ENDOMORPHISMS PRESERVING COORDINATES OF POLYNOMIAL ALGEBRAS

YUN-CHANG LI AND JIE-TAI YU

Abstract

It is proved that the Jacobian of a k-endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ over a field k of characteristic zero taking every tame coordinate to a coordinate, must be a nonzero constant in k. It is also proved that the Jacobian of an R-endomorphism of $A:=R\left[x_{1}, \ldots, x_{n}\right]$ (where R is a polynomial ring in finite number of variables over an infinite field k), taking every R-linear coordinate of A to an R-coordinate of A, is a nonzero constant in k.

1. Introduction and the main results

Van den Essen and Shpilrain [2] asked the following
Question 1. Let k be a field. Is it true that every k-endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ taking every coordinate to a coordinate is an automorphism?

In [2] the question was answered by van den Essen and Shpilrain themselves in the positive for an arbitrary field k when $n=2$. The question was solved by Jelonek [5] affirmatively for algebraically closed fields k of characteristic zero for all n by geometric method based on

Derksen's observation. (see [2]) Let k be an algebraically closed field. A k-endomorphism ϕ of $k\left[x_{1}, \ldots, x_{n}\right]$ taking every k-linear coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$ to a coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$ must have nonzero constant Jacobian $J(\phi)$ in k.

[^0]For the related linear coordinate preserving problem for polynomial algebras, see Mikhalev, Yu and Zolotykh [8], Cheng and ven den Essen [1], and Gong and Yu [3]. For another related automorphic orbit problem for polynomial algebras, see van den Essen and Shpilrain [2], Yu [9], Gong and Yu [4], and Li and Yu [7].

The purpose of this note is to prove the following two new results.
Theorem 1.1. Let $R:=k\left[x_{n+1}, \ldots, x_{n+m}\right]$ where k is an infinite field, $m>0$. Let $\phi:=\left(f_{1}, \ldots, f_{n}\right)$ be an R-endomorphism of $A:=$ $R\left[x_{1}, \ldots, x_{n}\right]$ taking every R-linear coordinate of A to an R-coordinate of A. Then

$$
J(\phi)=J_{x_{1}, \ldots, x_{n}}\left(f_{1}, \ldots, f_{n}\right):=\operatorname{det}\left[\left(f_{i}\right)_{x_{j}}^{\prime}\right] \in k^{*}
$$

Note if we replace R by a field k, the statement of Theorem 1.1 is generally not true, unless k is algebraically closed (Derksen's observation). For non-algebraically closed fields k, see Mikhalev, J.-T.Yu and Zolotykh [8], and Gong and Yu [3] for counterexamples.

Theorem 1.2. Let $\phi:=\left(f_{1}, \ldots, f_{n}\right)$ be a k-endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ over a field k of characteristic zero taking every tame coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$ to a coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
J(\phi)=J_{x_{1}, \ldots, x_{n}}\left(f_{1}, \ldots, f_{n}\right):=\operatorname{det}\left[\left(f_{i}\right)_{x_{j}}^{\prime}\right] \in k^{*}
$$

In the sequel k always denotes a field with a fixed algebraic closure K. Endomorphisms (automorphisms) always means k-endomorphisms (k-automorphisms) unless otherwise specified.

2. Preliminaries

Recall that an automorphism of $k\left[x_{1}, \cdots, x_{n}\right]$ is tame if it can be decomposed to product of linear and elementary automorphisms, and a coordinate p (i.e. a component of an automorphism) is called tame if p is a component of a tame automorphism. For an endomorphism $\phi:=\left(f_{1}, \ldots, f_{n}\right)$ of $k\left[x_{1}, \ldots, x_{n}\right]$, we use

$$
J(\phi):=J\left(f_{1}, \ldots, f_{n}\right):=J_{x_{1}, \ldots, x_{n}}\left(f_{1}, \ldots, f_{n}\right)
$$

to denote its Jacobian $\operatorname{det}\left[\left(f_{i}\right)_{x_{j}}^{\prime}\right]$.
Let $\phi:=\left(f_{1}, \ldots, f_{n}\right)$ be an endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ taking a coordinate p of $k\left[x_{1}, \ldots, x_{n}\right]$ to a coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$ and let $\sigma:=\left(g_{1}, \ldots, g_{n}\right)$ be any automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. Obviously,

$$
\sigma \circ \phi:=\left(f\left(g_{1}, \ldots, g_{n}\right), \ldots, f_{n}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

is also an endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ taking the same coordinate p to a coordinate. Moreover, $J(\phi) \in k^{*}$ if and only if $J(\sigma \circ \phi) \in k^{*}$.

