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Abstract

Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. The bipartite binding

number of G, denoted by B(G), is defined to be n if G = Kn,n and

min
i∈{1,2}

min
∅̸=S⊆Vi
|N(S)|<n

|N(S)|/|S|

otherwise. We call G bipancyclic if it contains a cycle of every even length m for 4 ≤ m ≤ 2n.

The purpose of this paper is to show that if B(G) > 3/2 and n ≥ 139, then G is bipancyclic;

the bound 3/2 is best possible in the sense that there exist infinitely many balanced bipartite

graphs G that have B(G) = 3/2 but are not Hamiltonian.
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1 Introduction

Let G = (V,E) be a graph. The binding number of G, denoted by b(G), is defined to be

min
∅̸=S⊆V

|N(S)|<|V |

|N(S)|/|S|,

where N(S) = {v ∈ V : uv ∈ E for some u ∈ S}. This parameter was introduced by Woodall

[8] to measure how well the vertices of G are bound together; in particular, if b(G) is large, then

G has lots of edges fairly well distributed. The binding number resembles some other graph

invariants, such as the minimum degree, connectivity, and toughness, in certain ways, while

provides more global structural information. In the literature there are a number of results

showing that various properties of G are consequences of assumptions on the value of b(G),

including the following theorem on Hamiltonian cycles.

Theorem 1.1 (Woodall [8]) Every graph G with b(G) ≥ 3/2 is Hamiltonian.

Call G pancyclic if it contains a cycle of every length m for 3 ≤ m ≤ |V |. As conjectured by

Woodall [8] and proved by Shi [6, 7], this assertion can be strengthened as follows.

Theorem 1.2 (Shi [6, 7]) Every graph G with b(G) ≥ 3/2 is pancyclic.

Observe that for bipartite graphs, the binding number does not give much information about

their structures (or well-boundness) when compared to nonbipartite graphs. For instance, both

Kn,n (a complete bipartite graph) and nK2 (union of n disjoint edges) have binding number 1

for n ≥ 1; their structures, however, are dramatically different. Furthermore, for any bipartite

graph G = (V1, V2, E), we have b(G) ≤ min {|V2|/|V1|, |V1|/|V2|} ≤ 1. Hence neither Theorem

1.1 nor Theorem 1.2 applies to G. In graph theory it is common for results to have a “bipartite”

version; such a typical example is Jackson’s theorem [3], which asserts that every 2-connected

k-regular graph with at most 3k vertices is Hamiltonian. Häggkvist [2] conjectured that every

2-connected k-regular bipartite graph G with at most 6k − 6 vertices is Hamiltonian, which was

confirmed by Jackson and Li [4] when G contains at most 6k−38 vertices. So a natural question

to ask is: What are the counterparts of the above binding number theorems on bipartite graphs?

To find the answer, clearly we need a new concept of binding number in order to better reflect

the bipartiteness.

Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. The bipartite binding

number of G, denoted by B(G), is defined to be n if G = Kn,n and

min
i∈{1,2}

min
∅̸=S⊆Vi
|N(S)|<n

|N(S)|/|S|

otherwise. We callG bipancyclic if it contains a cycle of every even lengthm for 4 ≤ m ≤ 2n. The

purpose of this paper is to establish the following bipartite version of the above two theorems.
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Theorem 1.3 Let G be a balanced bipartite graph with 2n vertices. If B(G) > 3/2 and n ≥ 139,

then G is bipancyclic.

We shall exhibit infinitely many balanced bipartite graphs G that have B(G) = 3/2 but are

not Hamiltonian in Section 2 (see Proposition 2.5). So the bound 3/2 in our theorem is best

possible. Moreover, the proof techniques of our theorem are substantially different from those

of Theorems 1.1 and 1.2.

Let us introduce some notations before proceeding. Given a graph G, we use V (G) and

E(G) to denote its vertex set and edge set, respectively. For each v ∈ V (G), we use d(v) and

N(v) to denote its degree and neighborhood, respectively. For each S ⊆ V (G), it is clear that

N(S) = ∪v∈S N(v). For each subgraph H of G, let G−H denote the subgraph of G induced by

V (G)− V (H), and set NH(S) := N(S) ∩ V (H). When G is a bipartite graph with bipartition

(V1, V2), we set Vi(H) := Vi ∩ V (H) for i = 1, 2.

Throughout this paper, we use Cn to denote a cycle of length n, and assume that each

cycle C has an implicit clockwise orientation. With this assumption, v+C and v−C will stand for

the successor and predecessor of a vertex v on C under this orientation, respectively; we shall

drop the subscript C if there is no danger of confusion. We define v+i recursively by v+0 = v

and v+(i+1) = (v+i)+ for i ≥ 0, and define v−i analogously. For any two vertices u and v on

C, let u
−→
Cv denote the path from u to v on C in the clockwise direction, and let u

←−
Cv denote

the path from u to v on C in the counterclockwise direction. Set C[u, v] := V (u
←−
Cv), and

C(u, v] := C[u, v]− {u}, etc. For each X ⊆ V (C) and i ≥ 1, define X+i := {x+i : x ∈ X} and
X−i := {x−i : x ∈ X}. If X = NC(v) for some vertex v, then we shall simply write N+i

C (v)

and N−i
C (v) as opposed to the more cumbersome (NC(v))

+i and (NC(v))
−i. We also define

X+0 := X =: X−0 for convenience.

The remainder of this paper is organized as follows. In Section 2, we derive some basic

properties satisfied by bipartite binding numbers. In Section 3, we show the existence of certain

nested cycle structures in G under some assumptions. In Section 4, we first establish a bipartite

version of the hopping lemma originally developed by Woodall [8], and then employ it to further

grow the nested cycle structures obtained in Section 3 under some other assumptions. In Section

5, we prove that G contains a cycle of every even length based on the aforementioned nested

cycle structures.

2 Preliminaries

Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices such that G ̸= Kn,n. Recall

the definition of the bipartite binding number B(G); a subset S of Vi, for i = 1 or 2, is called a

binding set of G if |N(S)| < n and B(G) = |N(S)|/|S|.
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The following proposition asserts that the value of B(G) is uniquely determined by G rather

than its balanced bipartition, so the bipartite binding number is well defined.

Proposition 2.1 Let G be a balanced bipartite graph. Then the value of B(G) is independent

of the choice of balanced bipartition.

Proof. IfG is connected, then the choice of balanced bipartition is unique (up to permutation

of V1 and V2), so the statement holds trivially. It remains to consider the case when G is

disconnected.

Let (V1, V2) be a balanced bipartition of G such that the value of B(G) is minimized (let

c denote this minimum value) and, subject to this, a corresponding binding set S has smallest

possible size. We claim that S is entirely contained in one component of G, for otherwise, let

G1, G2, . . . , Gk be all components of G that intersect S, where k ≥ 2, and set Si := S∩V (Gi) for

1 ≤ i ≤ k. From the minimality assumption on |S|, we deduce that |N(Si)| > c|Si| for all i and
hence c|S| =

Pk
i=1 c|Si| <

Pk
i=1 |N(Si)| = |N(S)| = c|S|, this contradiction justifies the claim.

It follows that for any balanced bipartition (U1, U2) of G, either S ⊆ U1 or S ⊆ U2. Therefore,

S is also a binding set of G with respect to bipartition (U1, U2).

Proposition 2.2 Every balanced bipartite graph G with B(G) > 1 is connected.

Let us now illustrate bipartite binding numbers using two special classes of graphs.

Proposition 2.3 B(C2n) =
n− 1

n− 2
for n ≥ 3.

Proof. Let (V1, V2) be the bipartition of C2n, and let S be a nonempty subset of Vi, i = 1

or 2, with |N(S)| < n. From the structure of C2n, we see that |S| ≤ n − 2 and |S| < |N(S)|.
Hence

|N(S)|
|S|

≥ |S|+ 1

|S|
= 1 +

1

|S|
≥ 1 +

1

n− 2
=

n− 1

n− 2
,

with equality when S = Vi − {u, v}, where u and v are two vertices in Vi of distance 2 on C2n.

So the statement is established.

Let s and t be two positive integers, and let sK2⊕ tK2 be the bipartite graph obtained from

the union of s disjoint edges aibi for 1 ≤ i ≤ s by adding 2t vertices c1, c2, . . . , ct, d1, d2, . . . , dt

and adding edges aidj and bicj for all 1 ≤ i ≤ s and 1 ≤ j ≤ t (see Figure 1). For convenience,

set A := {a1, a2, . . . , as}, B := {b1, b2, . . . , bs}, C := {c1, c2, . . . , ct}, and D := {d1, d2, . . . , dt}.
Clearly, sK2 ⊕ tK2 has a unique bipartition (V1, V2), where V1 = A ∪ C and V2 = B ∪D.

Proposition 2.4 Let s and t be two positive integers. Then

B(sK2 ⊕ tK2) =

8><
>:

1

t
if s = 1,

min
§
s

t
,
s− 1 + t

s− 1

ª
if s > 1.
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Figure 1: sK2 ⊕ tK2

Proof. Let G = sK2 ⊕ tK2 and let S be a binding set of G. Symmetry allows us to assume

that S ⊆ V1. Thus |N(S)| < |V2| by definition.

If s = 1, then a1 /∈ S. So S ⊆ C and N(S) = {b1}. As S is a binding set of G, we must have

S = C. Therefore, B(G) = |N(S)|/|S| = 1/t.

If s > 1, then A − S ̸= ∅. Furthermore, S ∩ A = ∅ provided S ∩ C ̸= ∅, for otherwise

we would have N(S) = V2, a contradiction. It follows that S is either a proper subset of A

or a subset of C. Thus |N(S)| equals |S| + t in the former case and s in the latter case. As

S is a binding set of G, either S = A − {ai} for some 1 ≤ i ≤ s or S = C. From the defi-

nition we further deduce that B(G) = |N(S)|/|S| = min
§
s

t
,
s− 1 + t

s− 1

ª
, completing the proof.

