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Abstract

The Shannon-McMillan-Breiman theorem asserts that the sample entropy of a sta-
tionary and ergodic stochastic process converges to the entropy rate of the same process
almost surely. In this paper, we focus our attention on the convergence behavior of the
sample entropy of a hidden Markov chain. Under certain positivity assumption, we
prove that a central limit theorem (CLT) with some Berry-Esseen bound (such bound
characterizes rate of convergence of CLT) for the sample entropy of a hidden Markov
chain, and we use this CLT to establish a law of iterated logarithm (LIL) for the sample
entropy.

1 Introduction and Notations

Consider a bi-infinite stationary stochastic process Y = (Yi, i ∈ Z) on a finite alphabet
Y = {1, 2, · · · , B}. The entropy rate of Y is defined to be

H(Y ) = lim
n→∞

H(Y n
1 )/n,

where
H(Y n

1 ) = −
∑
yn1

p(yn1 ) log p(y
n
1 ),

here yn1 := (y1, y2, · · · , yn) denotes an instance of Y n
1 := (Y1, Y2, · · · , Yn) and p(yn1 ) denotes

the probability mass at yn1 . It is well known that H(Y ) can also be written as

H(Y ) = lim
n→∞

H(Yn|Y n−1
1 ),

where
H(Yn|Y n

1 ) = −
∑
yn1

p(yn−1
1 ) log p(yn|yn−1

1 ),

here p(yn|yn−1
1 ) denotes the conditional probability mass at yn given yn−1

1 .



We call − logP (Y n
1 )/n the n-th order sample entropy of Y . If Y is also ergodic, the

celebrated Shannon-McMillan-Breiman theorem asserts that the n-th order sample entropy
of Y converges to H(Y ) as n→ ∞ almost surely. The Shannon-McMillan-Breiman theorem
can be viewed as an analog of the law of large numbers, a fundamental limit theorem in
probability theory. So, it is natural to ask if analogs of other limit theorems in probability
theory, such as the central limit theorem (CLT) and the law of iterated logarithm (LIL),
also hold for the sample entropy. Such theorems do not appear to hold when we assume Y
is as general a process as stationary and ergodic; so, in this paper, we restrict our attention
to hidden Markov chains (some special stochastic process which will be defined later).

From now on, assume that Y is a stationary finite-state Markov chain with transition
probability matrix ∆ with entries

∆(i, j) = P (Y1 = j|Y0 = i), 1 ≤ i, j ≤ B.

A hidden Markov chain Z is a process of the form Z = Φ(Y ), where Φ is a function defined
on Y with values from a finite alphabet Z = {1, 2, · · · , A}. Often a hidden Markov chain
is alternatively defined as a Markov chain observed when passing though a discrete-time
memoryless noisy channel. It is well known that the two definitions are equivalent. For the
Markov chain Y , H(Y ) has a simple analytic form:

H(Y ) = −
∑
i,j

P (Y0 = i)∆(i, j) log∆(i, j).

For the hidden Markov chain Z, Blackwell [9] showed that H(Z) can be written as an
integral of an explicit function on a simplex with respect to Blackwell’s Measure Q. However,
the measure Q seems to be rather complicated for effective computation of H(Z). So far,
there is no simple and explicit formula for H(Z), so many approaches have been adopted
to compute and estimate H(Z) instead: Blackwell’s measure has been used to bound the
entropy rate [32], a variation on the classical Birch bounds [8] can be found in [13] and a
new numerical approximation of H(Z) has been proposed in [17]. Generalizing Blackwell’s
idea, an integral formula for the derivatives of H(Z) has been derived in [37]. In another
direction, [4, 26, 32, 42, 43, 31, 18, 20, 21, 22, 23, 24, 1, 37] have studied the variation of the
entropy rate as parameters of the underlying Markov chain vary.

Another interesting approach, which has greatly motivated this work, is to use Mente
Carlo simulation to approximate H(Z): Recently, based on the Shannon-McMillan-Breiman
theorem, efficient Monte Carlo methods for approximating H(Z) were proposed indepen-
dently by Arnold and Loeliger [2], Pfister, Soriaga and Siegel [35], Sharma and Singh [40].
The limiting behavior of the sample entropy of a hidden Markov chain, which governs the con-
vergence behavior of such algorithms, is then of great interest. In this direction, a CLT [36]
for the sample entropy is derived as a corollary of a CLT for the top Lyapunov exponent of
a product of random matrices; a functional CLT is also established in [25]. In essence, both
of the two CLTs are proved using effective Martingale approximations of the sample entropy
(see [19] for this standard technique).

In this paper, adapting some standard techniques for proving limit theorems for mixing
sequences, we further characterize the limiting behavior of the sample entropy of Z under
certain positivity assumptions. In Section 3, we establish a CLT with some Berry-Esseen
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bound (such bound [5, 15] characterizes rate of convergence of CLT) for the sample entropy,
and we use this CLT can to establish a LIL in Section 4.

Formally, for i = 1, 2, · · · , define Xi as the “centered” version of − logP (Z1|Zi−1
1 ), that

is,

Xi = − logP (Zi|Zi−1
1 )− E[− logP (Zi|Zi−1

1 )] = − logP (Zi|Zi−1
1 )−H(Zi|Zi−1

1 ).

And define

Sn =
n∑

i=1

Xi, σ2
n = Var(Sn);

obviously Sn is the “centered” version of − logP (Zn
1 ), and Sn = − logP (Zn

1 ) − H(Zn
1 ).

Unless specified otherwise, we assume, throughout the paper, that

(I) ∆ is a strictly positive matrix; and

(II) σ > 0, where σ2 = limn→∞ σ2
n/n (the existence of the limit under Condition (I) will be

established in Lemma 2.6 and Remark 2.7).

We will prove the following central limit theorem with a Berry-Esseen bound (such bound [5,
15] characterizes rate of convergence of CLT).

Theorem 1.1. Under Conditions (I) and (II), for any ε > 0, there exists C > 0 such that
for any n

sup
x

|P (Sn/σn < x)−
∫ x

−∞
(2π)−1/2 exp(−y2/2)dy| ≤ Cn−1/11+ε.

We will use the above CLT to prove the following law of iterated logarithm.

Theorem 1.2. Under Conditions (I) and (II), we have

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
= 1 a.s.

2 Key Lemmas

This section includes several key lemmas, among which Lemmas 2.1, 2.2, 2.4 require Condi-
tion (I) only.

With the fact that a n×n positive matrix induces a contraction mapping on the interior of
the (n− 1)-dimensional real simplex under the Hilbert metric [39], the following well-known
lemma can be established (see, e.g., [18] for a rigorous proof).

