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ENDOMORPHISMS PRESERVING COORDINATES OF

POLYNOMIAL ALGEBRAS

YUN-CHANG LI AND JIE-TAI YU

Abstract. It is proved that the Jacobian of a k-endomorphism of

k[x1, . . . , xn] over a field k of characteristic zero taking every tame

coordinate to a coordinate, must be a nonzero constant in k. It is also

proved that the Jacobian of an R-endomorphism of A := R[x1, . . . , xn]

(where R is a polynomial ring in finite number of variables over an infi-

nite field k), taking every R-linear coordinate of A to an R-coordinate

of A, is a nonzero constant in k.

1. Introduction and the main results

Van den Essen and Shpilrain [2] asked the following

Question 1. Let k be a field. Is it true that every k-endomorphism

of k[x1, ..., xn] taking every coordinate to a coordinate is an automor-

phism?

In [2] the question was answered by van den Essen and Shpilrain them-

selves in the positive for an arbitrary field k when n = 2. The question

was solved by Jelonek [5] affirmatively for algebraically closed fields k

of characteristic zero for all n by geometric method based on

Derksen’s observation. (see [2]) Let k be an algebraically closed

field. A k-endomorphism φ of k[x1, . . . , xn] taking every k-linear coordi-

nate of k[x1, . . . , xn] to a coordinate of k[x1, . . . , xn] must have nonzero

constant Jacobian J(φ) in k.

2010 Mathematics Subject Classification. Primary 13F20, 13W20, 14R10.
Key words and phrases. Automorphisms, endomorphisms, coordinates, linear

coordinates, tame coordinates, polynomial algebras, Jacobian.
The research of Yun-Chang Li was partially supported by a postgraduate stu-

dentship in the University of Hong Kong.
The research of Jie-Tai Yu was partially supported by an RGC-GRF Grant.

1

http://arxiv.org/abs/1110.4317v3


2 YUN-CHANG LI AND JIE-TAI YU

For the related linear coordinate preserving problem for polynomial al-

gebras, see Mikhalev, Yu and Zolotykh [8], Cheng and ven den Essen

[1], and Gong and Yu [3]. For another related automorphic orbit prob-

lem for polynomial algebras, see van den Essen and Shpilrain [2], Yu

[9], Gong and Yu [4], and Li and Yu [7].

The purpose of this note is to prove the following two new results.

Theorem 1.1. Let R := k[xn+1, . . . , xn+m] where k is an infinite

field, m > 0. Let φ := (f1, . . . , fn) be an R-endomorphism of A :=

R[x1, . . . , xn] taking every R-linear coordinate of A to an R-coordinate

of A. Then

J(φ) = Jx1,...,xn
(f1, . . . , fn) := det[(fi)

′

xj
] ∈ k∗.

Note if we replace R by a field k, the statement of Theorem 1.1 is

generally not true, unless k is algebraically closed (Derksen’s observa-

tion). For non-algebraically closed fields k, see Mikhalev, J.-T.Yu and

Zolotykh [8], and Gong and Yu [3] for counterexamples.

Theorem 1.2. Let φ := (f1, . . . , fn) be a k-endomorphism of

k[x1, . . . , xn] over a field k of characteristic zero taking every tame

coordinate of k[x1, . . . , xn] to a coordinate of k[x1, . . . , xn]. Then

J(φ) = Jx1,...,xn
(f1, . . . , fn) := det[(fi)

′

xj
] ∈ k∗.

In the sequel k always denotes a field with a fixed algebraic closure

K. Endomorphisms (automorphisms) always means k-endomorphisms

(k-automorphisms) unless otherwise specified.

2. Preliminaries

Recall that an automorphism of k[x1, · · · , xn] is tame if it can be de-

composed to product of linear and elementary automorphisms, and a

coordinate p (i.e. a component of an automorphism) is called tame

if p is a component of a tame automorphism. For an endomorphism

φ := (f1, . . . , fn) of k[x1, . . . , xn], we use

J(φ) := J(f1, . . . , fn) := Jx1,...,xn
(f1, . . . , fn)
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to denote its Jacobian det[(fi)
′

xj
].

Let φ := (f1, . . . , fn) be an endomorphism of k[x1, . . . , xn] taking a

coordinate p of k[x1, . . . , xn] to a coordinate of k[x1, . . . , xn] and let

σ := (g1, . . . , gn) be any automorphism of k[x1, . . . , xn]. Obviously,

σ ◦ φ := (f(g1, . . . , gn), . . . , fn(g1, . . . , gn))

is also an endomorphism of k[x1, . . . , xn] taking the same coordinate p

to a coordinate. Moreover, J(φ) ∈ k∗ if and only if J(σ ◦ φ) ∈ k∗.

We need the following two lemmas.

Lemma 2.1. Let f1, . . . , fn−1 ∈ k[x1, . . . , xn] over an infinite field k

such that

degxn
J(f1, . . . , fn−1, xn) > 0.

Then there exist a1, . . . , an−1 ∈ k, b ∈ K and h1, h2, . . . , hn−1 ∈ k[xn]

(without loss of generality we may assume h1 = 1 after acting a trans-

position on {f1, . . . , fn−1} ) such that the gradient (partial derivatives)

of

g := f1 + h2(xn)f2 + · · ·+ hn−1(xn)fn−1

with respect to (x1, . . . , xn−1) is (0, . . . , 0) at the point

P = (a1, . . . , an−1, b).