The following proposition asserts that the bound 3/2 in Theorem 1.3 is indeed the threshold

for a balanced bipartite graph to be Hamiltonian or bipancyclic.

Proposition 2.5 Let G = sK2⊕tK2. Then B(G) = 3/2 if s = 2t+1, and G is not Hamiltonian

if s ≥ 2t+ 1.

Proof. The first statement follows instantly from Proposition 2.4. If s ≥ 2t + 1, then

G − (C ∪D) contains precisely s components (see Figure 1), with s > |C ∪D|. It follows that

G contains no Hamiltonian cycle.

The following lemma gives an alternative definition of the bipartite binding number.
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Lemma 2.6 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If G ̸= Kn,n,

then B(G) is the largest nonnegative number c such that

c|N(S)| ≥ (c− 1)n+ |S|

for every nonempty subset S of Vi (i = 1, 2).

Proof. By definition, it suffices to show that for any given constant c ≥ 0, the following two

statements are equivalent:

(a) c|N(S)| ≥ (c− 1)n+ |S| for every nonempty S ⊆ Vi and i = 1, 2;

(b) |N(S)| ≥ min{c|S|, n} for every nonempty S ⊆ Vi and i = 1, 2.

To this end, let S be a nonempty subset of Vi for i = 1 or 2, and let T := V3−i−N(S). Then

N(T ) and S are disjoint subsets of Vi, so |N(T )|+ |S| ≤ n and hence

(c) |N(T )| ≤ n− |S| ≤ n− 1.

If (a) holds, then (with T in place of S) either c|N(T )| ≥ (c − 1)n + |T | = cn − |N(S)| or
T = ∅. In the former case, |N(S)| ≥ min{c(n− |N(T )|), n} ≥ min{c|S|, n} by (c). In the latter

case, V3−i − N(S) = ∅. So |N(S)| = n ≥ min{c|S|, n}. Combining these two cases, we obtain

(b).

Conversely, if (b) holds, then (with T in place of S) either |N(T )| ≥ min{c|T |, n} =

min{cn− c|N(S)|, n} or T = ∅. In the former case, c|N(S)| ≥ cn− |N(T )| ≥ (c− 1)n+ |S| by
(c). In the latter case, V3−i−N(S) = ∅. So |N(S)| = n and hence c|N(S)| = cn ≥ (c−1)n+ |S|.
Combining these two cases, we establish (a).

As usual, we use δ(G) to denote the minimum degree of a graph G. The above lemma yields

a lower bound on δ(G) when restricted to |S| = 1.

Corollary 2.7 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If B(G) ≥
c > 0, then

δ(G) ≥ (c− 1)n+ 1

c
.

Lemma 2.8 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2,

then

|N(S)| ≥ ⌈(n+ 2|S|+ 1)/3⌉

for every nonempty proper subset S of Vi (i = 1, 2).

Proof. As the statement holds trivially if G = Kn,n, we assume hereafter that G ̸= Kn,n.

Let B(G) = c and let S be a nonempty proper subset of Vi for i = 1, 2. By Lemma 2.6, we have

|N(S)| ≥ (c− 1)n+ |S|
c

= n− n− |S|
c

.
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This together with n− |S| > 0 and c > 3/2 implies

|N(S)| > n− 2(n− |S|)
3

,

and hence the desired statement holds.

The following lemma will play an important role in the subsequent proofs.

Lemma 2.9 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices and with B(G) >

3/2. Let X ⊆ Vi and Y ⊆ V3−i, with i = 1 or 2, be nonempty sets such that |X|, |Y |, |N(X)|,
and |N(Y )| are all less than n. If |Y | ≥ |N(X)| − t for some nonnegative integer t, then

|N(Y )| ≥ |X|+ (2n+ 4)/5− t.

Proof. Symmetry allows us to assume that i = 1. For S = X,Y , by Lemma 2.8 and the

definition of B(G), we have

|N(S)| ≥ max

�
n+ 2|S|+ 1

3
,
3|S|+ 1

2

�
. (2.1)

It follows that

|Y | ≥ |N(X)| − t ≥ max

�
n+ 2|X|+ 1

3
− t,

3|X|+ 1

2
− t

�
.

Plugging this inequality into (2.1) (with S = Y ), we obtain

|N(Y )| ≥ max

8<
:
n+ 2

�
3|X|+1

2 − t
�
+ 1

3
,
3
�
n+2|X|+1

3 − t
�
+ 1

2

9=
; .

Consequently,

|N(Y )| ≥ |X|+max {f(t), g(t)} − t,

where f(x) := (n + x + 2)/3 and g(x) := (n − x + 2)/2. Observe that f(x) is an increasing

function of x, while g(x) is a decreasing function of x, and that f(x0) = g(x0) = (2n+4)/5, with

x0 = (n+2)/5. Hence max {f(x), g(x)} ≥ f(x0) for all x. Therefore |N(Y )| ≥ |X|+f(x0)− t =

|X|+ (2n+ 4)/5− t, as desired.

3 Nested Cycle Structures

Let k and m be two positive integers with k ≥ m+2, let C = a1a2 . . . a2ka1 be a cycle of length

k, where ai+1 = a+i for each i (with a2k+1 = a1), and let D be obtained from C by adding m

chords aia2m+3−i for 1 ≤ i ≤ m. We write D as a1a2 . . . a2m+2a2m+3 . . . a2ka1, and denote any

graph isomorphic to D by Cm
2k (see Figure 2 for C2

16). Observe that Cm
2k contains m+ 1 nested
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Figure 2: C2
16

cycles C2k, C2k−2, . . . , C2k−2m simultaneously. Intuitively, Cm
2k can be viewed as a ladder with m

rungs; our proof will rely heavily on such ladders. For any vertex v on D, define v+ := v+C and

v− := v−C . For any two vertices u and v on D, define u
−→
Dv := u

−→
Cv and D[u, v] := C[u, v], etc.

To establish the main result, we first show the existence of C4, C
1
6 , and one of C2

8 , C
2
10, and

C2
12. The following statement and its proof are inspired by its counterparts on general graphs

due to Reiman [5].

Lemma 3.1 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If |E| >
n

2

�
1 +
√
4n− 3

�
, then G contains a C4.

Proof. Suppose G contains no C4. Consider triples of the form (x, {y, z}) such that x ∈ V1,

y, z ∈ V2 with y ̸= z, and that x is adjacent to both y and z. Since G contains no C4, each pair

{y, z} gives rise to at most one such triple. Hence the number of such triples is at most
�
n
2

�
.

On the other hand, since each x ∈ V1 gives rise to exactly
�
d(x)
2

�
such triples, the number of

triples of the above form is equal to
P

x∈V1

�
d(x)
2

�
. Let σ =

P
x∈V1

d(x)/n. Then σ = |E|/n. As

the extended binomial coefficient
�
t
2

�
is a convex function, by definition

�
σ
2

�
≤ 1

n

P
x∈V1

�
d(x)
2

�
. So�

σ
2

�
≤ 1

n

�
n
2

�
and hence σ2−σ− (n− 1) ≤ 0. Solving this inequality yields σ ≤ 1

2

�
1 +
√
4n− 3

�
.

Therefore |E| ≤ n

2

�
1 +
√
4n− 3

�
, a contradiction.

Lemma 3.2 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2

and n > 3, then G contains a C4.

Proof. By Lemma 2.8, we have δ(G) ≥ ⌈(n+ 3)/3⌉. This together with n > 3 implies

|E| ≥ nδ ≥ n⌈(n+ 3)/3⌉ > n

2
(1 +

√
4n− 3).

Thus the statement follows instantly from Lemma 3.1.

By Propositions 2.3 and 2.4, C6 and 3K2 ⊕K2 have bipartite binding numbers 2 and 3/2,

respectively, yet neither of them contains a C4. So the figures in the above lemma are both

sharp.
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Lemma 3.3 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2

and n ≥ 10, then G contains a C1
6 .

Proof. By Lemma 3.2, G contains a cycle x1y1x2y2x1 of length 4, with X = {x1, x2} ⊆ V1

and Y = {y1, y2} ⊆ V2. For i = 1, 2, define Xi = N(yi)−X and Yi = N(xi)− Y .

Assume on the contrary that G contains no C1
6 . Then there is no edge between X1 ∪ X2

and Y1 ∪ Y2. Furthermore, x1 /∈ N(Y2) or y1 /∈ N(X2). Symmetry allows us to assume that

x1 /∈ N(Y2). Thus Y1 ∩ Y2 = ∅. By Lemma 2.8, we obtain |X1| ≥ ⌈(n+3)/3⌉ − 2 = ⌈(n− 3)/3⌉,
and the same is true for |Y1| and |Y2|. Hence |Y1 ∪ Y2| ≥ 2⌈(n− 3)/3⌉.

As X1 is nonempty and X1 ∩N(Y1 ∪ Y2) = ∅, we have

n ≥ |X1|+ |N(Y1 ∪ Y2)|
> ⌈(n− 3)/3⌉+ 3

2
· 2⌈(n− 3)/3⌉,

so n ≥ 4⌈(n− 3)/3⌉+ 1 and hence n ≥ 4(n− 3)/3 + 1, which implies n ≤ 9, a contradiction.

Lemma 3.4 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2

and n ≥ 14, then G contains at least one of C2
8 , C

2
10, and C2

12.

Proof. Let D = x1y1x2y2x3y3x1 be a C1
6 in G; the existence of D is guaranteed by Lemma

3.3. Recall the definition, x1y2 is an edge in D. Set X := {x1, x2, x3} and Y := {y1, y2, y3}.
Symmetry allows us to assume that X ⊆ V1 and Y ⊆ V2. Define N1(x3) = N(x3) − Y ,

N2(x3) = N(N1(x3)) − X, and N3(x3) = N(N2(x3)) − Y . Define Ni(y3) symmetrically for

1 ≤ i ≤ 3.