Lemma 2.1. There exist C > 0 and 0 < ρ < 1 such that for any two hidden Markov
sequences z0−m, ẑ

0
−m̂ with z0−n = ẑ0−n (here m, m̂ ≥ n ≥ 0), we have

|p(z0|z−1
−m)− p(ẑ0|ẑ−1

−m̂)| ≤ Cρn.

Consequently, there exists C > 0 and 0 < ρ < 1 such that for any n, l ≥ 0,

| log p(z0|z−1
−n−l)− log p(z0|z−1

−n)| ≤ Cρn, |H(Z0|Z−1
−n−l)−H(Z0|Z−1

−n)| ≤ Cρn.
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For a stationary stochastic process T = T∞
−∞, let B(T j

i ) denote the σ-field generated by
Tk, k = i, i+ 1, · · · , j. Define

ψ(n) = sup
U∈B(T−n

∞ ),V ∈B(T∞
0 ),P (U)>0,P (V )>0

|P (V |U)− P (V )|/P (V ).

T is said to be a ψ-mixing sequence if ψ(n) → 0 as n→ ∞. It is well known [10] that a finite-
state irreducible and aperiodic Markov chain is a ψ-mxing sequence, and the corresponding
ψ(n) exponentially decays as n → ∞. The following lemma asserts that under Condition
(I), Z is a ψ-mixing sequence and the corresponding ψ(n) exponentially decays as n → ∞.
An excellent survey on various mixing sequences can found in [10]; for a comprehensive
exposition to the vast literature on this subject, we refer to [11].

Lemma 2.2. Z is a ψ-mixing sequence and there exist C > 0 and 0 < λ < 1 such that for
any positive n, ψ(n) ≤ Cλn.

Proof. For each z ∈ Z, let ∆z denote the B × B matrix such that ∆z(i, j) = ∆(i, j) for j
with Φ(j) = z, and ∆z(i, j) = 0 otherwise. Obviously

∑
z∈Z ∆z = ∆. One also observes

that for any zm2
m1

,
p(zm2

m1
) = π∆z

m2
m1

1,

where π is the stationary vector of Y , 1 denotes the all one column vector and ∆z
m2
m1

=

∆zm1
∆zm1+1 · · ·∆zm2

. It then follows that for any positive n,m, l and any zm0 , z
−n
−n−l,

p(zm0 |z−n
−n−l) =

∑
z−1
−n+1

π∆zm−n−l
1

π∆z−n
−n−l

1
=

π∆z−n
−n−l

π∆z−n
−n−l

1
(
∑
z∈Z

∆z)
n−1∆zm0

1 =
π∆z−n

−n−l

π∆z−n
−n−l

1
∆n−1∆zm0

1.

Let λ2 denote the second largest (in modulus) eigenvalue of ∆. By the Perron-Frobenius
theory (see, e.g., [39]), |∆2| < 1; furthermore, for any λ with |λ2| < λ < 1, there exists
C1 > 0 such that for any probability vector x, we have

|x∆n − π| ≤ C1λ
n.

It then follows that

p(zm0 |z−n
−n−l) = π∆zm0

1+O(λn)∆zm0
1 = p(zm0 ) +O(λn)p(zm0 ).

Noting that the constant in O(λn) is independent of n,m, l and zm0 , z
−n
−n−l, we then conclude

that for any U ∈ B(Z−n
−∞), V ∈ B(Z∞

0 ),

P (V |U) = P (V ) +O(λn)P (V ),

which immediately implies the lemma.

Remark 2.3. Note that Lemma 2.2 still holds with the same proof if Condition (I) is
replaced by “∆ is an irreducible and aperiodic matrix”. This fact, however, will not be used
in this paper.
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In the following, we rewrite − log p(zj|zj−1
i )−H(Zj|Zj−1

i ) as zji ) for notational simplicity.
The following lemma shows that for a fixed j > 0, E[XiXi+j] exponentially converges as

i→ ∞; and for any i < j, E[XiXj] exponentially decays in j − i.

Lemma 2.4. 1. There exist C > 0 and 0 < ρ < 1 such that for all i, j ≥ 0,

|E[Xi+1Xi+1+j]− E[Xi+1Xi+1+j]| ≤ Cρi.

2. There exist C > 0 and 0 < θ < 1 such that for any positive i < j,

|E[XiXj]| ≤ Cθj−i.

Proof. 1. Simple computations lead to

E[Xi+1Xi+1+j]− E[XiXi+j] =
∑

zi+1+j
1

p(zi+1+j
1 )f(zi+1+j

1 )f(zi+1
1 )−

∑
zi+j
1

p(zi+j
1 )f(zi+j

1 )f(zi1)

=
∑
z0−i−j

p(z0−i−j)f(z
0
−i−j)f(z

−j
−i−j)−

∑
z0−i−j+1

p(z0−i−j+1)f(z
0
−i−j+1)f(z

−j
−i−j+1)

=
∑
z0−i−j

p(z0−i−j)(f(z
0
−i−j)f(z

−j
−i−j)− f(z0−i−j+1)f(z

−j
−i−j+1))

=
∑
z0−i−j

p(z0−i−j)f(z
0
−i−j)(f(z

−j
−i−j)− f(z−j

−i−j+1))

+
∑
z0−i−j

p(z0−i−j)(f(z
0
−i−j)− f(z0−i−j+1))f(z

−j
−i−j+1). (1)

Since ∆ is a strictly positive matrix, log p(z0|z−1
−i ) and H(Z0|Z0

−i) are all bounded from above
and below uniformly in i. It then follows from this fact and Lemma 2.1 that there exist C > 0
and 0 < ρ < 1 such that

|E[Xi+1Xi+1+j]− E[XiXi+j]| ≤ Cρi.

Part 1 of the lemma then immediately follows.
2. Let l = ⌊i+ j⌋/2. By Lemma 2.1 and Lemma 2.2, there exist 0 < ρ, λ < 1 such that

E[XiXj] =
∑
zj1

p(zj1)f(z
i
1)f(z

j
1)

=
∑
zj1

p(zj1)f(z
j
1)(f(z

j
l ) +O(ρj−l))

=
∑
zi1,z

j
l

p(zi1)f(z
i
1)p(z

j
l |z

i
1)f(z

j
l ) +O(ρj−l)

=
∑
zi1,z

j
l

p(zi1)f(z
i
1)(p(z

j
l ) +O(λl−i)p(zjl ))f(z

j
l ) +O(ρj−l)

=
∑
zi1,z

j
l

p(zi1)f(z
i
1)p(z

j
l )f(z

j
l ) +

∑
zi1,z

j
l

p(zi1)f(z
i
1)O(λ

l−i)p(zjl )f(z
j
l ) +O(ρj−l)

= 0 +O(λl−i) +O(ρj−l).
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Notice that the constants in O(λl−i), O(ρj−l) above does not depend on zj1. Part 2 then
immediately follows .

