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Abstract

In this note, we show that small complex perturbations of positive matrices are
contractions, with respect to a complex version of the Hilbert metric, on a neighbour-
hood of the interior of the real simplex within the complex simplex. We show that this
metric can be used to obtain estimates of the domain of analyticity of entropy rate
for a hidden Markov process when the underlying Markov chain has strictly positive
transition probabilities.

1 Introduction

The purpose of this note is twofold. First, in Section 2, we introduce a new complex version
of the Hilbert metric on the standard real simplex. This metric is defined on a complex
neighbourhood of the interior of the standard real simplex, within the standard complex
simplex. We show that if the neighbourhood is sufficiently small, then any sufficiently small
complex perturbation of a strictly positive square matrix acts as a contraction, with respect
to this metric. While this paper was nearing completion, we were informed of a different
complex Hilbert metric, which was recently introduced. We briefly discuss the relation
between this metric [3] and our metric in Remark 2.7.

Secondly, we show how one can use a complex Hilbert metric to obtain lower estimates of
the domain of analyticity of entropy rate for a hidden Markov process when the underlying
Markov chain has strictly positive transition probabilities. The domain of analyticity is
important because it specifies an explicit region where a Taylor series converges to the
entropy rate and also gives an explicit estimate on the rate of convergence of the Taylor
approximation.

In principle, an estimate on the domain can be obtained by examining the proof of
analyticity in [5]. That proof was based on a contraction mapping argument, using the fact
that the real Euclidean metric is equivalent to the real Hilbert metric. However, in the course
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of transforming the Euclidean metric to the Hilbert metric, the set-up is changed in a way
that makes it difficult to keep track of the domain of analyticity. In Section 3.1, we revisit
certain aspects of the proof and outline how to modify it using a complex Hilbert metric;
this yields a more direct estimate. In Section 3.2, we illustrate this with a small example.

We remark that the entropy rate of a hidden Markov process can be interpreted as a top
Lyapunov exponent for a random matrix product [6]. In principle, a complex Hilbert metric
can be used, more generally, to estimate the domain of analyticity of the top Lyapunov
exponent for certain random matrix products; see [7], [8].

2 Contraction Mapping and a Complex Hilbert Metric

We begin with a review of the real Hilbert metric. Let B be a positive integer, and let W
be the standard simplex in B-dimensional real Euclidean space:

W = {w = (w1, w2, · · · , wB) ∈ RB : wi ≥ 0,
∑
i

wi = 1},

and let W ◦ denote its interior, consisting of the vectors with positive coordinates. For any
two vectors v, w ∈ W ◦, the Hilbert metric [10] is defined as

dH(w, v) = max
i,j

log

(
wi/wj

vi/vj

)
. (1)

For a B × B strictly positive matrix T = (tij), the mapping fT induced by T on W is
defined by fT (w) = wT/(wT1), where 1 is the all-ones vector. It is well known that fT is a
contraction mapping under the Hilbert metric [10]. The contraction coefficient of T , which
is also called the Birkhoff coefficient, is given by:

τ(T ) = sup
v ̸=w

dH(vT, wT )

dH(v, w)
=

1−
√

ϕ(T )

1 +
√
ϕ(T )

, (2)

where ϕ(T ) = mini,j,k,l
tiktjl
tjktil

. This result extends to the case where T has all columns strictly

positive or all zero and at least one strictly positive column (then, in the definition of ϕ(T ),
consider only k, l corresponding to strictly positive columns).

Let WC denote the complex version of W , i.e., WC denotes the complex simplex compris-
ing the vectors

{w = (w1, w2, · · · , wB) ∈ CB :
∑
i

wi = 1}.

Let W+
C = {v ∈ WC : R(vi/vj) > 0 for all i, j}. For v, w ∈ W+

C , let

dH(v, w) = max
i,j

∣∣∣∣log(wi/wj

vi/vj

)∣∣∣∣ , (3)

where log is taken as the principal branch of the complex log(·) function (i.e., the branch
whose branch cut is the negative real axis). Since the principal branch of log is additive on
the right-half plane, dH is a metric on W+

C , which we call a complex Hilbert metric.
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We will show that any sufficiently small perturbation of a strictly positive matrix is a
contraction, with respect to dH , on a sufficiently small complex neighbourhood of W ◦. We
begin with the following very simple lemma.

Lemma 2.1. Let n ≥ 2. For any fixed z1, z2, · · · , zn, z ∈ C and fixed t > 0, we have

sup
t1,··· ,tn≥0, t1+t2+···+tn=t

|t1z1 + t2z2 + · · ·+ tnzn + z| = max
i=1,··· ,n

|tzi + z| .