Assume on the contrary that G contains none of C2
8 , C

2
10, and C2

12. We propose to show that

N(Ni(x3)) ∩Nj(y3) = ∅ for all 1 ≤ i, j ≤ 3. (3.1)

Otherwise, let (i, j) be a pair such that N(Ni(x3)) ∩ Nj(y3) ̸= ∅ and, subject to this, i + j

is minimum. Then i ≡ j (mod 2) and G[{x3, y3} ∪ (∪is=1Ns(x3)) ∪ (∪jt=1Nt(y3))] contains an

(x3, y3)-path π of length i + j + 1. It follows that y3x1y1x2y2x3πy3 is a C2
6+i+j in G, this

contradiction establishes (3.1).

By taking i = j = 1 in (3.1), we see that N2(x3)∩N1(y3) = ∅, so y3 /∈ N(N2(x3)). Repeated

application of Lemma 2.8 yields

|N1(x3)| ≥ ⌈(n+ 3)/3⌉ − |Y | ≥ (n− 6)/3,

|N2(x3)| ≥ ⌈(n+ 2|N1(x3)|+ 1)/3⌉ − |X| ≥ (5n− 36)/9,

|N3(x3)| ≥ ⌈(n+ 2|N2(x3)|+ 1)/3⌉ − |Y − {y3}| ≥ (19n− 117)/27, and

|N(N3(x3))| ≥ ⌈(n+ 2|N3(x3)|+ 1)/3⌉ ≥ (65n− 207)/81.
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Similarly, |N3(y3)| ≥ (19n−117)/27. In view of (3.1), N(N3(x3)) and N3(y3) are disjoint subsets

of V1, so |N(N3(x3))|+ |N3(y3)| ≤ n, which implies 41n ≤ 558 and hence n < 14, contradicting

the hypothesis.

Let us digress briefly to introduce a term and make some simple observations, which will be

used to show the existence of the aforementioned ladders.

LetD = a1a2 . . . a6a7 . . . a2ka1 be a C
2
2k, where k ≥ 4 and a1 ∈ V1(D). A family (A0, A1, . . . , At),

with 2 ≤ t ≤ 4, of subsets of V (D) is called good if the following two conditions are satisfied:

• A0 ∪A+
1 ∪ · · · ∪A+t

t ⊆ V2(D), and

• A+i
i ∩A+j

j ⊆ {v ∈ V2(D) : {v−i, v−j} ∩D[a2, a5] ̸= ∅} for all 0 ≤ i < j ≤ t.

Lemma 3.5 Suppose (A0, A1, . . . , At) is good. Then the following statements hold:

(i) If t = 4 and a6 /∈ A+2
2 ∩A+3

3 , then |A0|+
P4

s=2 |As| ≤ k + 7;

(ii) If t ∈ {2, 3}, then
Pt

s=0 |As| ≤ k + ⌈5t/2⌉.

Proof. Since (A0, A1, . . . , At) is a good family of subsets of V (D), it is a routine matter to

check using definition that (where A+i
i exists only when t ≥ i for each i)

(1) A0 ∩A+
1 and A0 ∩A+2

2 are both subsets of {a2, a4, a6};
(2) A0 ∩A+3

3 and A0 ∩A+4
4 are both subsets of {a2, a4, a6, a8};

(3) A+
1 ∩A+2

2 is a subset of {a4, a6};
(4) A+

1 ∩A+3
3 , A+2

2 ∩A+3
3 , A+

1 ∩A+4
4 , and A+2

2 ∩A+4
4 are all subsets of {a4, a6, a8}; and

(5) A+3
3 ∩A+4

4 is a subset of {a6, a8}.
In the remainder of our proof, we use f(v) to denote the number of sets in {A0, A

+2
2 , A+3

3 , A+4
4 }

if t = 4 and in {A0, A
+
1 , . . . , A

+t
t } if t ∈ {2, 3} that contain a vertex v.

(i) By (4) and (5), a2 is contained in at most one set in {A+2
2 , A+3

3 , A+4
4 }, so f(a2) ≤ 2. By

(5), we have f(a4) ≤ 3. By hypothesis, a6 /∈ A+2
2 ∩ A+3

3 . So f(a6) ≤ 3. From (1) we deduce

that f(a8) ≤ 3. For all vertices v ∈ V2(D) − {a2, a4, a6, a8}, from (1), (2), (4), (5) we see that

f(v) ≤ 1. Combining the above observations, we obtain

|A0|+ |A+2
2 |+ |A

+3
3 |+ |A

+4
4 | =

X
v∈V2(D)

f(v) ≤ |V2(D)|+ 7 = k + 7.

Thus (i) is established.

(ii) Let us consider the case when t = 2. By (3), we have a2 /∈ A+
1 ∩ A+2

2 . So f(a2) ≤ 2.

Clearly, f(a4) ≤ 3 and f(a6) ≤ 3. Moreover, from (1) and (3) we deduce that f(v) ≤ 1 for all

v ∈ V2(D)− {a2, a4, a6}. Hence

|A0|+ |A+
1 |+ |A

+2
2 | =

X
v∈V2(D)

f(v) ≤ |V2(D)|+ 5 = k + ⌈5t/2⌉.
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It remains to consider the case when t = 3. By (3) and (4), a2 is contained in at most one

set in {A+
1 , A

+2
2 , A+3

3 }. So f(a2) ≤ 2. Clearly, f(a4) ≤ 4 and f(a6) ≤ 4. From (1) and (3), we

see that a8 is contained in at most one set in {A0, A
+
1 , A

+2
2 }, so f(a8) ≤ 2. Moreover, for all

vertices v ∈ V2(D)− {a2, a4, a6, a8}, from (1)-(4) we deduce that f(v) ≤ 1. Therefore,

3X
s=0

|As| =
X

v∈V2(D)

f(v) ≤ |V2(D)|+ 8 = k + ⌈5t/2⌉.

This completes the proof of the present lemma.

Lemma 3.6 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices, let D = a1a2 . . . a6

a7 . . . a2ka1 be a C2
2k in G with k ≥ 4, and let X0, X1, . . . , Xt be disjoint subsets of V (G − D)

with t ∈ {3, 4} such that

(i) X0 = {x0}, where {x0, a1} ⊆ V1;

(ii) |X1| = 1 if t = 4; and

(iii) Xi ⊆ N(Xi−1) for 1 ≤ i ≤ t.

Suppose u is a vertex in ND(x0) − {a2, a4}. Let A0 := ND(u
+) − {u+2, u+2(t−2)} and Ai :=

ND(Xi) for 1 ≤ i ≤ t. If G contains none of C2
2k+2, C

2
2k+4 and C2

2k+6, then (A0, A1, . . . , At) is

a good family of subsets of V (D).

Proof. Assume the contrary: there exist 0 ≤ i < j ≤ t and v ∈ A+i
i ∩ A+j

j such that

{v−i, v−j} ∩D[a2, a5] = ∅. Set H := G−D.

Let us first consider the case when i = 0. Now v ∈ ND(u
+)−{u+2, u+2(t−2)}, v−j ∈ ND(Xj)

and {v, v−j}∩D[a2, a5] = ∅. Observe that both u and v are in V2 and u /∈ D(v−j , v) (for otherwise

v = u+2 and j ∈ {3, 4}, a contradiction). Let xj be a neighbor of v−j in Xj and let P be an

(x0, xj)-path of length j in H[∪js=0Xs]. Since u ∈ V2(D) and v ∈ A0 ⊆ V2(D)−{u+2, u+2(t−2)},
we have v−j ̸= u and hence u /∈ D[v−j , v). This together with {v, v−j} ∩D[a2, a5] = ∅ implies

that either D[v−j , v] ⊆ D[u+, a1] or D[v−j , v] ⊆ D[a6, u]. Therefore

D′ =

8<
:
a1a2 . . . a6

−→
Dux0

−→
P xjv

−j←−Du+v
−→
Da1 if D[v−j , v] ⊆ D[u+, a1],

a1a2 . . . a6
−→
Dv−jxj

←−
P x0u

←−
Dvu+

−→
Da1 if D[v−j , v] ⊆ D[a6, u]

is a C2
2k+2 in G, contradicting the hypothesis.

Next, let us consider the case when i ≥ 1. Now v−i ∈ ND(Xi) and v−j ∈ ND(Xj). Let

xi be a neighbor of v−i in Xi and let yj be a neighbor of v−j in Xj . By (iii), H[∪is=t−3Xs]

contains a path Q := xt−3xt−2 . . . xi of length i − (t − 3), where xs ∈ Xs for t − 3 ≤ s ≤ i.

Similarly, H[∪js=t−3Xs] contains a path R := yt−3yt−2 . . . yj of length j − (t− 3), where ys ∈ Xs

for t − 3 ≤ s ≤ j. Since |Xt−3| = 1, we have xt−3 = yt−3. Let ℓ be the largest subscript with

t − 3 ≤ ℓ ≤ i such that xℓ = yℓ. Then 0 ≤ i − ℓ ≤ (t − 1) − (t − 3) ≤ 2. Set S := xi
←−
Qxℓ
−→
Ryj .
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Clearly, S is a path in H[∪js=t−3Xs] of length j − i + 2(i − ℓ). Thus we obtain a C2
2k+2(i−ℓ)+2

from D by replacing v−j−→Dv−i with v−jyj
←−
S xiv

−i, contradicting the hypothesis again.

Our next two lemmas show that if G contains a C2
2k, denoted by D, such that G−D has a

path with length at least three, then we can find a C2
2t in G based on the above two lemmas,

for some t with k + 1 ≤ t ≤ k + 3.

Lemma 3.7 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices, let D = a1a2 . . . a6

a7 . . . a2ka1 be a C2
2k in G, and let x0x1x2x3x4 be a path in G−D such that ND(x0)−{a2, a3, a4, a5}

̸= ∅. If B(G) > 3/2, n ≥ 139, and k ≥ 4, then G contains at least one of C2
2k+2, C

2
2k+4, and

C2
2k+6.

