., to prove that Graph(f) is contained in an
irreducible affine-algebraic curve V ⊂ C×Cp. In Mok [Mk4, 2002] the author made use
of holomorphic functional identities arising from polarizing the real-analytic functional
identity to give a proof which generalizes readily to the remaining case of the complex
unit ball Bn, n ≥ 2, as follows.

Theorem 2.2.2 (Mok [Mk4]). Let p and q be positive integers. Let f :
(
Bn, q ds2

Bn ; 0
)

→ (
(Bn)p, ds2

(Bn)p ; 0
)

be a germ of holomorphic isometry, f = (f1, · · · , fp). Assume
that each component fk : (Bn; 0) → (Bn; 0); 1 ≤ k ≤ p ; is of maximal rank at some
point. Then, q = p and f extends to a totally-geodesic embedding F : (Bn, p ds2

Bn) →(
(Bn)p, ds2

(Bn)p

)
.

Sketch of Proof. For r > 0 we denote by Bn
r the complex Euclidean n-ball centred at 0

and of radius r. In what follows we identify the germ of map f as a holomorphic map
defined on Bn

ε for some sufficiently small ε > 0. Following Clozel-Ullmo [CU] in the
case of n = 1, we have from the hypothesis

−√−1∂∂ log
p∑

k=1

(
1− ‖fk‖2) = −q

√−1∂∂ log
(
1− ‖z‖2) ;

−
p∑

k=1

log
(
1− ‖fk‖2) = −q log

(
1− ‖z‖2) + Re h

for some holomorphic function h. Since f(0) = 0, by comparing Taylor coefficients it
follows that h ≡ 0. Thus

p∑

k=1

log
(
1− ‖fk‖2) = q log

(
1− ‖z‖2) ;

p∏

k=1

(
1− ‖fk‖2) =

(
1− ‖z‖2)q

.

We introduce now holomorphic functional identities by polarization, viz.

−
p∑

k=1

log
(
1−

n∑

j=1

fk
j (w)fk

j (z)
)

= −q log
(
1−

n∑

i=1

wizi

)
.

Let V0 ⊂ Cn × Cpn be the germ of graph of f at 0. Then we have

Proposition 2.2.1 (Mok [Mk4]). With the same assumptions as in Theorem 2.2.1,
except that n ≥ 1 is an arbitrary positive integer, let V0 ⊂ Cn × (Cn)p be the germ of
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graph of f at 0. Then, there exists an irreducible n-dimensional affine-algebraic variety
V ⊂ Cn × (Cn)p extending V0.

We will give a proof of Proposition 2.2.1 for the case of n = 1. The general case
follows with minor modifications, and we refer the reader to the original article Mok
[Mk4] for details.

Proof for the case n = 1. For z, w ∈ B1
ε . Let (z; ζ1, . . . , ζp) be a point on the germ of

graph V0 of f at 0. Then, for each w ∈ B1
ε , (z; ζ1, . . . , ζp) satisfies

(†)
p∏

k=1

(1− fk(w)ζk) = (1− wz)q .

Let Sw be the affine-algebraic hypersurface in C1 ×Cp, with coordinates (z; ζ), defined
by (†) with w fixed, w ∈ B1

ε . We have V0 ⊂
⋂

w∈B1
ε

Sw := S. The germ of V0 at 0 agrees

with an irreducible branch of the germ of S at 0, if we can show that S is of dimension
1 at 0. This is the case if the fiber of the projection π : S → C1 into the first factor of
C1 × Cp has finite fibers over any z ∈ B1

ε .

It suffices to find a uniform a-priori bound on ‖ζ‖ for all points (z; ζ) ∈ S, |z| < ε.
Starting with (†), and expanding fk(w) in power series

fk(w) = ak
1w + ak

2w2 + ak
3w3 + · · · ,

where ak
1 6= 0 for 1 ≤ k ≤ p, we have

p∏

k=1

(1− fk(w)ζk) =
p∏

k=1

(
1−

( ∞∑
m=1

ak
m wm

)
ζk

)

= 1− w(a1
1ζ

1 + · · ·+ ap
1ζ

p) + w2
( ∑

k<`

ak
1a`

1ζ
kζ` −

∑

k

ak
2ζk

)
− · · · .

Generally,
p∏

k=1

(1− fk(w)ζk
)

= 1 +
∞∑

m=1

(−1)mτm(ζ1, . . . , ζp)wm ,

where
τm(ζ) = σm(η) + Pm−1(η) ,

in which η = (η1, · · · , ηp), ηk = ak
1ζk, σm is the m-th symmetric polynomial, and

Pm−1(η) is a polynomial in η = (η1, . . . , ηp) of total degree ≤ m − 1. For (z; ζ) ∈ V0,
we have from (†) {

τm(ζ) = q!
m!(q−m)!z

m for 1 ≤ m ≤ q

τm(ζ) = 0 for m ≥ q + 1.

This implies readily that for z ∈ B1
ε , we have

‖ζ‖ ≤ C .
14



It follows that for S =
⋂

w∈B1
ε

Sw, the fibers of the projection S ⊂ C1 × Cp → C1 are

finite for z ∈ B1
ε , dim(S) = 1. The irreducible component V of S, which contains

V0 = Graph(f), gives the desired extension of V0 as an affine-algebraic variety. ¤

Proof of Theorem 2.2.2 continued. The proof of algebraic extension of Graph(f) gener-
alized readily. We have

p∏

k=1

(1− ‖fk‖2) = (1− ‖z‖2)q ,

which implies that at least for some k, at a good boundary point b ∈ ∂Bn, fk can be
regarded as a local holomorphic map preserving the boundary. By a result of Alexan-
der stated below, fk extends to a biholomorphism. Removing the factor fk from the
functional identity above, by induction we have established Theorem 2.2.1. ¤

The result of Alexander’s referred to in the above concerns the characterization of
of automorphisms of the complex unit ball Bn, n ≥ 2, by their boundary behavior, as
follows.

Theorem 2.2.3 (Alexander [Al]). Let Bn b Cn be the complex unit ball of dimension
n ≥ 2. Let b ∈ ∂Bn, Ub be a connected open neighborhood of b in Cn, and f : Ub → Cn

be a nonconstant holomorphic map such that f(Ub ∩ ∂Bn) ⊂ ∂Bn. Then, there exists
an automorphism F : Bn → Bn such that F |Ub∩Bn ≡ f |Ub∩Bn .

A minor modification of the proof of Theorem 2.2.1 yields the same result with the
integral constant q replaced by an arbitrary real constant λ > 0. As a consequence,
combining with the result Theorem 2.2.1 here from Clozel-Ullmo [CU] we have

Corollary 2.2.1. Let Z ⊂ X × X be a self-adjoint exterior irreducible modular cor-
respondence on X = Ω/Γ. Suppose Y ⊂ X × X is an algebraic correspondence which
commutes with Z. Then, Y is necessarily a modular correspondence.

(2.3) Analytic continuation of holomorphic isometries up to normalizing constants with
respect to the Bergman metric – extension beyond the boundary Let D b Cn and
Ω b CN be bounded domains, and λ > 0 be a real constant. We are interested to prove
extension theorems for holomorphic isometries f : (D, λ ds2

D; x0) → (Ω, ds2
Ω; y0) up to

normalizing constants with respect to the Bergman metric. Extension results concerning
the analytic continuation of f as a germ to D (or a maximal open subset of D) will
be called interior extension results. Those that concern the analytic continuation of f

beyond ∂D under certain assumptions on the Bergman kernels of D and Ω will be called
boundary extension results.

Theorem 2.1.2 from Calabi [Ca] is applicable to give interior extension results, as
follows. Recall that we have a canonical holomorphic embedding ΦΩ : Ω → P(H2(Ω)?).
Choosing any orthonormal basis

(
hi

)∞
i=0

of H2(Ω), ΦΩ : Ω → P∞ ∼= P(H2(Ω)?)
is given by ΦΩ(ζ) = [h0(ζ), · · · , hi(ζ), · · · ]. The mapping ΦΩ ◦ f : (D, ds2

D;x0) →(
P(H2(Ω)?), 1

λ ds2
FS ; ΦΩ(y0)

)
is a holomorphic isometry into a projective space of count-

ably infinite dimension equipped with the Fubini-Study metric. Let P(Λ) ⊂ P(H2(Ω)?)
be the topological projective-linear span of the image of ΦΩ ◦ f , Λ ⊂ H2(Ω)? being a
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Hilbert subspace. By the Identity Theorem on holomorphic functions the Hilbert sub-
space Λ is independent of the choice of representative of the germ of holomorphic map,
i.e., independent of the choice of open neighborhood U of 0 on which f is taken to be
defined. If D is simply connected, by Theorem 2.1.1, ΦΩ ◦f extends into a holomorphic
isometry Ψ : D → P(Λ). Analytic continuation of ΦΩ ◦ f implies analytic continuation
of Graph(f) to a complex-analytic subvariety of D × Ω. If (Ω, ds2

Ω) is complete as a
Kähler manifold, it is easy to see that Ψ(D) ⊂ ΦΩ(Ω) and we derive the existence of a
holomorphic isometry F : (D,λ ds2

D) → (Ω, ds2
Ω) which extends the germ of map f . We

argue using Theorem 2.1.2 that the same holds true without assuming that D is simply
connected. By Theorem 2.1.2 to prove the extendibility of ΦΩ ◦ f it suffices to check
the univalence of δD(x, y) as a function of y whenever a base point x ∈ D is fixed. Now
on the bounded domain D the diastasis is given by

δD(x, y) = log
KD(x, x)KD(y, y)
KD(x, y)KD(y, x)

.

Thus, fixing x ∈ D, δD(x, y) is a single-valued function defined on all of D, as desired.
Theorem 2.1.2 implies furthermore that F is injective, i.e., F is a holomorphic isometric
embedding. To see this, δD(x, y) = 0 if and only if |KD(x, y)|2 = KD(x, x)KD(y, y).
Choosing any orthonormal basis (si)

∞
i=0 of H2(D) we have KD(x, y) =

∑
si(x)si(y), and

it follows from the Cauchy-Schwarz inequality that |KD(x, y)|2 ≤ KD(x, x)KD(y, y),
with equality if and only if

(
s0(x), · · · , si(x), · · · ) and

(
s0(y), · · · , si(y), · · · ) are pro-

portional to each other, equivalently if and only if there exists some non-zero α ∈ C
such that s(y) = αs(x) for any s ∈ H2(D). By considering s = zk, 1 ≤ k ≤ n, it follows
readily that equality holds if and only if x = y. By Theorem 2.1.2, Ψ : D → P(H2(Ω)?)
must necessarily be a holomorphic isometric embedding, hence F : D → Ω is a holo-
morphic isometric embedding.

In Mok [Mk7] we adopt a direct approach to prove extension results for germs
of holomorphic isometries f : (D, λ ds2

D; x0) → (Ω, ds2
Ω; y0) by directly working with

the functional equations. We give a self-contained proof for interior extension results
without resorting to Theorem 2.1.2 from [Ca], thus without resorting to local existence
results on holomorphic isometries (using b-resolvability). Our proof can be adapted to
give boundary extension results whenever KD(z, w) can be extended holomorphically
in z and anti-holomorphically in w from D × D to neighborhood of D × D, and the
analogous statement holds true for Ω. For simplicity we assume first of all that D and
Ω are complete circular domains and f : (D; 0) → (Ω; 0). The latter covers the case of
bounded symmetric domains, which are at the centre of our investigation.