Proof. The convex hull of z1, z2, · · · , zn is a solid polygon, taking the form

{(t1/t)z1 + (t2/t)z2 + · · ·+ (tn/t)zn : t1, t2, · · · , tn ≥ 0, t1 + t2 + · · ·+ tn = t}.

By convexity, the distance from any point in this solid polygon to the point (−1/t)z will
achieve the maximum at one of the extreme points, namely

sup
t1,··· ,tn≥0,t1+t2+···+tn=t

|(t1/t)z1 + (t2/t)z2 + · · ·+ (tn/t)zn − (−1/t)z| = max
i=1,··· ,n

|zi − (−1/t)z| .

The lemma then immediately follows.

The following lemma is implied by the proof of Lemma 2.1 of [2]; we give a proof for
completeness.

Lemma 2.2. For fixed a1, a2, · · · , aB > 0 ∈ R and fixed x1, x2 · · · , xB > 0 ∈ R, define:

Dn =
anxn∑B

m=1 amxm

− xn∑B
m=1 xm

.

Let T0 = {n : Dn ≥ 0} and T1 = {n : Dn < 0}. Then we have

∑
n∈T0

Dn =
∑
n∈T1

|Dn| ≤
1−

√
a/A

1 +
√

a/A
,

where a = min{a1, a2, · · · , aB} and A = max{a1, a2, · · · , aB}.

Proof. It immediately follows from
∑B

n=1 Dn = 0 and the definitions of T0 and T1 that∑
n∈T0

Dn =
∑
n∈T1

|Dn|.

Now ∑
n∈T0

Dn =
∑
n∈T0

(
anxn∑

m∈T0 amxm +
∑

m∈T1 amxm

− xn∑
m∈T0 xm +

∑
m∈T1 xm

)

≤
∑
n∈T0

(
Axn

A
∑

m∈T0 xm + a
∑

m∈T1 xm

− xn∑
m∈T0 xm +

∑
m∈T1 xm

)
Let

z =

∑
m∈T1 xm∑
m∈T0 xm

,
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we then have ∑
n∈T0

Dn ≤ 1

1 + (a/A)z
− 1

1 + z
= f(z).

Simple calculus shows that f(z) will be bounded above by
1−
√

a/A

1+
√

a/A
on [0,∞). This establishes

the lemma.

Let Bδ(W
◦) denote the neighbourhood of radius δ about W ◦, contained in W+

C , measured
in the Hilbert metric:

Bδ(W
◦) = {v ∈ W+

C : ∃u ∈ W ◦such that dH(u, v) < δ}

While we will state our result in terms of Bδ(W
◦), our proof will make use of a slightly

different neighbourhood:

W ◦
C(δ) = {v = (v1, v2, · · · , vB) ∈ WC : ∃u ∈ W ◦, |vi − ui| ≤ δui, i = 1, 2, · · · , B}.

The neighbourhoods W ◦
C(δ) and Bδ(W

◦) are equivalent in the following sense.

Lemma 2.3. For some L > 0 and sufficiently small δ > 0,

1. W ◦
C(δ) ⊆ BLδ(W

◦)

2. Bδ(W
◦) ⊆ W ◦

C(Lδ)

Proof. Part 1: Let v ∈ W ◦
C(δ). Then there exists u ∈ W ◦ such that for each i, |vi/ui−1| ≤ δ.

Thus,
|vi/ui| ≥ 1− δ for all i, (4)

and
|vi/ui − vj/uj| ≤ 2δ for all i, j (5)

Dividing (5) by |vj/uj| and using (4), we see that for each i, j, | vi/ui

vj/uj
−1| ≤ 2δ/(1−δ) < 4δ,

for δ < 1/2. This implies that there is a constant L > 0 such that for sufficiently small δ,
v ∈ W+

C and dH(u, v) < Lδ.
Part 2: Let v ∈ Bδ(W

◦). Then v ∈ WC and there exists u ∈ W ◦ such that dH(v, u) =

maxi,j

∣∣∣log ( vi/ui

vj/uj

)∣∣∣ < δ. It follows that for some L > 0, maxi,j

∣∣∣ vi/ui

vj/uj
− 1
∣∣∣ < Lδ. Let

αj = vj/uj. Then for all i, j,
|vi − αjui| ≤ Lδ|αj|ui,

and so

|1− αj| = |
n∑

i=1

vi − αjui| ≤
n∑

i=1

|vi − αjui| ≤ Lδ|αj|
n∑

i=1

ui = Lδ|αj|

It follows that |vj − uj| ≤ Lδ|vj|, and so |vj| ≤ uj

1−Lδ
, and so |vj − uj| ≤ Lδ

1−Lδ
uj ≤ 2Lδuj, if δ

is sufficiently small. Part 2 is then established by replacing L by 2L.
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We consider complex matrices T̂ = (t̂ij) which are perturbations of a strictly positive
matrix T = (tij). For such a matrix T and r > 0, let BT (r) denote the set of all complex

matrices T̂ such that for all i, j,
|tij − t̂ij| ≤ r.

