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ETH, Zürich.

E-mail address: wangmx@math.ethz.ch

Abstract

The aim of this paper is to revisit Ritt’s theory [35] from a topological

perspective by extensively using the concept of fundamental groups. This en-

ables us to regard the theory as an example which illustrates many ideas of

Grothendieck’s letter [20] and to put Ritt’s theory into a more general analytic

setting. In particular, Ritt’s theory on the unit disk will be carefully devel-

oped and a special class of finite Blaschke products will be introduced as the

counterpart of Chebyshev polynomials in Ritt’s theory. These finite Blaschke

products will be shown to be closely related to the elliptic rational functions

which are of great importance in the filter design theory.

1 Introduction

We call a nonlinear polynomial f in C[z] prime if there do not exist nonlinear

polynomials ϕ1 and ϕ2 in C[z] for which f = ϕ1◦ϕ2. Otherwise f is called composite

or factorized. A representation of f in the form f = ϕ1 ◦ · · · ◦ ϕk is a factorization

or decomposition of f and a maximal factorization of f into prime polynomials

only is called a prime factorization of f . The length of f , with respect to a given

prime factorization, is defined to be the number of prime polynomials present in

that prime factorization. In 1922 J.F. Ritt [35] proved three fundamental results on

factorizations of complex polynomials.
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He first gives a necessary and sufficient condition for a complex polynomial to be

composite and shows that a nonlinear polynomial f in C[z] is composite if and only

if its monodromy group is imprimitive (Ritt I), and that the length of a nonlinear

polynomial f in C[z] is independent of its prime factorizations (Ritt II). The third

result of Ritt tells us how to pass from one prime factorization to another one. Here

we use AutC(C) to denote the set of complex polynomials of degree 1 and Tk to

denote the Chebyshev polynomial of degree k.

Ritt’s Theorem (Ritt III). Given two prime factorizations of a nonlinear poly-

nomial f ∈ C[z], one can pass from one prime factorization to the other one by

repeatedly uses of the following operations:

1) h ◦ g = (h ◦ ι−1) ◦ (ι ◦ g) with h, g 6∈ AutC(C) non-constant polynomials and ι an

element in AutC(C);

2) Tp ◦ Tq = Tq ◦ Tp with p, q prime numbers;

3) zrg(z)k ◦ zk = zk ◦ zrg(zk) with r, k in N and g a non-constant polynomial.

After Ritt’s original work, many authors have tried to give different proofs or

generalizations of Ritt’s theorems. H.T. Engstrom [13] and H. Levi [23] proved

(Ritt I) in 1941 and (Ritt II) in 1942 respectively in the case of an arbitrary field of

characteristic zero and in 1974 F. Dorey and G. Whaples [12] reformulated the work

by adopting the valuation theory. U. Zannier [40] settled the case of fields of positive

characteristics in 1993 and P.F. Müller gave in [26] a group-theoretic proof of the Ritt

theorems in 1995. A new factorization invariant was discovered by A.F. Beardon and

T.W. Ng [5] in 2000 and recently F. Pakovich [30] obtained very interesting results

on the factorization of Laurent polynomials. There is a lattice structure hidden in

the problem and this was extensively studied by M. Muzychuk and F. Pakovich [28].

A very subtle relationship between decompositions and iterations was revealed in a

joint paper by M. Zieve and P. Müller [27].

On the one hand all these studies are based on algebraic techniques and on the

other hand Ritt’s original work is simply topological in nature. We shall adopt

Ritt’s topological point of view and explore the theory by means of topological

fundamental groups. This enable us to put Ritt’s theory in a more general analytic

setting and the main goal of this paper is to develop a version of Ritt’s theory for

the unit disk.

Ritt’s theory is closely related to questions about rational points on curves.

This was first observed by M. Fried [14] who applied Ritt’s theory in arithmetics to

study integral points on curves, for the case of rational points see Avanzi-Zannier
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[4]. The work of M. Fried was completed by Yu.F. Bilu and R.F. Tichy in [6] and

a remarkable application of the theory combined with the Bilu-Tichy Criterion to

arithmetic dynamics can be found in a recent paper by D. Ghioca, T.J. Tucker

and M.E. Zieve in [18]. New applications of Ritt’s theory in function theory are

published in Dinh’s paper [11] on sharing sets and in Pakovich’s work [29].

In analytic geometry or algebraic geometry a finite map refers to a an analytic

or algebraic map which is proper and quasi-finite. As a special case a holomorphic

map between Riemann surfaces is finite if and only if it is non-constant and proper.

This notion was first introduced by Radó who proved in [31] that a holomorphic

map f : M → N between Riemann surfaces is finite if and only if there exists an

integer n such that f(z) = c has n solutions for all c ∈ N and we refer the reader

to [17, p.27] for a modern treatment. We shall define the number n given above to

be the degree of f and denote it by deg f . One may deduce readily from [8, p.99]

that if h : M → T and g : T → N are holomorphic maps between Riemann surfaces,

then g ◦ h is finite if and only if both g and h are finite. This suggests that it is

natural to study factorizations of finite maps. Since non-constant polynomials are

all finite self-maps of the complex plane, Ritt’s original theory fits into this more

general setting.

A finite map is called linear if deg f = 1. If f is a nonlinear finite map from M

to N be a nonlinear finite map then we call f prime if there do not exist nonlinear

finite maps ϕ1 : T → N and ϕ2 : M → T for which f = ϕ1◦ϕ2. Otherwise it is called

composite or factorized. We shall call a factorization of f proper if all its factors are

nonlinear and a maximal proper factorization is called a prime factorization. The

length of f with respect to a prime factorization is defined to be the number of its

factors. Then Ritt’s first two theorems can be reformulated for finite maps.

Theorem 1.1 (Ritt I′). If f is a nonlinear finite map from M to N then it is

composite if and only if its monodromy group is imprimitive.

For our version of (Ritt II) we need an additional hypothesis, which is satisfied

for all finite maps with a totally ramified point, in particular for polynomial maps.

Theorem 1.2 (Ritt II′). If α : [0, 1] → N is a closed cycle on N over which f

is unramified and if the monodromy of α acts transitively then the length of f is

independent of the prime factorizations.

The proofs are only slight technical modifications of the original proofs to deal

with the more general situation. We shall apply these two theorems when the

Riemann surfaces M and N are unit disks E and carefully develop a complete version
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of Ritt’s theory on E. Since Chebyshev polynomials play an important role in Ritt’s

theory, it is natural to find their counterparts in the unit disk case. We solve this

central problem by introducing in Section 5 a new class of finite Blaschke products,

which we call Chebyshev-Blaschke products fn, t for n ∈ N and t > 0.

Main Theorem 1.3. Let f be a finite map from E to E,

E ϕ1→ T1
ϕ2→ T2→ · · · →Tr−1

ϕr→ E

and

E ψ1→ V1
ψ2→ V2→ · · · →Vs−1

ψs→ E

decompositions of f into a product of prime finite maps. We can pass from the first

decomposition to the second by applying repeatedly the following operations:

1) h ◦ g = (h ◦ ι−1) ◦ (ι ◦ g) with h, g nonlinear finite endomorphisms of E and ι a

linear map from E to another Riemann surface;

2) (ι ◦ fp, qt) ◦ (fq, t ◦ ) = (ι ◦ fq, pt) ◦ (fp, t ◦ ) with p, q prime numbers, t a positive

real number and ι,  elements in AutC(E);

3) (ι◦ zrg(z)k)◦ (zk ◦ ) = (ι◦ zk)◦ (zrg(zk)◦ ), with r, k rational integers, g a finite

endomorphism of E and ι,  elements in AutC(E).

In Section 2 we introduce some basic results on finite maps and their monodromy

groups. We then modify Ritt’s proof of his first two theorems to deal with the case of

finite maps (Theorem 1.1 and Theorem 1.2) in Section 3. In Section 4 we show how

to deform a finite map between unit disks to obtain a polynomial. By making use of

monodromy groups we introduce in Section 5 the Chebyshev-Blaschke products fn, t

and we shall then explain carefully in Section 6 and 7 how fn, t can be expressed in

terms of elliptic rational functions which are intensively used in filter design theory.