Remark 2.5. By Part 1 of Lemma 2.4, for any fixed j, the sequence E[XiXi+j], i =
1, 2, · · · , is a Cauchy sequence that exponentially converges. For any fixed j, let aj =
limi→∞E[XiXi+j]. Then by Part 2, |aj| exponentially decays as j → ∞; consequently, we
deduce (for later use) that a0 + 2

∑∞
j=1 aj converges.

Lemma 2.6. For any 0 < α < 1, there exists C > 0 such that for any m and n,∣∣∣∣∣E[(Sn+m − Sm)
2]

n
− (a0 + 2

∞∑
j=1

aj)

∣∣∣∣∣ ≤ Cn−α

here, recall that, as defined in Remark 2.5, aj = limi→∞E[XiXi+j].

Proof. Letting β = n−α for a fixed 0 < α < 1, we then have

E[(Sn+m − Sm)
2]

n
=
E[(
∑n+m

i=m+1Xi)
2]

n
=

∑
m+1≤i, i+j≤n+m(

∑
j=0 +2

∑
0<j≤βn +2

∑
j>βn)E[XiXi+j]

n
.

By Part 1 of Lemma 2.4 and Remark 2.5, for any j > 0, E[XiXi+j] − aj = O(ρi) for some
0 < ρ < 1. It then follows that for 0 ≤ j ≤ βn,∑

m+1≤i, i+j≤n+m

E[XiXi+j] = (n− j)aj +O(1);

here the constant in O(1) does not depend on j. Also, by Part 2 of Lemma 2.4 and Re-
mark 2.5, there exists 0 < θ < 1 such that for all j > βn, E[XiXi+j] = O(θβn), and thus
aj = O(θβn). Continuing the computation, we have

E[(Sn+m − Sm)
2]

n
=

(na0 +O(1)) + (2(n− 1)a1 +O(1)) + · · ·+ (2(n− βn)aβn +O(1))

n
+
O(n2θβn)

n

= a0 + 2a1 + · · ·+ 2aβn − 2
a1 + 2a2 + · · ·+ βnaβn

n
+ βO(1) +O(nθβn).

The lemma then immediately follows.

Remark 2.7. Choosing m in Lemma 2.6 to be 0, we deduce that limn→∞ σ2
n/n exists and

is equal to σ2 = a0 + 2
∑∞

j=1 aj.

Lemma 2.8. There exists C > 0 such that for all m and n

E[|Sn+m − Sm|3] ≤ Cn3/2.

Proof. By Lemmas 2.1, 2.6 and the stationarity of Z, we observe that for any m,

E[|Sn+m − Sm|3] = E[|
n+m∑

i=m+1

f(Zi
1)|3] = E[|

n+m∑
i=m+1

(f(Zi
m+1) +O(ρi−m−1))|3]
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= E[|Sn|3] +O(E[|Sn|2]) +O(E[|Sn|]) +O(1) = E[|Sn|3] +O(n), (2)

where the constant in O(n) does not depend on m. So, to prove the lemma, it suffices to
prove that there exists C > 0 such that for all n,

E[|Sn|3] ≤ Cn3/2. (3)

First, we observe that

E[|S2n|3] = E[|Sn+(S2n−Sn)|3] ≤ E[|Sn|3]+E[|S2n−Sn|3]+3E[|Sn|2|S2n−Sn|]+3E[|Sn||S2n−Sn|2].

It immediatedly follows from (2) that

E[|S2n − Sn|3] = E[|Sn|3] +O(n).

And by Lemmas 2.2, 2.1 and the Holder inequality, there exist 0 < ρ < 1 such that

E[|Sn|2|S2n − Sn|] = E[|Sn|2|
2n∑

i=n+1

f(Zi
1)|]

= E[|Sn|2|
2n∑

i=n+1

(f(Zi
n+1) +O(ρi−n−1))|]

= E[|Sn|2|
2n∑

i=n+1

f(Zi
n+1)|] +O(1)E[|Sn|2]

=
∑

zn1 ,z
2n
n+1

(p(zn1 )p(z
2n
n+1|zn1 )|Sn|2|

2n∑
i=n+1

f(Zi
n+1)|) +O(1)E[|Sn|2]

= O(1)
∑

zn1 ,z
2n
n+1

(p(zn1 )p(z
2n
n+1)|Sn|2|

2n∑
i=n+1

f(Zi
n+1)|) +O(1)E[|Sn|2]

= O(1)E[|Sn|2]E[|
2n∑

i=n+1

f(Zi
n+1)|] +O(1)E[|Sn|2]

= O(1)E[|Sn|2]E[|S2n − Sn|] +O(1)E[|Sn|2]
= O(1)E[|Sn|2]E[|S2n − Sn|2]1/2 +O(1)E[|Sn|2].

We then deduce that
E[|Sn|2|S2n − Sn|] = O(n3/2).

With a similar argument, we also deduce that

E[|Sn||S2n − Sn|2] = O(n3/2).

It then follows that there exists C1 > 0 such that for all n

E[|S2n|3] ≤ 2E[|Sn|3] + C1n
3/2. (4)
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An iterative application of (4) with n = 2r−1, 2r−2, · · · , 20 gives us

E[|S2r |3] ≤ 2E[|S2r−1 |3] + C12
3(r−1)/2 ≤ 22E[|S2r−2 |3] + C1(2 · 23(r−2)/2 + 23(r−1)/2)

≤ · · · ≤ 2rE[|S1|3]+C1(2
r−1+2r−223/2+· · ·+2·23(r−2)/2+23(r−1)/2) ≤ 2rE[|S1|3]+C1

23(r−1)/2

1− 2 · 2−3/2
.

It then follows that there exists C2 > 0 such that for all r

E[|S2r |3] ≤ C2(2
r)3/2.

and by (2), choosing C2 to be larger if necessary, we have for all r and all m

E[|Sm+2r − Sm|3] ≤ C2(2
r)3/2. (5)

Now, consider the general case when 2r ≤ n < 2r+1. Expand

n = v02
r + v12

r−1 + · · ·+ vr

where v0 = 1, and vj = 0 or 1 for j = 1, 2, · · · , r. And define

wi = vr−i2
i + vr−i+12

i−1 + · · ·+ vr.