With the aid of the above lemmas, we shall prove:

Theorem 2.4. Let T be a strictly positive matrix. There exist r, δ > 0 such that whenever
T̂ ∈ BT (r), fT̂ is a contraction mapping on Bδ(W

◦), with respect to the complex Hilbert
metric.

Proof. For x̂, ŷ ∈ WC, x̂ ̸= ŷ, and i, j, let

Lij =
log(

∑
m x̂mT̂mi/

∑
m x̂mT̂mj)− log(

∑
m ŷmT̂mi/ŷmT̂mj)

maxk,l |log(x̂k/ŷk)− log(x̂l/ŷl)|
.

Note that
dH(x̂T̂ , ŷT̂ )

dH(x̂, ŷ)
= max

i,j
|Lij|.

It suffices to prove that there exists 0 < ρ < 1 such that for sufficiently small r, δ > 0,
x̂, ŷ ∈ Bδ(W

◦) x̂ ̸= ŷ, T̂ ∈ BT (r), and any i, j,

|Lij| < ρ.

For each m, let ĉm = log x̂m/ŷm; then x̂m = ŷme
ĉm . Choose p ̸= q such that

|ĉp − ĉq| = max
k,l

|ĉk − ĉl| .

Hence:

Lij =
log(

∑
m ŷme

ĉm−ĉq T̂mi/
∑

m ŷme
ĉm−ĉq T̂mj)− log(

∑
m ŷmT̂mi/ŷmT̂mj)

|ĉp − ĉq|
.

Define
F (t) = log(

∑
m

ŷme
(ĉm−ĉq)tT̂mi/

∑
m

ŷme
(ĉm−ĉq)tT̂mj).

Since

|F (1)− F (0)| =
∣∣∣∣∫ 1

0

F ′(t)dt

∣∣∣∣ ≤ max
ξ∈[0,1]

|F ′(ξ)|,

we have

|Lij| =
|F (1)− F (0)|

|ĉp − ĉq|
≤

maxξ∈[0,1] |F ′(ξ)|
|ĉp − ĉq|

. (6)

Note that F ′(ξ) takes the following form:

F ′(ξ) =

∑
m(ĉm − ĉq)ŷme

(ĉm−ĉq)ξT̂mi∑
m ŷme(ĉm−ĉq)ξT̂mi

−
∑

m(ĉm − ĉq)ŷme
(ĉm−ĉq)ξT̂mj∑

m ŷme(ĉm−ĉq)ξT̂mj
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Now for all m let âm = T̂mi/T̂mj. Then

F ′(ξ)

|ĉp − ĉq|
=
∑
n

ĉn − ĉq
|ĉp − ĉq|

(
ŷne

(ĉn−ĉq)ξânT̂nj∑
m ŷme(ĉm−ĉq)ξâmT̂mj

− ŷne
(ĉn−ĉq)ξT̂nj∑

m ŷme(ĉm−ĉq)ξT̂mj

)
=
∑
n

ĉn − ĉq
|ĉp − ĉq|

D̂n.

(7)
where D̂n denotes the quantity in parentheses in the middle expression above.

If x̂, ŷ ∈ Bδ(W
◦), there exist x, y ∈ W ◦ such that for all k, |x̂k − xk| ≤ Lδxk and

|ŷk − yk| ≤ Lδyk, where L is as in part 2 of Lemma 2.3
Let am = Tmi/Tmj, cm = log xm/ym, and let Dn denote the unperturbed version of D̂n:

Dn =
yne

(cn−cq)ξanTnj∑
m yme(cm−cq)ξamTmj

− yne
(cn−cq)ξTnj∑

m yme(cm−cq)ξTmj

. (8)

By Lemma 2.2, we have

∑
n∈T0

Dn =
∑
n∈T1

|Dn| ≤ max
k,l

1−
√
ak/al

1 +
√

ak/al
≤ τ(T ), (9)

where T0 = {n : Dn ≥ 0} and T1 = {n : Dn < 0}.
Now, for some universal constant K0,∣∣∣∣∣∑

n

ĉn − ĉq
|ĉp − ĉq|

D̂n −
∑
n

ĉn − ĉq
|ĉp − ĉq|

Dn

∣∣∣∣∣ < K0(Lδ + r). (10)