The reader may skip Section 6 and Section 7 for the first reading since they do not

contribute to the proof of our Main Theorem 1.3 in Section 8. Finally we sketch

very briefly in Section 9 how our results extends to the case of polydisks.

The results of this paper, except Section 7 and Section 9, are part of [39] which

was submitted in November 2007.

Throughout this paper E is the standard unit disk, T is the unit circle and H is

the upper half plane. We denote by AutC(C), AutC(E) and AutC(P1) the group of

automorphisms of C, E and P1 as complex manifolds. The divisor of critical points

and the set of critical values of a finite map f are denoted by Df and df . Finally

Fr denotes a free group of rank r and |K| is the cardinality of a set K. The set
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of all homotopy classes of loops with base point q forms the fundamental group of

M at the point q and is denoted by π1(M, q). For path-connected spaces we can

write π1(M) instead of π1(M, q) without ambiguity whenever we care about the

isomorphism class only. Following usual notations we write Eω1, ω2 for the elliptic

curve C/Λω1,ω2 where Λω1,ω2 is the lattice given by Zω1 + Zω2.

2 Finite maps and their monodromy groups

Finite maps between Riemann surfaces give a nice category in explaining fundamen-

tal groups detect morphisms which is one basic principle of Grothendieck’s letter. In

this section we shall review finite maps by characterizing them in terms of functions

fields, fundamental groups and topological monodromy action but we shall start

with discussing several examples.

Any annulus A is conformal to A(r, t) = {z : r < |z| < t ≤ ∞} with 0 ≤ r < t ≤
∞. The modulus of A, denoted by µ(A), is defined to be ln(t/r).

Example 2.1. If f : A → A′ is a finite map between annuli then it is unramified

and we have

µ(A′) = deg f · µ(A).

Fatou proved in [16] the following ( in an earlier paper [15], he proved the ratio-

nality of finite endomorphisms of E by Schwarz reflection principle ).

Example 2.2 (Fatou’s theorem). If f is a holomorphic map from E to E then it is

finite if and only if it is given by a finite Blaschke product

f(z) = ξ

n∏

i=1

z − ai

1− aiz

with ξ ∈ T, n ∈ N and ai ∈ E.

For the details of finite maps between C, E or annuli we refer the reader to

[32, p.211-217]. In contrast there are no finite maps between C and E. This is a

consequence of Liuville’s theorem and the following

Lemma 2.3. If f is a finite map from E to N then N is biholomorphic to E.

Proof. Let N be the universal covering of N. By [8, p.99] we deduce that the

finiteness of f implies the finiteness of the lifting map f : E → N and of the

projection map π : N → N which leads to π1(N) = 1. Firstly N cannot be the

Riemann’s sphere because there is no proper map from a non-compact space to a
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compact space. Now we claim that N cannot be the complex plane and therefore

it has to be biholomorphic to the unit disk as claimed. Otherwise we may assume

that f is a finite map from E to C and then a bounded holomorphic function of E

descends to a bounded holomorphic function of C by taking the symmetric product.

This will imply that there is a non-constant bounded holomorphic function on C,

which is impossible.

From the point of view of birational geometry one can put Ritt’s theory into a

general geometric setting by employing the analytic function fieldC(N) of a Riemann

surface N. It is known that N is uniquely determined by C(N) (see for instance [3])

and from [37] that finite maps f : M → N are in one-to-one correspondence with

finite fields extensions C(N) ⊂ K given by f 7→ f ] : C(N) → C(M). Alternatively

we can also characterize finite maps in terms of the fundamental group.

Theorem 2.4 ([37]). Let Σ be a discrete subset of N and q 6∈ Σ a point in N.

There is a one-to-one correspondence between finite maps f : (M, p) → (N, q) of

degree n with df ⊂ Σ and subgroups H of π1(N \Σ, q) of index n given by f 7→ H =

π1(M \ f−1(Σ), p).

We call two proper factorizations

M
ϕ1→ T1

ϕ2→ T2→· · ·→Tr−1
ϕr→ N

and

M
ψ1→ V1

ψ2→ V2→· · ·→Vs−1
ψs→ N

equivalent if r = s and there exist biholomorphic maps φi such that the diagram

M
ϕ1→ T1

ϕ2→ T2 →· · ·→ Tr−1
ϕr→ N

↓id ↓φ1 ↓φ2 ↓φr−1 ↓id

M
ψ1→ V1

ψ2→ V2 →· · ·→ Vr−1
ψr→ N

commutes.

Corollary 2.5. Let Σ be a discrete subset of N, p a point in M, q 6∈ Σ a point

in N and f : (M, p) → (N, q) a finite map with df contained in Σ. There is a

one-to-one correspondence between proper factorizations of f and proper chains of

groups between π1(M \ f−1(Σ), p) and π1(N \ Σ, q).

Let f be a finite map from M to N of degree n and q /∈ df a point in N. If we write

f−1(q) = {p1, p2, · · · , pn} then for all α ∈ π1(N \ df , q) and for all i ∈ {1, 2, · · · , n}
there is a uniquely determined (pi)α ∈ f−1(q) and a path β from pi to (pi)α, unique
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up to homotopy, such that f∗β = α. There is a uniquely defined ρ(α) ∈ Sn such

that (pi)α = piρ(α) for all 1 ≤ i ≤ n and we call the group homomorphism ρ :

π1(N \ df , q) → Sn the monodromy and the image of ρ the monodromy group of f .

The monodromy group of f is transitive because M is connected. We shall need the

following useful remark which complements Theorem 2.4:

π1(M \ f−1(df ), p) = {α ∈ π1(N \ df , q) : pα = p}. (1)

Here we write pα instead of (p)α.

If f is the Chebyshev polynomial Tn then

df = {−1, 1} if n ≥ 3, {−1} if n = 2 or ∅ if n = 1.

In any case we can look at the monodromy representation of π1(C \ {−1, 1}) which

is a free group of rank 2 generated by σ and τ with σ and τ represented by closed

paths around −1 and 1 with counterclockwise orientation. We claim that if n = 2k

then

ρ(σ) = (2, 2k) (3, 2k − 1) · · · (k, k + 2)

ρ(τ) = (2, 1) (3, 2k) · · · (k + 1, k + 2)

and if n = 2k + 1 then

ρ(σ) = (2, 2k + 1) (3, 2k) · · · (k + 1, k + 2)

ρ(τ) = (2, 1) (3, 2k + 1) · · · (k + 1, k + 3).

We shall call a group homomorphism ρ : F2 = 〈σ, τ〉 → Sn a Chebyshev representa-

tion if it agrees with the one described as above. For instance, the monodromy of

T4 is illustrated by the following figure.

1σ = 1, 2σ = 4, 3σ = 3, 1τ = 2, 4τ = 3

Figure 1: Chebyshev representation.

Proof of the claim. Since this fact is well-known, we only verify it in the case n = 4.

It is easily checked that under the polynomial map T4 the preimage of the closed

interval [−1, 1] is [−1, 1], the preimage of the point −1 is {cos (3π/4), cos (π/4)} and

the preimage of the point 1 is {cosπ, cos (π/2), cos 0}. We mark the 4 copies of the
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preimage of open interval (−1, 1) with {1, 2, 3, 4} as in Figure 1 and then see that 1

goes to 2 under the action of τ , 2 goes to 1, 3 goes to 4 and 4 goes to 3. This gives

µ(τ) = (1, 2)(3, 4) and similarly µ(σ) = (2, 4).

It is known that a finite map can be uniquely recovered from its monodromy by

virtue of the so-called ‘Schere und Kleister’ surgery [37, p.41] and this leads to the

following restatement of Theorem 2.4.