Let G ⊂ Cn be a bounded complete circular domain. Because of the invariance of
the Bergman kernel KG under the circle group action, i.e., KG(eiθz, eiθw)) = KG(z, w)
for θ ∈ R, it follows that KG(z, 0) is a constant. Denoting by δG(z, z) the diastasis
on (G, ds2

G) and by ∆0(z, w) the polarization of the real-analytic function δG(z, 0). we
have

δG(z, 0) = log KG(z, z)− log KG(z, 0)− log KG(0, z) + log KG(0, 0)

= log KG(z, z)− log KG(0, 0) ;

∆0(z, w) = log KG(z, w)− log KG(0, 0) .
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From the functional identity on diastases for holomorphic isometries we obtain

Proposition 2.3.1 (Mok [Mk7, Prop.1.1.1]). Let D b Cn and Ω b CN be bounded
complete circular domains. Let λ be any positive real number and f : (D,λ ds2

D; 0) →
(Ω, ds2

Ω; 0) be a germ of holomorphic isometry at 0 ∈ D, f(0) = 0. Then, there exists
some real number A > 0 such that for z, w ∈ D sufficiently close to 0 we have

KΩ(f(z), f(z)) = A ·KD(z, z)λ; and hence

KΩ(f(z), f(w)) = A ·KD(z, w)λ; where

KD(z, w)λ = Aeλ log KD(z,w) ,

in which log denotes the principal branch of logarithm.

Proposition 2.3.2 (Mok [Mk7, Prop.1.1.2]). In the notations of Proposition 2.3.1,
for each w ∈ Dε, let Vw ⊂ D × CN be the set of all (z, ζ) ∈ D × Ω such that

(Iw) KΩ

(
ζ, f(w)

)
= A ·KD

(
z, w

)λ
.

Define V =
⋂

w∈Dε

Vw. Suppose for z ∈ D, dim(z,f(z))

(
V ∩ ({z}×CN )

) ≥ 1. Then, there

exists a family of holomorphic functions hα ∈ H2(Ω), α ∈ A, such that

Graph(f) ⊂ Dε × E , where E :=
⋂

α∈A

Zero(hα) ,

and such that dim(z,f(z))

(
V ∩ ({z} × E)

)
= 0 for a general point z ∈ Dε.

Abstractly, if we consider the Hilbert subspace Λ ⊂ H2(Ω)? such that P(Λ) is the
topological projective-linear span of the image of ΦΩ ◦ f , then Proposition 2.3.2 holds
true if we take hα, α ∈ A, to consist of all elements lying in the annihilator J ⊂ H2(Ω) of
Λ ⊂ H2(Ω)?. But such an abstract proof will be useless for the purpose of proving results
on analytic continuation beyond the boundary. The meaning of Proposition 2.3.2 lies
therefore not in its statement but rather its proof, in which the functions hα ∈ H2(Ω) can
be described in terms of the Bergman kernel KΩ. In fact, it is in general not necessary
to cut down on P(H2(Ω)?) to P(Λ). For instance, in the proof of Theorem 2.1.1 for the
case of f : (Bn, q ds2

Bn ; 0) → (Bn, ds2
Bn ; 0)p, f = (f1, · · · , fn), where each component

fk is of maximal rank at some point, it was shown that the canonical projection of V ⊂
Bn×(Cn)p to Bn has discrete fibers over a general point of Bn, and hence it is no longer
necessary to cut down P(H2(Ω)?) any further by a family of linear sections consisting of
square-integrable holomorphic functions, even though Λ 6= H2(Ω)?. In the case where
V has discrete fibers over a general point of D, we say that the holomorphic functional
identities (Iw) are sufficiently non-degenerate. The difficulty of proving Proposition
2.3.2 is to consider the case where the fibers are of positive dimension, in which case
we find the functions hα, α ∈ A, by studying infinitesimal deformations of simultaneous
solutions of the holomorphic functional identities (Iw).

In the latter case there exists a complex-analytic 1-parameter family of solutions of
the functional identities valid for z belonging to some non-empty open subset U of Dε

(]) KΩ(ft(z), f(w)) = KD(z, w)λ
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such that f0(z) = f(z). Assume that ∂k

∂tk ft(z)
∣∣
t=0

≡ 0 for k < ` and η(z) := ∂`

∂t` ft(z)
∣∣
t=0

6≡ 0. Let (hn)∞n=0 be an orthonormal basis of H2(Ω). We have

KΩ

(
ft(z), f(w)

)
=

∑
hn(ft(z))hn(f(w)) = KD(z, w)λ

for every t. As a consequence,

∂`

∂t`
KΩ(ft(z), f(w))

∣∣∣∣
t=0

≡ 0 ; hence

∑

i,n

∂hn

∂ζi

∂`f i
t

∂t`
(z)

∣∣∣∣
t=0

hn(f(w)) ≡ 0 .

Equivalently, we have proved the identity

([)
∑

n

dhn(η(z))hn(f(w)) = 0 .

Let Φ0 : Ω → C∞ be defined by Φ0(ζ) = (h0(ζ), . . . , hn(ζ), . . . ). Here C∞ is the
separable infinite-dimensional Hilbert space which can identified with the Hilbert space
`2 of square-integrable sequences with complex coefficients. In the identity ([), η(z)
can now be interpreted as a holomorphic vector field along Φ0(f(U)) := Γ0. For each
vector field η(z) arising from a choice of deformation (ft), f0 = f , of solutions of the
holomorphic functional identities (]), and for each choice of base point z0 ∈ U ⊂ Dε,
the identity ([) determines a hyperplane section of the Hilbert space H2(Ω)? defined
by the zero locus of a square-integrable function. Choosing an orthonormal basis of
H2(Ω) adapted to z0 and η(z0) the identity ([) translates into saying that the image
of Φ0 ◦ f lies on the zero set of some h ∈ H2(Ω) which is in some sense extremal with
respect to z0 and η(z0). Such extremal functions can be derived from the Bergman
kernel KΩ(ζ, ξ). As a consequence, if KΩ extends holomorphically in (ζ, ξ) from Ω×Ω
to a neighborhood of Ω × Ω, the linear section defined as one varies over all possible
deformations (ft), f0 = f , over some nonempty open subset U ⊂ Dε gives a subvariety
E ⊂ Ω which extends holomorphically to a neighborhood of Ω. Assuming that the
Bergman kernel KD(z, w) on the domain D satisfies the regularity property analogous
to KΩ, we deduce from the proof of Proposition 2.3.2 that Graph(f) ⊂ D × E extends
holomorphically beyond ∂D to give

Theorem 2.3.1 (Mok [Mk7, Thm.1.1.1]). Let D b Cn and Ω b CN be bounded
complete circular domains. Denote by ds2

D, resp. ds2
Ω, the Bergman metrics on D, resp.

Ω. Let ε0 > 0 be such that Dε0 := Bn(0; ε0) b D and δ0 > 0 be such that Ωδ0 :=
BN (0; δ0) b Ω. Let λ be any positive real number and f :

(
Dε0 , λ ds2

D

∣∣
Dε0

) → (Ω, ds2
Ω)

be a holomorphic isometry such that f(0) = 0 and f(Dε0) b Ωδ0 . Then, there exists an
irreducible complex-analytic subvariety S] ⊂ Cn×CN of dimension n = dim(Graph(f))
such that Graph(f) ⊂ S]. In other words, Graph(f) ⊂ Dε × Ω extends as a subvariety
to S] ⊂ Cn × CN .

Extension results can now be generalized to germs of holomorphic isometries up to
normalizing constants f : (D, λds2

D; x0) → (Ω, ds2
Ω; f(x0)) with respect to the Bergman
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metric between bounded domains D b Cn and Ω b CN . To start with, writing y0 =
f(x0) we have the polarized functional identity on diastases in the form

log
KΩ

(
f(z), f(w)

)
KΩ

(
y0, y0)

KΩ

(
f(z), y0

)
KΩ(y0, f(w)

) = λ log
KD(z, w)KD(x0, x0)
KD(z, x0)KD(x0, w)

.

Consider the holomorphic functional identities

(Jw) log
(

KΩ(ζ, f(w))KΩ

(
y0, y0)

KΩ(ζ, f(x0))KΩ(f(x0), f(w))

)
− λ log

(
KD(z, w)KD(x0, x0)
KD(z, x0)KD(x0, w)

)
= 0 .

Writing the left hand-side as H(z, ζ;w) we observe that H(z, ζ; x0) = 0, and thus the
system of functional identities (Jw) as w ranges over a neighborhood of x0 is equivalent
to the system of holomorphic identities

(Ki
w)

∂

∂wi
H(z, ζ;w)

∣∣∣∣
w=x0

= 0 ,

where 1 ≤ i ≤ n, and w varies over a neighborhood Dε of x0 on D. By differentiating
against wi logarithms disappear, and the functional identities (Ki

w) are for instance
rational in (z, ζ) whenever KD(z, w) is rational in (z, w) and KΩ(ζ, ξ) is rational in
(ζ, ξ). The argument of forcing analytic continuation of f by cutting down the image Dε

under ΦΩ◦f by linear sections works equally well in the general case of bounded domains
when one consider deformations (ft), f0 = f of solutions ζ = ft(z) in the holomorphic
functional identities (Jw). Again the logarithms disappear after differentiating against
t (a finite number of times) at t = 0. Our arguments on extensions of germs of graphs
of holomorphic isometries now generalize to yield

Theorem 2.3.2 (Mok [Mk7, Thm.2.1.1]). Let D b Cn, resp. Ω b CN , be bounded
domains. Let x0 ∈ D, λ be a positive real number and f : (D, λds2

D; x0) → (Ω, ds2
Ω; f(x0))

be a germ of holomorphic isometry. Suppose furthermore that the Bergman kernel
KD(z, w) extends as a meromorphic function in (z, w) to a neighborhood of D × D

and KΩ(ζ, ξ) extends as a meromorphic function in (ζ, ξ) to a neighborhood of Ω × Ω.
Then, there exists an open neighborhood D] of D and an open neighborhood Ω] of Ω
such that the germ Graph(f) ⊂ D×Ω at (x0, f(x0)) extends to an irreducible complex-
analytic subvariety S] of D]×Ω]. If in addition we assume (Ω, ds2

Ω) to be complete as a
Kähler manifold, then S := S]∩ (D×Ω) is the graph of a holomorphic isometric embed-
ding F : (D, λ ds2

D) → (Ω, ds2
Ω). If furthermore (D, ds2

D) is complete, then F : D → Ω
is proper.

Only the last two statements require some explanation. The univalence of F can
be deduced from the holomorphic functional identities (Jw) directly from the Cauchy-
Schwarz inequality, as follows. Suppose otherwise. Starting with the germ of f at x0 and
extending Graph(f) using S by lifting from neighborhoods of continuous paths issuing
from x0 we obtain two distinct branches f1(z) and f2(z) defined on some non-empty
open subset U ⊂ D such that the following holomorphic functional identities hold by
analytic continuation.

KΩ

(
f1(z), f1(z)

)

KΩ

(
f1(z), f(x0)

)
KΩ

(
f(x0), f1(z)

) =
KΩ

(
f1(z), f2(z)

)

KΩ

(
f1(z), f(x0)

)
KΩ

(
f(x0), f2(z)

)

=
KΩ

(
f2(z), f2(z)

)

KΩ

(
f2(z), f(x0)

)
KΩ

(
f(x0), f2(z)

) .
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Taking absolute values and comparing the first and last expressions with the square of
the middle one we have

∣∣KΩ

(
f1(z), f2(z)

)∣∣2 = KΩ

(
f1(z), f1(z)

)
KΩ

(
f2(z), f2(z)

)
.