Applying Lemma 2.1 twice, we conclude that there exist n0 ∈ T0, n1 ∈ T1 such that∣∣∣∣∣∑
n

ĉn − ĉq
|ĉp − ĉq|

Dn

∣∣∣∣∣
≤

∣∣∣∣∣ ĉn0 − ĉq
|ĉp − ĉq|

∑
n∈T0

Dn +
∑
n∈T1

ĉn − ĉq
|ĉp − ĉq|

Dn

∣∣∣∣∣ ≤
∣∣∣∣∣ ĉn0 − ĉq
|ĉp − ĉq|

∑
n∈T0

Dn −
ĉn1 − ĉq
|ĉp − ĉq|

∑
n∈T1

|Dn|

∣∣∣∣∣ .
Then together with (6), (7), (10), (9), and the fact that |ĉn1 − ĉn0 | ≤ |ĉp − ĉq|, we obtain
that for sufficiently small r, δ > 0, |Lij| is upper bounded by some ρ < 1, as desired.

Remark 2.5. One can further choose r, δ > 0 such that when T̂ ∈ BT (r), fT̂ (W
◦
C(δ)) ⊂

W ◦
C(δ). Consider a compact subset N ⊂ W ◦ such that fT (W ) ⊂ N . Let N(R) denote the

Euclidean R-neighborhood of N in WC. The proof of Theorem 2.4 implies that when T > 0
or (T ≥ 0 and supx,y∈N,0≤ξ≤1

∑
n∈τ0 Dn < 1 (here Dn is defined in (8))), there exist r, R > 0

such that when T̂ ∈ BT (r), fT̂ is a contraction mapping on N(R) under the complex Hilbert
metric.

Example 2.6. Consider a 2× 2 strictly positive matrix

T =

[
a c
b d

]
.
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If we parameterize the interior of the simplex W ◦ by (0,∞): w = (x, y) 7→ x/y, then letting
z = x/y, we have: fT (z) =

az+b
cz+d

; the domain of this mapping naturally extends from (0,∞)
to the open right half complex plane H, and the complex Hilbert metric becomes simply
dH(z1, z2) = | log(z1/z2)|. This metric is simply the image, via the exponential map, of the
Euclidean metric on the strip {z ∈ C : |I(z)| < π/2}.

One can show that fT is a contraction on all of H with contraction coefficient:

τ(T ) =
1− bc

ad

1 + bc
ad

.

(assuming det(T ) ≥ 0; otherwise, the last expression is replaced by
1−ad

bc

1+ad
bc

). To see this, for

any z, w ∈ H, consider

L =

∣∣∣∣ log(fT (z))− log(fT (w))

log(z)− log(w)

∣∣∣∣ .
With change of variables u = log(z), v = log(w), we have

L =

∣∣∣∣ log(fT (eu))− log(fT (e
v))

u− v

∣∣∣∣ = ∣∣∣∣∫ 1

0

ev+t(u−v)f
′
T (e

v+t(u−v))

fT (ev+t(u−v))
dt

∣∣∣∣ ,
which implies that

L ≤ sup
z∈H

∣∣∣∣zf ′
T (z)

fT (z)

∣∣∣∣ .
A simple computation shows that

zf ′
T (z)

fT (z)
=

ad− bc

acz + (ad+ bc) + bd/z
. (11)

To see that the supremum is
1− bc

ad

1+ bc
ad

, first note that since ad− bc ≥ 0 and a, b, c, d > 0, the

absolute value of the quantity on the right-hand side of (11) is maximized by minimizing
|acz + bd/z|; since the only solutions to acz + bd/z = 0 are z = ±i

√
bd/ac, one sees that

the supremum is obtained by substituting z = ±i
√
bd/ac into (11), and this shows that the

supremum is indeed
1− bc

ad

1+ bc
ad

.

Note that this contraction coefficient on H is strictly larger (i.e., worse) than the con-

traction coefficient on [0,∞):
1−
√

bc
ad

1+
√

bc
ad

.