Theorem 2.6 (Riemann’s existence Theorem). Let N be a Riemann surface, Σ a

discrete subset in N and ρ : π1(N\Σ) → Sn a transitive representation. There exists

a unique Riemann surface M and a finite map f from M to N with the monodromy

of f given by ρ.

The uniqueness part of the above theorem implies that if finite maps f : M → N

and g : T → N have the same monodromy then there exists a biholomorphic map

φ : M → T making the diagram

M
φ→ T

↓f ↓g

N
id→ N

commutative.

Remark 2.7. As a permutation group, the monodromy group of a finite map f :

(M, p) → (N, q) is isomorphic to the image of the action of π1(N\df , q) on the coset

space π1(M \ f−1(df ), p)\π1(N \ df , q) [37, p.41]. It is also isomorphic to the image

of the action of Gal(K/C(N)) on the coset space Gal(K/C(M))\Gal(K/C(N)) [38,

Theorem 5.14], where K is any Galois extension of C(N) which contains C(M).

We call a Riemann surface M finite if π1(M) is finitely generated. By Ahlfors

finiteness theorem [1], this is equivalent to saying that M is homeomorphic to a

compact Riemann surface with finitely many disks and points deleted. We shall

make use of the following version of Riemann-Hurwitz formula.

Lemma 2.8. Let N be a finite Riemann surface. If there exists a finite map f from

M to another Riemann surface N such that deg df < ∞ then M is also finite and

deg Df = deg f · χN − χM, (2)

where χM and χN are the Euler characteristic of M and N respectively.

We shall prove Lemma 2.8 by Schreier’s Index Formula applied to fundamental

groups and gives an example in explaining “fundamental groups detects morphisms”.
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Theorem 2.9 (Schreier’s Index Formula). If G is a subgroup of Fr with index i

then G is a free group with rank

rG = i(r − 1) + 1.

Proof of Lemma 2.8. Let Σ ⊂ N be a nonempty set with df ⊂ Σ and |Σ| = n.

We shall calculate π1(M \ f−1(Σ)) in two different ways. By elementary topology

π1(N\Σ) = Fn+1−χN
and by Theorem 2.4 we have deg f = [π1(N\Σ) : π1(M\f−1(Σ))].

Schreier’s index formula implies that

π1(M \ f−1(Σ)) = Fdeg f(n−χN)+1. (3)

The map i∗ : π1(M \ f−1(Σ)) → π1(M) obtained from the inclusion map i is

surjective, and so M is also finite. Elementary topology again gives

π1(M \ f−1(Σ)) = Fn deg f−deg Rf+1−χM
. (4)

Using the main theorem of finitely generated abelian groups we see that Fn ∼ Fm

implies that n = m. A comparison of (3) and (4) leads to

deg f(n− χN) + 1 = ndeg f − deg Df + 1− χM,

and hence deg Df = deg f · χN − χM.

3 Ritt’s first two theorems

In this section we give a proof of Theorem 1.1 and of Theorem 1.2. Even though

our proof carries no essentially new ingredients compared with Ritt’s original work

[35], we present it with the aim to clarify that Ritt’s original ideas extend to the

more general category. Moreover, a number of consequences which results from the

proofs are needed to prove our Main Theorem 1.3. Notice that a topological version

of Theorem 1.1 was already discussed in [24, p.65].

Proof of Theorem 1.1. Choose q /∈ df in N and p ∈ M with f(p) = q then we deduce

from Corollary 2.5 that f is prime if and only if π1(M \ f−1(df ), p) is a maximal

subgroup of π1(N \ df , q) and this is equivalent to π1(N \ df ) acting primitively on

π1(M \ f−1(df ))\π1(N \ df ) ( see for instance [10]) and now Remark 2.7 gives the

desired result.

We shall recall some basic lattice theory and we shall follow the notations x < y,

x ≺ y, x ∨ y and x ∧ y as described in [7]. A lattice L is said to satisfy the Jordan-

Dedekind chain condition if the length of maximal proper chains depends only on
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the endpoints. We say that L is of locally finite if every interval of L is of finite

length. We call L modular if

x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z ∀ y ∈ L.

The following modular lattices play an important role in Ritt’s theory.

Example 3.1. Let Ln = { t ∈ N : t |n } so that i ≤ j if and only if i | j. Then

( Ln ; ≤ ) is a lattice and x∨y = lcm(x, y), x∧y = gcd(x, y). This lattice of devisors

of n is modular and any sublattice F of ( Ln ; ≤ ) is also modular.

If a locally finite lattice L is modular, then it satisfies the Jordan-Dedekind chain

condition. Furthermore there is a dimension function d : L → Z such that x ≺ y

if and only if x < y and d (y) = d (x) + 1 for all x, y ∈ L. In addition we have

d (x) + d (y) = d (x ∨ y) + d (x ∧ y). Ritt [35] proved an important property for

sublattices of (Ln ; ≤ ). The following proposition extends Ritt’s result to general

modular lattices.

Proposition 3.2. Let L be a locally finite modular lattice, a, b ∈ L with a < b and

C, C′ maximal proper chains of L with the same endpoints a and b. There exists

m ≥ 0 and a sequence of maximal proper chains Ci, 0 ≤ i ≤ m, with endpoints a

and b such that C0 = C, Cm = C′ and Ci and Ci+1 differ in only one element.

Proof. We write C and C′ as

C : a = x0 ≺ x1 ≺ x2 ≺ x3 ≺ · · · ≺ xn = b,

C′ : a = y0 ≺ y1 ≺ y2 ≺ y3 ≺ · · · ≺ yn = b,

choose a dimension function d and prove the claim by induction. If n = 2 nothing

requires a proof. Assume the claim holds for all 2 ≤ n ≤ k − 1, we will prove it for

n = k.

If x1 = y1 we apply the induction assumption to B : x1 ≺ x2 ≺ x3 ≺ · · · ≺ xk = b

and B′ : y1 ≺ y2 ≺ y3 ≺ · · · ≺ yk = b and this proves the proposition in the case

n < k or n = k, x1 = y1.

It remains the case that n = k, y1 6= x1. We first show that y1 
 x1. If not then

y1 < x1 and this leads to d(a) < d(y1) < d(x1), a contradiction to d(x1) = d(a) + 1.

Since y1 ≤ xk = b, there exists 1 ≤ i ≤ k − 1 such that y1 
 xi, y1 ≤ xi+1. If i = 1

we put C0 = C and define C1 : x0 ≺ y1 ≺ x2 ≺ x3 ≺ · · · ≺ xk. To go from C1 to C′
we note that here the case where n = k and x1 = y1 applies and we are done.
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Now we assume the proposition holds when 1 ≤ i ≤ l − 1 and we prove it for

i = l. Since

d (y1 ∨ xl−1) = d (y1) + d (xl−1)− d (y1 ∧ xl−1)

= d (y1) + d (xl−1)− d (x0)

= d (xl−1) + 1

and since y1 ≤ xl+1 implies xl−1 ≤ y1 ∨ xl−1 ≤ xl+1, we conclude that xl−1 ≺
y1 ∨ xl−1 ≺ xl+1. This shows that we can choose C0 = C and C1 = x0 ≺ x1 ≺
x2 · · · ≺ xl−1 ≺ y1 ∨ xl−1 ≺ xl+1 ≺ · · · ≺ xk. To go from C1 to C′ we see that the

case i = l − 1 applies and we are done.