Recalling that KΩ(ζ, ξ) =
∑

hi(ζ)hi(ξ) in terms of an orthonormal basis (hi)
∞
i=0 of

H2(Ω), the equality f1(z) = f2(z) follows from the equality case of the Cauchy-Schwarz
inequality on a Hilbert space and from the injectivity of the canonical map Φ : Ω ↪→
P(H2(Ω)?), giving a contradiction and proving the univalence of the analytic contin-
uation of f within D. If (Ω, ds2

Ω) is complete as a Kähler manifold, then the domain
of definition of f within D can be indefinitely enlarged by means of holomorphic func-
tional identities on D × Ω. For the last statement assume that (D, ds2

D) is complete.
If F transforms a boundary point b ∈ ∂D to an interior point q ∈ Ω, by considering a
neighborhood of (b, q) on S] some path of infinite length on (D, ds2

D) is mapped to a
path of finite length on (Ω, ds2

Ω) under the isometry F , yielding a contradiction.

(2.4) Canonically embeddable Bergman manifolds and Bergman meromorphic compact-
ifications For further applications of extension results on holomorphic isometries it
is desirable to consider the general context of complex manifolds. Here in place of
square-integrable holomorphic functions we consider the notion of square-integrable
holomorphic n-forms, which is well-defined independent of any choice of systems of lo-
cal holomorphic coordinates. In other words, we consider the Hilbert space H2(X, ωX)
of square-integrable sections of the canonical line bundle ωX = det(T ?

X). We have cor-
respondingly the notion of the Bergman kernel form KX(z, w) defined in terms of an
arbitrary orthonormal basis of H2(X, ωX). In the case of a bounded domain D b Cn,
to each f ∈ H2(D) we can associate the holomorphic n-form 2−nfdz1 ∧ · · · ∧ dzn.
This gives an isometry between H2(D) and H2(D, ωD). The Bergman kernel function
KD(z, w) and the Bergman kernel form KD(z, w) are then related by

KD(z, w) = 2−n ·KD(z, w)
((√−1)n2

dz1 ∧ · · · dzn ∧ dw1 ∧ · · · ∧ dwn
)

.

We are interested in the class of Bergman manifolds, especially in a subclass called
canonically embeddable Bergman manifolds, defined as follows.

Definition 2.4.1. Let X be a complex manifold and denote by ωX its canonical line
bundle. Suppose the Hilbert space H2(X, ωX) of square-integrable holomorphic n-forms
on X has no base points, and denote by KX(z, w) the Bergman kernel form on X.
Regarding KX(z, z) as a Hermitian metric h on the anti-canonical line bundle ω?

X , we
denote by βX ≥ 0 the curvature form of the dual metric h? on ωX , and write ds2

X

for the corresponding semi-Kähler metric on X. We say that (X, ds2
X) is a Bergman

manifold whenever ds2
X and equivalently βX are positive definite. We call (X, ds2

X) a
canonically embeddable Bergman manifold if furthermore the canonical map ΦX : X →
P((H2(X,ωX)?) is an embedding.

The extension result Theorem 2.3.2 on holomorphic isometries between bounded
domains can be readily adapted to yield the following general extension result for canoni-
cally embeddable Bergman manifolds realized as relatively compact domains on complex
manifolds, including especially the case of bounded domains on Stein manifolds.
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Theorem 2.4.1 (Mok [Mk7,Thm.2.2.1]). Let D (resp. Ω) be a canonically em-
beddable Bergman manifold. Let D b M (resp. Ω b Q) be a realization of D (resp.

Ω) as a relatively compact domain on a complex manifold M (resp. Q) such that the
Bergman kernel form KD(z, w) (resp. KΩ(ζ, ξ)) extends meromorphically in (z, w) to
M ×D (resp. in (ζ, ξ) to Q×Ω). Then, the analogue of Theorem 2.3.2 holds true with
M replacing D] and Q replacing Ω].

As suggested by the preceding theorem, the realization of a canonically embeddable
Bergman manifold as a domain on a compact complex manifold Z is especially inter-
esting whenever the Bergman kernel form KX(z, w) extends meromorphically in (z, w)
from X ×X to Z × Z. We have more precisely the following notion of Bergman mero-
morphic compactifications. In what follows we note that while in the case of bounded
domains D b Cn we can define KD,w(z) = KD(z, w) unambiguously, in the general case
of a manifold X, fixing w ∈ X, we can analogously define KX,w as an n-form in z ∈ X

only up to a multiplicative constant, depending on the choice of local holomorphic co-
ordinates at w. When the notation KX,x is used, we mean an arbitrary but fixed choice
of such an n-form.

Definition 2.4.2. Let (X, ds2
X) be an n-dimensional canonically embeddable Bergman

manifold, and i : X ↪→ Z be an open embedding of X into a compact complex manifold
Z. Choose any base point x0 ∈ X and define σ0 := KX,x0 , which is uniquely determined

up to a multiplicative constant. Writing KX(z, w) = K[
X(z, w)

((√−1)n2
σ0(z)∧σ0(w)

)

on X, we say that i : X ↪→ Z is a Bergman meromorphic compactification if and only
if (a) the function K[

X(z, w) extends meromorphically in (z, w) from X ×X to Z × Z;
and (b) there exists an open embedding i : X ↪→ Z ′ into a compact complex manifold Z ′

such that the identity map idX extends to a (possibly) branched covering ξ : Z ′ → Z

and such that ξ?(σ0) extends meromorphically to Z ′.

Here the extra condition (a) has been inserted in the definition in order to allow
us to define the notion of a reduction of a Bergman meromorphic compactification (cf.
Definition 2.4.3 and the paragraph after it). Evidently, condition (a) is independent
of the choice of the base point x0 ∈ X. Given i : X ↪→ Z as in the above, by means
of a finite number of meromorphic n-forms KX,x, x ∈ X, one can define a generically
finite meromorphic map Φ : X → PN onto a subvariety Z[ ⊂ PN such that Φ restricts
to an open embedding on X ⊂ Z. The existence of Φ implies in particular that Z

is Moishezon, i.e., bimeromorphic to a projective-algebraic manifold. Replacing Z[ by
a desingularized model τ : Z1 → Z[ of Z[, where no modification is performed over
X ⊂ Z[, we have a Bergman meromorphic compactification i1 : X → Z1 with the
additional property that the corresponding map Φ1 : X → PN1 maps Z1 birationally
onto a subvariety Z[

1. We have further the following notions of reduced and minimal
Bergman meromorphic compactifications.

Definition 2.4.3. A Bergman meromorphic compactification i0 : X ↪→ Z is said to be
reduced if and only if there exists a finite number of points xi ∈ X, 0 ≤ i ≤ m, such
that the meromorphic map Ψm : X → Pm defined by Ψ(y) = [KX,x0(y), · · · ,KX,xm(y)]
extends to a generically injective meromorphic map Ψ] : Z → Pm. It is said to be
minimal if and only if, given any Bergman meromorphic compactification i : X ↪→ Z,
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the biholomorphism h : i(X) → i0(X) corresponding to the identity map idX extends to
a meromorphic map η : Z → Z0.

Given a Bergman meromorphic compactification i : X ↪→ Z, the map i1 : X ↪→
Z1 constructed in the above gives according to Definition 2.4.3 a reduced Bergman
meromorphic compactification, which we will call the reduction of i : X ↪→ Z. From
the construction of i1 : X ↪→ Z1 it can readily be proved that the function field M(Z1)
of Z1 agrees with the subfield F ⊂M(Z) of the function field M(Z) of Z generated by
quotients of meromorphic n-forms Kx, x ∈ X. However, it is not apparent whether Kx

descends to a meromorphic n-form on Z1, and it is for this reason that we introduce
condition (a) in the definition of Bergman meromorphic compactifications, so that the
notion of reduction can be defined within this class of compactifications. Regarding
minimal compactifications we have

Theorem 2.4.2. Let (X, ds2
X) be a canonically embeddable Bergman manifold admit-

ting a Bergman meromorphic compactification i : X ↪→ Z. Then, X admits a minimal
meromorphic Bergman compactification i0 : X ↪→ Z0. Furthermore, any two minimal
Bergman meromorphic compactifications of X are equivalent.

Sketch of Proof. From Definition 2.4.3 the notion of minimal Bergman meromorphic
compactifications is defined in terms of a universal property of such compactifications,
and it follows readily that such a compactification is unique. Existence is proved by
showing that the reduction of any Bergman meromorphic compactification is minimal.
Given any two Bergman meromorphic compactifications i : X ↪→ Z and i′ : X ↪→ Z ′,
from the fact that idX is a holomorphic isometry with respect to Bergman metrics we
have holomorphic functional identities, and it follows from the extension result Theorem
2.3.2 that the identity map idX extends to an algebraic correspondence on Z × Z ′.
When Z ′ is reduced, the meromorphic n-forms KZ′,x, x ∈ X; separate any generic pair
of distinct points, and it follows from the analytic continuation of the defining functional
identities that the extension of idX is univalent (cf. the paragraph after Theorem 2.3.2),
i.e., idX extends to a meromorphic map from Z onto Z ′, so that i′ : X ↪→ Z ′ is minimal
in the sense of Definition 2.4.3, as desired. ¤

Borel embeddings D b Cn ⊂ M of bounded symmetric domains D into their dual
compact manifolds M give first examples of Bergman meromorphic compactifications.
In fact, in terms of Harish-Chandra coordinates the Bergman kernel on D is of the
form KD(z, w) = 1

QD(z,w) , where QD(z, w) is a polynomial in (z, w), cf. Faraut-Korányi
[FK, pp.76-77, especially Eqns.(3.4) and (3.9)]. A more general class of examples is
given by the canonical bounded realizations D of bounded homogeneous domains of
Pyatetskii-Shapiro [Py]. The rationality of KD for the canonical bounded realizations
D b Cn can be found in [Xu, Chapter 4]. In the case where a bounded homogeneous
domain is a bounded symmetric domain, its canonical bounded realization is the same
as the Harish-Chandra realization. It can readily be checked from [Xu, loc. cit.] that
the Bergman meromorphic compactification D b Pn is minimal.

§3 Holomorphic isometries of the Poincaré disk into bounded symmetric
domains

(3.1) Structural equations on the norm of the second fundamental form and asymptotic
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vanishing order In the study of holomorphic isometries up to normalizing constants
between bounded symmetric domains, in the case where the domain is of rank ≥ 2
rigidity is derived from the existence of zeros of holomorphic bisectional curvatures
and from the rigidity of such zeros under holomorphic isometries. In the case where
the domain is Bn, n ≥ 2, rigidity of holomorphic isometries arising from algebraic
correspondences on finite-volume quotients are derived from functional identities and
from boundary behavior of the maps after analytic continuation beyond the boundary
sphere. In the remaining case of the unit disk ∆, for which examples of non-standard
holomorphic isometries do exist by the examples in (1.2) and (1.3), in order to study the
set of holomorphic isometries we resort also to the study of boundary behavior of the
maps after analytic continuation. Here for a holomorphic isometry f of the Poincaré
disk into a bounded symmetric domain Ω, the norm of the second fundamental form
is a basic scalar function associated to the map. With respect to Harish-Chandra
coordinates coefficients of the Bergman metric are rational functions, and from the fact
that Graph(f) extends algebraically it follows that ϕ := ‖σ‖2 extends real-analytically
to a neighborhood Ub of a general point b on the unit circle. Concerning the second
fundamental form we have first of all the following result on the vanishing order of ‖σ‖
assuming first of all that f is asymptotically geodesic at a general point of the boundary
circle, a condition which we are now able to remove (cf. (3.5)). In what follows we will
say that ‖σ‖ vanishes to the order β at b ∈ ∂∆ to mean that ϕ vanishes to the order
2β at b ∈ ∂∆.

Theorem 3.1.1 (Mok-Ng [MN1, Thm.1]). Let λ be a positive real number and let
f : (∆, λds2

∆) → (Ω, gΩ) be a holomorphic isometry of the Poincaré disk into a bounded
symmetric domain Ω. Suppose f is not totally geodesic and it is asymptotically totally
geodesic at a general boundary point. Then, the length of the second fundamental form
‖σ‖ must vanish to the order 1 or 1

2 at a general boundary point b on the unit circle
S1 = ∂∆.