Applying the Minkowski inequality and (5), we deduce that

E[|Sn|3] ≤ E[|
r∑

i=0

(Swi
− Swi−1

)|3] ≤ (
r∑

i=0

E1/3[|Swi
− Swi−1

|3])3

≤ (
r∑

i=0

(C22
i/2))3 ≤ C3

2(2
r/2 1

1− 1/2
)3 = 8C3

22
3r/2 ≤ 8C3

2n
3/2.

Inequality (3) is then immediately established if we choose C = 8C3
2 ,

3 Central Limit Theorem

Recall that
Xi = − logP (Zi|Zi−1

1 )−H(Zi|Zi−1
1 ),

and

Sn =
n∑

i=1

Xi, σ2
n = V ar(Sn).

Fix ε0 > 0 (we will choose ε0 to be small later), and let p = p(n) = ⌊n3/11+ε0⌋, q = q(n) =
⌊nε0⌋. Choose k = k(n) such that kp+ (k − 1)q ≤ n < (k + 1)p+ kq; one easily checks that
k = O(n8/11−ε0). Then, for 1 ≤ i ≤ k, define

ζi = X(i−1)(p+q)+1 + · · ·+Xip+(i−1)q.

For 1 ≤ i ≤ k − 1, define
ηi = Xip+(i−1)q+1 + · · ·+Xip+iq,
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and define

ηk =

{
Xkp+(k−1)q+1 + · · ·+Xn if kp+ (k − 1)q + 1 ≤ n

0 otherwise.

Now Sn can be rewritten as a sum of ζ-“blocks” and η-“blocks”:

Sn = S ′
n + S ′′

n :=
k∑

i=1

ζi +
k∑

i=1

ηi.

The above so called “Bernstein blocking method” [6] is a standard technique to the proof of
limit theorems for a variety of mixing sequences. Roughly speaking, the partial sum Sn is
partitioned into “long blocks” ζ1, ζ2, · · · , ζk and “short blocks” η1, η2, · · · , ηk. Under certain
mixing conditions, all long blocks are “weakly dependent” on each other, while all short
blocks are “negligible” in some sense.

With lemmas in Section 2 established, the remainder of the proof of Theorem 1.1 becomes
more or less standard, which can be roughly outlined as follows:

1. We first show E[exp(itS′
n/σn)] and

∏k
j=1E[exp(itζj/σn) are “close” (see Lemma 3.1).

2. Standard analysis shows that
∏k

j=1E[exp(itζj/σn) and exp(−t2/2) are “close” (see
Lemma 3.2).

3. Then by the standard Esseen’s Lemma, P (S ′
n/σn < x) and

∫ x

−∞(2π)−1/2 exp(−y2/2)dy
are “close” (see Lemma 3.4).

4. Finally, since S ′′
n are “negligible”, we conclude, in the proof of Theorem 1.1, that

P (Sn/σn < x) and P (S ′
n/σn < x) are “close”, and thus P (Sn/σn < x) and∫ x

−∞(2π)−1/2 exp(−y2/2)dy are “close”.

Lemma 3.1. There exists C > 0 and 0 < ρ1 < 1 such that for all n and |t| ≤ n1/11,

|E[exp(itS ′
n/σn)]−

k∏
j=1

E[exp(itζj/σn)]| ≤ Cρ
q(n)
1 .

Proof. Let l = (k − 1)p + (k − 2)q + q/2. By Lemma 2.1 and Lemma 2.2, there exist
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0 < λ, ρ < 1 such that

E[exp(it
k∑

j=1

ζj/σn)] = E[exp(it
k−1∑
j=1

ζj/σn) exp(itζk/σn)]

= E[exp(it
k−1∑
j=1

ζj/σn) exp(it

kp+(k−1)q∑
i=(k−1)(p+q)+1

f(zi1)/σn)]

= E[exp(it
k−1∑
j=1

ζj/σn) exp(it

kp+(k−1)q∑
i=(k−1)(p+q)+1

f(zil )/σn)] +O(n1/11ρq(n)/2/σn)

= E[exp(it
k−1∑
j=1

ζj/σn)]E[exp(it

kp+(k−1)q∑
i=(k−1)(p+q)+1

f(zil )/σn)] +O(λq(n)/2) +O(n1/11ρq(n)/2/σn)

= E[exp(it
k−1∑
j=1

ζj/σn)]E[exp(itζk/σn)] +O(λq(n)/2) +O(n1/11ρq(n)/2/σn),

here, again, − log p(zj|zj−1
i )−H(Zj|Zj−1

i ) is rewritten as f(zji ). Noticing that |E[exp(itζj/σn)]| ≤
1 and applying an inductive argument, we conclude that

E[exp(itS ′
n/σn)] = E[exp(it

k∑
j=1

ζj/σn)] =
k∏

j=1

E[exp(itζj/σn)]|+O(λq(n)/2)+O(n1/11ρq(n)/2/σn),

which immediately implies the lemma.

Lemma 3.2. There exists C > 0 such that for all n and |t| ≤ n1/11,

|
k∏

j=1

E[exp(itζj/σn)]− exp(−t2/2)| ≤ Cn−1/11+ε0/2.

Proof. It is well known (see, e.g., page 343 of [7]) that for any random variable X and any
t ∈ R, we have

|E[exp(itX)]−
n∑

k=0

(it)k/k!E[Xk]| ≤ E[|tX|n+1/(n+ 1)!]. (6)

Replacing X by ζj/σn, we deduce that

E[exp(itζj/σn)] = 1− E[ζ2j ]t
2/(2σ2

n) +O(E[|ζj|3]t3/(6σ3
n)).

With Lemmas 2.6 and 2.8, one checks that for any |t| ≤ n1/11,

E[ζ2j ]t
2/(2σ2

n), E[|ζj|3]t3/(6σ3
n) → 0 as n→ ∞.

Using the fact that log(1− x) = −x+O(x2) for |x| < 1, we deduce that

logE[exp(itζj/σn)] = −E[ζ2j ]t2/(2σ2
n) +O(E[|ζj|3]t3/σ3

n) +O(E2[ζ2j ]t
4/σ4

n)
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+O(E2[|ζj|3]t6/σ6
n) +O(E[ζ2j ]E[|ζj|3]t5/σ5

n).