Proof. Assume on the contrary that

G contains none of C2
2k+2, C

2
2k+4, and C2

2k+6. (3.2)

By Proposition 2.2, G is connected. Symmetry allows us to assume that x0 and a1 are in the

same color class of G, for otherwise, rewrite D as b1b2 . . . b6b7 . . . b2kb1, where bi = a7−i for

1 ≤ i ≤ 6. Then x0 and b1 are in the same class, as desired. Renaming subscripts of Vi’s if

necessary, we may assume that {x0, a1} ⊆ V1.

Let H = G − D and u ∈ ND(x0) − {a2, a4}. Define X1 := {x1}, X2 := {x2}, X3 :=

NH(x2) − {x1}, X4 := NH(X3) − {x0, x2} and X5 := NH(X4) − (X3 ∪ {x1}) (see Figure 3).

Note that X1, X2, X3, X4, and X5 are disjoint subsets of V (H) − {x0}. By (3.2), we have

Figure 3: D and Xi’s

NH(u+)∩ (X1 ∪X3 ∪X5) = ∅, so NH(u+), X1, X3, and X5 are disjoint subsets of V2(H), which
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implies that |NH(u+)|+ |X1|+ |X3|+ |X5| ≤ n− k and hence

|NH(u+)|+ |NH(x2)|+ |NH(X4)− (X3 ∪ {v1})| ≤ n− k. (3.3)

Set A0 := ND(u
+)− {u+2, u+4} and Ai := ND(Xi) for 1 ≤ i ≤ 4. By Lemma 3.6,

(A0, A1, A2, A3, A4) is a good family of subsets of V (D). (3.4)

Observe that

a6 /∈ A+2
2 ∩A+3

3 , (3.5)

for otherwise, a4 is adjacent to x2 and a3 is adjacent to some vertex x′3 in X3. It follows that

a2a3x′3x2a4a5a6
−→
Da2 is a C2

2k+2 in G, this contradiction to (3.2) establishes (3.5).

From (3.4), (3.5), and Lemma 3.5, we deduce that |A0|+ |A2|+ |A3|+ |A4| ≤ k + 7. Hence

|ND(u
+)|+ |ND(x2)|+ |ND(X3)|+ |ND(X4)| ≤ k + 9.

Adding this inequality to (3.3) yields

|N(u+)|+ |N(x2)|+ |ND(X3)|+ |N(X4)| − |X3| ≤ n+ 10. (3.6)

By (3.2), we have ND(X3) ⊆ V1(D)−{u+} and ND(X4) ⊆ V2(D)− ({u−2, u+2}− {a2, a4}),
so |N(Xi)| < n for i = 3, 4. As |X4| = |NH(X3) − {x0, x2}| ≥ |N(X3)| − (|ND(X3)| + 2), the

triple (X,Y, t) = (X3, X4, |ND(X3)|+ 2) satisfies the hypothesis of Lemma 2.9 and hence

|N(X4)| ≥ |X3|+ (2n+ 4)/5− (|ND(X3)|+ 2).

Combining this inequality with (3.6) gives |N(u+)|+ |N(x2)|+ (2n− 6)/5 ≤ n+ 10. Thus, by

Lemma 2.8, we obtain 2(n+3)/3+(2n−6)/5 ≤ n+10, which implies n ≤ 138, this contradiction

completes the proof of our lemma.

Lemma 3.8 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices, let D = a1a2 . . . a6

a7 . . . a2ka1 be a C2
2k in G, and let x0x1x2x3 be a path in G−D such that ND(x0)−{a2, a3, a4, a5}

̸= ∅. If B(G) > 3/2, n ≥ 139, and k ≥ 4, then G contains at least one of C2
2k+2, C

2
2k+4, and

C2
2k+6.

Proof. Assume on the contrary that

G contains none of C2
2k+2, C

2
2k+4, and C2

2k+6. (3.7)

By symmetry, we may assume that {x0, a1} ⊆ V1 (see the first paragraph of the proof of the

preceding lemma).
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Let H = G−D and u ∈ ND(x0)− {a2, a4}. Define X1 := NH(x0)− {x3}, X2 := NH(X1)−
{x0}, and X3 := NH(X2)−X1. If there exists a vertex x4 in NH(x3)−{x0, x2}, then x0x1x2x3x4

would be a path in G−D and thus we reach a contradiction to (3.7) by Lemma 3.7. Therefore

NH(x3) ⊆ {x0, x2}. (3.8)

Similarly,

NH(X3) ⊆ {x0} ∪X2. (3.9)

By (3.7), we have NH(u+) ∩ (X1 ∪ X3) = ∅, so NH(u+), X1, and X3 are disjoint subsets of

V2(H). It follows that |NH(u+)|+ |X1|+ |X3| ≤ n− k and hence

|NH(u+)|+ |NH(X2)| ≤ n− k. (3.10)

From Lemma 3.6, we see that (ND(u
+)−{u+2}, ND(X1), ND(X2), ND(X3)) is a good family of

subsets of V (D). By Lemma 3.5, we thus obtain

(|ND(u
+)| − 1) + |ND(X1)|+ |ND(X2)|+ |ND(X3)| ≤ k + 8.

Adding this inequality to (3.10) yields

d(u+) + |ND(X1)|+ |N(X2)|+ |ND(X3)| ≤ n+ 9. (3.11)

In view of (3.7), we get ND(X1) ⊆ V1(D) − {u+} and ND(X2) ⊆ V2(D) − ({u−2, u+2} −
{a2, a4}). Hence |N(Xi)| < n for i = 1, 2. As |X2| = |NH(X1)−{x0}| ≥ |N(X1)|−(|ND(X1)|+1),

the triple (X,Y, t) = (X1, X2, |ND(X1)|+ 1) satisfies the hypothesis of Lemma 2.9 and hence

|N(X2)| ≥ |X1|+ (2n+ 4)/5− (|ND(X1)|+ 1).

Combining this inequality with (3.11) gives

d(u+) + |X1|+ (2n+ 4)/5− 1 + |ND(X3)| ≤ n+ 9.

Using (3.8), we obtain |ND(X3)| ≥ |ND(x3)| = |N(x3)|− |NH(x3)| ≥ d(x3)−2, so d(u+)+(2n+

4)/5+(d(x3)−2) ≤ n+9. From Lemma 2.8, it follows that (n+3)/3+(2n+4)/5+(n+3)/3−2 ≤
n+ 9. Therefore n ≤ 123, this contradiction completes the proof of our lemma.

4 A Generalized Bipartite Hopping Lemma

The Hopping Lemma was first introduced by Woodall [8] in his proof of Theorem 1.1, which

demonstrates that the approach of iterating cycle exchanges can be highly effective for finding

long cycles. Variations of the lemma were subsequently developed by various authors for use
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in different works. In particular, Ash [1] developed a basic version of the hopping lemma for

bipartite graphs.

The following lemma is an extract of results from Ash [1] (see Lemmas 4.3, 4.4, 4.9, 4.16;

see also Jackson and Li [4]).

Lemma 4.1 (Ash [1]) Let G = (V1, V2, E) be a bipartite graph, and let C be a longest cycle of

G such that the number of components of G − C is as small as possible and, subject to this, a

smallest component H of G−C is as small as possible. Suppose there exist a ∈ V1 − V (C) and

b ∈ V2 − V (C) such that either a and b are both isolated vertices in G − C or V (H) = {a, b}.
For each vertex v in G−C, set Y0(v) := ∅, and define recursively sets Xi(v) and Yi(v) for i ≥ 1

by Xi(v) := NC(Yi−1(v) ∪ {v}) and Yi(v) := {y ∈ C : y−, y+ ∈ Xi(v)}. Set Xv := ∪i≥1Xi(v)

and Yv := ∪i≥1Yi(v). Then the following statements hold:

(i) N(Yv) ⊆ Xv for v ∈ {a, b};

(ii) Xa ∩ Yb = ∅ = Xb ∩ Ya;

(iii) |X+
a ∩Xb| ≤ 1 and |X−

a ∩Xb| ≤ 1; and

(iv) X+
a ∩Xb = ∅ = X−

a ∩Xb if ab ∈ E.

For convenience, set C0
2k := C2k for all k ≥ 2. Observe that in Ash’s lemma C is assumed

to be a longest cycle of G under certain restrictions, while in our proof we need a generalized

version which can be used to deal with the case when G contains some Cm
2k (not necessarily a

longest one) but no Cm
2k+2 for m ≥ 0 under some other restrictions. Let us now present this

generalized bipartite hopping lemma, which ensures that the ladder structure can be preserved

when growing a cycle.

Lemma 4.2 Let G = (V1, V2, E) be a bipartite graph, and let D = a1a2 . . . a2m+2a2m+3 . . . a2ka1,

be a Cm
2k in G, with m ≥ 0 and a1 ∈ V1. Suppose G contains neither Cm

2k+2 nor another Cm
2k,

denoted by D′, such that G − D′ has fewer components than G − D, and suppose there exist

a ∈ V1 − V (D) and b ∈ V2 − V (D) such that both of them are isolated vertices in G −D. For

each vertex v in G − D, set Y0(v) := ∅, and define recursively sets Xi(v) and Yi(v) for i ≥ 1

by Xi(v) := ND(Yi−1(v) ∪ {v}) − D(a1, a2m+2) and Yi(v) := {y ∈ D : y−, y+ ∈ Xi(v)}, where
D(a1, a2m+2) = ∅ if m = 0. Set Xv := ∪i≥1Xi(v) and Yv := ∪i≥1Yi(v). Then the following

statements hold:

(i) N(Yv) ⊆ Xv ∪D(a1, a2m+2) for v ∈ {a, b};

(ii) Xa ∩ Yb = ∅ = Xb ∩ Ya; and

(iii) |X+
a ∩Xb| ≤ 1 and |X−

a ∩Xb| ≤ 1.
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Since the proof of this lemma is very tedious, we postpone it till Section 6 so that the proof

of our main theorem proceeds in a smoother and more coherent way. Clearly, the following

monotonicity property holds for the objects defined in the above two lemmas:

X1(v) ⊆ X2(v) ⊆ X3(v) ⊆ . . . ⊆ Xv and Y1(v) ⊆ Y2(v) ⊆ Y3(v) ⊆ . . . ⊆ Yv. (4.1)

As an application of the above generalized bipartite hopping lemma, let us derive the following

statement, which will be used later.