We will say that the non-standard holomorphic isometry f is of the first kind
whenever β = 1, and of the second kind when β = 1

2 .

Sketch of Proof. Write S = f(∆) ⊂ Ω. At x ∈ S denote by β a unit (1, 0)-vector
tangent in Tx(S). Extend β to a holomorphic vector field on S on a neighborhood of x.
By the Gauss equation, for any x ∈ S, β ∈ Tx(X), we have the structural equation

(]) Rαααα − ‖σ‖2‖α‖4 = − 1
λ
‖α‖4 , Rαααα =

(
− 1

λ
+ ϕ

)
‖α‖2 .

Since (Ω, gΩ) is locally symmetric, the curvature tensor R is parallel, i.e., ∇R = 0. In
what follows we will identify the unit disk ∆ with the upper half-planeH, with Euclidean
coordinate τ = t + is, by means of the inverse Cayley transform. At f(x) ∈ Ω we write
µ for the orthogonal lifting of σ(α, α) ∈ NS|Ω,f(x) to Tf(x)(Ω). Applying covariant
differentiation two times to the structural equation (]) we obtain in Mok [Mk6, (1.2),
Eqn.(5)] the identity

2λ

t2
Rµµαα − ∂2ϕ

∂τ∂τ
=

λ

t2

(
R(Rααα, α; α, α)− 1

λ2
+

ϕ

λ

)
.
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Let q be the vanishing order of ϕ at b and write ϕ(τ) = tqu(τ). In the special case
where Ω is irreducible and of rank 2 and where λ = 1, we have the exact formula

Rµµαα =
t2

2

( ∂2ϕ

∂τ∂τ
− ϕ

2t2

)
=

1
8

(
q(q − 1)− 2

)
tqu +

qtq+1

4
∂u

∂t
+

tq+2

8

(∂2u

∂t2
+

∂2u

∂s2

)
.

The left-hand side is nonpositive by the nonpositivity of holomorphic bisectional cur-
vatures on (Ω, gΩ). If q ≥ 3 the right-hand side is positive for t > 0 sufficiently small,
yielding a contradiction and proving Theorem 3.1.1 in the special case. In general we
have the inequality

Rµµαα ≥ 1
8λ

(q2 − q − 4)tqu +
qtq+1

4λ

∂u

∂t
+

tq+2

8λ

(
∂2u

∂t2
+

∂2u

∂s2

)
+

ϕ2

2
.

(Mok-Ng [MN1, (1.1), Proof of Theorem 1]) and the same follows. ¤

(3.2) Holomorphic isometries of the Poincaré disk into polydisks: structural results Let
∆ ⊂ C ⊂ P1 be the unit disk, p and k be positive integers, f : (∆, k ds2

∆) → (∆p, ds2
∆p)

be a holomorphic isometry, and V ⊂ P1 × (P1)p be the irreducible projective-algebraic
variety which contains Graph(f) as an open subset. Equip O := P1 − ∆ with the
Hermitian metric ds2

O which on C1 − ∆ is given by ds2
O = 4Re(dz⊗dz)

(|z|2−1)2 . Let G be any
connected component of (P1 − ∂∆) × (P1 − ∂∆)p, and write G = W × G′, where W

is either ∆ or O = P1 −∆ and G′ is a Cartesian product of p domains each of which
is either ∆ or O. Equip G′ with the Kähler metric ds2

G′ which is the product metric
of the Hermitian metrics ds2

∆, resp. ds2
O, for each Cartesian factor equal to ∆ resp.

O. For a boundary b ∈ ∂∆, the holomorphic isometry f extends holomorphically to
a neighborhood Ub of b in C. Denoting the extended map on Ub still by f , we have
f |Ub∩O : Ub ∩ O → G′ for some connected component G′ of (P1 − ∂∆)p equipped with
the Kähler metric ds2

G′ , and f remains a holomorphic isometry on Ub∩O when the latter
is equipped with the Poincaré metric k ds2

O. Thus, for the curvature identities derived
from the structural equation (]) in the proof of Theorem 3.1.1 (arising from the Gauss
equation applied to holomorphic isometries), after formally extending the identities to
Ub, the curvature terms actually are bona fide curvatures in the sense of Kähler geometry
with respect to a product of Poincaré metrics. In particular, they remain nonpositive
outside of the unit circle. From this we deduce the following property on the boundary
behavior of the second fundamental form for holomorphic isometries of the Poincaré
disk into polydisks.

Theorem 3.2.1 ([Mok-Ng [MN1, Theorem 2]). Let p ≥ 2 be an integer, k be
a positive integer, and f : (∆, k ds2

∆) → (∆p, ds2
∆p) be a non-standard holomorphic

isometry, necessarily of the first kind. Write S := f(∆) ⊂ ∆p, and denote by ϕ the
square of the norm of the second fundamental form σ of

(
S, ds2

∆p

∣∣
S

)
↪→ (∆p, ds2

∆p) as a
Kähler submanifold. Identify ∆ with the upper half-plane H, with Euclidean coordinate
τ , via a Cayley transform, and write ϕ(f(τ)) = ‖σ(f(τ))‖2 = t2u(τ), where t = Im(τ)

and u(τ) is real-analytic at a general point on ∂H. Then, we have
∂u

∂t
= 0 over Ub∩∂H

for an open neighborhood Ub of a general point b ∈ ∂H.
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For the case p = 2, Theorem 3.2.1 follows from the exact curvature formula for
Rµµαα. For p ≥ 3 a modification of the formula holds true with error terms which are
of order ≥ 4 in t, and Theorem 3.2.1 follows.

The interpretation of analytic continuations beyond the unit circle again as holo-
morphic isometries into polydisks is special to the case where the target domain is a
polydisk. In this case, the same observation leads to the following characterization of
totally geodesic holomorphic embeddings.

Theorem 3.2.2 (Mok-Ng [MN1, Theorem 3]). Let f : (∆, λds2
∆; 0) → (∆p, ds2

∆; 0)
be a germ of holomorphic isometry. Suppose f extends holomorphically to some neigh-
borhood of ∆. Then, f is totally geodesic.

Sketch of Proof. Graph(f) ⊂ P1 × (P1)p extends holomorphically to a projective-
algebraic subvariety V ⊂ P1 × (P1)p, and λ is a positive integer k, 1 ≤ k ≤ p. Each
local branch f = (f1, · · · , fp) of f satisfies the real-analytic functional identity

(†)
p∏

i=1

1
1− |fi(z)|2 =

1
(1− |z|2)k

.

Since the extended map remains a holomorphic isometry when one exits through the unit
circle and by assumption no singularities are developed along the unit circle, we have
actually a global holomorphic map f : P1 → (P1)p, still denoted by the same symbol f ,
such that f restricts to O to give a holomorphic isometry f : (O, ds2

O) → (G′, ds2
G′) into

one of the connected components G′ of (P1−∂∆)p. From the functional identity (†) each
component fi either maps the unit circle to the unit circle, or fi maps a neighborhood
of ∆ to ∆. In the latter case, fi : P1 → ∆ and hence fi is a constant by the Maximum
Principle. Removing the constant components fi if necessary we have in the functional
equation p = k (by checking the vanishing orders of factors in (†) along the unit circle),
in which case it follows easily that f must be totally geodesic by the Schwarz Lemma.
¤

(3.3) Calculated examples on the norm of the second fundamental form Let λ be a pos-
itive constant and F : (∆, λ ds2

∆) → (Ω, ds2
Ω) be a holomorphic isometry of the Poincaré

disk into a bounded symmetric domain. By Theorem 2.3.2, F is necessarily proper and
its graph extends algebraically. The qualitative behavior of F along the boundary circle
is invariant under re-parametrization on the domain disk and automorphisms of the
target domain Ω. These properties furnish invariants which can be used to distinguish
holomorphic isometries modulo re-parametrizations and target automorphisms. For in-
stance, one can see on the one hand that the p-th root map is singular precisely at two
boundary points (which are 0 and ∞ when the domain is taken to be the upper half-
plane) and that they are transformed to the Shilov boundary (distinguished boundary)
of the target domain (which is the torus S1 × · · · × S1 if the target domain is identified
with the polydisk), and on the other hand that the map G :

(H, 2ds2
H

) → (H3, ds2
H3

)

defined in (1.3) is also precisely singular at two boundary points, but they are trans-
formed to a stratum of the boundary of the Siegel upper half-plane H3 (in its compact
dual) other than the Shilov boundary. Thus, identifying H × H × H with a maximal
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polydisk of H3 and thus regarding the cube root map ρ3 as a map into H3, it is not
possible through re-parametrization and a target automorphism to transform ρ3 into G.
Using the classification of holomorphic isometries of the Poincaré disk into the 3-disk
obtained by Ng [Ng1] (cf. (3.4) of the current article), we show in Mok [Mk7, Proposi-
tion 3.3.2] along the same line of argument that the image of G is not contained in any
maximal polydisk.

There are other invariants arising from differential-geometric considerations. First
of all, the norm of its second fundamental form σ is invariant under automorphisms of
the target domain Ω, and the asymptotic behavior of ‖σ‖ along the boundary circle is
further invariant under re-parametrization. Thus, among other things the computation
of second fundamental forms serve the purpose of distinguishing known examples of
holomorphic isometries. In this direction we compute in Mok-Ng [MN1] first of all the
second fundamental form of the p-th root map, as follows.

Theorem 3.3.1 (Mok-Ng [MN1, Thm.4]). Let p be a positive integer. Denote by
ds2
H the Poincaré metric on the upper half-plane H of constant Gaussian curvature −1

and correspondingly by ds2
Hp

the product metric on the Cartesian product Hp of p copies
of the upper half-plane. Write ρp : (H, ds2

H) → (Hp, ds2
Hp) for the p-th root map given

by ρp(τ) =
(
τ

1
p , γτ

1
p , . . . , γp−1τ

1
p
)
, where γ = e

πi
p , and τ = |τ |eiθ. Then, the second

fundamental form σp of ρp is given by ‖σp‖2 = 2(p2−1)
3p2 sin2 θ. In particular, − log ‖σp‖2

is a potential function for ds2
H. In other words, denoting by ωH stands for the Kähler

form of ds2
H, we have

√−1∂∂(− log ‖σp‖2) = ωH.

Using curvature formulas in symplectic geometry of Siegel [Si], we have studied in
Mok [Mk6] the asymptotic behavior of the second fundamental form for the holomorphic
isometry G :

(H, 2ds2
H

) → (H3, ds2
H3

)
, showing that it must vanish to the order 1 at a

general boundary point (i.e., G is of the first kind), and have more explicitly computed
‖σ‖ in Mok-Ng [MN1], deducing thereby that the image of G is not contained in any
maximal disk by a classification-free proof, and obtaining a more refined result, as
follows. (The formulation below incorporates the computation preceding the statement
of the result in [MN1].)

Proposition 3.3.1( Mok-Ng [MN1, Prop.3]). Let G :
(H, 2ds2

H
) → (H3, ds2

H3

)
be

the holomorphic isometry of the Poincaré disk into the Siegel upper half-plane H3 of
genus 3 given by

G(τ) =



√

3
2 τ

2
3 τ

1
3 0

τ
1
3 i 0
0 0 γτ

1
3


 .

Then, writing τ = |τ |eiθ, the norm of the second fundamental form σG of G is given by

‖σG‖2 =
4
27

sin2 θ

[
3− cos

(
2θ

3
− π

3

)]
.