When

T̂ =

[
â ĉ

b̂ d̂

]
.

is a sufficiently small complex perturbation of T , then fT̂ (H) ⊆ H and one obtains

τ(T̂ ) = sup
z∈H

∣∣∣∣zf ′
T̂
(z)

fT̂ (z)

∣∣∣∣ = sup
z∈H

∣∣∣∣∣ âd̂− b̂ĉ

âĉz + (âd̂+ b̂ĉ) + b̂d̂/z

∣∣∣∣∣
which will approximate

1− bc
ad

1+ bc
ad

, and so fT̂ will still be a contraction on H.
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Remark 2.7. While this paper was nearing completion, we were informed that alternative
complex Hilbert metrics, based on the Poincare metric in the right-half complex plane,
were recently introduced in Rugh [9] and Dubois [3]. Contractiveness with respect to these
metrics is proven in great generality and yields far-reaching consequences for complex Perron-
Frobenius theory. The proofs of contractiveness in these papers seem rather different from
the calculus approach in our paper.

The complex Hilbert metric, which we call dP , used in [3] (see equation (3.23)) is explicit
and natural, but slightly more complicated than our complex Hilbert metric; for v, w ∈ W+

C ,

dP (w, v) = log
maxi,j(|wivj + wjvi|+ |wivj − wjvi|)(2R(wiwj))

−1

mini,j(|wivj + wjvi| − |wivj − wjvi|)(2R(wiwj))−1
; (12)

here z denotes complex conjugate, R(z) denotes real part, and log is the ordinary real
logarithm. In the 2-dimensional case, it can be verified that, if one transforms w = (w1, w2)
and v = (v1, v2) to z1 = w2/w1 and z2 = w2/w1, then dP reduces to the Poincare metric on
H:

dP (z1, z2) = log
|z1 + z̄2|+ |z1 − z2|
|z1 + z̄2| − |z1 − z2|

.

Using the infinitesimal form for the Poincare metric (as a Riemannian metric on H), one
checks that, in the 2 × 2 case, the Lipschitz constant for a complex matrix T̂ such that
fT̂ (H) ⊆ H is:

sup
z∈H

∣∣∣∣R(z)f ′
T̂
(z)

R(fT̂ (z))

∣∣∣∣ (13)

in contrast to

sup
z∈H

∣∣∣∣zf ′
T̂
(z)

fT̂ (z)

∣∣∣∣ (14)

for our complex Hilbert metric (as in Example 2.6 above).
While we have not analyzed in detail the differences between these metrics, there are a

few things that can be said in the 2× 2 case:

• fT̂ is a contraction with respect to dP on H whenever it maps H into its interior; this
follows from standard complex analysis (section IX.3 of of [4]), and Dubois [3] proves
an analog of this for the metric dP above (12) in higher dimensions. However, this
does not hold for dH .

• When T̂ = T is strictly positive, then the contraction coefficient, with respect to dP ,
is always at least as good (i.e., at most) the contraction coefficient with respect to dH .
This can be seen as follows:

First recall that any fractional linear transformation T can be expressed as the compo-
sition of transitions, dilations and inversions. In the case where T is strictly positive,
the translations are by positive real numbers and the dilations are by real numbers;
see page 65 of [4]. Using the infinitesimal forms (13, 14), our assertion would follow
from: ∣∣∣∣R(z)

z

∣∣∣∣ ≤ ∣∣∣∣R(fT (z))

fT (z)

∣∣∣∣ , for all z ∈ H. (15)
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This is true indeed: it is easy to see that in fact we get equality in (15) for inversions
and dilations by real numbers, and we get strict inequality in (15) for translations by
positive real numbers.

• When T̂ is a complex perturbation of a strictly positive T , then (15) (with T replaced
by T̂ ) need not hold; in fact, for perturbations T̂ of T on the order of 1% and z =
x + yi ∈ H, with |y|/x on the order of 1%, the contraction coefficient with respect to
dH may be slightly smaller than that with respect to dP . The reason is that in this
case, the dilations may be complex (non-real) and for such a dilation the inequality
(15) may be reversed. Examples of this can be randomly generated in Matlab. For
example, if

T̂ =

[
0.012890500224 + 0.000128905002i 0.310402226067 + 0.003104022260i
0.779079247486− 0.007790792474i 0.307296084921− 0.003072960849i

]
and z = 0.926678310631 − 0.009266783106i, then the contraction coefficent of dH is
approximately 0.664396 and that of dP is approximately 0.664599. For larger pertur-
bations, the differences in contraction coefficient can be greater. The relative strength
of contraction of dH , dP seems to be heavily dependent on specific choices of T̂ and z.

• For any point z, other than 0, of the imaginary axis, the metric dH can be extended to
a neighbourhood, with respect to which any sufficiently small complex perturbation T̂
of a strictly positive matrix acts as a contraction; on the other hand, there is no way
to do this with dP since it blows up as one approaches the imaginary axis.