As an illustration we give the following

Example 3.3. Let F be a sublattice of Ln and C, C′ maximal proper chains of F with

endpoints 1 and n. There exists m ∈ N and a sequence of maximal proper chains

Ci, 0 ≤ i ≤ m, with endpoints 1 and n such that C0 = C, Cm = C′ and any two

consecutive ones Cj and Cj+1 differ only in one element. This means that we can

write Cj as · · · ≺ ai ≺ ai+1 ≺ ai+2 ≺ · · · and Cj+1 as · · · ≺ ai ≺ a′i+1 ≺ ai+2 ≺ · · ·
respectively. Both two chains are proper and ai+1 6= a′i+1, as a consequence we have

gcd
(

ai+1

ai
,

a′i+1

ai

)
= 1, gcd

(
ai+2

ai+1
,

ai+2

a′i+1

)
= 1

or equivalently

ai+1

ai
=

ai+2

a′i+1

,
ai+2

ai+1
=

a′i+1

ai
, gcd

(
ai+1

ai
,

ai+2

ai+1

)
= 1. (5)

For the proof of Theorem 1.2 we also need

Dedekind’s Modular Law ([36]) Let G be a group and H ≤ K ≤ G and L ≤ G

subgroups. Then we have (LH) ∩K = (L ∩K)H.

Proof of Theorem 1.2. We write n = deg f , α(0) = q and choose f−1(q) = {p =

p1, p2, · · · , pn}. According to Corollary 2.5 it suffices to prove that the lattice L

consisting of all intermediate groups between G = π1( N \ df , q) and H = π1( M \
f−1(df ) , p) is modular. For K ∈ L we write Kα = K ∩ 〈α〉. Trivially Gα = 〈α〉.
Moreover by the transitivity of the action of α on f−1(q) we have

Hα = H ∩ 〈α〉 (1)
= {β ∈ 〈α〉 : p1 = p = pβ = pβ

1 = p1β} = {β ∈ 〈α〉 : 1β = 1} = 〈αn〉

The fact that H ∩ 〈α〉 = 〈αn〉 immediately leads to αiH 6= αjH for all 0 ≤ i < j ≤
n − 1. This together with [G : H] = n leads to G = ∪n−1

i=0 αiH and in particular
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G = 〈α〉H. Since Ln is isomorphic to the lattice consisting of intermediate groups

between 〈α〉 and 〈αn〉, we shall treat them equally and our above discussion defines

a map g : L → Ln by g(K) = Kα. By Dedekind’s Modular Law and by G = 〈α〉H
we have

KαH = (〈α〉 ∩K)H = 〈α〉H ∩K = G ∩K = K. (6)

This implies immediately that g is injective. Since K is a group we deduce from (6)

that KαH is also a group and this leads to

KαH = HKα. (7)

To prove that g is a lattice morphism it suffice to verify that Kα ∩Mα = (K ∩M)α

and 〈K, M〉α = 〈Kα,Mα〉 for all K, M ∈ L. The former is trivial since

Kα ∩Mα = K ∩ 〈α〉 ∩M ∩ 〈α〉 = (K ∩M) ∩ 〈α〉 = (K ∩M)α.

By 〈K,M〉 = 〈KαH, MαH〉 (7)
= HKαMα and by KαMα = MαKα the latter follows

from

〈K, M〉α = 〈K, M〉 ∩ 〈α〉 = HKαMα ∩ 〈α〉 = (H ∩ 〈α〉)KαMα = KαMα,

where the second last equality relies on Dedekind’s modular law. We have proved

that g is an injective lattice morphism and this gives that L ' g(L) and the latter

is a sublattice of Ln. We conclude from Example 3.1 that L is modular.

A much shorter proof exists, but our proof gives more information. In particular

it implies that L is a sublattice of Ln. According to (5), we can pass from one maxi-

mal factorization of f to another with each step given by a solution (φi, φi+1, φ
′
i, φ

′
i+1)

to the two finite maps equation

φi ◦ φi+1 = φ′i ◦ φ′i+1,deg φi = deg φ′i+1, gcd(deg φi,deg φi+1) = 1. (8)

This functional equation in polynomials is a major difficulty solved in [35] and we

shall solve this functional equation in finite Blaschke products.

4 Deformation

We shall make use of the fact that finite endomorphisms of E can be deformed

to finite endomorphisms of C. This follows from Riemann’s covering principle, for

which we refer to [2, p.119-120]. A Riemann surface is a pair (W,Φ) with W a

connected Hausdorff space and Φ a complex structure, see [2, p.144]. However we

shall simply write E and C when Φ is canonical.

12



Theorem 4.1 (Riemann’s covering principle). If f : W1 → W2 is a covering

surface and if W2 admits a complex structure Φ2 then there exists a unique complex

structure Φ1 on W1 which makes f a holomorphic map from (W1, Φ1) to (W2, Φ2).

Let f be a finite map from E to E and i0 a homeomorphism from E to C. The

canonical complex structure on C induces a new complex structure Φ0 on E and we

obtain a new Riemann surface (E,Φ0). By Theorem 4.1 applied to f : E→ (E, Φ0)

there exists a Riemann surface (E, Φ1) such that f is a holomorphic map from (E, Φ1)

to (E, Φ0). Consequently there exists a holomorphic map (i1, i0)∗f : (E, Φ1) → C

such that (i1, i0)∗f ◦ i1 = i0 ◦ f where i1 is the topological identity map i1 : E →
(E, Φ1). We shall call i1 a lifting of i0 by f and (i1, i0)∗f a descent of f by the pair

(i1, i0).

E f→ E

↓i1 ↓i0

(E, Φ1)
(i1,i0)∗f→ C

The uniqueness part of Theorem 4.1 shows that if i1, i
′
1 are two liftings of i0 then

there exists a holomorphic isomorphism σ between (E, Φ1) and (E,Φ′1) such that σ ◦
i1 = i′1. The classical uniformization theorem for simply connected Riemann surfaces

together with Lemma 2.3 shows that (E, Φ1) and (E, Φ′1) must be biholomorphic to

C. To sum up we may state the following

Corollary 4.2. Let f be a finite map from E to E, i0 a homeomorphism from E

to C and i1, i
′
1 : E → C liftings of i0 by f . There exists σ in AutC(C) such that

i′1 = σ ◦ i1 and (i′1, i0)∗f ◦ σ = (i1, i0)∗f.

This can be illustrated by the following diagram

E f→ E

↙i′1 ↓i1 ↓i0

C σ=az+b← C (i1,i0)∗f→ C

where (i1, i0)∗f is a finite endomorphism of C and therefore is a polynomial. Our

construction of liftings is functorial.

Proposition 4.3. Let f1, f2 be finite endomorphisms of E, i0 a homeomorphism

from E to C and f = f1 ◦ f2 . If i1 and i2 are lifting of i0 by f1 and of i1 by f2

respectively then i2 is a lifting of i0 by f and (i2, i0)∗f = (i1, i0)∗f1 ◦ (i2, i1)∗f2 is a

composition of polynomials.

13



E f2→ E f1→ E

↓i2 ↓i1 ↓i0

C (i2,i1)∗f2→ C (i1,i0)∗f1→ C

Proof. By definition the maps i0 ◦ f1 ◦ i−1
1 and i1 ◦ f2 ◦ i−1

2 are both holomorphic

and by Theorem 4.1 it suffices to show i0 ◦ f ◦ i−1
2 is holomorphic. This follows from

i0 ◦ f ◦ i−1
2 = (i0 ◦ f1 ◦ i−1

1 ) ◦ (i1 ◦ f2 ◦ i−1
2 ).

In general, compared with finite Blaschke products, polynomials are easier to

deal with since much more algebraic techniques ( such as the place at infinity ) are

available.

5 Chebyshev-Blaschke products

In this section we shall construct Chebyshev-Blaschke products using the geometric

monodromy action. If a, b is a pair of distinct elements in E then the group π1(E \
{a, b}) can be generated by two elements σ and τ with σ and τ represented by closed

paths around a and b with counterclockwise orientation.

Lemma 5.1. For n ∈ N there exists a finite endomorphism fn, a, b of E such that

1) deg fn, a, b = n, dfn, a, b
= {a, b} ( if n > 2 ) or {a} ( if n = 2 ) or ∅ ( if n = 1 ).

2) The monodromy representation ρ : 〈σ, τ〉 → Sn is a Chebyshev representation.

The map fn, a, b is unique up to composition on the right with an element in AutC(E).