As a consequence, writing Gm :
(H, 2mds2

H
) → (

(H3)m, ds2
(H3)m

)
for the holomorphic

isometry given by Fm(τ) = (F (τ), · · · , F (τ)), m being any positive integer, and identi-
fying the Cartesian product (H3)m as a totally geodesic complex submanifold of H3m as
usual, the image Gm(H) ⊂ H3m is not contained in any maximal polydisk of H3m.
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The main distinction between ‖σG‖2 and ‖σ‖2 for the second fundamental form
of a holomorphic isometry into a polydisk lies in the fact that, writing ‖σG‖ = t2uG,
we have ∂u

∂t

∣∣
∂H 6≡ 0, violating a necessary condition for the image of a holomorphic

isometry to be contained in a maximal polydisk according to Theorem 3.1.1. The same
applies to Gm in place of G obtained by duplicating the map G a number of times.

(3.4) Holomorphic isometries of the Poincaré disk into polydisks: uniqueness results In
the case where Ω is the polydisk of dimension ≥ 3 one can construct continuous families
of holomorphic isometries which are incongruent to one another (cf. (5.1)). It is an
interesting problem to identify the structure of the space of holomorphic isometries of
the Poincaré disk up to a normalizing constant into a polydisk. We do not know whether
the space of such holomorphic isometries are generated by the set of p-th root maps
(cf. (1.2)). In this direction Ng [Ng1] has started to study the space of holomorphic
isometries of the Poincaré disk into polydisks as a whole by examining the explicit
forms of the functional identities arising from holomorphic isometries, obtaining the
following preliminary results. To start with let k be a positive integer, 1 ≤ k ≤ p

and f : (∆, k ds2
∆) → (∆p, ds2

∆p) be a a holomorphic isometry (necessarily a proper
holomorphic isometric embedding by Theorem 2.3.2). The mapping f defines a branched
covering Φ : X → P1 such that f is a branch of Φ−1 restricted to the unit disk. Ng
[Ng1] has proved the following general result.

Theorem 3.4.1 (Ng [Ng1]). Let f : (∆, ds2
∆) → (∆p, ds2

∆p) be a holomorphic isome-
try. The sheeting number n of Φ : X → P1 satisfies p ≤ n ≤ 2p−1. Furthermore,
(1) If p is odd and the sheeting number is equal to p, then up to re-parametrization F

is the p-th root map.
(2) Writing F = (f1, · · · , fp), and si for the sheeting number of the branched cover

Φi : Xi → P1 associated to fi. Assume s1 ≤ · · · ≤ sp; sp = 2p−1. Then, n = 2p−1,
and F can be factored as F = Fp−1 ◦ Fp−2 ◦ · · · ◦ F1, where each intermediate
Fi : ∆i → ∆i+1 is given by Fi(z1, · · · , zi) = (z1, · · · , zi−1, αi(zi), βi(zi)) ; where
z 7→ (αi(z), βi(z)) is up to re-parametrization the square root map ∆ into ∆2.

In the case of low dimensions Ng has proved

Theorem 3.4.2 (Ng [Ng1]). For p = 2 any bona fide non-standard holomorphic
isometric embedding F : ∆ → ∆2 is up to re-parametrization the square root map. For
p = 3, any such map F : ∆ → ∆3 is either up to re-parametrization the cube root
map, or it is of the form F2 ◦ F1 as in Theorem 3.4.1. Furthermore, all non-standard
holomorphic isometric embeddings F : ∆ → ∆2 (with a priori arbitrary normalizing
constant λ) must be bona fide isometries. For F : ∆ → ∆3, we must have λ = 1 or 2,
and for λ = 2 the map is up to and re-parametrization permutation of the Cartesian
factors of ∆3 given by F (z) = (z, α(z), β(z)), where z 7→ (α(z), β(z)) is the square root
map.

(3.5) Asymptotic total geodesy and applications We consider holomorphic isometries of
the Poincaré disk into bounded symmetric domains equipped with the Bergman metric.
We prove (in an article under preparation)
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Theorem 3.5.1. Let (Ω, ds2
Ω) be a bounded symmetric domain equipped with the Berg-

man metric ds2
Ω, λ be a positive constant, and F : (∆, λ ds2

∆) → (Ω, ds2
Ω) be a holomor-

phic isometry. Then, F is asymptotically totally geodesic at a general point b ∈ ∂∆ on
the boundary circle.

A key ingredient of the proof of the theorem above is the use of the Poincaré-Lelong
equation as in Mok [Mk3]. As an immediate consequence of Theorem 3.5.1, we have
the following result which says that, in contrast to the case of Hermitian symmetric
manifolds of the compact type, analogues of maps such as the Veronese embedding
or the Segre embedding cannot possibly exist in the dual case of bounded symmetric
domains.

Theorem 3.5.2. Let D and Ω be bounded symmetric domains, Φ : Aut0(D) → Aut0(Ω)
be a group homomorphism, and F : D → Ω be a Φ-equivariant holomorphic map. Then,
F is totally geodesic.

Deduction from Theorem 3.5.1. The proof of Theorem 3.5.2 can be easily reduced to
the case where Ω is irreducible. By slicing by totally geodesic Poincaré disks on D the
problem can be further reduced to the case where the domain D is the unit disk ∆. Any
Φ-equivariant holomorphic map F : ∆ → Ω is necessarily a holomorphic isometry up to a
normalizing constant, and it follows from Theorem 3.5.1 that F is asymptotically totally
geodesic at a general boundary point b ∈ ∂∆. On the other hand, by Φ-equivariance it
follows that ‖σ‖ is constant on ∆, which gives a contradiction unless σ ≡ 0, i.e., unless
F : ∆ → Ω is totally geodesic. ¤

Theorem 3.5.2 in the special case where none of the irreducible direct factors of
Ω is exceptional was established by Clozel [Cl] by Lie-theoretic methods. Another
application of asymptotic total geodesy is to give a characterization of totally geodesic
compact complex-analytic subvarieties of quotients of bounded symmetric domains in
terms of local symmetry, as follows.

Theorem 3.5.3. Let (Ω, ds2
Ω) be a bounded symmetric domain equipped with the Berg-

man metric ds2
Ω. Let Γ ⊂ Aut0(Ω) be a torsion-free discrete subgroup, X := Ω/Γ.

Denote by h the Kähler metric on X induced from g. Suppose Z ⊂ X is a compact
complex-analytic subvariety and

(
Reg(Z), h|Reg(Z)

)
is locally symmetric. Then, Z ⊂ X

is a totally geodesic subset.

Since Z is locally symmetric at a smooth point as a germ of Kähler submanifold,
we have a germ of holomorphic map f0 : (D; 0) → (X, x0) from a bounded symmetric
domain D into the germ of X at a smooth point x0 of Z, which lifts to a germ of
holomorphic isometry f : (D; 0) → (Ω; 0) via a local inverse of the universal covering
map π : Ω → X. To prove total geodesy of f it suffices to show that f |∆ : ∆ → Ω is
totally geodesic for every totally geodesic Poincaré disk ∆ on D. This follows readily
from the asymptotic total geodesy of the holomorphic extension of f |∆ to ∆ and the
existence of a compact fundamental domain for Z.

§4 Measure-preserving algebraic correspondences on irreducible bounded
symmetric domains
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(4.1) Statements of results Let Ω be an irreducible bounded symmetric domain and
X := Ω/Γ be the quotient of Ω by a torsion-free lattice Γ. In relation to the characteri-
zation problem of Clozel-Ullmo on commutators of modular correspondences on X, in a
recent work of the author with S.-C, Ng [MN2], we have settled the problem by character-
izing germs of measure-preserving holomorphic maps from Ω to its Cartesian products.
When Ω is the unit disk, a measure-preserving map f : (∆; 0) → (∆; 0) × · · · × (∆; 0)
is a holomorphic isometry up to an integral normalizing constant, and the problem was
settled by Clozel-Ullmo [CU], who proved algebraic extension of Graph(f), and deduced
total geodesy from the action of the lattice Γ. When Ω is of dimension ≥ 2 we have
proved

Theorem 4.1.1 (Mok-Ng [MN2, Main Theorem]). Let Ω b Cn be an irreducible
bounded symmetric domain of complex dimension ≥ 2, and dµΩ be the volume form of
the Bergman metric on Ω. Suppose d1 and d2 are positive integers. For 1 ≤ α ≤ d2

let πα : Ωd2 → Ω be the canonical projection onto the α−th direct factor Ωα = Ω.
Suppose f = (f1, · · · , fd2) : (Ω, d1 dµΩ; 0) → (Ωd2 , π?

1dµΩ + · · · + π?
d2

dµΩ; 0) is a germ
of measure-preserving holomorphic map such that each fα, 1 ≤ α ≤ d2, is of maximal
rank at some point. Then, d1 = d2 and f extends to a totally geodesic holomorphic
embedding f : Ω → Ωd2 .

Combining with the result of [CU] we have established

Theorem 4.1.2 (Mok-Ng [MN2, Thm.1.1.2]). Let Ω b Cn be an irreducible
bounded symmetric domain, and Γ ⊂ Aut(Ω) be a torsion-free lattice. Write X := Ω/Γ
and let Y ⊂ X×X be a measure-preserving algebraic correspondence with respect to the
canonical measure dµΩ on Ω. Then, Y is necessarily a modular correspondence.

(4.2) Extension results on strictly pseudoconvex algebraic hypersurfaces We solve the
characterization problem on measure-preserving maps essentially by means of extension
and rigidity results in Several Complex Variables. The starting point is the following
well-known extension result for germs of holomorphic maps on strongly pseudoconvex
real algebraic hypersurfaces.

Theorem 4.2.1 (Huang [Hu]). . Let M1 ⊂ Cm and M2 ⊂ Cm+k be real algebraic
hypersurfaces with m > 1 and k ≥ 0. Let p ∈ M1 be a strongly pseudoconvex point.
Suppose that h is a holomorphic mapping from a neighborhood Up of p to Cm+k so that
h(Up ∩M1) ⊂ M2 and h(p) is also a strongly pseudoconvex point, then h is algebraic.

For the problem at hand, we have an irreducible bounded symmetric domain Ω
of complex dimension at least 2, a germ of holomorphic map f : (Ω; 0) → (Ω; 0) ×
· · · × (Ω; 0), f = (f1, · · · , fd2), where each component fα is of maximal rank at some
point, which is measure-preserving in the sense that f?

1 (dµΩ)+· · · f?
d2

(dµΩ) = d1 dµΩ (cf.
statement of Theorem 4.1.1). Let (L, g) be the Hermitian anticanonical line bundle on Ω
equipped with the Aut(Ω)-invariant metric g given by the volume form dµΩ. Likewise for
1 ≤ α ≤ d2 denote by (Lα, gα) the corresponding Hermitian anticanonical line bundle
on the α-th direct factor Ωα of Ω × · · · × Ω, and define (L, g) to be the direct sum
d2⊕

α=1
(π?

αLα, gα). Recall here that πα : Ω×· · ·×Ω → Ωα denotes the canonical projection
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onto the α-th factor. By considering Jacobian determinants of the differential dfα of
each component fα : Ω → Ωα, from the hypothesis that f is measure-preserving we
have an induced holomorphic map f̃ : L → L over Ω which sends the unit circle bundle
SL ⊂ L into the unit sphere bundle SL ⊂ L. By regarding L ∼= Ω× C ⊂ Cn × C as an
open subset of the Euclidean space Cn+1, the hypersurface SL ⊂ L ⊂ Cn+1 is algebraic
since the Bergman kernel KΩ(z, w) is rational in (z, w). Likewise SL ⊂ (Cn)d2 ×Cd2 is
a real algebraic hypersurface.