• Also, on a small punctured neighbourhood of 0, we replace dH by the metric d(z1, z2) =
| log(z1)− log(z2)|, then small complex perturbation T̂ of a strictly positive matrix still
acts as a contraction.

In the next section, we use dH for estimates on the domain of analyticity of entropy
rate of a hidden Markov process. Alternatively, dP could be used, however it appears to be
computationally easier to use dH for the estimation.

3 Domain of Analyticity of Entropy Rate of Hidden

Markov Processes

3.1 Background

For m,n ∈ Z with m ≤ n, we denote a sequence of symbols ym, ym+1, . . . , yn by ynm. Consider
a stationary stochastic process Y with a finite set of states I = {1, 2, · · · , B} and distribution
p(ynm). Denote the conditional distributions by p(yn+1|ynm). The entropy rate of Y is defined
as

H(Y ) = lim
n→∞

−Ep(log(p(y0|y−1
−n))),

where Ep denotes expectation with respect to the distribution p.
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Let Y be a stationary first order Markov chain with

∆(i, j) = p(y1 = j|y0 = i).

In this section, we only consider the case when ∆ is strictly positive.
A hidden Markov process (HMP) Z is a process of the form Z = Φ(Y ), where Φ is a

function defined on I = {1, 2, · · · , B} with values in J = {1, 2, · · · , A}.
Recall that W is the B-dimensional real simplex and WC is the complex version of W .

For a ∈ J , let I(a) denote the set of all indexes i ∈ I with Φ(i) = a. Let

Wa = {w ∈ W : wi = 0 whenever i ̸∈ I(a)}

and
Wa,C = {w ∈ WC : wi = 0 whenever i ̸∈ I(a)}.

Let ∆a denote the B×B matrix such that ∆a(i, j) = ∆(i, j) for j ∈ I(a), and ∆a(i, j) = 0
for j /∈ I(a) (i.e, ∆a is formed from ∆ by “zeroing out” the columns corresponding to indices
that are not in I(a). For a ∈ J , define the scalar-valued and vector-valued functions ra and
fa on W by

ra(w) = w∆a1,

and
fa(w) = w∆a/ra(w).

Note that fa defines the action of the matrix ∆a on the simplex W . For any fixed n and z0−n

and for i = −n,−n+ 1, · · · , define

xi = xi(z
i
−n) = p(yi = · |zi, zi−1, · · · , z−n), (16)

(here · represent the states of the Markov chain Y ); then from Blackwell [1], we have that
{xi} satisfies the random dynamical iteration

xi+1 = fzi+1
(xi), (17)

starting with
x−n−1 = p(y−n−1 = · ). (18)

where p(y−n−1 = · ) is the stationary distribution for the underlying Markov chain. One
checks that p(zi+1|zi−n) can be recovered from this dynamical system; more specifically, we
have

p(zi+1|zi−n) = rzi+1
(xi).

If the entries of ∆ = ∆ε⃗ are analytically parameterized by a real variable vector ε⃗ ∈ Rk (k
is a positive integer), then we obtain a family Z = Z ε⃗ and corresponding ∆a = ∆ε⃗

a, fa = f ε⃗
a ,

etc.
The following result was proven in [5].

Theorem 3.1. Suppose that the entries of ∆ = ∆ε⃗ are analytically parameterized by a real
variable vector ε⃗. If at ε⃗ = ε⃗0, ∆ is strictly positive, then H(Z) = H(Z ε⃗) is a real analytic
function of ε⃗ at ε⃗0.
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In [5] this result is stated in greater generality, allowing some entries of ∆ to be zero.
The proof is based on an analysis of the action of perturbations of fa on neighbourhoods

of Ŵb
△
= fb(W ), with respect to the Euclidean metric. The proof assumes that each fa

is a contraction on each Ŵb. While this need not hold, one can arrange for this to be
true by replacing the original system with a higher power system: namely, one replaces the
original alphabet J with J n for some n and replaces the mappings {fa : a ∈ J } with
{fa0 ◦ fa1 ◦ · · · ◦ fan−1 : a0a1 . . . an−1 ∈ J n}. The existence of such an n follows from a) the

equivalence of the (real) Hilbert metric and the Euclidean metric on each Ŵb (Proposition
2.1 of [5]) and b) the contractiveness of each fa with respect to the (real) Hilbert metric.
However, in the course of this replacement, one easily loses track of the domain of analyticity.