Proof. Theorem 2.6 gives a finite map f : M → E which satisfies the monodromy

condition. By Lemma 2.8 a direct calculation leads to χ(M) = 1 and it follows from

elementary topology that M is either C or E. Liouville’s Theorem rules out the

possibility of C and the uniqueness part of Theorem 2.6 completes the proof.

We will call those fn, a, b Chebyshev-Blaschke products. In order to describe nor-

malized forms of fn, a, b, we denote by γ(t) for any positive real number t the unique

number in (0, 1) such that µ(E \ [−γ(t), γ(t)]) = t. Given t > 0 and n ∈ N we take

a = −γ(nt) and b = γ(nt).

Proposition 5.2. For all positive real number t and positive integer n there is a

finite endomorphism f of E with deg f = n which satisfies

1) df = {a, b} ( if n > 2 ) or {a} ( if n = 2 ) or ∅ ( if n = 1 ).

2) f−1( [−γ(nt), γ(nt)] ) = [−γ(t), γ(t)] and f(γ(t)) = γ(nt).

3) The monodromy representation ρ : 〈σ, τ〉 → Sn is a Chebyshev representation.
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Before the proof we recall some geometry and topology. The isometry group

Isom(E, ds) of E with respect to the Poincaré metric ds is given by the semidirect

product AutC(E)o 〈i〉, where i is complex conjugation. We write Isom+(E, ds) for

the set of holomorphic automorphisms and Isom−(E, ds) for the antiholomorphic

ones. The fixed point set Fix(ι) of an element ι in Isom(E, ds) is either empty, a

point, a geodesic line or E. Let f be a finite map from M to N, t a homeomorphism

from N to N, q 6∈ df a point in N and p1, p2 points in M with f(pi) = q. Elementary

topology shows that the map t lifts to a homeomorphism ι : (M, p1) → (M, p2)

making the following diagram

M
ι→ M

↓f ↓f

N
t→ N

commutative if and only if t restricts to a bijection on df and if (t ◦ f)∗(π1( M \
f−1(df ), p1 ) ) = f∗(π1( M \ f−1(df ), p2 ) ).

Proof of Proposition 5.2. Lemma 5.1 gives a finite map f : E→ E which satisfies 1)

and 3). Moreover if we can prove that f−1( [−γ(nt), γ(nt)] ) is a geodesic segment

then 2) is immediately fulfilled by composing f with an element in AutC(E). We

only verify this fact for n = 2k, since similar considerations apply to n = 2k + 1.

By condition f is an unramified map from E\f−1( [−γ(nt), γ(nt)] ) to an annulus

E \ [−γ(nt), γ(nt)]. This implies that E \ f−1( [−γ(nt), γ(nt)] ) is an annulus and

therefore f−1( [−γ(nt), γ(nt)] ) is connected.

Choose q ∈ (−γ(nt), γ(nt) ) and write f−1(q) = {p1, p2, · · · , p2k} with the num-

bering i chosen such that pα
i = piρ(α) for 1 ≤ i ≤ 2k, α ∈ π1(E \ {a, b}, q ). We show

now that there is a commutative diagram

(E, p1)
ι→ (E, p1)

↓f ↓f

(E, q) i→ (E, q)

with an isometry ι in I(E) such that f−1( [−γ(nt), γ(nt)] ) ⊂ Fix(ι). As a con-

sequence f−1( [−γ(nt), γ(nt)] ) will be a geodesic segment. By the remark before

it suffices to show that i restricts to a bijection on {a, b} and that (i ◦ f)∗(π1(E \
f−1{a, b}, p1 ) ) = f∗( π1(E\f−1{a, b}, p1 ) ). The involution i : E\{a, b} → E\{a, b}
induces a map i∗ : π1(E \ {a, b}, q ) → π1(E \ {a, b}, q ). The base point q of σ and

τ is on the interval (−γ(nt), γ(nt)) and therefore our involution i on σ and τ simply

changes the orientation, and this means that

i∗(σ) = σ−1, i∗(τ) = τ−1.
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By condition that ρ is a Chebyshev representation we have both ρ(σ) and ρ(τ) are

of order two and therefore ρ(i∗(σ)) = ρ(σ) as well as ρ(i∗(τ)) = ρ(τ). This gives

ρ ◦ i∗ = ρ on 〈σ, τ〉 = π1(E \ {a, b}, q ) which displays as

ρ(i∗(α)) = ρ(α), ∀ α ∈ π1(E \ {a, b}, q ). (9)

We use (1) to deduce that

i∗(f∗(π1(E \ f−1{a, b}, p1))) = i∗({α : α ∈ π1(E \ {a, b}, q), 1ρ(α) = 1})

and observe that β to be in the group on the right is equivalent to i−1∗ (β) to be in

the group {α : α ∈ π1(E\{a, b}, q), 1ρ(α) = 1}. Therefore the right hand side equals

{α : α ∈ π1(E \ {a, b}, q), 1ρ(i−1∗ (α)) = 1}. Using (9) we find that this is the same as

{α : α ∈ π1(E \ {a, b}, q), 1ρ(α) = 1} = f∗(π1(E \ f−1({a, b}), p1)).

This shows that the involution i lifts to a homeomorphism ι : (E, p1) → (E, p1) and

from the diagram we deduce with elementary topology that

ι(pα
1 ) = p

i∗(α)
1 , ∀ α ∈ π1(E \ {a, b}, q ) = 〈σ, τ〉 .

In particular ι(pτ
1) = p

i∗(τ)
1 and therefore ι(p2) = p2. Similar arguments show

that ι(pj) = pj for all 1 ≤ j ≤ 2k and we get f−1(q) ⊂ Fix(ι). We differentiate

the equation f(ι(z)) = f(z) which follows from the diagram. This implies that

∂ι/∂z = 0 which means that ι is an antiholomorphic homeomorphism of the unit

disk. As a consequence ι ∈ Isom−(E, ds) is an isometry and therefore it suffices to

prove that f−1([−γ(nt), γ(nt)]) ⊂ Fix(ι). The paths σ and τ , the preimage pi and

the lift ι vary continuously if q varies continuously in (−γ(nt), γ(nt)). In addition

for given f and i the equation i ◦ f = f ◦ ι has only finitely many solutions ι in

Isom−(E, ds). Indeed choose a fixed point x ∈ E then any solution ι takes values at

x in a finite set f−1(i(f(x))) and since ι is an antiholomorphic automorphism it is

uniquely determined by the image at two distinct points. This shows that there are

only finitely many possibilities. We conclude that ι is locally constant and therefore

independent of q. This shows that f−1([−γ(nt), γ(nt)]) ⊂ Fix(ι) as claimed.

Proposition 5.3. For all positive real number t and positive integer n there ex-

ists a unique finite endomorphism fn, t of the unit disk E with the property that

f−1([−γ(nt), γ(nt)]) = [−γ(t), γ(t)] and f(γ(t)) = γ(nt).

Proof. The existence of fn, t comes from Proposition 5.2 and therefore it suffices to

prove that any two such maps f1 and f2 coincide. As a first step we show that

df ⊂ {−γ(nt), γ(nt)} for f in {f1, f2}.
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The map f restricts to finite maps from the annulus E \ f−1([−γ(nt), γ(nt)])

which is E \ [−γ(t), γ(t)] to the annulus E \ [−γ(nt), γ(nt)]. In Example 2.1 we have

seen that such a map is unramified which shows that Ef ⊂ [−γ(nt), γ(nt)]. Moreover

the moduli of these annuli differ by a factor n and this shows that deg f = n.

Taking q ∈ (−γ(nt), γ(nt)) and p a point in f−1(q) ⊂ (−γ(t), γ(t)) we deduce

that the preimage of an open neighborhood of q in (−γ(nt), γ(nt)) is an open neigh-

borhood of p in (−γ(t), γ(t)). Consequencely the preimage of two trajectories in

(−γ(nt), γ(nt)) at q consists of two trajectories in (−γ(t), γ(t)) at p and this im-

plies that f is unramified at p. This gives that f is unramified over any point q in

(−γ(nt), γ(nt)) showing that df ⊂ {−γ(nt), γ(nt)} as stated.