We need the following two lemmas.
Lemma 2.1. Let $f_{1}, \ldots, f_{n-1} \in k\left[x_{1}, \ldots, x_{n}\right]$ over an infinite field k such that

$$
\operatorname{deg}_{x_{n}} J\left(f_{1}, \ldots, f_{n-1}, x_{n}\right)>0
$$

Then there exist $a_{1}, \ldots, a_{n-1} \in k, b \in K$ and $h_{1}, h_{2}, \ldots, h_{n-1} \in k\left[x_{n}\right]$ (without loss of generality we may assume $h_{1}=1$ after acting a transposition on $\left\{f_{1}, \ldots, f_{n-1}\right\}$) such that the gradient (partial derivatives) of

$$
g:=f_{1}+h_{2}\left(x_{n}\right) f_{2}+\cdots+h_{n-1}\left(x_{n}\right) f_{n-1}
$$

with respect to $\left(x_{1}, \ldots, x_{n-1}\right)$ is $(0, \ldots, 0)$ at the point

$$
P=\left(a_{1}, \ldots, a_{n-1}, b\right)
$$

Proof. Let

$$
G\left(x_{1}, \ldots, x_{n}\right):=J\left(f_{1}, \ldots, f_{n-1}, x_{n}\right)=\sum_{i=0}^{m} p_{i}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{i}
$$

where $m \geq 1$ and $p_{m}\left(x_{1}, \cdots, x_{n-1}\right) \neq 0$. Since k is infinite, we may choose $a_{1}, \cdots, a_{n-1} \in k$ such that $p_{m}\left(a_{1}, \cdots, a_{n-1}\right) \in k^{*}$. Then $G\left(a_{1}, \cdots, a_{n-1}, x_{n}\right) \in k\left[x_{n}\right]-k$ and there exists some $b \in K$ such that

$$
G\left(a_{1}, \cdots, a_{n-1}, b\right)=0 .
$$

Hence $E=k(b)=k[b]$ is a finite algebraic extension of k. Let $P=\left(a_{1}, \cdots, a_{n-1}, b\right)$ be a point in E^{n} and for each $f\left(x_{1}, \ldots, x_{n}\right) \in$ $k\left[x_{1}, \ldots, x_{n}\right]$, define

$$
\left.f\left(x_{1}, \ldots, x_{n}\right)\right|_{P}:=f\left(a_{1}, \cdots, a_{n-1}, b\right)
$$

We have the first $(n-1)$ rows of the determinant $\left.J\left(f_{1}, \ldots, f_{n-1}, x_{n}\right)\right|_{P}$ are $k[b]$-linearly dependent. Therefore, there exist

$$
h_{1}(x), h_{2}(x), \cdots, h_{n-1}(x) \in k[x]
$$

such that

$$
\left.\left(h_{1}(b) f_{1}+h_{2}(b) f_{2}+\cdots+h_{n-1}(b) f_{n-1}\right)_{x_{i}}^{\prime}\right|_{P}=0
$$

for all $i=1, \cdots, n-1$ and not all $h_{1}(b), \cdots, h_{n-1}(b)$ are zero. Without loss of generality, we may assume $h_{1}(b) \neq 0$, replace $h_{i}(b)$ by $h_{1}^{-1}(b) h_{i}(b)$ for all i, we may assume $h_{1}(x)=1$. Now define

$$
g:=f_{1}+h_{2}\left(x_{n}\right) f_{2}+\cdots+h_{n-1}\left(x_{n}\right) f_{n-1} \in k\left[x_{1}, \ldots, x_{n}\right] .
$$

It is easy to see that

$$
\left.g_{x_{i}}^{\prime}\right|_{P}=\left.\left(f_{1}+h_{2}(b) f_{2}+\cdots+h_{n-1}(b) f_{n-1}\right)_{x_{i}}^{\prime}\right|_{P}=0, \quad \forall i=1, \cdots, n-1 .
$$