Now,

log
k∏

j=1

E[exp(itζj/σn)] =
k∑

j=1

logE[exp(itζj/σn)]

= −t2/2− t2(
k∑

j=1

E[ζ2j ]/σ
2
n − 1)/2 +O(

k∑
j=1

E[|ζj|3]t3/σ3
n) +O(

k∑
j=1

E2[ζ2j ]t
4/σ4

n)

+O(
k∑

j=1

E2[|ζj|3]t6/σ6
n) +O(

k∑
j=1

E[ζ2j ]E[|ζj|3]t5/σ5
n). (7)

It follows from Lemma 2.6 that for any α > 0

E[ζ2i ] = p(n)(σ2 +O(p(n)−α)), i = 1, 2, · · · , k,

and
σ2
n = n(σ2 +O(n−α)).

Now, choosing α sufficiently close to 1, we then have that for |t| ≤ n1/11

t2(

∑k
j=1E[ζ

2
j ]

σ2
n

− 1) = t2(
k(n)p(n)(σ2 +O(p(n)−α))

n(σ2 +O(n−α))
− 1)

= t2(
O(n−α(3/11+ε0)) + σ2O(n−3/11)−O(n−α)−O(n−(α+3/11))

(σ2 +O(n−α))(1 +O(n−3/11))
) = O(n−1/11),

where we used k = O(n8/11−ε0). One also easily checks that

k∑
j=1

E[|ζj|3]t3/σ3
n = O(n1/2(3/11+ε0)+3/11−1/2) = O(n−1/11+ε0/2), (8)

and
k∑

j=1

E2[ζ2j ]t
4/σ4

n,
k∑

j=1

E2[|ζj|3]t6/σ6
n,

k∑
j=1

E[ζ2j ]E[|ζj|3]t5/σ5
n = O(n−1/11). (9)

So we deduce that

log
k∏

j=1

E[exp(itζj/σn)] + t2/2 = O(n−1/11+ε0/2)

uniformly for |t| ≤ n1/11. It then follows from |ex − 1| ≤ |x|e|x| for all x that

|
k∏

j=1

E[exp(itζj/σn)] exp(t
2/2)− 1| = O(n−1/11+ε0/2)

uniformly for |t| ≤ n1/11, which immediately implies the lemma.
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The following lemma is a version of Esseen’s lemma, which gives upper bounds on the
difference between two distribution functions using the difference between the two corre-
sponding characteristic functions. We refer to page 314 of [41] for a standard proof.

Lemma 3.3. Let F and G be distribution functions with characteristic functions ϕF and
ϕG, respectively. Suppose that F and G each has mean 0, and G has a derivative g such that
|g| ≤M . Then

sup
x

|F (x)−G(x)| ≤ 1

π

∫ T

−T

∣∣∣∣ϕF (t)− ϕG(t)

t

∣∣∣∣ dt+ 24M

πT

for every T > 0.

Lemma 3.4. For any ε > 0, there exists C > 0 such that for all n

sup
x

∣∣∣∣P (S ′
n/σn < x)−

∫ x

−∞
(2π)−1/2 exp(−y2/2)dy

∣∣∣∣ ≤ Cn−1/11+ε.

Proof. Let ϕ0(t) denote the characteristic function of a standard normal random variable,
that is, ϕ0(t) = exp(−t2/2). Let ϕ1(t) denote the characteristic function of S ′

n/σn, that is,
ϕ1(t) = E[exp(itS ′

n/σn)]. Let ϕ2(t) denote the function
∏k

j=1E[exp (itζj/σn)]. Applying

Lemma 3.3 with T = n1/11, we have

sup
x

∣∣∣∣P (S ′
n/σn < x) −

∫ x

−∞
(2π)−1/2 exp(−y2/2)dy

∣∣∣∣ = O

(∫ n1/11

−n1/11

∣∣∣∣ϕ1(t)− ϕ0(t)

t

∣∣∣∣ dt+ n−1/11

)

= O

(∫ n1/11

−n1/11

∣∣∣∣ϕ1(t)− ϕ2(t)

t

∣∣∣∣ dt+ ∫ n1/11

−n1/11

∣∣∣∣ϕ2(t)− ϕ0(t)

t

∣∣∣∣ dt+ n−1/11

)

= O

(∫
|t|<n−1/2

∣∣∣∣ϕ1(t)− ϕ2(t)

t

∣∣∣∣ dt+ ∫
n−1/2<|t|<n1/11

∣∣∣∣ϕ1(t)− ϕ2(t)

t

∣∣∣∣ dt
+

∫
|t|<n−1/2

∣∣∣∣ϕ2(t)− ϕ0(t)

t

∣∣∣∣ dt+ ∫
n−1/2<|t|<n1/11

∣∣∣∣ϕ2(t)− ϕ0(t)

t

∣∣∣∣ dt+ n−1/11

)
.

Note that by Lemmas 2.4, 2.6, we deduce that for any α > 0 and some 0 < θ < 1,

E[S
′2
n ]

σ2
n

=

∑k
i=1E[ζ

2
i ] + 2

∑
i<j E[ζiζj]

σ2
n

=
k(n)p(n)(σ2 +O(p(n)−α)) +O(n2θq(n))

n(σ2 +O(n−α))
,

which implies that
E[S

′2
n ]

σ2
n

= O(1), (10)

uniformly over all n. It then follows that for all |t| ≤ 1,

ϕ1(t) = E[exp(itS ′
n/σn)] = 1 + t2O(E[S

′2
n ]/σ

2
n) = 1 +O(t2), (11)

where we applied (6). Also, it follows from (7),(10), (8) and (9) that for all |t| ≤ 1,

log ϕ2(t) = O(t2),

12



uniformly over all n, and thus for all |t| ≤ 1,

ϕ2(t) = 1 +O(t2), (12)

uniformly over all n. Obviously, we also have for all |t| ≤ 1,

ϕ0(t) = 1 +O(t2). (13)

It then follows from (11), (12) and (13) that there exists C1 > 0 such that for all |t| ≤ 1 and
all n,

|ϕ1(t)− ϕ2(t)| ≤ C1t
2, |ϕ2(t)− ϕ0(t)| ≤ C1t

2,

which implies that∫
|t|<n−1/2

∣∣∣∣ϕ1(t)− ϕ2(t)

t

∣∣∣∣ dt = O(n−1),

∫
|t|<n−1/2

∣∣∣∣ϕ2(t)− ϕ0(t)

t

∣∣∣∣ dt = O(n−1). (14)

It follows from Lemma 3.2 that∫
n−1/2<|t|<n1/11

∣∣∣∣ϕ2(t)− ϕ0(t)

t

∣∣∣∣ dt = O(n−1/11+ε0/2 log n), (15)

and from Lemma 3.1 that∫
n−1/2<|t|<n1/11

∣∣∣∣ϕ1(t)− ϕ2(t)

t

∣∣∣∣ dt = O(ρ
q(n)
1 log n) (16)

for some 0 < ρ1 < 1. The lemma then follows from (14), (15), (16) and the fact that ε0 can
be chosen to be arbitrarily small.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let F denote the event “|S ′′
n|/σn ≤ n−1/11”. Then

|P (S ′
n/σn ≤ x)− P (Sn/σn ≤ x)|

≤ |P (S ′
n/σn ≤ x, F )− P (Sn/σn ≤ x, F )|+ |P (S ′

n/σn ≤ x, F c)− P (Sn/σn ≤ x, F c)|
≤ |P (S ′

n/σn ≤ x, F )− P (Sn/σn ≤ x, F )|+ P (|S ′′
n|/σn > n−1/11).