Proof. Let

G(x1, . . . , xn) := J(f1, . . . , fn−1, xn) =

m∑

i=0

pi(x1, · · · , xn−1)x
i
n

where m ≥ 1 and pm(x1, · · · , xn−1) 6= 0. Since k is infinite, we

may choose a1, · · · , an−1 ∈ k such that pm(a1, · · · , an−1) ∈ k∗. Then

G(a1, · · · , an−1, xn) ∈ k[xn]− k and there exists some b ∈ K such that

G(a1, · · · , an−1, b) = 0.

Hence E = k(b) = k[b] is a finite algebraic extension of k. Let

P = (a1, · · · , an−1, b) be a point in En and for each f(x1, . . . , xn) ∈

k[x1, . . . , xn], define

f(x1, . . . , xn)|P := f(a1, · · · , an−1, b)
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We have the first (n− 1) rows of the determinant J(f1, . . . , fn−1, xn)|P
are k[b]-linearly dependent. Therefore, there exist

h1(x), h2(x), · · · , hn−1(x) ∈ k[x]

such that

(h1(b)f1 + h2(b)f2 + · · ·+ hn−1(b)fn−1)
′

xi
|P = 0

for all i = 1, · · · , n−1 and not all h1(b), · · · , hn−1(b) are zero. Without

loss of generality, we may assume h1(b) 6= 0, replace hi(b) by h
−1

1 (b)hi(b)

for all i, we may assume h1(x) = 1. Now define

g := f1 + h2(xn)f2 + · · ·+ hn−1(xn)fn−1 ∈ k[x1, . . . , xn].

It is easy to see that

g′xi
|P = (f1+ h2(b)f2+ · · ·+hn−1(b)fn−1)

′

xi
|P = 0, ∀i = 1, · · · , n− 1.

�

Lemma 2.2. Let f1, . . . , fn−1 ∈ k[x1, . . . , xn] over a field k of char-

acteristic zero such that degxn
J(f1, . . . , fn, xn) > 0. Then there exist

a1, . . . , an−1 ∈ k, b ∈ K and h1, h2, . . . , hn−1, hn ∈ k[xn] (without loss

of generality, we may assume h1 = 1 after acting a transposition on

{f1, . . . , fn−1}) such that the gradient (partial derivatives) of

u := f1 + h2(xn)f2 + · · ·+ · · ·+ hn−1(xn)fn−1 + hn

with respect to (x1, . . . , xn−1, xn) is (0, . . . , 0, 0) at the point

P = (a1, . . . , an−1, b).

Proof. Using the same notations in the Lemma 2.1, u = g + hn, where

hn = hn(xn) is to be determined. Define v(b) := g′xn
|P ∈ k[b] for some

v(x) = c0 + c1x + · · · + csx
s ∈ k[x]. Define (here we need k to be

characteristic zero)

hn(xn) := −c0xn − (1/2)c1x
2

n − · · · − (1/(s+ 1))csx
s+1

n ∈ k[xn].

It is easy to see that

u′xi
|P = g′xi

|P + hn(xn)
′

xi
= 0 + 0 = 0, ∀i = 1, · · · , n− 1

and u′xn
|P = v(b)− v(b) = 0. �
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3. Proofs of the main results

Proof of Theorem 1.1. For simplicity we only present the proof

for m = 1, the general case can be proved similarly, by an enhanced

version of Lemma 2.1. Suppose on the contrary, J(φ) is not constant.

If xn+1 does not appear in J(φ). We may assume degx1
J(φ) is the

highest among all degxi
J(φ). Replace φ by σ ◦ φ, where σ := (x1 +

xn+1, x2, . . . , xn). So we may assume that xn+1 appears in J(φ). By

Lemma 2.1 there exist a1, . . . , an ∈ k, b ∈ K and h1, h2, . . . , hn ∈

R[xn+1] (Without loss of generality we may assume h1 = 1) such that

g := f1 + h2(xn+1)f2 + · · ·+ hn(xn+1)fn

with gradient (partial derivatives) with respect to (x1, . . . , xn) is (0, . . . , 0)

at the point

P = (a1, . . . , an, b),

so g cannot be an R-coordinate of A. On the other hand, as

p := x1 + h2(xn+1)x2 + · · ·+ hn(xn+1)xn

is an R-linear coordinate of A with a corresponding R-automorphism

(p, x2, . . . , xn) of A, g = φ(p) is also an R-coordinate of A. A contra-

diction. �

Proof of Theorem 1.2. We may assume fn = xn, otherwise replace

φ by ψ◦φ, where ψ is an automorphism taking the coordinate fn to xn.

Suppose on the contrary, J(φ) is not nonzero constant. If xn does not

appear in J(φ), we may assume that degx1
J(φ) is the highest among

all degxi
J(φ). Replace φ by σ ◦φ, where σ := (x1 + xn, x2, . . . , xn). So

we may assume that xn appears in J(φ). By Lemma 2.2, there exist

a1, . . . , an−1 ∈ k, b ∈ K and h1, h2, . . . , hn−1, hn ∈ k[xn] (without loss

of generality we may assume h1 = 1) such that the partial derivatives

of

u := f1 + h2(xn)f2 + · · ·+ · · ·+ hn−1(xn)fn−1 + hn

with respect to (x1, . . . , xn) is (0, . . . , 0) at the point

P = (a1, . . . , an−1, b),

hence u cannot be a coordinate of k[x1, . . . , xn]. On the other hand, as

q := x1 + h2(xn)x2 + · · ·+ hn−1(xn)xn−1 + hn(xn) ∈ k[x1, . . . , xn]
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is a tame coordinate of k[x1, . . . , xn] with a corresponding elementary

automorphism

(q, x2, . . . , xn−1, xn),

of k[x1, . . . , xn], u = φ(q) is also a coordinate. A contradiction. �
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