Lemma 2.2. Let $f_{1}, \ldots, f_{n-1} \in k\left[x_{1}, \ldots, x_{n}\right]$ over a field k of characteristic zero such that $\operatorname{deg}_{x_{n}} J\left(f_{1}, \ldots, f_{n}, x_{n}\right)>0$. Then there exist $a_{1}, \ldots, a_{n-1} \in k, b \in K$ and $h_{1}, h_{2}, \ldots, h_{n-1}, h_{n} \in k\left[x_{n}\right]$ (without loss of generality, we may assume $h_{1}=1$ after acting a transposition on $\left.\left\{f_{1}, \ldots, f_{n-1}\right\}\right)$ such that the gradient (partial derivatives) of

$$
u:=f_{1}+h_{2}\left(x_{n}\right) f_{2}+\cdots+\cdots+h_{n-1}\left(x_{n}\right) f_{n-1}+h_{n}
$$

with respect to $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ is $(0, \ldots, 0,0)$ at the point

$$
P=\left(a_{1}, \ldots, a_{n-1}, b\right)
$$

Proof. Using the same notations in the Lemma 2.1, $u=g+h_{n}$, where $h_{n}=h_{n}\left(x_{n}\right)$ is to be determined. Define $v(b):=\left.g_{x_{n}}^{\prime}\right|_{P} \in k[b]$ for some $v(x)=c_{0}+c_{1} x+\cdots+c_{s} x^{s} \in k[x]$. Define (here we need k to be characteristic zero)

$$
h_{n}\left(x_{n}\right):=-c_{0} x_{n}-(1 / 2) c_{1} x_{n}^{2}-\cdots-(1 /(s+1)) c_{s} x_{n}^{s+1} \in k\left[x_{n}\right] .
$$

It is easy to see that

$$
\left.u_{x_{i}}^{\prime}\right|_{P}=\left.g_{x_{i}}^{\prime}\right|_{P}+h_{n}\left(x_{n}\right)_{x_{i}}^{\prime}=0+0=0, \quad \forall i=1, \cdots, n-1
$$

and $\left.u_{x_{n}}^{\prime}\right|_{P}=v(b)-v(b)=0$.

3. Proofs of the main results

Proof of Theorem 1.1. For simplicity we only present the proof for $m=1$, the general case can be proved similarly, by an enhanced version of Lemma 2.1. Suppose on the contrary, $J(\phi)$ is not constant. If x_{n+1} does not appear in $J(\phi)$. We may assume $\operatorname{deg}_{x_{1}} J(\phi)$ is the highest among all $\operatorname{deg}_{x_{i}} J(\phi)$. Replace ϕ by $\sigma \circ \phi$, where $\sigma:=\left(x_{1}+\right.$ $\left.x_{n+1}, x_{2}, \ldots, x_{n}\right)$. So we may assume that x_{n+1} appears in $J(\phi)$. By Lemma 2.1 there exist $a_{1}, \ldots, a_{n} \in k, b \in K$ and $h_{1}, h_{2}, \ldots, h_{n} \in$ $R\left[x_{n+1}\right]$ (Without loss of generality we may assume $h_{1}=1$) such that

$$
g:=f_{1}+h_{2}\left(x_{n+1}\right) f_{2}+\cdots+h_{n}\left(x_{n+1}\right) f_{n}
$$

with gradient (partial derivatives) with respect to $\left(x_{1}, \ldots, x_{n}\right)$ is $(0, \ldots, 0)$ at the point

$$
P=\left(a_{1}, \ldots, a_{n}, b\right),
$$

so g cannot be an R-coordinate of A. On the other hand, as

$$
p:=x_{1}+h_{2}\left(x_{n+1}\right) x_{2}+\cdots+h_{n}\left(x_{n+1}\right) x_{n}
$$

is an R-linear coordinate of A with a corresponding R-automorphism $\left(p, x_{2}, \ldots, x_{n}\right)$ of $A, g=\phi(p)$ is also an R-coordinate of A. A contradiction.