Applying Lemma 3.4, we have, for any ε > 0, there exists C1 > 0 such that for any n

|P (S ′
n/σn ≤ x, F )− P (Sn/σn ≤ x, F )|

≤ max{P (S ′
n/σn ≤ x+n−1/11, F )−P (S ′

n/σn ≤ x, F ), P (S ′
n/σn ≤ x, F )−P (S ′

n/σn ≤ x−n−1/11, F )}

≤ C1n
−1/11+ε +

∫ n−1/11

−n−1/11

(2π)−1/2 exp(−y2/2)dy = O(n−1/11+ε) +O(n−1/11) = O(n−1/11+ε).

Applying Lemma 2.6 and Lemma 2.2, we deduce that for some 0 < θ < 1,

E[(S ′′
n)

2]

σ2
n

=

∑k
i=1E[η

2
i ] +

∑
i<j E[ηiηj]

σ2
n

=
k(n)q(n)σ2(1 + o(1)) +O(n2θq(n))

σ2
n

= O(n−3/11).

Also, by the Markov inequality, we have

P (|S ′′
n|/σn > n−1/11) ≤ E[(S ′′

n)
2]

σ2
nn

−2/11
= O(n−1/11).

The theorem then immediately follows.
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Remark 3.5. If Condition (II) fails, i.e., limn→∞ σ2
n/n = 0, then a CLT of degenerated form

holds for (Xi, i ∈ N); more precisely, the distribution of (X1 +X2 + · · ·+Xn)/
√
n converges

to that of a centered normal distribution with variance 0, i.e., a point mass at 0, as n→ ∞.
This is can be readily checked since for any ε > 0, by the Markov inequality, we have

P (|(X1 +X2 + · · ·+Xn)|/
√
n ≥ ε|) ≤ σ2

n/(nε
2) → 0 as n→ ∞.

4 Law of Iterated Logarithm

From the central limit theorem with a Berry-Esseen bound (Theorem 1.1), we only need
to follow a standard “track” to establish the law of iterated logarithm. In particular, we
closely follow the proof of Reznik’s law of the iterated logarithm (for a stationary ϕ-mixing
sequence) (see page 307 of [41]):

1. As an immediately corollary of Theorem 1.1, the following Lemma 4.1 gives bounds
on the tail probability of Sn.

2. We then slightly modified Reznik’s maximal inequality to to obtain our maximal in-
equality in Lemma 4.2;

3. Finally, we are ready for the proof of Theorem 1.2, where some necessary modifications
are incorporated into the original Reznik’s proof to deal with the complications resulted
from the fact that X is not stationary.

Lemma 4.1. For any |δ| < 1 and α > 0, we have

(log σ2
n)

−(1+δ)2(1+α) < P (Sn > (1 + δ)(2σ2
n log log σ

2
n)

1/2) < (log σ2
n)

−(1+δ)2(1−α)

for n sufficiently large.

Proof. By Theorem 1.1, we have for any ε > 0

P (Sn/σn > (1+ δ)(2 log log σ2
n)

1/2)−
∫ ∞

(1+δ)(2 log log σ2
n)

1/2

(2π)−1/2 exp(−y2/2)dy = O(n−1/11+ε).

It can be verified that for any x > 0∫ ∞

x

(2π)−1/2 exp(−y2/2)dy ≤ exp(−x2/2),

which implies that∫ ∞

(1+δ)(2 log log σ2
n)

1/2

(2π)−1/2 exp(−y2/2)dy ≤ (log σ2
n)

−(1+δ)2 .

It can also be verified that for any α > 0,

exp(−(1 + α)x2/2) ≤
∫ ∞

x

(2π)−1/2 exp(−y2/2)dy

14



for x large enough, which implies that for any α > 0,

(log σ2
n)

−(1+δ)2(1+α) ≤
∫ ∞

(1+δ)(2 log log σ2
n)

1/2

(2π)−1/2 exp(−y2/2)dy,

for n large enough. The lemma then follows from σ2
n = nσ2(1 + o(1)), by Remark 2.7.

Lemma 4.2. For any x > 0, 0 < α < 1/2 and C > 0, we have

P (max
j≤n

Sj > x) ≤ 2P (Sn > x− 2σn) + Cn−α,

for sufficiently large n.

Proof. For j = 1, 2, · · · , n, let Fj be the event “S1, S2, · · · , Sj−1 ≤ x, Sj > x”, that is, Fj is
the event “j is the smallest index such that Sj > x”. Then, for any x > 0, 0 < α < 1/2 and
C > 0, we have

P (max
j≤n

Sj > x) =
n∑

j=1

P (Fj) = (
∑

P (Fj)>Cn−(1+α)

+
∑

P (Fj)≤Cn−(1+α)

)P (Fj) ≤
∑

P (Fj)>Cn−(1+α)

P (Fj)+Cn
−α.

Since

P (Sn > x− 2σn) ≥
n∑

j=1

P (|Sn − Sj| ≤ 2σn, Fj) =
n∑

j=1

P (|Sn − Sj| ≤ 2σn|Fj)P (Fj),

we only need to prove that for n sufficiently large, P (|Sn − Sj| > 2σn|Fj) ≤ 1/2 for any Fj

with P (Fj) > Cn−(1+α).
Now fix a positive integer n0 (we will choose n0 large enough later). For the case when

n− j ≤ n0, applying the Markov inequality, we have

P (|Sn−Sj| > 2σn|Fj) ≤ P (|Sn−Sj| > 2σn)/p(Fj) ≤ E[|
n∑

i=j+1

Xi|3](8P (Fj)σ
3
n)

−1 = O(nα−1/2),

where we used P (Fj) > Cn−(1+α). For the case when n− j > n0, we have

P (|Sn − Sj| > 2σn|Fj) ≤ P (|
j+n0∑
i=j+1

Xi| > σn/2|Fj) + P (|
n∑

i=j+1+n0

Xi| > 3σn/2|Fj).