When at ε⃗ = ε⃗0, ∆ is strictly positive, an alternative is to directly use a complex Hilbert
metric, as follows. For each a ∈ J , we can define a complex Hilbert metric da,H on W ◦

a,C as
follows: for w, v ∈ W ◦

a,C:

da,H(w, v) = dH(wI(a), vI(a)) = max
i,j∈I(a)

∣∣∣∣log(wi/wj

vi/vj

)∣∣∣∣ . (19)

Theorem 2.4 implies that for each a, b ∈ J , sufficiently small perturbations of fa are con-
tractions on sufficiently small complex neighborhoods of Ŵb in Wb,C; see Remark 2.5 (note
that while ∆a is not strictly positive, fa maps into Wa and so as a mapping from Wb to Wa

it can be regarded as the induced mapping of a strictly positive matrix). For complex ε⃗ close
to ε⃗0, fa = f ε⃗

a is sufficiently close to f ε⃗0
a to guarantee that f ε⃗

a is a contraction.
Let Ωa,H(R) denote the neighborhood of diameter R, measured in the complex Hilbert

metric, of Ŵa in Wa,C. Let Bε⃗0(r) denote the complex r-neighborhood of ε⃗0 in Ck.
Following the proof of Theorem 3.1 (especially pages 5254-5255 of [5]), one obtains a lower

bound r > 0 on the domain of analyticity if there exists R > 0 and 0 < ρ < 1 satisfying the
following conditions:

1. For any a, z ∈ A and any ε⃗ ∈ Br(ε⃗0), f
ε⃗
z is a contraction, with respect to the complex

Hilbert metric, on Ωa,H(R):

sup
x ̸=y∈Ωa,H(R)

∣∣∣∣dz,H(f ε⃗
z (x), f

ε⃗
z (y))

da,H(x, y)

∣∣∣∣ ≤ ρ < 1.

2. for any ε⃗ ∈ Br(ε⃗0), any x ∈ ∪aŴa and any z ∈ A,

dz,H(f
ε⃗
z (x), f

ε⃗0
z (x)) ≤ R(1− ρ),

and
dz,H(f

ε⃗
z (π(ε)), f

ε⃗0
z (π(ε0))) ≤ R(1− ρ),

(where π(ε) denotes the stationary vector for the Markov chain defined by ∆ε⃗).

3. For any x ∈ Ωa,H(R) and ε⃗ ∈ Br(ε⃗0),∑
a

|rε⃗a(x)| ≤ 1/ρ.

11



The existence of r,R, ρ follows from Theorem 3.1. In fact, we can choose ρ to be any
positive number such that maxa∈A τ(∆a) < ρ < 1, and small r, R to satisfy condition 1, then
smaller r, R, if necessary, to further satisfy conditions 2 and 3.

Let Ωa,E(R) denote the neighborhood of diameter R, measured in the Euclidean metric,

of Ŵa in Wa,C. To facilitate the computation, at the expense of obtaining a smaller lower
bound, it may be easier to use Ωa,E(R) instead of Ωa,H(R); then, the conditions above are
replaced with the following conditions:

(1’) Condition 1 above with Ωa,H(R) replaced by Ωa,E(R) (the map f ε
z is still required to

be a contraction under the complex Hilbert metric).

(2’) Condition 2 above with R on the right hand side of the inequalities replaced by R/K,

where K = supx ̸=y∈Ωa,E(R),a

∣∣∣ da,E(x,y)

da,H(x,y)

∣∣∣; note that for R sufficiently small, 0 < K < ∞
since da,H and da,E are equivalent metrics (this in turn follows from the fact that the
Euclidean metric and (real) Hilbert metric are equivalent on any compact subset of
the interior of the real simplex).

(3’) Condition 3 above with Ωa,H(R) replaced by Ωa,E(R)

3.2 Example for Domain of Analyticity

In the following, we consider hidden Markov processes obtained by passing binary Markov
chains through binary symmetric channels with crossover probability ε. Suppose that the
Markov chain is defined by a 2× 2 stochastic matrix Π = [πij]. From now through the end
of this section, we assume:

• det(Π) > 0 – and –

• all πij > 0 – and –

• 0 < ε < 1/2.

We remark that the condition det(Π) > 0 is purely for convenience.
Strictly speaking, the underlying Markov process of the resulting hidden Markov process

is given by a 4-state matrix (the states are the ordered pairs of a state of Π and a noise state
(0 for “noise off” and 1 for “noise on”); see page 5255 of [5]). However, the information
contained in each fa can be reduced to an equivalent map induced by a 2 × 2 matrix and
then reduced to an equivalent function of a single variable as in Example 2.6. We describe
this as follows.