Lemma 4.3 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices, and let D =

a1a2 . . . a2m+2a2m+3 . . . a2ka1 be a Cm
2k in G, with m ≥ 0. Suppose G does not contain another

Cm
2k, denoted by D′, such that G−D′ has fewer components than G−D, and suppose there

exist a ∈ V1 − V (D) and b ∈ V2 − V (D) such that both of them are isolated vertices in G −D.

If B(G) > 3/2 and m+ 2 ≤ k ≤ n− 3m− 1, then G contains a Cm
2k+2.

Proof. Assume the contrary: G contains no Cm
2k+2. Recall Lemma 4.2 and consider the sets

Xi(a)
+ and Xi(a)

− for i ≥ 1. By (4.1) and Lemma 4.2(iii), each of Xi(a)
+ and Xi(a)

− contains

at most one vertex inXi(b). Hence |Xi(a)
+∩Xi(a)

−| = |Xi(a)
+|+|Xi(a)

−|−|Xi(a)
+∪Xi(a)

−| ≥
|Xi(a)

+|+ |Xi(a)
−| − |V1(D)−Xi(b)| − 2 = (2|Xi(a)| − 2)− (k − |Xi(b)|). By the definition of

Yi(a), we have

|Yi(a)| ≥ |Xi(a)
+ ∩Xi(a)

−| ≥ (2|Xi(a)| − 2)− (k − |Xi(b)|).

Similarly,

|Yi(b)| ≥ |Xi(b)
+ ∩Xi(b)

−| ≥ (2|Xi(b)| − 2)− (k − |Xi(a)|).

Adding these two inequalities yields

|Yi(a)|+ |Yi(b)| ≥ 3|Xi(a)|+ 3|Xi(b)| − 2k − 4.

From the definition, (4.1) and Lemma 4.2(ii), it is clear that Yi(a) ⊆ V1(D)−D(a1, a2m+2)−
X1(b). As D(a1, a2m+2) ∩ V1(D) ̸= ∅ if m ≥ 1 and X1(b) ̸= ∅ if m = 0, we have Yi(a) ̸= V1(D).

Therefore Yi(a) ∪ {a} is a proper subset of V1 for all i ≥ 0. Since a is an isolated vertex

of G − D, from the definition, (4.1) and Lemma 4.2(i), we deduce that N(Yi−1(a) ∪ {a}) ⊆
Xi(a) ∪ (V2 ∩D(a1, a2m+2)). This together with Lemma 2.8 implies that

|Xi(a)|+m ≥ |N(Yi−1(a) ∪ {a})| ≥
n+ 2|Yi−1(a)|+ 3

3
,

so 3|Xi(a)| ≥ n+ 2|Yi−1(a)| − 3(m− 1). Similarly, 3|Xi(b)| ≥ n+ 2|Yi−1(b)| − 3(m− 1). Hence

|Yi(a)|+ |Yi(b)| ≥ 2n+ 2|Yi−1(a)|+ 2|Yi−1(b)| − 6(m− 1)− 2k − 4

= 2 (|Yi−1(a)|+ |Yi−1(b)|) + 2(n− k)− 6m+ 2

≥ 2 (|Yi−1(a)|+ |Yi−1(b)|) + 4 (as k ≤ n− 3m− 1),
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which implies

|Yi(a)|+ |Yi(b)|+ 4 ≥ 2 (|Yi−1(a)|+ |Yi−1(b)|+ 4) .

Since Y0(a) = Y0(b) = ∅, it follows that |Yi(a)| + |Yi(b)| + 4 ≥ 2i+2 for all i ≥ 1, and hence

|Yi(a)|+ |Yi(b)| → ∞ as i→∞, which is absurd.

5 Proof of Theorem 1.3

The proof of our theorem comes in three steps, and different steps require different counting

techniques. Actually we have already carried out Step 1 in Section 3 by showing the existence of

C4, C
1
6 , and one of C2

8 , C
2
10, and C2

12 in G. Based on such a ladder and Lemma 4.3, we can now

proceed to Step 2, which aims to prove that G contains a C2k for every k with 2 ≤ k ≤ n− 6.

Lemma 5.1 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices and with a C2
2k.

If B(G) > 3/2, n ≥ 139, and 4 ≤ k ≤ n− 7, then G contains at least one of C2
2k+2, C

2
2k+4, and

C2
2k+6.

Proof. By hypothesis, G contains a subgraph D = a1a2 . . . a6a7 . . . a2ka1 (with a1 ∈ V1),

which is a C2
2k. Assume on the contrary that G contains none of C2

2k+2, C
2
2k+4, and C2

2k+6. Let

us make some simple observations about G−D.

Claim 1. No component H of G−D satisfies min{|V1(H)|, |V2(H)|} ≥ 2.

Suppose for a contradiction that min{|V1(H)|, |V2(H)|} ≥ 2 for some component H of G−D.

ThenH contains a path x0x1x2x3, with x0 ∈ V1(H). By Lemma 3.8, we haveND(x0)∪ND(x3) ⊆
D[a2, a5], so ND(x0) ⊆ {a2, a4} and ND(x3) ⊆ {a3, a5}. Using Lemma 2.8, we obtain |NH(xi)| =
d(xi)− |ND(xi)| ≥ (n− 3)/3 for i = 0, 3. Thus |Vi(H)| ≥ (n− 3)/3 > 45 for i = 1, 2.

Symmetry allows us to assume that |V1(H)| ≥ |V2(H)|. Let us show that there exist two

distinct vertices v1 and v2 in V1(H) such that

ND(vi)− {a2, a4} ̸= ∅ for i = 1, 2. (5.1)

Otherwise, there is a subset X of V1(H) with |X| ≥ |V1(H)| − 1 such that ND(X) ⊆ {a2, a4}.
So |N(X)| < n and hence |NH(X)| = |N(X)| − |ND(X)| > 3|X|/2 − 2 ≥ (3|V1(H)| − 7)/2 ≥
(3|V2(H)| − 7)/2 > |V2(H)| as V2(H) ≥ 45, a contradiction. Therefore (5.1) is true.

Set A := NH(v1) and B := NH(A) − {v1}. If NH(B) − A contains a vertex z, then,

letting y ∈ NB(z) and x ∈ NA(y), the path v1xyz is fully contained in G − D, contradicting

Lemma 3.8. So NH(B) ⊆ A, which in turn implies V1(H) = B ∪ {v1} and V2(H) = A. Hence

|A| ≥ (n− 3)/3 > 45 and v2 ∈ B. Let u2 ∈ NA(v2) and u1 ∈ A−{u2}. Then v2u2v1u1 is a path

in G−D, which contradicts Lemma 3.8. So Claim 1 is justified.

Claim 2. Each component of G−D contains at most two vertices.
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Suppose the contrary: some component H of G − D has at least 3 vertices. By Claim

1, we have min{|V1(H)|, |V2(H)|} ≤ 1. So H is a star. By symmetry, we may assume that

V1(H) = {x1, x2, . . . , xr} and V2(H) = {y}, where r ≥ 2. Set X := V1(H) − {x1}. Since G

contains no C2
2k+2,

ND(x1) ∩N+
D (y) ⊆ {a2, a6},

ND(x1) ∩N+2
D (X) ⊆ {a2, a4, a6}, and

N+
D (y) ∩N+2

D (X) ⊆ {a4, a6}.

So each of a2 and a4 is contained in at most two sets in {ND(x1), N
+2
D (X), N+

D (y)}. Consequently,
|ND(x1)| + |N+

D (y)| + |N+2
D (X)| ≤ |V2(D) − {a2, a4, a6}| + 7 = k + 4. By Lemma 2.8, we have

|ND(x1)| = |N(x1)−{y}| ≥ n/3, |ND(y)| = |N(y)|−r ≥ (n+3)/3−r, and |ND(X)| = |N(X)−
{y}| ≥ (n+2|X|+1)/3−1 = (n+2r−4)/3. Therefore, n/3+(n+3)/3−r+(n+2r−4)/3 ≤ k+4,

which implies that 3n ≤ 3k + r + 13 ≤ n + 2k + 13 and hence k > n − 7, contradicting the

hypothesis. This proves Claim 2.

Claim 3. G−D contains at most one isolated edge.

To justify this, we assume that both x1y1 and x2y2 are two isolated edges of G − D, with

{x1, x2} ⊆ V1 and {y1, y2} ⊆ V2. We propose to show that

ND(x1) ∩N+2
D (x2) ⊆ {a2, a4, a6} (5.2)

or ND(y1) ∩N+2
D (y2) ⊆ {a3, a5, a7}.

Suppose not. Then there exist two vertices v1 ∈ ND(x1) ∩ N+2
D (x2) − {a2, a4, a6} and v2 ∈

ND(y1) ∩N+2
D (y2)− {a3, a5, a7}. By symmetry, we may assume that v1 ∈ D(v2, a1). If v2 = v−1

then, by replacing v−1 v1 with v−1 y1x1v1 in D, we get a C2
2k+2 in G, this contradiction implies

that v2 ̸= v−1 . So v2 ∈ D(v−2
2 , v−3

1 ] ⊆ D(a7, v
−3
1 ]. It follows that

a1a2 . . . a6a7
−→
Dv−2

2 y2x2v
−2
1

←−
Dv2y1x1v1

−→
Da1

is a C2
2k+2 in G, a contradiction. So (5.2) holds.