Again, using P (Fj) > Cn−(1+α) and the Markov inequality, we have

P (|
j+n0∑
i=j+1

Xi| > σn/2|Fj) ≤ P (|
j+n0∑
i=j+1

Xi| > σn/2)/P (Fj) ≤ 8E[|
j+n0∑
i=j+1

Xi|3](P (Fj)σ
3
n)

−1 = O(nα−1/2).

Also, it follows from Lemma 2.2 and Lemma 2.6 that

P (|
n∑

i=j+1+n0

Xi| > 3σn/2|Fj) ≤ ψ(n0) + P (|
n∑

i=j+1+n0

Xi| > 3σn/2)
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≤ ψ(n0) + 4E[|
n∑

i=j+1+n0

Xi|2]/9σ2
n = ψ(n0) + 4/9 + o(1).

Apparently, for both cases, choosing n0 sufficiently large so that ψ(n0) is small enough, and
then choosing n sufficiently large, we deduce that for any Fj with P (Fj) > Cn−(1+α),

P (|Sn − Sj| > 2σn|Fj) ≤ 1/2.

The lemma then immediately follows.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first show that

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
≤ 1 a.s.; (17)

equivalently, we show that for any δ > 0,

P (
Sn

(2σ2
n log log σ

2
n)

1/2
> 1 + δ i.o.) = 0, (18)

here we remind the reader that by Remark 2.7, σ2
n = n(σ2+o(1)) and “i.o.” means “infinitely

often”.
Fox fixed M > 1, define nj =M j, j = 1, 2, · · · . One then checks that

“
Sn

(2σ2
n log log σ

2
n)

1/2
> 1 + δ i.o.” ⊂ “ max

n≤nj+1

Sn

(2σ2
nj
log log σ2

nj
)1/2

> 1 + δ i.o.”.

So, to prove (18), it suffices (by the Borel-Cantelli Lemma) to show that

∞∑
j=1

P ( max
n≤nj+1

Sn

(2σ2
nj
log log σ2

nj
)1/2

> 1 + δ) <∞. (19)

Now, by Lemma 4.2,

∞∑
j=1

P ( max
n≤nj+1

Sn

(2σ2
nj
log log σ2

nj
)1/2

> 1+δ) ≤
∞∑
j=1

P (Snj+1
> (1+δ)(2σ2

nj
log log σ2

nj
)1/2−2σnj+1

).

(20)
Note that there exists 0 < δ1 < δ such that for j sufficiently large,

(1 + δ)(2σ2
nj
log log σ2

nj
)1/2 − 2σnj+1

> (1 + δ1)(2σ
2
nj
log log σ2

nj
)1/2. (21)

Applying Lemma 4.1 with α chosen such that (1 + δ1)
2(1− α) > 1, we deduce that

∞∑
j=1

P (Snj+1
> (1+δ1)(2σ

2
nj
log log σ2

nj
)1/2) ≤

∞∑
j=1

(log σ2
nj
)−(1+δ1)2(1−α) =

∞∑
j=1

O(j−(1+δ1)2(1−α)) <∞.

(22)
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Immediately, (19) follows from (20), (21) and (22). Here, we remark that the same argument
as above with Xi replaced by −Xi leads to

lim inf
n→∞

Sn

(2nσ2 log log nσ2)1/2
≥ −1 a.s. (23)

For the other direction, we next show that

lim sup
n→∞

Sn

(2nσ2 log log nσ2)1/2
≥ 1 a.s.;

equivalently, we show that for any δ > 0,

P (
Sn

(2σ2
n log log σ

2
n)

1/2
> 1− δ i.o.) = 1. (24)

For fixed N > 1 and δ > 0, let Cn(δ) be the event

“SNn − SNn−1+Nn/2 > (1− δ)g(Nn −Nn−1 −Nn/2)”,

where g(n) = (2nσ2 log log nσ2)1/2. With Lemmas 2.1 and 4.1, one checks that there exists
0 < δ2 < δ such that for a given α > 0

P (Cn(δ)) ≥ P (SNn−Nn−1−Nn/2 > (1−δ2)g(Nn−Nn−1−Nn/2)) ≥ log(Nn−Nn−1−Nn/2)−(1−δ2)2(1+α)/2
(25)

for sufficiently large n. From now on, we choose α > 0 such that (1− δ2)
2(1 + α) < 1. If n

and N are large enough, we have

Nn −Nn−1 −Nn/2 ≥ Nn/2,

which, together with (25), implies that for any δ > 0

∞∑
n=1

P (Cn(δ)) = ∞. (26)

Similarly, let Ĉn(δ) be the event

“
Nn∑

i=Nn−1+Nn/2+1

− log p(Zi|Zi−1
Nn−1+Nn/4)−H(Zi|Zi−1

Nn−1+Nn/4) > (1− δ)g(Nn −Nn−1 −Nn/2)”.

Applying Lemma 2.1, we deduce that that for any δ′ > 0, there exists 0 < δ < δ′ such that
for sufficiently large n,

Ĉn(δ
′) ⊃ Cn(δ),

which, together with (26), implies that for any δ′ > 0

∞∑
n=1

P (Ĉn(δ
′)) = ∞.
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Again, by Lemma 2.1, for any δ > 0, there exists 0 < δ′′ < δ such that for sufficiently large
n,

Ĉn(δ
′′) ⊂ Cn(δ).

It then follows from an iterative application of Lemma 2.2 that there exists 0 < θ < 1 such
that for any n, l,

P (∩n+l
m=nC

c
m(δ)) ≤ P (∩n+l

m=nĈ
c
m(δ

′′)) =
n+l∏
m=n

P (Ĉc
m(δ

′′)) +
n+l∑
m=n

O(θN
m/4

)

=
n+l∏
m=n

(1− P (Ĉm(δ
′′))) +

n+l∑
m=n

O(θN
m/4

) ≤ exp(−
n+l∑
m=n

P (Ĉm(δ
′′))) +

l∑
m=n

O(θN
m/4

).

So, as l, n→ ∞, P (∩n+l
m=nC

c
m(δ)) → 0, or equivalently, for any δ > 0,

P (Cn(δ) i.o.) = 1. (27)

Let Bn be the event “SNn−1+Nn/2 > −2g(Nn−1 +Nn/2)”. It then follows from (23) that

P (Bn i.o.) = 1,

which, together with (27), implies that for any δ̂ > 0

P (Bn ∩ Cn(δ̂) i.o.) = 1. (28)

One then checks that for δ > 0, there exists 0 < δ̂ < δ such that for sufficiently large n,

“SNn > (1−δ)g(Nn) i.o.” ⊃ “SNn > (1−δ̂)g(Nn−Nn−1−Nn/2)−2g(Nn−1+Nn/2) i.o.” ⊃ “Bn∩Cn(δ̂) i.o.”.