The Hermitian holomorphic line bundle (L, g) is of strictly negative curvature. The
Hermitian holomorphic vector bundle (L, g), which is the direct sum of the Hermitian
holomorphic line bundle (Lα, gα) of strictly negative curvature, is of seminegative cur-
vature in the sense of Griffiths. By curvature considerations going back to Grauert [Gr,
1962], the real hypersurface SL ⊂ L is strongly pseudoconvex, and the real hypersur-
face SL ⊂ L is weakly pseudoconvex and strictly pseudoconvex on a dense open subset,
where the structure of the weakly pseudoconvex points on SL is easily described in terms
of the direct sum decomposition, viz., a point (u1, · · · , ud2) ∈ SL is a weakly pseudo-
convex point if and only if uα = 0 for at least one of the components uα, 1 ≤ α ≤ d2.
The assumption that each fα is of maximal rank at some point implies that f̃(u) is
strongly pseudoconvex point on SL for a dense open set of points u on SL. Thus, the
requirement on strong pseudoconvexity in Huang’s result above is satisfied for the map
f̃ : SL → SL, and the latter result applies to yield the algebraic extension of Graph(f).
In other words, there exists an irreducible affine-algebraic subvariety V ⊂ Cn × (Cn)d2

of complex dimension n = dim(Graph(f)) which contains Graph(f).

(4.3) Alexander-type extension results in the higher-rank case In the case of the
complex unit ball Bn, n ≥ 2, for a germ of measure-preserving map f : (Bn; 0) →
(Bn; 0)×· · ·× (Bn; 0) the functional equation defining the measure-preserving property
translates into

(†)
d2∑

α=1

|det(Jfα(z))|2
(1− |fα(z)|2)n+1

=
d1

(1− |z|2)n+1
.

Having established the algebraic extension of Graph(f), at a general point b ∈ ∂Bn the
germ of map f = (f1, · · · , fd2) can be analytically continued to a neighborhood Ub of
b, still denoted by f , such that each fα remains unramified on Ub and the functional
identity (†) remains valid. Since each summand of the left-hand side of (†) must be
infinite when the corresponding component fα exits the boundary sphere it follows
from the process of analytic continuation that we must have fα(Ub ∩ Bn) ⊂ Bn. Since
the right-hand side of (†) is infinite along Ub ∩ ∂Bn at least one of the components,
say fd2 , must be such that the corresponding summand on the left-hand side is infinite
along Ub ∩ ∂Bn, i.e., fd2(Ub ∩ ∂Bn) ⊂ ∂Bn. By Alexander’s result, fd2 extends to an
automorphism of Bn, which itself preserves the Bergman volume form. Thus, (†) can
be reduced by removing fd2 on the left-hand side and replacing d2 by d2 − 1 on the
right-hand side, and the total geodesy of f follows by induction.

When rank(Ω) ≥ 2 we use a well-known Alexander-type result of Henkin-Tumanov
[TK1] involving the Shilov boundary to complete the proof of Theorem 4.1.1.
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Theorem 4.3.1 (Henkin-Tumanov [TK1]). Let Ω b Cn be an irreducible bounded
symmetric domain of rank ≥ 2 in its Harish-Chandra realization, and denote by Sh(Ω) ⊂
∂Ω its Shilov boundary. Suppose b ∈ Sh(Ω). Let Ub ⊂ Cn be a connected open neigh-
borhood of b in Cn, and f : Ub → Cn be an open holomorphic embedding such that
f(Ub ∩ Ω) = f(Ub) ∩ Ω and f(Ub ∩ Sh(Ω)) = f(Ub) ∩ Sh(Ω). Then, there exists an
automorphism F : Ω → Ω such that F |Ub∩Ω ≡ f |Ub∩Ω.

Theorem 4.3.1 is first stated in Henkin-Tumanov [TK1] and proved in a special
case. A simplified proof is given in Henkin-Tumanov [TK2, §4] on the same special case
basing on the use of cone structures of Goncharov [Go]. Equivalently this follows from
results on the geometric structures defined by irreducible Hermitian symmetric spaces
of the compact type of rank ≥ 2 due already to Ochiai ([Oc, 1970]), reformulated as
follows in terms of minimal rational tangents on the Hermitian symmetric manifold M

of the compact type dual to Ω. Here by definition at x ∈ M the variety of minimal
rational tangents Cx ⊂ PTx(M) is the space of all projectivizations of vectors tangent to
minimal rational curves on M passing through x, where equivalently a minimal rational
curve is a projective line with respect to the first canonical projective embedding, cf.
Hwang-Mok [HM].

Theorem 4.3.2 (Ochiai [Oc]). Let M be an irreducible compact Hermitian symmetric
manifold of the compact type and of rank ≥ 2; U, V ⊂ M be connected open subsets,
and f : U → V be a biholomorphism. Suppose for every x ∈ U the projectivization
[df(x)] of df(x) : Tx(M) → Tf(x)(M) satisfies [df(x)](Cx) = Cf(x). Then, there exists
an automorphism F ∈ Aut(M) such that F

∣∣
U
≡ f .

For the purpose of giving an alternative proof parallel to the rank-1 case, we prove
as follows an alternative Alexander-type result concerning the smooth locus of ∂Ω rather
than the Shilov boundary, which is the most singular stratum of ∂Ω in its decomposition
as the disjoint union of a finite number of Aut(Ω)-orbits.

Theorem 4.3.3. Let Ω b Cn be an irreducible bounded symmetric domain of rank ≥ 2
in its Harish-Chandra realization. Suppose b is a smooth point on ∂Ω. Let Ub ⊂ Cn be
an open neighborhood of b in Cn and f : Ub → Cn be an open holomorphic embedding
such that f(Ub ∩ Ω) ⊂ Ω and f(Ub ∩ ∂Ω) ⊂ ∂Ω. Then, there exists an automorphism
F : Ω → Ω such that F |Ub∩Ω ≡ f |Ub∩Ω.

Theorem 4.3.3 and its proof are of independent interest and relevant to the study of
proper holomorphic maps between higher-rank bounded symmetric domains. The proof
of Theorem 4.3.3 relies also on Ochiai’s result above on G-structures in conjunction with
the method of Mok-Tsai [MT] and Tsai [Ts] of considering non-tangential boundary
values of proper holomorphic maps on totally geodesic complex submanifolds which are
product domains. Conceptually, there is a decomposition of Reg(∂Ω) into boundary
components (cf. Wolf [Wo]), and they should be transformed to boundary components
when one takes boundary values on associated product domains. Such properties on
boundary values can then be translated into properties at interior points, i.e., points on
Ω. When applied to all relevant product domains the condition at appropriate interior
points translates into a property on the differential of the holomorphic map f which
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implies that f preserves varieties of minimal rational tangents, from which Theorem
4.3.3 follows from Ochiai’s result.

(4.4) Total geodesy of germs of measure-preserving holomorphic map from an irreducible
bounded symmetric domain of dimension ≥ 2 into its Cartesian products The proof of
Theorem 4.1.1 in the remaining case where the irreducible bounded symmetric domain
Ω is of rank ≥ 2 will now follow from the use of Alexander-type theorems. We have
given in [MN2] two proofs. To start with we have the functional equation

(†)
d2∑

α=1

KΩ(fα(z), fα(z))| det(Jfα(z))|2 = d1KΩ(z, z) .

where KΩ(z, z) = 1
QΩ(z,z) is an exhaustion function on Ω. For the first proof we make use

of the result of Henkin-Tumanov [TK1, 2] (Theorem 4.3.1 here) to replace Alexander’s
theorem after having proved algebraic extension of Graph(f). Imitating the rank-1
case, one has to prove that for the measure-preserving map f : Ω → Ω × · · · × Ω,
f = (f1, · · · , fd2), one of the components, say fd2 , must be an automorphism, which
must itself preserve the Bergman volume form. One can then simplify the functional
equation (†) arising from the measure-preserving property of f to an analogous equation
where the image Ωd2 is reduced to Ωd2−1 by removing the last factor, and conclude as
in the rank-1 case by induction that indeed f is totally geodesic.

Write Ω b Cn ⊂ M simultaneously for the Harish-Chandra embedding and for the
Borel embedding Ω ⊂ M into the compact dual of Ω and write V ⊂ Cn × (Cn)d2 for
the algebraic extension of Graph(f) to an affine-algebraic variety. Write π0 : V → M

for the natural projection into the factor M containing the domain Ω and πα : V → M ,
1 ≤ α ≤ d2, for the natural projection into the α-th direct factor of Md2 . Let E ⊂
V × V

d2 be the smallest subset outside of which each πi, 0 ≤ i ≤ d2, takes finite values
and is unramified, and write R ⊂ Cn for the subvariety π0(E) ∩ Cn. To carry through
the first proof using Theorem 4.3.1, which involves the Shilov boundary, we observed
first of all that the bad set R ⊂ V does not contain the Shilov boundary Sh(Ω), so that
each fα, 1 ≤ α ≤ d2, admits an analytic continuation to any point b ∈ Sh(Ω)− R 6= ∅
to give a biholomorphism on some neighborhood U of b onto an open subset of Cn.

In order to apply the result of Henkin-Tumanov, we have to show that f(U ∩∂Ω) ⊂
∂Ω and that furthermore f(U ∩ Sh(Ω)) ⊂ Sh(Ω). To prove the first we checked that
b ∈ ∂Ω admits a fundamental system of neighborhoods Qb on ∂Ω such that Qb∩Reg(Ω)
is connected. (Connectedness is needed to avoid the possibility that some connected
component of Qb ∩ ∂Ω is mapped to the boundary, while some other connected compo-
nent of Qb ∩ ∂Ω is mapped to the interior, a phenomenon that does occur in the case of
the unit disk, as exemplified by the p-th root map). The latter can be checked using the
structure of ∂Ω as a semi-analytic set. (For general references the reader may consult
ÃLojasiewicz [ÃLo] on semi-analytic sets, and Wolf [Wo] on the fine structure of ∂Ω). In
its place we give a simpler and more direct argument exploiting the realization of ∂Ω as
a Siegel domain D of the first or second kind via the Cayley transform of Korányi-Wolf
[KW], with b ∈ ∂Ω being transformed to 0 ∈ ∂D, by means of which neighborhoods P0

such that P0 ∩ Reg(∂D) is path-connected can be found by using the connectedness of
Reg(∂D) and linear contractions at 0 which restrict to automorphisms of D.
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To check that f(U ∩ Sh(Ω)) ⊂ Sh(Ω) we exploit the fine structure of irreducible
bounded symmetric domains given in Wolf [Wo]. Write r = rank(Ω) and G = Aut0(Ω).
Let P ⊂ Ω by a maximal polydisk on Ω, of complex dimension r and identified with
the Euclidean polydisk ∆r ⊂ Ω b Cn. For 1 ≤ k ≤ r write εk = (1, · · · , 1, 0, · · · 0) ∈
∂P , where precisely the first k coefficients of εk are equal to 1. Writing Ek = Gεk,
the topological boundary ∂Ω decomposes into the disjoint union of precisely r orbits
∂Ω = E1 ∪ · · · ∪ Er, where Er is the Shilov boundary Sh(Ω). For 1 ≤ ` ≤ r we
define K` = E` ∪ · · · ∪ Er. By means of the proof of the Herman Convexity Theorem
[Hr] we show that the smooth locus of the semi-analytic set K` is precisely equal to
E`. Given this, for a point b ∈ Sh(Ω) and a biholomorphism h : Ub → Cn of some
open neighborhood Ub of b onto an open subset of Cn such that h(Ub ∩ Ω) ⊂ Ω and
h(Ub ∩ ∂Ω) ⊂ ∂Ω, h

∣∣
Ub∩∂Ω

must respect the stratification ∂Ω = E1 ∪ · · · ∪Er, mapping
singular points to singular points, thereby mapping Ub∩Sh(Ω) into Sh(Ω) by induction,
as desired. With both topological difficulties removed, Theorem 4.1.1 for the case of
rank ≥ 2 follows through as in the rank-1 case when Alexander’s theorem is replaced
by the result of Henkin-Tumanov.