By symmetry, we may assume that

ND(x1) ∩N+2
D (x2) ⊆ {a2, a4, a6}. (5.3)

Since G contains no C2
2k+2, clearly we have

ND(x1) ∩N+
D (y1) ⊆ {a2, a6}. (5.4)

Moreover,

|ND(y1)
+ ∩N+2

D (x2)− {a4, a6}| ≤ 1, (5.5)
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for otherwise, let {u1, u2} ⊆ ND(y1) ∩ N+
D (x2) such that {u1, u2} ∩ {a3, a5} = ∅, where u2 ∈

D(u1, a1]. Then

a1a2 . . . a6
−→
Du−1 x2u

−
2

←−
Du1y1u2

−→
Da1

is a C2
2k+2 inG, a contradiction. Let z be the vertex inND(y1)

+∩N+2
D (x2)−{a4, a6}, if any. Then

each of a2 and a4 is contained in at most two of the sets in {ND(x1), ND(y1)
+, N+2

D (x2)−{z}}.
Consequently, |ND(x1)| + |N+

D (y1)| + (|N+2
D (x2)| − 1) ≤ |V2(D) − {a2, a4, a6}| + 7 = k + 4. By

Lemma 2.8, we have |ND(y1)| = |N(y1) − {x1}| ≥ n/3, and the same holds for |ND(xi)| for
i = 1, 2. Thus 3(n/3)− 1 ≤ k + 4 and hence k ≥ n− 5, contradicting the hypothesis. So Claim

3 is established.

Now let D be a C2
2k in G such that the number of components of G − D is as small as

possible. Recall that 4 ≤ k ≤ n − 7. By Claims 2 and 3, G −D contains two isolated vertices

a ∈ V1 − V (D) and b ∈ V2 − V (D). From Lemma 4.3 (with m = 2), we see that G contains a

C2
2k+2. This contradiction completes the proof of our lemma.

The objective of Step 3 is to show that every C2k, with n− 6 ≤ k ≤ n− 1, can be extended

to a C2k+2 in G.

Lemma 5.2 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices and with a C2k.

If B(G) > 3/2, n ≥ 139, and n− 6 ≤ k ≤ n− 1, then G contains a C2k+2.

Proof. Assume on the contrary that G contains no C2k+2. Let C be a C2k in G such that the

number of components of G− C is as small as possible. Let us make some simple observations

about G− C.

Claim 1. G− C contains no path of length 3.

Suppose the contrary: x0x1x2x3 is a path in G − C. By symmetry, we may assume that

x0 ∈ V2. Since G contains no C2k+2, we deduce that NC(x0), N
+
C (x1), N

+2
C (x2), and N+3

C (x3)

are disjoint subsets of V1(C). Hence

|NC(x0)|+ |N+
C (x1)|+ |N+2

C (x2)|+ |N+3
C (x3)| ≤ k.

By Lemma 2.8, we have |NC(xi)| ≥ d(xi)− (n− k) ≥ (n+ 3)/3− (n− k) = (3k − 2n+ 3)/3 for

0 ≤ i ≤ 3. It follows that 4(3k − 2n + 3)/3 ≤ k, so 8n ≥ 9k + 12 ≥ 9(n − 6) + 12 and hence

n ≤ 42, contradicting the hypothesis. Thus Claim 1 is justified.

Claim 2. Each component of G− C contains at most two vertices.

Otherwise, some component H of G−C has at least three vertices. By Claim 1, H contains

no path of length 3. Hence at least one of V1(H) and V2(H) contains only one vertex. Symmetry

allows us to assume that V2(H) = {u}. Then all vertices in V1(H) are adjacent to u. Let v be
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a vertex in V1(H) and set X := V1(H) − {v}. Since G contains no C2k+2, we see that N+
C (u),

NC(v), and N+2
C (X) are disjoint subsets of V2(C). So |N+

C (u)| + |NC(v)| + |N+2
C (X)| ≤ k and

hence

(d(u)− r) + (d(v)− 1) + (|N(X)| − 1) ≤ k, (5.6)

where r := |V1(H)|. By Lemma 2.8, we have |N(X)| ≥ (n + 2|X| + 1)/3 = (n + 2r − 1)/3 and

min{d(u), d(v)} ≥ (n+ 3)/3. This together with (5.6) implies 3n ≤ 3k + r + 1 ≤ n+ 2k + 1, so

k > n− 1 and hence k = n, this contradiction justifies Claim 2.

Claim 3. G− C contains at most one isolated edge.

Assume on the contrary that x1y1 and x2y2 are two isolated edges ofG−C, with {x1, x2} ⊆ V1

and {y1, y2} ⊆ V2. Then k ≤ n − 2. Since G contains no C2k+2, we have NC(xi) ∩N+
C (yi) = ∅

for i = 1, 2. It is easy to see that at least one of NC(x1) ∩ N+2
C (x2) and NC(y1) ∩ N+2

C (y2) is

empty, for otherwise G would contain a C2k+2, a contradiction. Symmetry allows us to assume

that NC(x1) ∩N+2
C (x2) = ∅. Then k ≥ |NC(x1) ∪N+2

C (x2) ∪N+
C (y1)| = |NC(x1)|+ |N+2

C (x2) ∪
N+

C (y1)| = |NC(x1)| + |N+2
C (x2)| + |N+

C (y1)| − |N+2
C (x2) ∩ N+

C (y1)|. By Lemma 2.8, each of

|NC(x1)|, |N+
C (y1)|, and |N+2

C (x2)| is at least n/3. Hence |N+2
C (x2) ∩ N+

C (y1)| ≥ n − k ≥ 2,

which again implies the existence of C2k+2 in G. This contradiction establishes Claim 3.

Claim 4. G− C contains no isolated vertex.

Otherwise, by Claim 2, there exist a ∈ V1−V (C) and b ∈ V2−V (C) such that both of them

are isolated vertices in G − C (as G is balanced). From Lemma 4.3 (with m = 0), it follows

instantly that G contains a C2k+2, this contradiction proves Claim 4.

From Claims 1-4, we deduce that G−C contains only two vertices, say a and b, with a ∈ V1

and b ∈ V2, and that ab ∈ E. This in turn implies that C is a longest cycle in G. Thus Lemma

4.1 is applicable to the triple (C; a, b). For each i ≥ 1 and v ∈ {a, b}, let Xi(v) and Yi(v) be as

defined in this lemma. By definition, (4.1) and Lemma 4.1(ii), Yi(a) ⊆ V1(C) − X1(b). Hence

Yi(a) ∪ {a} is a proper subset of V1 for all i ≥ 0. Similarly, Yi(b) ∪ {b} is a proper subset of V2

for all i ≥ 0. Therefore, for i ≥ 1 and v ∈ {a, b}, Lemma 2.8 applies to S = Yi−1(v) ∪ {v}. As

each of a and b has exactly one neighbor outside C, we have

|Xi(v)| ≥
n+ 2(|Yi−1(v)|+ 1) + 1

3
− 1 =

n+ 2|Yi−1(v)|
3

.

Thus 3|Xi(v)| ≥ n + 2|Yi−1(v)|. By (4.1) and Lemma 4.1(iv), both Xi(a)
+ and Xi(a)

− are

subsets of V1(C) − Xi(b). So |Xi(a)
+ ∩ Xi(a)

−| = |Xi(a)
+| + |Xi(a)

−| − |Xi(a)
+ ∪ Xi(a)

−| ≥
2|Xi(a)| − (k − |Xi(b)|). As Xi(a)

+ ∩Xi(a)
− ⊆ Yi(a), we have

|Yi(a)| ≥ 2|Xi(a)| − (k − |Xi(b)|).
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Similarly, |Yi(b)| ≥ 2|Xi(b)| − (k − |Xi(a)|). Adding these two inequalities yields

|Yi(a)|+ |Yi(b)| ≥ 3|Xi(a)|+ 3|Xi(b)| − 2k.

Hence

|Yi(a)|+ |Yi(b)| ≥ (2n+ 2|Yi−1(a)|+ 2|Yi−1(b)|)− 2k

= 2 (|Yi−1(a)|+ |Yi−1(b)|) + 2(n− k)

≥ 2 (|Yi−1(a)|+ |Yi−1(b)|) + 2,

which implies

|Yi(a)|+ |Yi(b)|+ 2 ≥ 2 (|Yi−1(a)|+ |Yi−1(b)|+ 2) .

Therefore, |Yi(a)| + |Yi(b)| + 2 ≥ 2i+1 → ∞ as i → ∞. This contradiction completes the proof

of our lemma.

Now we are ready to establish the main result of this paper.

Proof of Theorem 1.3. By Lemmas 3.2–3.4, G contains a C4, a C1
6 , and at least one of

C2
8 , C

2
10, and C2

12. By Lemma 5.1, if G contains a C2
2k for any k with 4 ≤ k ≤ n − 7, then G

contains at least one of C2
2k+2, C

2
2k+4, and C2

2k+6. Recall that every C2
2t, with t ≥ 4, contains

cycles C2t, C2t−2, and C2t−4 simultaneously. From all these observations, we conclude that G

contains a cycle C2k for every k with 2 ≤ k ≤ n− 6. This together with Lemma 5.2 implies that

G contains a C2k for every k with 2 ≤ k ≤ n. Therefore G is bipancyclic.

6 Proof of Lemma 4.2

As stated before, Lemma 4.1 aims to deal with a longest cycle under certain restrictions, while

Lemma 4.2 is intended for a ladder (not necessarily a longest one) under some other restrictions.

Nevertheless, the basic ideas underlying their proofs are essentially similar, whose origin can be

traced back to Woodall [8].

The proof of Lemma 4.2 is based on the following four claims A(i, j), B(i, j), B∗(i, j) and

C(i) for all natural numbers i and j.