It then follows from (28) that

P (SNn > (1− δ)g(Nn) i.o.) = 1,

which immediately implies (24).

5 Alternatives for Condition (II)

This section only assume Condition (I) and gives alternatives for Condition (II) provided
Condition (I) is satisfied.

Let (Ω,F , P ) be the probability space which Z is defined on, and let H0 = H(Zk, k ∈ Z)
be the subspace of L2(F) spanned by the equivalence classes of the random variables Zk,
k ∈ Z, with inner product defined as

< V,W >= E[VW ],

for any V,W ∈ H0.
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Theorem 5.1. If lim infn→∞E[S2
n] < ∞, then there exist a sequence of random variables

(Vi, i ∈ N) as n → ∞ such that Xi = Vi − Vi+1 with E[V 2
i ] = O(1) uniformly for all i, and

thus supnE[S
2
n] <∞.

Proof. Let Q be an infinite subset of N such that supn∈QE[S
2
n] <∞. Applying Lemma 2.1,

we deduce that there exists C > 0 such that for all i ∈ N,

sup
n∈Q

E[(Sn+i−1 − Si−1)
2] ≤ C,

where S0 is interpreted as 0. It follows from Banach-Alaoglu theorem (which implies that
every bounded and closed set in a Hilbert space is weakly compact; see Section 3.15 of [38])
that for any i ∈ N, there exists Vi ∈ H0 with E[V 2

i ] ≤ C, and Qi, an infinite subset of Q
such that for all W ∈ H0,

lim
n→∞,n∈Qi

< W,Sn+i−1 − Si−1 >=< W,Vi >;

here, without loss of generality, we can assume that Qi+1 ⊂ Qi for all i. Then one verifies
that for any W ∈ H0, we have that for any i,

< W,Xi−Vi+Vi+1 >= lim
n→∞,n∈Qi+1

< W,Xi−(Sn+i−1−Si−1)+(Sn+i−Si) >= lim
n→∞,n∈Q

< W,Xn+i >= 0,

where we have applied Lemma 2.4 for the last equality. Choosing W = Xi − Vi + Vi+1, we
then obtain that

∥Xi − Vi + Vi+1∥2 = 0,

which implies that
Xi = Vi − Vi+1, a.s.

It then follows that

E[S2
n] = E[(V1 − Vn+1)

2] = E[V 2
1 ] + E[V 2

n+1]− 2E[V1Vn+1],

which, together with E[V 2
i ] ≤ C, implies the theorem.

A sequence of positive numbers, (h(i), i ∈ N), is said to be “slowly varying” if for every
positive integer m,

lim
n→∞

h(mn)/h(n) = 1,

and it is said to be “slowly varying in the strong sense” if

lim
m→∞

minm≤n≤2m h(n)

maxm≤n≤2m h(n)
= 1.

Lemma 5.2. If limn→∞E[S2
n] = ∞, then E[S2

n] = nh(n), where (h(i), i ∈ N) is a sequence
of slowly varying positive numbers.
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Proof. We only need to show that for every positive integer l,

lim
n→∞

σ2
ln/σ

2
n = l.

Following the proof of Theorem 2.1.2 in [30], let

ζj =
n∑

s=1

X(j−1)n+(j−1)r+s, j = 1, 2, · · · , l,

ηj =
r∑

s=1

Xjn+(j−1)r+s, j = 1, 2, · · · , l − 1,

ηl = −
(l−1)r∑
s=1

Xnl+s,

where r = ⌊log σ2
n⌋.

Now

σ2
ln = E[S2

ln] =
l∑

j=1

E[ζ2j ] + 2
∑
i̸=j

E[ζiζj] +
∑
i,j

E[ζiηj] +
∑
i,j

E[ηiηj].

It follows from Lemma 2.1 that for any j,

E[ζ2j ] = E[ζ21 ] +O(1)E[ζ21 ]
1/2 = σ2

n +O(σn) (29)

uniformly in j. Using an argument similar to the proof for Part 2 of Lemma 2.4, one has
that there exists 0 < θ < 1 such that for i ̸= j,

|E[ζiζj]| = O(θ⌊log σ
2
n⌋σ2

n),

where we also used (29). Using Schwartz inequality and (29), we also have

|E[ζiηj]| ≤ E[ζ2i ]
1/2E[η2j ]

1/2 = O(σnσr) = O(σn log σn),

and
|E[ηiηj]| ≤ O(σ2

r) = O((log σn)
2).

It then follows that for any positive integer l,

σ2
ln = lσ2

n + o(σ2
n),

which immediately implies the lemma.

Lemma 5.3. If limn→∞E[S2
n] = ∞, then E[S2

n] = nh(n), where (h(i), i ∈ N) is a sequence
of slowly varying positive numbers in the strong sense.

Proof. Note that by Lemma 2.1, we have that for any j,

lim
n→∞

E[(Sn+j − Sj)
2]

E[S2
n]

= 1, (30)

uniformly in j. The lemma then follows from (30), Lemma 5.2 and an almost the same proof
for Theorem 8.13 of [11].
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The following lemma is well-known; see, e.g., Proposition 0.16 in [11].

Lemma 5.4. Suppose (h(n), n ∈ N) is a sequence of positive numbers which is slowly varying
in the strong sense. Then for every ε > 0, one has that nεh(n) → ∞ as n→ ∞.

Lemma 5.5. If limn→∞E[S2
n] = ∞, then σ > 0.

Proof. Assume, for contradictions, that σ = 0. Since limn→∞E[S2
n] = ∞, we deduce, by

Lemma 5.3, that E[S2
n]/n is slowly varying in the strong sense. Then, by Lemma 5.4, for any

α > 0, nαE[S2
n]/n → ∞ as n → ∞. However, by Lemma 2.6, when σ = 0, nαE[S2

n]/n → 0
as n→ ∞ for any 0 < α < 1, which is a contradiction.

The following theorem immediately follows from Theorem 5.1 and Lemma 5.5, which
gives alternatives for Condition (II) given Condition (I) is satsified.

Theorem 5.6. Under Condition (I), the following statements are equivalent

1. σ > 0.

2. limn→∞E[S2
n] = ∞.

3. lim supn→∞E[S2
n] = ∞.
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