An alternative proof for the case where rank(Ω) ≥ 2 is to make use of Theorem
4.3.3, which is an Alexander-type theorem in the case an irreducible bounded symmetric
domain Ω of rank ≥ 2 concerning the smooth part of ∂Ω in place of the Shilov boundary
∂Ω, the most singular part ∂Ω. Using Theorem 4.3.3 we can completely avoid the
topological difficulties in the application of the result of Henkin-Tumanov, at the expense
of course of having to prove a new Alexander-type theorem in place of quoting the well-
known result of Henkin-Tumanov.

Finally the special case of the unit disk ∆ can be incorporated as follows. The
proof of algebraic extension using the result of Huang [Hu] on strictly pseudoconvex
real algebraic hypersurfaces goes through in the case of ∆ to give an affine-algebraic
variety V ⊂ C × Cd2 , noting that the extension result is applied to the unit circle
bundle SL of L = T∆ with respect to the Bergman metric, which is of real dimension 3.
Given a torsion-free lattice Γ ⊂ Aut(∆) and a germ of holomorphic measure-preserving
map f : (∆; 0) → (∆; 0) × · · · × (∆; 0), at a general point b ∈ ∂∆ arising from an
algebraic correspondence on X = ∆/Γ, we have by algebraic extension of Graph(f) a
holomorphic isometry defined on Ub∩∆ for some open neighborhood Ub of b. The norm
of the second fundamental form σ must by computation be asymptotically zero at b

while it is invariant under some subgroup of Γ of finite index acting on V ∩ (∆×∆d2),
implying that σ must vanish identically, i.e., f is totally geodesic.

§5 Open problems

(5.1) On the structure of the space of holomorphic isometries of the Poincaré disk into
polydisks The p-th root map ρp : H → Hp as in Proposition 1.2.1 gives via the inverse
Cayley transform a holomorphic isometry fp : (∆, ds2

∆) → (∆p, ds2
∆p). Here for the

domain disk we use the inverse Cayley transform ι : H → D given by z = ι(τ) =
τ−i
τ+i , and likewise the same map for each component of the target polydisk ∆p. We
have fp(0) = 0, and f is singular exactly at two points 1,−1 ∈ ∂∆ on the boundary
circle, with images fp(1) = (1, · · · , 1) and fp(−1) = (−1, · · · ,−1). We say that two
holomorphic isometries of the Poincaré disk ∆ into the polydisk ∆p are congruent if
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and only if they are obtained from each other by re-parametrization, i.e., composing
with automorphisms of the unit disk ∆ in the domain, and by composing with target
automorphisms, i.e., automorphisms of the target polydisk ∆p. Continuous families
of holomorphic isometries from the Poincaré disk into polydisks which are incongruent
to one another can be constructed from p-th root maps (cf. [Mk7, (3.2)]), as follows.
Write f2(z) =

(
α(z), β(z)

)
. Given any two distinct points a, b ∈ ∂∆ − {1,−1}, we

can choose ϕ ∈ Aut(∆) such that ϕ(a) = 1 and ϕ(b) = −1. Define h : ∆ → ∆3 by
h(z) =

(
α(z), α(β(ϕ(z))), β(β(ϕ(z)))

)
. Then, h is singular precisely at the 4 distinct

points 1,−1, a, b. Fixing a and varying b we get holomorphic isometries hb : (∆, ds2
∆) →

(∆3, ds2
∆3) depending on b. For b1 6= b2, hb1 cannot be congruent to hb2 since any

automorphism of the unit disk fixing three distinct boundary points must be the identity
map. This and similar examples can serve as first examples for the study of deformations
of holomorphic isometries.

Given any two bounded symmetric domain D b Ω and Ω b CN , denote by
HI(D, Ω) the space of holomorphic isometries f : (D, λ ds2

∆) → (Ω, ds2
Ω) where λ > 0

is an arbitrary normalizing constant. It is known from the functional identities and
extension results for holomorphic isometries that λ is a rational number which can only
take a finite number of possible values. For a fixed normalizing constant λ > 0 we write
HIλ(D, Ω) ⊂ HI(D,Ω) for the subset consisting of those maps for which the normal-
izing constant is λ. A map f ∈ HIλ(D, Ω) is said to be (globally) rigid if and only if
any h ∈ HIλ(D, Ω) is of the form h = Φ ◦ f ◦ ϕ for some ϕ ∈ Aut(D) and for some
Φ ∈ Aut(Ω). We say that f ∈ HIλ(D, Ω) is locally rigid if and only if the following
holds true:

(†) Given any relatively compact non-empty open subset U b D there exists a positive
constant ε = εU such that, for any h ∈ HIλ(D,Ω) satisfying ‖h(z) − f(z)‖ < εU

for any z ∈ U , there exists some ϕ ∈ Aut(D) and some Φ ∈ Aut(Ω) such that
h = Φ ◦ f ◦ ϕ.

It is not difficult to prove that the space HIλ(D, Ω) can be naturally given the
structure of a real-analytic variety. Given this, it follows readily that the defining
condition (†) for local rigidity is satisfied whenever it is satisfied for a single nonempty
open subset U b D.

The only known examples of non-standard holomorphic isometries between bounded
symmetric domains are those defined on polydisks, which reduce to holomorphic isome-
tries defined from the Poincaré disk into a bounded symmetric domain. For this reason
we focus on the latter class of maps, and in what follows we pose a number of problems
on such maps.

Problem 5.1.1. Study deformations of holomorphic isometries from the Poincaré disk
into a bounded symmetric domain.

Let Ω b CN be any bounded symmetric domain in its Harish-Chandra realization.
To study equivalence classes of holomorphic isometries f : (∆, λ ds2

∆) → (Ω, ds2
Ω), λ > 0,

up to target automorphisms, without loss of generality we may assume that f(0) = 0.
For p ≥ 2 the p-th root map ρp : H → Hp is asymptotically totally geodesic at a
general boundary point b ∈ ∂H. Thus it is not equivariant with respect to SL(2,R).
However, from the definition of ρp we have readily ρp(Aτ) = A

1
p ρp(τ) for any real
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number A > 0, thus ρp is equivariant with respect to a 1-parameter subgroup. Identi-
fying the unit disk with the upper half-plane through the inverse Cayley transform, by
re-parametrization one derives readily a real 1-parameter family of holomorphic isome-
tries µt : (∆, ds2

∆) → (∆p, ds2
∆p) such that µt(0) = 0 which are mutually inequivalent

under target automorphisms. (Consider maps corresponding to ft(τ) = ρp(τ + t).) Fur-
thermore, by composing with equivalents of q-th root maps of individual factor disks
we have examples of continuous families of holomorphic isometries which are mutually
incongruent, i.e, inequivalent under re-parametrization and target automorphisms (cf.
example in the first paragraph of (5.1). These provide initial examples for the study of
deformation of holomorphic isometries of the Poincaré disk into polydisks. In Mok-Ng
[MN1, (2.2), Proposition 2] the maps from Poincaré disk into the Siegel upper half-plane
of genus 3 also as a continuous family of holomorphic isometries of the Poincaré disk
to a bounded symmetric domain which are not apparently equivalent to one another,
but which turn out to be equivalent to one another under target automorphisms, i.e.,
under symplectic transformations when the bounded symmetric domain is realized in
the standard way as a Siegel domain.

Given a bounded symmetric domain Ω equipped with the Bergman metric ds2
Ω, it is

interesting to study the deformation theory of holomorphic isometries ft : (∆, λ ds2
∆) →

(Ω, ds2
Ω), by a study of the functional identities satisfied by these holomorphic isome-

tries. Ideally one should be able to identify holomorphic vector fields which potentially
arise as infinitesimal variations of such families of holomorphic isometries, and identify
the obstruction to realize such candidates of infinitesimal variations as bona fide in-
finitesimal variations of germs of holomorphic isometries. By the extension theorem of
Mok [Mk7] (cf. Theorem 2.4.1 of the current article), once we have a 1-parameter family
ft, t ∈ (−1, 1), of germs of holomorphic isometries, the family extends necessarily to a
1-parameter family of global proper holomorphic isometries Ft : (∆, λ ds2

∆) → (Ω, ds2
Ω).

Problem 5.1.2. Study the structure of all holomorphic isometries from the Poincaré
disk into the polydisk. Are the known examples rigid modulo the obvious parameters?

Currently our limited knowledge on the classification of holomorphic isometries
f : (∆, k ds2

∆) → (∆p, ds2
∆p), where k is a positive integer, is based on Ng [Ng1]. The

known results are those for small dimensions p = 2, 3 and for certain extreme cases.
Writing V ⊂ P1 × (P1)p for the extension of Graph(f) ⊂ ∆ × ∆p to P1 × (P1)p as a
subvariety, and denoting by Vi ⊂ P1 × P1 the extension of Graph(fi) ⊂ P1 × P1 as a
subvariety, by normalization we have maps on compact Riemann surfaces τi : Xi → P1,
where Xi is a non-singular model of Vi, given by the normalization νi : Xi → Vi;
τi = π0◦νi, where π0 : P1×P1 is the canonical projection onto the first factor. Similarly,
from the normalization ν : X → V we obtain a holomorphic map τ : X → P1, τ = π0◦ν,
where again π0 : P1 × (P1)p is the canonical projection onto the first factor. From this
we have the i-th sheeting number si, 1 ≤ i ≤ p of f : ∆ → ∆p, defined as the sheeting
number of τi : Xi → P1, and the global sheeting number s of f , defined as the sheeting
number of τ : X → P1. Thus to any f ∈ HI(∆, ∆p) we can attach the global sheeting
number s, which is a topological invariant. We write HIλ(∆,∆p; s) ⊂ HIλ(∆, ∆p)
for the subset consisting of those maps f for which furthermore the global sheeting
number is s. We can further attach the p-tuple (s1, · · · , sp) where si stands for the i-th

35



sheeting number. If we permute the components fi so that s1 ≤ · · · ≤ sp, then the
p-tuple (s1, · · · , sp) is uniquely determined, but we will refrain from doing so. Given
s and given (s1, · · · , sp), we will denote by HIλ(∆,∆p; s; s1, · · · , sp) ⊂ HIλ(∆,∆p; s)
consisting of holomorphic isometries for which furthermore the i-th sheeting number is
si for 1 ≤ i ≤ p.

At this point a complete description of HI(∆, ∆p) appears to be difficult. For the
extremal cases the structure of HI1(∆, ∆p; p) is only known when p is odd, in which
case there is only 1 map in the space up to re-parametrization and target automor-
phisms, viz., a map congruent to the p-th root map ρp. When s = 2p−1, the structure
HI1(∆,∆p; 2p−1; s1, · · · , sp) is known only in the special case when the maximum of si

is 2p−1. In this case, by Ng [Ng1] it was shown that any f ∈ HI1(∆, ∆p; 2p−1; s1, · · · , sp)
is obtained by successively applying a map congruent to the square-root map to a direct
factor of the polydisk (starting with the unit disk). Here we no longer have rigidity but
the parameters of the latter space are completely known.

A problem on the structure of HI(∆, ∆p) which can be a testing ground for a
deformation theory of holomorphic isometries is the following. By Ng [Ng1], whenever p

is odd, any bona fide holomorphic isometry f : (∆, ds2
∆) → (∆p, ds2

∆p) of global sheeting
number p is necessarily congruent to the p-th root map (under Cayley transformations
and up to re-parametrization and target automorphisms). Thus, the expectation is
that the p-th root map ρp : H → Hp is at least locally rigid for all integers p (and for
p odd we know by Ng [Ng1] that ρp is globally rigid). It will thus be interesting to
compute the space of possible infinitesimal and higher order variations of holomorphic
isometries for the p-th root map ρp and to prove along this line that ρp is locally rigid
for all p. In the case of HI1(∆, ∆p; 2p−1; s1, · · · , sp), where max(si) = 2p−1, which
can be completely described, a first problem that can be posed is to check whether
the infinitesimal deformation of holomorphic isometries at a given map f in the space
correspond exactly to those described by the known parameters.