Let ai = p(zi1, yi = 0) and bi = p(zi1, yi = 1). The pair (ai, bi) satisfies the following
dynamical system:

(ai, bi) = (ai−1, bi−1)

[
pE(zi)π00 pE(zi)π10

pE(z̄i)π01 pE(z̄i)π11

]
,

where pE(0) = ε and pE(1) = 1− ε.

12



Similar to Example 2.6, let xi = ai/bi, we have a dynamical system with just one variable:

xi+1 = f ε
zi+1

(xi),

where

f ε
z (x) =

pE(z)

pE(z̄)

π00x+ π10

π01x+ π11

, z = 0, 1

starting with
x0 = π10/π01, (20)

which comes from the stationary vector of Π.
It can be shown that

pε(zi = 0|zi−1
1 ) = rε0(xi−1), pε(zi = 1|zi−1

1 ) = rε1(xi−1),

where

rε0(x) =
((1− ε)π00 + επ01)x+ ((1− ε)π10 + επ11)

x+ 1
, (21)

and

rε1(x) =
(επ00 + (1− ε)π01)x+ (επ10 + (1− ε)π11)

x+ 1
. (22)

Now let Ω(R) denote the complex R-neighborhood (in Euclidean metric) of the interval

S = [S1, S2] =

[
ε0π10

(1− ε0)π11

,
(1− ε0)π00

ε0π01

]
,

this interval is the union of f ε0
0 ([0,∞]) and f ε0

1 ([0,∞]); again let Bε0(r) denote the complex
r-neighborhood of a given cross-over probability ε0 > 0.

The sufficient conditions (1’), (2’) and (3’) in section 3.1 are guaranteed by the following:
there exist R > 0, r > 0, 0 < ρ < 1 such that

(1”) For any z, f ε
z (x) is a contraction on Ω(R) under complex Hilbert metric,

sup
x ̸=y∈Ω(R)

∣∣∣∣ log f ε
z (x)− log f ε

z (y)

log x− log y

∣∣∣∣ ≤ ρ < 1.

Note that here

log f ε
z (x)− log f ε

z (y) = log
π00x+ π10

π01x+ π11

− log
π00y + π10

π01y + π11

.

(2”) For any ε ∈ Bε0(r), any x ∈ S and any z,

| log f ε
z (x)− log f ε0

z (x)| ≤ (R/K)(1− ρ),

where

K = sup
x ̸=y∈Ω(R)

∣∣∣∣ x− y

log x− log y

∣∣∣∣ = sup
x∈Ω(R)

|x| = S2 +R.

(note that here the second condition in (2’) is vacuous since by (20) x0 does not depend
on ε)
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(3”) For any x ∈ Ω(R) and ε ∈ Bε0(r),

|rε0(x)|+ |rε1(x)| ≤ 1/ρ.

By considering extreme cases, the above conditions can be further relaxed to:

(1”’)

0 <
π00π11 − π10π01

π01π00(S1 −R) + π01π10 + π11π00 + π11π10/(S2 +R)
≤ ρ.

(here we applied the mean value theorem to give an upper bound on | log((π00x +
π10)/(π01x+ π11))− log((π00y + π10)/(π01y + π11))|)

(2”’)

0 <
r

ε0 − r
+

r

1− ε0 − r
≤ (R/(S2 +R))(1− ρ).

(here we applied the mean value theorem to give an upper bound on | log((1− ε)/ε)−
log((1− ε0)/ε0)|)

(3”’)

0 <
((1− ε0 + r)π00 + (ε0 + r)π01)(S2 +R) + ((1− ε0 + r)π10 + (ε0 + r)π11)

S1 −R + 1

+
((ε0 + r)π00 + (1− ε0 + r)π01)(S2 +R) + ((ε0 + r)π10 + (1− ε0 + r)π11)

S1 −R + 1
≤ 1/ρ.

In other words, choose r,R and ρ to satisfy the conditions (1”’), (2”’) and (3”’). Then
the entropy rate is an analytic function of ε on |ε− ε0| < r.

Consider the symmetric case: π00 = π11 = p and π01 = π10 = 1−p. We plot lower bounds
on radius of convergence of H(Z) (as a function of ε at ε0 = 0.4) against p in Figure 1. For
a fixed p, the lower bound is obtained by randomly generating many 3-tuples (r, R, ρ) and
taking the maximal r from the 3-tuples which satisfy the conditions.

Acknowledgements: We thank Albert Chau for helpful discussions on Riemannian
metrics in H.
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