To continue with the proof we distinguish between two cases.

Case n = 2k.

Because f is an unramified cover of (−γ(nt), γ(nt)) the preimage of (−γ(nt), γ(nt))

under f is a disjoint union of n real 1-dimensional connected curves in [−γ(t), γ(t)].

As such they have to be open intervals of the form (ai, bi) or (bi, ai+1) for i = 1, · · · , k

with a1 < b1 < a2 < b2 < · · · < bk < ak+1, f(ai) = r(nt), f(bi) = −r(nt) and

{a2, . . . , ak}∪{b1, . . . , bk} the critical points. This leads to a picture similar to Figure

1, and an argument similar to that given in the proof of the statement there shows

that the monodromy representation ρ : 〈σ, τ〉 → Sn is a Chebyshev representation.

The uniqueness part of Theorem 2.6 leads to the existence of ι ∈ AutC(E) with

f1 = f2◦ι. Taking inverse images and using that f−1
i ([−γ(nt), γ(nt)]) = [−γ(t), γ(t)]

leads to ι([−γ(t), γ(t)]) = [−γ(t), γ(t)] whence ι(±γ(t)) = ±γ(t) or ι(±γ(t)) =

∓γ(t). In the former case ι = id and therefore f1 = f2 ◦ id = f2. In latter case

ι = −id, therefore f1 = f2 ◦ (−id) and finally to conclude f1 = f2 it suffices to prove

f2(z) = f2(−z).

Choose q ∈ (−γ(nt), γ(nt) ) and write f−1
2 (q) = {p1, p2, · · · , p2k} with the num-

bering i chosen such that pα
i = piρ(α) for all 1 ≤ i ≤ 2k and for all α ∈ 〈σ, τ〉.

Similar to the proof of Proposition 5.2, the map id : (E, q) → (E, q) lifts to a map

ι : (E, p1) → (E, pk+1) different from the identity in AutC(E) such that f2◦ι = id◦f2

and again ι([−γ(t), γ(t)]) = [−γ(t), γ(t)]. This together with the property that

ι 6= id implies that ι(z) = −z and therefore f2(z) = f2(−z) as desired.

Case n = 2k + 1.

The preimage of (−γ(nt), γ(nt)) is a disjoint union of n = 2k + 1 open intervals of

the form (ai, bi) or (bj , aj+1) for i = 1, · · · , k + 1 or j = 1, · · · , k with f(ai) = γ(nt),

f(bi) = −γ(nt) and Df =
∑k+1

i=2 (ai) +
∑k

i=1(bi). Similar considerations to that as

above proceed up to there exists ι in AutC(E) such that f1 = f2 ◦ ι and ι(±γ(t)) =
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±γ(t). The latter identity implies ι = id and therefore f1 = f2 as desired.

If n ≥ 3 and if fn, a, b is the Chebyshev-Blaschke product constructed in Lemma

5.1 then there exist uniquely an element ε in AutC(E) and a positive real number t

such that ε(a) = −r(nt) and ε(b) = r(nt) and now ε◦fn, a, b has the same monodromy

as the function fn, t constructed in Proposition 5.3. Therefore there exists ε ∈
AutC(E) such that ε ◦ fn, a, b ◦ ε = fn, t. The maps fn, t obtained in this way is called

normalized Chebyshev-Blaschke products. We sum up with the following corollary

Corollary 5.4. If f is a finite map from E to E with degree at least three and if its

monodromy representation is Chebyshev representation then there exist a positive

number t and ε, ε in AutC(E) such that

fn, a, b = ε ◦ fn, t ◦ ε

and this factorization is unique.

Chebyshev Blaschke products have the following special nesting property.

Theorem 5.5. For all positive real number t and positive integers m and n we have

fmn, t = fm, nt ◦ fn, t.

Proof. Direct calculation leads to

(fm, nt ◦ fn, t)−1 ( [−γ(mnt), γ(mnt)] ) = f−1
n, t ( f−1

m, nt( [−γ(mnt), γ(mnt)] ) )

= f−1
n, t ( [−γ(nt), γ(nt)] )

= [−γ(t), γ(t)]

and from Proposition 5.3 we deduce that fmn, t = fm, nt ◦ fn, t .

Figure 2: The topology of f6,t.

The topological nature of fn, t may be illustrated by Riemann’s ‘Schere und

Kleister’ surgery applied to copies of the unit disk. If we take f6, t as an example

then we shall obtain Figure 2.
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Figure 3 illustrates the factorization f6, t = f3, 2t ◦ f2, t and Figure 4 illustrates

the factorization f6, t = f2, 3t ◦ f3, t.

f2,t : 7 → 6, 8 → 5, 9 → 4, 10 → 3, 11 → 2, 12 → 1.

Figure 3: The first factorization of f6,t.

f3,t : 5 → 4, 6 → 3, 7 → 2, 8 → 1, 9 → 1, 10 → 2, 11 → 3, 12 → 4

Figure 4: The second factorization of f6,t.

6 Jacobian elliptic functions

The reader who is only interested in Ritt’s theory on the unit disk may read Sec-

tion 8 first and return to this section and Section 7 later if he wants to know more

about Chebyshev-Blaschke products, especially their relationship with elliptic ratio-

nal functions in filter design theory.

We give in this section a brief account of the theory of Jacobian elliptic functions.

For more details we refer to [9]. For all τ ∈ H we write q = eπiτ with the branch

of q1/4 chosen such that q1/4 = e−π/4 at τ = i and recall, following the notation of

19



Tannery-Molk, the four theta functions

ϑ1(v, τ) =
∑∞

n=−∞ i2n−1q(n+ 1
2
)2e(2n+1)vi, ϑ2(v, τ) =

∑∞
n=−∞q(n+ 1

2
)2e(2n+1)vi,

ϑ3(v, τ) =
∑∞

n=−∞ qn2
e2nvi, ϑ0(v, τ) =

∑∞
n=−∞(−1)nqn2

e2nvi

as well as the following special functions

ω1 = ω1(τ) = π ϑ2
3(0, τ) = π(1 + 2q + 2q4 + · · · )2,

ω2 = ω2(τ) = ω1(τ) · τ,
k = k(τ) = ϑ2

2(0, τ)/ϑ2
3(0, τ),

√
k =

√
k(τ) = ϑ2(0, τ)/ϑ3(0, τ),

k′ = k′(τ) = ϑ2
0(0, τ)/ϑ2

3(0, τ),
√

k′ =
√

k′(τ) = ϑ0(0, τ)/ϑ3(0, τ),

λ = λ(τ) = k2(τ) = ϑ4
2(0, τ)/ϑ4

3(0, τ).

If τ ∈ H is purely imaginary then
√

k and ω1 are both positive real numbers. We

shall write simply ϑ1(v) instead of ϑ1(v, τ) when no ambiguity arises and similar

remark applies to many other functions. Following Jacobi [21, p.512] his elliptic

functions can be defined by

snu =
1√
k
· ϑ1(u/ω1)
ϑ0(u/ω1)

, cn u =

√
k′√
k
· ϑ2(u/ω1)
ϑ0(u/ω1)

, dnu =
√

k′ · ϑ3(u/ω1)
ϑ0(u/ω1)

.