ClaimA(i, j). There do not exist two disjoint paths Pij = u1u2 . . . uf and Qij = uf+1uf+2 . . . ug

with the following properties:

(P1) a1
−→
Da2m+2 is a subpath of either Pij or Qij when m ≥ 1;

(P2) {u1, uf+1} ⊆ Xi(a) and {uf , ug} ⊆ Xj(b);

(P3) if us ∈ Yh(a) for some h < i and s /∈ {f, g}, then {us−1, us+1} ⊆ Xh(a);

(P4) if us ∈ Yh(b) for some h < j and s /∈ {1, f + 1}, then {us−1, us+1} ⊆ Xh(b); and
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(P5) either V (Pij) ∪ V (Qij) = V (D) or V (Pij) ∪ V (Qij) = V (D) − {a0, b0} for some a0 ∈
V1(D)− Yi−1(a) and b0 ∈ V2(D)− Yj−1(b) such that a0b0 ∈ E(G).

Claim B(i, j). There does not exist a path Rij = u1u2 . . . uf with the following properties:

(R1) a1
−→
Da2m+2 is a subpath of Rij when m ≥ 1;

(R2) {u1, uf} ⊆ Xi(a);

(R3) if us ∈ Yh(a) for some h < i, then {us−1, us+1} ⊆ Xh(a);

(R4) if us ∈ Yh(b) for some h < j and s /∈ {1, f}, then {us−1, us+1} ⊆ Xh(b); and

(R5) V (Rij) = V (D)− {a0} for some a0 ∈ Xj(b).

Claim B∗(i, j). There does not exist a path R∗
ij = u1u2 . . . uf with the following properties:

(r1) a1
−→
Da2m+2 is a subpath of R∗

ij when m ≥ 1;

(r2) {u1, uf} ⊆ Xj(b);

(r3) if us ∈ Yh(b) for some h < j, then {us−1, us+1} ⊆ Xh(b);

(r4) if us ∈ Yh(a) for some h < i and s /∈ {1, f}, then {us−1, us+1} ⊆ Xh(a); and

(r5) V (R∗
ij) = V (D)− {b0} for some b0 ∈ Xi(a).

Claim C(i). For each v ∈ {a, b}, there does not exist a path Ti = u1u2 . . . uf with the following

properties:

(T1) a1
−→
Da2m+2 is a subpath of Ti when m ≥ 1;

(T2) {u1, uf} ⊆ Xi(v);

(T3) if us ∈ Yh(v) for some h < i and s /∈ {1, f}, then {us−1, us+1} ⊆ Xh(v); and

(T4) V (Ti) = V (D)− {v0} for some v0 ∈ V (D)− Yi−1(v) with N(v0) ̸⊆ V (D) ∪ {v}.

Observe that if m ≥ 1, then

Yj(v) ∩D[a1, a2m+2] = ∅ for each v ∈ {a, b} and j ≥ 1, (6.1)

because Xj(v) ∩ D[a2, a2m+1] = ∅. We shall repeatedly use this simple observation in the

subsequent proofs.

Proof of Lemma 4.2 (assuming Claims A(i, j), B(i, j), B∗(i, j) and C(i) for all i and j).

(i) Suppose the contrary: N(Yv) is not a subset of Xv ∪ D(a1, a2m+2) for v = a or b. By

definition, we have N(Yi(v)) ̸⊆ Xi+1(v)∪D(a1, a2m+2) for some i ≥ 1. So N(Yi(v)) ̸⊆ V (D) and

hence N(v0) /∈ V (D) for some v0 ∈ Yi(v). In view of (6.1), we obtain v0 /∈ D[a1, a2m+2] when

m ≥ 1. Note that Yv and v are both contained in Vj for j = 1 or 2, so N(v0) ̸⊆ V (D) ∪ {v}.
As Y0(v) = ∅, there exists a subscript h with 1 ≤ h ≤ i such that v0 ∈ Yh(v) − Yh−1(v). Thus
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{v−0 , v
+
0 } ⊆ Xh(v), and v0 ∈ V (D) − Yh−1(v). Setting Th := v+0

−→
Dv−0 , we see that conditions

(T1)-(T4) (with h in place of i) are all satisfied by Th, and hence Claim C(h) is violated. This

contradiction implies that N(Yv) ⊆ Xv ∪D(a1, a2m+2) for v = a and b.

(ii) Suppose u ∈ Xj(b) ∩ Yi(a) for some subscripts i and j. Then {u−, u+} ⊆ Xi(a). By

(6.1), u /∈ D[a1, a2m+2] if m ≥ 1. Setting a0 := u and Rij := u+
−→
Du−, we see that conditions

(R1)-(R5) are all satisfied by Rij , so Claim B(i, j) is violated. Hence Xj(b) ∩ Yi(a) = ∅ for all

subscripts i and j, which implies that Xb∩Ya = ∅. Similarly, from Claim B∗(i, j) we can deduce

that Xi(a) ∩ Yj(b) = ∅ for all subscripts i and j, and hence Xa ∩ Yb = ∅.
(iii) Suppose u and v are two distinct vertices in X+

a ∩Xb. Then there exist subscripts i and

j such that {u−, v−} ⊆ Xi(a) and {u, v} ⊆ Xj(b). As none of u−, u, v−, and v is contained in

D[a2, a2m+1] when m ≥ 1, either D[a1, a2m+2] ⊆ D[u, v−] or D[a1, a2m+2] ⊆ D[v, u−]. Setting

Pij := u−
←−
Dv and Qij := v−

←−
Du, we see that conditions (P1)-(P5) are all satisfied by Pij and Qij ,

and hence Claim A(i, j) is violated. This contradiction implies that |X+
a ∩Xb| ≤ 1. Similarly,

we have |X−
a ∩Xb| ≤ 1. So the lemma is established.

From the preceding proof, we conclude that

(Z1) Claim A(i, j) implies that |Xi(a)
+ ∩Xj(b)| ≤ 1 and |Xi(a)

− ∩Xj(b)| ≤ 1;

(Z2) Claim B(i, j) implies that Xj(b) ∩ Yi(a) = ∅;

(Z3) Claim B∗(i, j) implies that Xi(a) ∩ Yj(b) = ∅; and

(Z4) Claims C(h), for all h with 1 ≤ h ≤ i, imply that N(Yi(v)) ⊆ Xi+1(v) ∪D(a1, a2m+2) for

v ∈ {a, b}.

We shall appeal to these observations in the following inductive proof of the above claims for all

possible subscripts.

Proof of Claims A(1,1), B(1,1), B∗(1,1) and C(1).

Suppose such paths P11 and Q11 exist. Then a is adjacent to u1 and uf+1, and b is adjacent

to uf and ug. If V (P11) ∪ V (Q11) = V (D), then we can obtain a Cm
2k+2 from D by adding a

and b, a contradiction. If V (P11) ∪ V (Q11) = V (D)− {a0, b0} for some a0 ∈ V1(D)− Y0(a) and

b0 ∈ V2(D) − Y0(b) such that a0b0 ∈ E(G). Then we can get another Cm
2k, denoted by D′, on

the vertex set (V (D) − {a0, b0}) ∪ {a, b} such that G − D′ has at least one component fewer

than G − D, because both a and b are isolated vertices in G − D while a0b0 ∈ E(G). This

contradiction justifies Claim A(1, 1).

Suppose such a path R11 exists. Then a is adjacent to u1 and uf , and V (R11) = V (D)−{a0}
for some a0 ∈ X1(b) (so a0b ∈ E(G)). Hence we can obtain another Cm

2k, denoted by D′, on

the vertex set (V (D) − {a0}) ∪ {a} such that G − D′ has at least one component fewer than

G−D, because both a and b are isolated vertices in G−D while a0b ∈ E(G). This contradiction

justifies Claim B(1, 1). Similarly, Claim B∗(1, 1) also holds.
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Suppose such a path T1 exists. Then v is adjacent to u1 and uf , and V (T1) = V (D)− {v0}
for some v0 ∈ V (D) with N(v0) * V (D) ∪ {v}. Hence we can obtain another Cm

2k, denoted by

D′, on the vertex set (V (D) − {v0}) ∪ {v} such that G −D′ has at least one component fewer

than G−D, because v is an isolated vertex in G−D while N(v0) * V (D)∪{v} = V (D′)∪{v0}.
This contradiction justifies Claim C(1).

Proof of Claims A(i, j), B(i, j) and B∗(i, j) for i+ j > 2.

We proceed by induction on i+ j. Suppose i+ j > 2 and A(i0, j0), B(i0, j0), B
∗(i0, j0) hold

for all subscripts i0 and j0 with i0 + j0 < i+ j.

(1) To prove A(i, j), suppose on the contrary that such paths Pij andQij exist. By symmetry,

we may assume that i ≥ j (so i > 1). Let us distinguish among three cases.

Case A1. {u1, uf+1} ⊆ Xi−1(a).

In this case let Pi−1,j := Pij and Qi−1,j := Qij . Then the existence of such two paths

contradicts Claim A(i− 1, j).

Case A2. Precisely one of u1 and uf+1 is in Xi−1(a).

In this case symmetry allows us to assume that u1 ∈ Xi−1(a) while uf+1 /∈ Xi−1(a). Then

uf+1 is adjacent to some y ∈ Yi−1(a)−Yi−2(a). If y /∈ V (Pij∪Qij) then, by (P5), we have V (Pij∪
Qij) = V (D)−{a0, b0} and y ∈ {a0, b0}, where a0 ∈ V1(D)− Yi−1(a) and b0 ∈ V2(D)− Yj−1(b).

It follows that y = a0 /∈ Yi−1(a), a contradiction. Hence y = us for some s with 1 ≤ s ≤ g.

By (6.1), us /∈ D[a1, a2m+2] when m ≥ 1. By Claim B(i − 1, j) and (Z2), Xj(b) ∩ Yi−1(a) = ∅,
so s /∈ {f, g}. As {u1, uf+1} ⊆ Xi(a), we see that u1 ∈ V2 and us ∈ N(uf+1) ⊆ V1, and

hence s /∈ {1, f + 1}. Consequently, either 1 < s < f or f + 1 < s < g. By (P3), we have

{us−1, us+1} ⊆ Xi−1(a). Set

Pi−1,j :=

8<
:
u1
−→
Pijusuf+1

−→
Qijug if 1 < s < f ,

Pij if f + 1 < s < g,

Qi−1,j :=

8<
:
us+1
−→
Pijuf if 1 < s < f ,

us−1
←−
Qijuf+1us

−→
Qijug if f + 1 < s < g.