Proof of Theorem 1.2. We may assume $f_{n}=x_{n}$, otherwise replace ϕ by $\psi \circ \phi$, where ψ is an automorphism taking the coordinate f_{n} to x_{n}. Suppose on the contrary, $J(\phi)$ is not nonzero constant. If x_{n} does not appear in $J(\phi)$, we may assume that $\operatorname{deg}_{x_{1}} J(\phi)$ is the highest among all $\operatorname{deg}_{x_{i}} J(\phi)$. Replace ϕ by $\sigma \circ \phi$, where $\sigma:=\left(x_{1}+x_{n}, x_{2}, \ldots, x_{n}\right)$. So we may assume that x_{n} appears in $J(\phi)$. By Lemma 2.2, there exist $a_{1}, \ldots, a_{n-1} \in k, b \in K$ and $h_{1}, h_{2}, \ldots, h_{n-1}, h_{n} \in k\left[x_{n}\right]$ (without loss of generality we may assume $h_{1}=1$) such that the partial derivatives of

$$
u:=f_{1}+h_{2}\left(x_{n}\right) f_{2}+\cdots+\cdots+h_{n-1}\left(x_{n}\right) f_{n-1}+h_{n}
$$

with respect to $\left(x_{1}, \ldots, x_{n}\right)$ is $(0, \ldots, 0)$ at the point

$$
P=\left(a_{1}, \ldots, a_{n-1}, b\right)
$$

hence u cannot be a coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$. On the other hand, as

$$
q:=x_{1}+h_{2}\left(x_{n}\right) x_{2}+\cdots+h_{n-1}\left(x_{n}\right) x_{n-1}+h_{n}\left(x_{n}\right) \in k\left[x_{1}, \ldots, x_{n}\right]
$$

is a tame coordinate of $k\left[x_{1}, \ldots, x_{n}\right]$ with a corresponding elementary automorphism

$$
\left(q, x_{2}, \ldots, x_{n-1}, x_{n}\right)
$$

of $k\left[x_{1}, \ldots, x_{n}\right], u=\phi(q)$ is also a coordinate. A contradiction.

Acknowledgement. The authors would like to thank Z.Jelonek for kindly showing his very recent result [6] where Question 1 in this note is solved affirmatively for characteristic zero and arbitrary n by geometric method based on Theorem 1.2 in this note.

References

[1] Cheng, C. C.-A; van den Essen, A, Endomorphisms of the plane sending linear coordinates to coordinates, Proc. Amer. Math. Soc. 128 (2000) 1911-1915.
[2] Van den Essen, A; Shpilrain, V, Some combinatorial questions about polynomial mappings, J.Pure Appl.Algebra 109 (1997) 47-52.
[3] Gong, S.-J; Yu, J.-T, The linear coordinate preserving problem, Comm. Algebra 36 (2008) 1354-1364.
[4] Gong, S.-J; Yu, J.-T, Test elements, retracts and automorphic orbits, J.Algebra 320 (2008) 3062-3068.
[5] Jelonek, Z, A solution of the problem of van den Essen and Shpilrain, J. Pure Appl. Algebra 137, (1999) 49-55.
[6] Jelonek, Z, A solution of a question of van den Essen and Shpilrain, preprint 2011.
[7] Li, Y.-C; Yu, J.-T, Applications of degree estimate for subalgebras, C. R. Acad. Bulgare Sci. 64 (2011) 165-172.
[8] Mikhalev, A. A; Yu, J.-T; Zolotykh, A. A, Images of coordinate polynomials, Algebra Colloq. 4 (1997) 159-162.
[9] Yu, J.-T, Automorphic orbit problem for polynomial algebras, J.Algebra 319 (2008) 966-970.

Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China

E-mail address: liyunch@hku.hk, liyunch@163.com
Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China

E-mail address: yujt@hku.hk, yujietai@yahoo.com

[^0]: 2010 Mathematics Subject Classification. Primary 13F20, 13W20, 14R10.
 Key words and phrases. Automorphisms, endomorphisms, coordinates, linear coordinates, tame coordinates, polynomial algebras, Jacobian.

 The research of Yun-Chang Li was partially supported by a postgraduate studentship in the University of Hong Kong.

 The research of Jie-Tai Yu was partially supported by an RGC-GRF Grant.