The elliptic function sn takes 2ω1 and ω2 as a pair of primitive periods and satisfies

sn (±ω1/2) = ±1 (10)

as well as

sn(ω1 − u) = snu. (11)

Moreover the critical points Dsn =
{

ω1
2 , 3ω1

2 , ω1+ω2
2 , 3ω1+ω2

2

}
+Λ2ω1, ω2 . In [21, p.145]

Jacobi expressed his functions as infinite products

ϑ0(v) = c
∏∞

n=1(1− q2n−1e2πiv)(1− q2n−1e−2πiv), (12)

ϑ1(v) = c q1/4 2 sin πv
∏∞

n=1(1− q2ne2πiv)(1− q2ne−2πiv), (13)

sn(u) =
1√
k

q1/4 2 sin πu
ω1

∏∞
n=1(1− q2ne

2πi u
ω1 )(1− q2ne

−2πi u
ω1 )

∏∞
n=1(1− q2n−1e

2πi u
ω1 )(1− q2n−1e

−2πi u
ω1 )

(14)

where c =
∏∞

n=1(1 − q2n). Glaisher introduced nine other elliptic functions in [19,

p.86] among which cdu := cnu/dnu is of particular importance in the sequel. By

the addition formula of sn we have

cd u = sn(u + ω1/2). (15)
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Since both cn and dn are even we have

cdu = cd(−u). (16)

The elliptic function cd also takes 2ω1 and ω2 as a pair of primitive periods. It

follows immediately from (16) that for τ ∈ H the function cd is a special analytic

representation of the Kummer map, namely cd : E2ω1, ω2 → E2ω1, ω2/ 〈−1〉 ∼→ P1.

Later we shall make use of the nice relation

γ(t) =

√
k

(
4ti

π

)
(17)

between γ introduced in Section 5 and the elliptic modulus k.

7 Elliptic rational functions

The concept of elliptic rational function is rarely found in the mathematical litera-

ture, but it is of central importance for advanced filter design. A nice treatment of

elliptic rational functions in engineering can be found in [25, Chapter 12]. Here we

shall consider more generally elliptic rational functions in a universal family Tn, τ

parameterized by τ ∈ H to be constructed below. This will be more satisfactory in

mathematics. In this section we shall work out that normalized Chebyshev-Blaschke

products fn, t agree with the set {Tn, τ : τ ∈ R+i}.
For τ ∈ H and n ∈ N there is a natural isogeny

[n] : E2ω1(τ), ω2(τ) → E2ω1(nτ), ω2(nτ) given by [n](z) = nzω1(nτ)/ω1(τ)

which descends through the Kummer map to a rational function Tn, τ and one obtains

the commutative diagram.

E2ω1(τ), ω2(τ)
[n]→ E2ω1(nτ), ω2(nτ)

↓cd ↓cd

P1 Tn, τ→ P1

The map given by the function cd is an analytic representation of the Kummer map.

Obviously z1 ≡ ±z2 mod Λ2ω1(τ), ω2(τ) implies that nz1 ≡ ±nz2 mod Λ2ω1(nτ), ω2(nτ)

and this shows that the map [n] is invariant under the action given by the involution.

By the theory of descent it induces therefore a rational map Tn, τ as stated.

We call a rational function f ∈ C(z) elliptic if there exist a positive integer n, τ

in H and ε, ε in AutC(P1) such that ε ◦ f ◦ ε = Tn, τ . The nesting property

Tm, nτ ◦ Tn, τ = Tn, mτ ◦ Tm, τ
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easily follows from the construction and is very important for elliptic filter theory.

If f is a finite Blaschke product then |f(z)| = 1 for all z ∈ T1 and this follows

from |z − a| = |1 − az| for all z ∈ T1. By similar but more involved arguments we

use Jacobi products and prove

Proposition 7.1. If τ is a purely imaginary point of the upper half plane H and if

there exists m ∈ Z such that i=v
τ = 2m+1

4 then

|ϑ0(v)| = |ϑ1(v)|.

Proof. The elliptic function ϑ1(v)
ϑ0(v) has primitive periods 2 and τ and therefore it

suffices to prove the claim under the assumption i=v
τ = 1

4 or i=v
τ = 3

4 . We shall only

verify this in the case i=v
τ = 1

4 since similar arguments apply in the remaining case.

By the product formulae (12) and (13) and by the trivial fact that v = <v + τ/4 we

have

ϑ0(v) = c
∏∞

n=1(1− e(2n− 1
2
)πiτ e2πi<v) (1− e(2n− 3

2
)πiτ e−2πi<v),

ϑ1(v) = c e
πiτ
4 2 sin (πv)

∏∞
n=1(1− e(2n+ 1

2
)πiτ e2πi<v) (1− e(2n− 1

2
)πiτ e−2πi<v)

and we have to show that both terms have the same absolute value. Our assumption

−iτ > 0 gives e(2n± 1
2
)πiτ ∈ R and leads to

1− e(2n− 1
2
)πiτ e2πi<v = 1− e(2n− 1

2
)πiτ e−2πi<v,

1− e(2n+ 1
2
)πiτ e2πi<v = 1− e(2n+ 1

2
)πiτ e−2πi<v.

We use these two identities to compare the infinite products above and see that for

the proof of the proposition it will be sufficient to verify that

|1− e
πiτ
2 e−2πi<v| = |2e

πiτ
4 sin (πv)|.

This follows from

|1− e
πiτ
2 e−2πi<v| = |1− e

πiτ
2 e2πi<v|

= |1− e2πiv|
= |1− cos(2πv)− sin(2πv)i|
= |2 sin2(πv)− 2 sin(πv) cos(πv)i|
= |2 sin(πv)e(πv−π

2
)i|

= |2 sin(πv)e−π=v|
= |2e

πiτ
4 sin (πv)|

and completes the proof.
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Corollary 7.2. Let τ be a purely imaginary point of the upper half plane H and m

a rational integer. If 4m+1
4 < i=v

τ < 4m+3
4 then

|ϑ0(v)| < |ϑ1(v)|

and if 4m−1
4 < i=v

τ < 4m+1
4 then

|ϑ0(v)| > |ϑ1(v)|.

Proof. The elliptic function ϕ(v) = ϑ1(v)
ϑ0(v) is of order 2 and takes 2, τ as a pair of prim-

itive periods. We take the parallelogram with vertex 0, 2, 2 + τ, τ as a fundamental

domain. By Proposition 7.1 each of the images of
{
z : i=z

τ = 4m+1
4 ,m ∈ Z}

and of
{
z : i=z

τ = 4m+3
4 ,m ∈ Z}

under ϕ covers T. Together with the fact that deg ϕ = 2

this leads to ϕ−1(T) =
{
z : i=z

τ = 2m+1
4 ,m ∈ Z}

. If our second claim is not true

then there exists w such that −1
4 < i=w

τ < 1
4 and |ϑ0(w)| ≤ |ϑ1(w)|. Moreover by

ϕ(0) = 0 we have |ϑ0(0)| ≥ 0 = |ϑ1(0)| and by the continuity of |ϕ(v)| there exists

z such that −1
4 < i=z

τ < 1
4 and |ϕ(z)| = 1. This contradicts our previous conclusion

on ϕ−1(T) and proves our second claim. The first assertion is obtained in a similar

way.

Corollary 7.3. If τ is a purely imaginary point in the upper half plane H then

sn−1

{
z : |z| = 1√

k

}
=

{
w :

i=w

ω2
=

2m + 1
4

,m ∈ Z
}

,

sn−1

{
z : |z| < 1√

k

}
=

{
w :

4m− 1
4

<
i=w

ω2
<

4m + 1
4

,m ∈ Z
}

,

sn−1

{
z : |z| < 1√

k

}
=

{
w :

4m + 1
4

<
i=w

ω2
<

4m + 3
4

,m ∈ Z
}

and the same holds with sn replaced by cd.

Proposition 7.4. If τ is a purely imaginary point in the upper half plane H then

sn−1[−1, 1] = {w : i=w = mω2,m ∈ Z}

and the same holds with sn replaced by cd.