Problem 5.1.3. Do there exist non-standard holomorphic isometries of the complex
unit ball Bn, n ≥ 2, into some bounded symmetric domain Ω?

For the unit disk ∆, composition of maps congruent to p-th root maps define
continuous families of non-standard holomorphic isometries f : (∆, ds2

∆) → (∆p, ds2
∆p).

For the complex unit ball, Bn, n ≥ 2, such analogues do not exist. In fact, by Mok [Mk4],
for n ≥ 2, any holomorphic isometry f : (Bn, λ ds2

Bn) → (Bn, ds2
Bn)× · · · × (Bn, ds2

Bn)
is necessarily totally geodesic (cf. Ng [Ng2] for rigidity results in some special cases
where the image there are two Cartesian factors which are Bm with m > n). We
have the rigidity phenomenon that all holomorphic isometries in HI(D, Ω) are totally
geodesic whenever D is irreducible and of rank ≥ 2, as a consequence of the proof of
Hermitian metric rigidity (Mok [Mk1, 2]). It is tempting to believe that such a rigidity
phenomenon persists when D is of rank 1 and of dimension ≥ 2, i.e., when D = Bn,
n ≥ 2. In this direction one may consider restrictions of f ∈ HI(Bn, Ω) to totally
geodesic holomorphic disks on Bn, thereby obtaining families of holomorphic isometries
of the Poincaré disk into Ω, and examine the (im)possibility of such deformations in
relation to the deformation theory of holomorphic isometries of the Poincaré disk. In
this sense Problem 5.1.1 and Problem 5.1.3 may be related to each other.
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(5.2) On the second fundamental form and asymptotic behavior of holomorphic isome-
tries of the Poincaré disk into bounded symmetric domains In Mok [Mk6] and more
recently in Mok-Ng [MN1] we have posed open problems regarding the second funda-
mental form and asymptotic behavior of holomorphic isometries of the Poincaré disk
into bounded symmetric domains. We collect these problems in this survey, and refor-
mulate some of the problems in view of new developments. We will only make brief
comments on the questions and refer the reader to the discussion in [Mk6] and [MN1].
To start with we have the following reformulation of [Mk6, (2.3), Question 1].

Problem 5.2.1. Let Ω be a bounded symmetric domain which is either irreducible or
a Cartesian product of identical irreducible bounded symmetric domains, λ be a positive
constant, and F : (∆, λds2

∆) → (Ω, ds2
Ω) be a non-standard holomorphic isometry of the

Poincaré disk. Prove that F is of the first kind.

Recall that a non-standard holomorphic isometry F : (∆, λds2
∆) → (Ω, ds2

Ω) is said
to be of the first kind if and only if, denoting by ϕ the square of the norm of the second
fundamental form σ, at a general point of ∂∆, extension of ϕ to a neighborhood of b

vanishes precisely to the order 2. The calculation of Mok [Mk6, (2.2)] and the more
precise calculations of Mok-Ng [MN2, (2.3)] of ϕ = ‖σ‖2 for the map G : (H, ds2

H) →
(H3, ds2

H3
) shows that it is of the first kind (cf. Proposition 3.3.1 of the current article).

Concerning the algebraic extension of Graph(F ) for a holomorphic isometry F :
(∆, λds2

∆) → (Ω, ds2
Ω) we have the following problem, which is a reformulation of [Mk6,

(2.3), Question 2].

Problem 5.2.2. Let Ω be a bounded symmetric domain λ be a positive constant, and
F : (∆, λds2

∆) → (Ω, ds2
Ω) be a non-standard holomorphic isometry of the Poincaré disk.

Prove that F must develop a singularity at some boundary point b ∈ ∂∆, i.e., F does
not extend holomorphically to a neighborhood D of the closed unit disk ∆.

In [MN1] we have now shown that singularities must indeed develop in the case
where the target domain is the polydisk. The proof makes use of the very special fact
that, in the case of the polydisk, the extension beyond the boundary circle remains
a holomorphic isometry when the exterior of the closed unit disk in the domain, and
likewise the exterior of each of the factor unit disks in the target is also equipped with
the Poincaré metric. In the general case where the target space is an arbitrary bounded
symmetric domain Ω in its Harish-Chandra realization, when one exits a general bound-
ary point on ∂∆, the image under the analytic continuation of the holomorphic isometry
F traverses a region equipped naturally with a pseudo-Kähler metric, i.e., associated
to a closed (1,1)-form which is non-degenerate but not necessarily positive definite. Al-
though the extended map is still a holomorphic isometry in a formal sense, the behavior
of such maps have not yet been understood.

In [MN1] we have formulated a number of questions motivated by the study of the
asymptotic behavior of second fundamental forms and also by the explicit calculation
of second fundamental forms of the p-th root maps ρp and of the map G : H → H3 into
the Siegel upper half-plane of genus 3. We recall these problems. They correspond to
[MN1, (2.4), Problems 1-3] in the same order, with a reformulation on the last problem.
We refer the reader to [MN1] for details.
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Problem 5.2.3. Among holomorphic isometric embeddings of the Poincaré disk into
polydisks characterize in terms of second fundamental forms of the embeddings those
that are equivalent to the p-th root map up to re-parametrization on the Poincaré disk
and up to automorphisms of the target polydisk.

Here the calculations in [MN1] show that for the p-th root map ρp with second
fundamental form σp, writing ϕp(τ) := ‖σp(τ)‖2 = t2up(τ), the function log up(τ)
is harmonic. Any non-standard holomorphic isometry of the Poincaré disk into the
polydisk is known to be of the first kind (cf. Mok [Mk6, (2.1), Thm.2]). Writing in
general ‖σ‖2 = t2u the question is whether the harmonicity of log u characterizes the
p-th root map.

Problem 5.2.4. Among holomorphic isometric embeddings of the Poincaré disk into
bounded symmetric domains characterize in terms of second fundamental forms of the
embeddings those that are given by holomorphic isometric embeddings into polydisks.

Assume that the answer to Problem 5.2.1 is positive, i.e., any non-standard holo-
morphic isometry F : (∆, λ ds2

∆) → (Ω, ds2
Ω) is necessarily of the first kind. Then,

identifying the unit disk in the domain with the upper half-plane H via the inverse
Cayley transform, and denoting by σ the second fundamental form of F we have
‖σ(τ)‖2 = t2u(τ) in terms of the Euclidean coordinate τ = t+ is on H, where u

∣∣
∂H 6≡ 0.

By Theorem 3.2.1, if the image of F is contained in a totally geodesic polydisk we must
have ∂u

∂t

∣∣
∂H ≡ 0. The first question is whether the latter boundary differential equation

is enough to characterize holomorphic isometries whose images are contained in totally
geodesic polydisks. Recall that the map G : (H, ds2

H) → (H3, ds2
H3

) can be distinguished
from holomorphic isometries into polydisks precisely because ∂u

∂t

∣∣
∂H 6≡ 0. At this stage

the problem is experimental in nature and there is no overwhelming evidence for or
against the statement. It can however be noted that universal higher order boundary
differential equations on u may no longer exist because of error terms in the curvature
expansion arising from the structural equation as given in (]) in the proof of Theorem
3.1.1.

Problem 5.2.5. Let Ω be an irreducible bounded symmetric domain of rank equal to
2, λ be a positive constant, and F : (∆, λds2

∆) → (Ω, ds2
Ω) be a holomorphic isometry.

Does there exist a totally geodesic bidisk P ⊂ Ω such that the image of f is contained
in P?

When the target domain Ω is assumed to be of rank 2, up to congruence so far
there are no examples of non-standard holomorphic isometries F : (∆, λds2

∆) → (Ω, ds2
Ω)

other than the square root map. It is tempting to believe that there is more rigidity in
the case where Ω is of rank 2 since the curvature expansion arising from the structural
equation as given in [Thm 3.1.1., (†)] is exact.

(5.3) On germs of holomorphic maps preserving invariant (p, p)-forms We have tack-
led problems on germs of holomorphic maps f : D → Ω between bounded symmet-
ric domains which are either holomorphic isometries up to normalizing constants or
measure-preserving maps. They are special cases of the following general problem.

Problem 5.3.1. Let D b Cn and Ω b CN be bounded symmetric domain in their
Harish-Chandra realizations. Let µp,p

D be an Aut(D)−invariant (p, p)-form on D and
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νp,p
Ω be an Aut(Ω)−invariant (p, p)-form on Ω. Let λ > 0 be a real number, and f :

(D; 0) → (Ω; 0) be a germ of holomorphic map such that f?νp,p
Ω = λµp,p

D . Under what
conditions is f necessarily totally geodesic.

While the problems dealt with in this survey arise from dynamical problems in
Arithmetic Geometry, the general problem above may not be directly related to such
problems, and one motivation is rather the links of special cases of Problem 5.3.1 to
problems on geometric structures related to irreducible bounded symmetric domains.
The work of Mok-Ng [MN2] in the case of germs of measure-preserving maps involves a
result on algebraic extension, a verification of the necessary non-degeneracy condition
by curvature considerations, and evoking Alexander-type results, which are in the case
of rank ≥ 2 related to Ochiai’s results.

To formulate an example where a resolution of Problem 5.3.1 is related to the study
of geometric structures recall that by Tsai [Ts], given D an irreducible bounded sym-
metric domain of rank r ≥ 2 and Ω of rank at most equal to r it is known that, without
additional differential-geometric conditions, any proper holomorphic map F : D → Ω
is necessarily totally geodesic (in which case Ω must also be of rank r). Recently,
Mok [Mk] has given a scheme of proof of Tsai’s result by exploiting the intermediate
result that f must transform varieties of minimal rational tangents into minimal ra-
tional tangents, and proving a non-equidimensional analogues of Ochiai’s Theorem (cf.
Hong-Mok [HoM] for a general formulation of such analogues and their verifications for
pairs of irreducible bounded symmetric domains, equivalently for pairs of irreducible
Hermitian symmetric manifolds of the compact type). In place of the global require-
ment that F : D → Ω is a proper holomorphic map, one may instead consider germs of
holomorphic maps f : (D; 0) → (Ω; 0) satisfying for instance f?ωp

Ω = λωp
D, where ωD,

resp. ωΩ, stands for the Kähler form of the Bergman metric on D, resp. Ω, and p is
a positive integer. When p = 1 we have a germ of holomorphic isometry up to a nor-
malizing constant, and the problem is solved from completely local considerations from
Hermitian metric rigidity. On the other hand, when 2 ≤ p ≤ dim(D), one can follow
the scheme of proving algebraic extension of Graph(f) and deducing properness at a
general boundary point by means of functional identities, as is done in Mok-Ng [MN2].
Here one encounters first of all the difficulty of verifying the non-degeneracy condition
there needed for applying Huang’s result. More precisely, the Hermitian holomorphic
vector bundles (ΛpTD, hD) and (ΛpTΩ, hΩ), with the Hermitian metric hD, resp. hΩ,
induced from the Bergman metric ds2

D, resp. ds2
Ω, is of seminegative and in general not

of strictly negative curvature in the sense of Griffiths, and one has to study the locus
of weakly pseudoconvex points on their respective unit sphere bundles to exclude the
possibility that the image of the induced map on unit sphere bundles lie entirely on the
locus of weakly pseudoconvex points. The problem at hand can also be considerably
generalized when we allow Ω to be a Cartesian product where each individual factor is
or rank ≤ r, or furthermore to the case where the rank condition on the target domain
is weakened, since it is expected that the hypothesis f?ωp

Ω = λωp
D is sufficiently rigid,

so that, once analytic continuation and thereby properness at a good boundary point
can be established, the resulting global map is likely to be more rigid than what one
can deduce solely from properness.
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