Proof. First of all we recall that as remarked in Section 6 the assumption −iτ > 0

implies that q,
√

k and ω1 are all positive real numbers. If w is a real number then

the quotient v = w/ω1 and

snw =
1√
k

2q1/4 sinπv − 2q9/4 sin 3πv + 2q25/4 sin 5πv − · · ·
1− 2q cos 2πv + 2q4 cos 4πv − 2q9 cos 6πv + · · ·

are also real. The elliptic function sn takes 2ω1, ω2 as a pair of primitive periods

and the vertices 0, 2ω1, 2ω1 + ω2, ω2 define a fundamental domain. Furthermore we

23



have seen in Section 6 that snω1
2 = 1 and sn3ω1

2 = −1 and that the critical points

of sn within the fundamental domain are given by
{

ω1
2 , 3ω1

2 , ω1+ω2
2 , 3ω1+ω2

2

}
. These

facts imply that the image of [0, 2ω1] under sn covers [−1, 1] twice and we conclude

that the preimage of [−1, 1] in the fundamental domain by the twofold covering sn

is [0, 2ω1] which leads to the desired statement.

Corollary 7.3 and 7.4 applied to the function f(z) =
√

k(nτ)Tn, τ (z/
√

k(τ))

gives

Proposition 7.5. If τ ∈ H is purely imaginary then f is a finite Blaschke product

with f(
√

k(τ)) =
√

k(nτ) and f([−
√

k(nτ),
√

k(nτ)]) = [−
√

k(τ),
√

k(τ)].

This together with Proposition 5.3 and (17) leads to

Corollary 7.6. The Blaschke products fn, t(z) are elliptic with respect to τ = 4ti/π;

in other words we have

fn, t(z) =
√

k(4nti/π)Tn, 4ti/π(z/
√

k(4ti/π)).

8 Factorizations of finite Blaschke products

In this section we give a detailed study of the factorization properties of finite

endomorphisms of the unit disk. If f 6∈ AutC(E) is a finite endomorphism of the

unit disk then the following two Propositions follow directly from Theorem 1.1 and

Theorem 1.2.

Proposition 8.1. The finite map f is composite if and only if its monodromy group

is imprimitive.

In the introduction we introduced the length of f with respect to a prime fac-

torization as the number of its factors. As a corollary of Theorem 1.2 we have

Proposition 8.2. The length of f is independent of prime factorizations.

Proof. We choose a path α sufficiently close to T and apply Theorem 1.2 to get the

assertion.

Lemma 8.3. If f and g are finite Blaschke products and if zn ◦ g = f ◦ zn then f

takes the form f(z) = zmh(z)n where m = ord0f and h is a finite Blaschke product.

Proof. It suffices to prove that for any nonzero p in E we have ordpf ≡ 0 mod n.

We denote by p1/n any nth root of p and using the functional equation we obtain

ordpf ≡ ordp1/n(f ◦ zn) ≡ ordp1/n(zn ◦ g) ≡ 0 mod n
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as desired.

Proof of Main Theorem 1.3. By Proposition 8.2 the length of f is independent of a

given prime factorization. Moreover if

E ϕ1→ T1
ϕ2→ T2→· · ·→Tr−1

ϕr→ E

is a decomposition of f into a product of finite maps then in particular for any

1 ≤ i ≤ r − 1 the map ϕi ◦ ϕi−1 ◦ · · · ◦ ϕ1 from E to Ti is finite. This together with

Lemma 2.3 implies that Ti is biholomorphically equivalent to the unit disk. After

taking finitely many operations of the first kind as described in the theorem our

problem amounts to describe how one passes from one prime factorization

E ϕ1→ E ϕ2→ E→· · ·→E ϕr→ E

to another decomposition

E ψ1→ E ψ2→ E→· · ·→E ψr→ E

with all Riemann surfaces being unit disks. Furthermore by Example 2.2 (Fatou)

all ϕi and all ψi are finite Blaschke products.

Let df ⊂ E be the set of critical values of f , n = deg f and L the lattice of

groups lying between π1(E \ df ) and π1(E \ f−1(df )). If we write Gi = π1(E \ (ϕr ◦
· · · ◦ ϕi)−1(df )) and Ki = π1(E \ (ψr ◦ · · · ◦ ψi)−1(df )) then we have G1 = K1 =

π1(E \ f−1(df )) as well as Gr+1 = Kr+1 = π1(E \ df ) and by Corollary 2.5 applied

to Σ = df , q /∈ Σ some point in E and p a point in E with f(p) = q we deduce that

our prime decompositions of f induce maximal chains

G1 ≤ G2 ≤ · · · ≤ Gr ≤ Gr+1

and

K1 ≤ K2 ≤ · · · ≤ Kr ≤ Kr+1

with Gi,Ki in L. We apply Theorem 1.2 to M = N = E and f and therefore we

know from the proof of Theorem 1.2 that L is a sublattice of Ln which is in particular

modular. By Proposition 3.2 we may pass inductively from the first chain to the

second with only one change at each step. This gives a topological description of

our algorithm using fundamental groups. Corollary 2.5 allows us to write down the

algorithm in terms of explicit analytic maps as listed in the theorem. As explained

at the end of Section 3 this boils down to solving the functional equation

α2 ◦ α1 = h = β2 ◦ β1 (18)
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with αi, βi prime Blaschke products, deg α1 = deg β2 = l, deg α2 = deg β1 =

k and gcd (k, l) = 1. Our strategy is to get first a polynomial solution to this

equation and then, using the monodromy representations given by such a solution,

to transform the polynomial solution into a solution expressed in terms of Blaschke

products.

Proposition 4.3 applied to (18) for some homeomorphism i0 = j0 : E→ C, which

induces other homeomorphisms i1, j1, i2 = j2 from E to C, leads to the following

easily verified identities,

(i2, i0)∗h = (i1, i0)∗α2 ◦ (i2, i1)∗α1 = (j1, i0)∗β2 ◦ (i2, j1)∗β1

and hence we have a solution to the two polynomial equation

α2 ◦ α1 = h = β2 ◦ β1

with αi, βi prime polynomials, deg α1 = deg β2 = l,deg α2 = deg β1 = k and

gcd (k, l) = 1. The polynomial solutions to this equation can be written out by

Ritt’s work [35]. Accordingly there exist linear polynomials ιi such that one of the

identities

1) ι1 ◦ (i2, i1)∗α1 ◦ ι2 = ι3 ◦ (j1, i0)∗β2 ◦ ι4 = zl ;

2) ι1 ◦ (i1, i0)∗α2 ◦ ι2 = ι3 ◦ (i2, j1)∗β1 ◦ ι4 = zk ;

3) ι1 ◦ (i2, i1)∗h ◦ ι2 = Tlk.

is satisfied. In case 1) of the list above α1 and β2 are totally ramified maps from E to

E. After finitely many operations of the first kind we may assume that α1 = β2 = zl.

Then the functional equation (18) reduces to α2 ◦ zl = zl ◦ β1 and Lemma 8.3 gives

the solution as desired. Similar considerations apply to case 2).

If we are in case 3) the monodromy of h is a Chebyshev representation and

therefore h is a Chebyshev-Blaschke product as explained in Lemma 5.1. After

another finitely many operations of the first kind we may assume that h, α1, α2, β1, β2

are all normalized Chebyshev-Blaschke products and we are done.

9 Polydisks

In this section we sketch how to extend our results to the case of polydisks. Firstly

we recall from Example 2.2 and Rischel’s version [34] of Remmert-Stein’s theorem

[33] the following famous classification result.
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Theorem 9.1 (Fatou-Remmert-Stein-Rischel). If f is an analytic map from Ed to

Ed then it is finite if and only if

f(z1, · · · , zd) = (f1(zσ(1)), · · · , fn(zσ(d)))

with σ ∈ Sd and fj finite Blaschke products.

This theorem together with the results proved in Section 8 shows that if f is a

nonlinear finite map from Ed to Ed then it is composite if and only if its monodromy

group is imprimitive. In addition the length of a nonlinear finite map f : Ed → Ed

is independent of prime factorizations and one sees that this leads without any

difficulty to a higher dimensional generalization of our main theorem

Theorem 9.2. Given two prime factorizations of a nonlinear finite map f : Ed →
Ed, one can pass from one to the other by repeatedly uses of explicit operations.
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