Let us show that (P1)-(P5) (with i − 1 in place of i) are all satisfied by Pi−1,j and Qi−1,j .

Suppose 1 < s < f . Then the details of the proof are given below.

(P1) As us /∈ D[a1, a2m+2], it is clear that a1
−→
Da2m+2 remains a subpath of either Pi−1,j or

Qi−1,j when m ≥ 1.

(P2) By assumption, u1 ∈ Xi−1(a) and {uf , ug} ⊆ Xj(b). As remarked above, us−1 ∈ Xi−1(a).

(P3) Since Pij and Qij satisfy (P3), the only possible vertex on Pi−1,j ∪Qi−1,j that can violate

(P3) is us. However, since us /∈ Yi−2(a), we have us /∈ Yh(a) for all h < i− 1 by (4.1).
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(P4) Since Pij and Qij satisfy (P4), the only possible vertex on Pi−1,j ∪Qi−1,j that can violate

(P4) is uf+1. However, since Claim B(i − 1, j) implies Xj(b) ∩ Yi−1(a) = ∅ (recall (Z2)),
we have us /∈ Xj(b). This together with uf+1us ∈ E(G) and us ∈ V (D) − D(a1, a2m+2)

implies uf+1 /∈ Yj−1(b), and hence uf+1 /∈ Yh(b) for all h < j by (4.1).

(P5) This follows from the fact that V (Pij∪Qij) = V (Pi−1,j∪Qi−1,j) and that Pij andQij satisfy

(P5). Also, if Pij and Qij miss a0 ∈ V1(D)− Yi−1(a), then we have a0 ∈ V1(D)− Yi−2(a)

as well by (4.1).

The proof goes along the same line when f + 1 < s < g.

Case A3. {u1, uf+1} ∩Xi−1(a) = ∅.
As in Case A2, we can now deduce that u1 is adjacent to some ur ∈ Yi−1(a) − Yi−2(a),

and uf+1 is adjacent to some us ∈ Yi−1(a) − Yi−2(a), where 2 ≤ r, s ≤ g − 1 and {r, s} ∩
{f, f + 1} = ∅. By (P3), we have {ur−1, ur+1, us−1, us+1} ⊆ Xi−1(a). By (6.1), we obtain

{ur, us}∩D[a1, a2m+2] = ∅ when m ≥ 1. Symmetry allows us to assume that ur ∈ Pij whenever

ur = us, and r < s whenever ur and us are two distinct vertices both on Pij or both on Qij .

Thus there are four possibilities for r and s altogether: (i) 1 < r < f < f + 1 < s < g; (ii)

1 < s < f < f + 1 < r < g; (iii) 1 < r ≤ s < f ; or (iv) f + 1 < r < s < g. Set

Pi−1,j :=

8>>>>><
>>>>>:

ur−1
←−
Piju1ur

−→
Pijuf if 1 < r < f < f + 1 < s < g,

ur−1
←−
Qijuf+1us

−→
Pijuf if 1 < s < f < f + 1 < r < g,

us+1
−→
Pijuf if 1 < r ≤ s < f ,

us−1
←−
Qijuru1

−→
Pijuf if f + 1 < r < s < g,

Qi−1,j :=

8>>>>><
>>>>>:

us−1
←−
Qijuf+1us

−→
Qijug if 1 < r < f < f + 1 < s < g,

us−1
←−
Piju1ur

−→
Qijug if 1 < s < f < f + 1 < r < g,

ur−1
←−
Piju1ur

−→
Pijusuf+1

−→
Qijug if 1 < r ≤ s < f ,

ur−1
←−
Qijuf+1us

−→
Qijug if f + 1 < r < s < g.

Again, it is a routine matter to check that (Pi−1,j , Qi−1,j) satisfies (P1)-(P5) (with i−1 in place

of i). This contradiction to Claim A(i−1, j) completes the proof for the present case. Therefore

Claim A(i, j) is established.

(2) Let us now justify Claims B(1, j) for j > 1. Assume such a path R1j exists with

corresponding a0 ∈ Xj(b). Then a0 /∈ Xj−1(b), for otherwise Claim B(1, j − 1) is violated.

Hence a0 is adjacent to some ur ∈ Yj−1(b) − Yj−2(b), where 1 ≤ r ≤ f . By Claim B∗(1, j − 1)

and (Z3), we have Yj−1(b) ∩ X1(a) = ∅, so ur /∈ X1(a). This together with {u1, uf} ⊆ X1(a)

implies 1 < r < f . By (R4), {ur−1, ur+1} ⊆ Xj−1(b). By (6.1), we have ur /∈ D[a1, a2m+2] when

m ≥ 1. Let P1,j−1 := u1u2 . . . ur−1, Q1,j−1 := ufuf−1 . . . ur+1, and b0 := ur. Then it is easy to
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see that (P1)-(P5) (with (1, j − 1) in place of (i, j)) are all satisfied by (P1,j−1, Q1,j−1). This

contradiction to Claim A(1, j − 1) establishes Claim B(1, j) for all j > 1.

Similarly, we can justify Claim B∗(1, j) for all j > 1.

(3) Next, let us justify Claim B(i, j) for i > 1. Assume such a path Rij exists with corre-

sponding a0 ∈ Xj(b). We consider three cases.

Case B1. {u1, uf} ⊆ Xi−1(a).

In this case set Ri−1,j := Rij . Then the existence of this path contradicts Claim B(i− 1, j).

Case B2. Precisely one of u1 and uf is in Xi−1(a).

In this case symmetry allows us to assume that u1 ∈ Xi−1(a) while uf /∈ Xi−1(a). Then uf is

adjacent to some y ∈ Yi−1(a)−Yi−2(a). By Claim B(i−1, j) and (Z2), we have Xj(b)∩Yi−1(a) =

∅, so y ̸= a0, for otherwise a0 ∈ Xj(b) ∩ Yi−1(a), a contradiction. In view of (R5), we have

V (D) = V (Rij)∪{a0}, so y ∈ V (Rij) and hence y = ur for some r with 1 ≤ r ≤ f . By (6.1), we

get ur /∈ D[a1, a2m+2] when m ≥ 1. As {u1, uf} ⊆ Xi(a) ⊆ V2 and ur ∈ N(uf ) ⊆ V1, we obtain

1 < r < f . It follows from (R3) that ur+1 ∈ Xi−1(a). Let Ri−1,j := u1u2 . . . urufuf−1 . . . ur+1.

Then (R1)-(R5) (with i− 1 in place of i) are all satisfied by Ri−1,j ; the details of the proof are

given below.

(R1) Since ur /∈ D[a1, a2m+2], it is clear that a1
−→
Da2m+2 remains a subpath of Ri−1,j when

m ≥ 1.

(R2) By assumption, u1 ∈ Xi−1(a). As remarked above, ur+1 ∈ Xi−1(a).

(R3) Since Rij satisfies (R3), the only possible vertex on Ri−1,j that can violate (R3) is ur.

However, since ur /∈ Yi−2(a), we have ur /∈ Yh(a) for all h < i− 1 by (4.1).

(R4) Since Rij satisfies (R4), the only possible vertex on Ri−1,j that can violate (R4) is uf .

However, by Claim B(i − 1, j) and (Z2), we have Xj(b) ∩ Yi−1(a) = ∅, so ur /∈ Xj(b).

This together with ufur ∈ E(G) and ur ∈ V (D)−D(a1, a2m+2) implies uf /∈ Yj−1(b), and

hence uf /∈ Yh(b) for all h < j by (4.1).

(R5) This follows from the fact that V (Rij) = V (Ri−1,j) and that Rij satisfies (R5).

Therefore the existence of Ri−1,j contradicts Claim B(i− 1, j).

Case B3. {u1, uf} ∩Xi−1(a) = ∅.
As in Case B2, we can now deduce that u1 is adjacent to some us, and uf is adjacent to some

ur, where {us, ur} ⊆ Yi−1(a)−Yi−2(a) and 1 < s, r < f . By (R3), we have {ur−1, ur+1, us−1, us+1}
⊆ Xi−1(a). By (6.1), we obtain {ur, us} ∩D[a1, a2m+2] = ∅ when m ≥ 1. Set

Ri−1,j :=

8<
:
us−1
←−
Riju1us

−→
Rijuruf

←−
Rijur+1 if r ≥ s,

ur−1
←−
Riju1us

−→
Rijufur

−→
Rijus−1 if r < s.
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It is then a routine matter to check that (R1)-(R5) (with i− 1 in place of i) are all satisfied by

Ri−1,j . Thus the existence of Ri−1,j contradicts Claim B(i− 1, j).

Similarly, we can justify Claim B∗(i, j) for all i > 1.

Proof of Claim C(i) for i > 1.

We proceed by induction on i. Suppose i > 1 and C(i0) holds for all i0 with 1 ≤ i0 < i. To

prove C(i), assume on the contrary that such a path Ti exists with corresponding v0 /∈ Yi−1(v)

such that N(v0) ̸⊆ V (D) ∪ {v}, where v ∈ {a, b}. We consider three cases.

Case C1. {u1, uf} ⊆ Xi−1(v).

In this case set Ti−1 := Ti. Then the existence of this path contradicts Claim C(i− 1).

Case C2. Precisely one of u1 and uf is in Xi−1(v).

In this case symmetry allows us to assume that u1 ∈ Xi−1(v) while uf /∈ Xi−1(v). Then

uf is adjacent to some y ∈ Yi−1(v) − Yi−2(v). As v0 /∈ Yi−1(v), we have y ̸= v0. Using (T4),

we see that y ∈ V (Ti), so y = ur for some r with 1 ≤ r ≤ f . In view of (6.1), we obtain

ur /∈ D[a1, a2m+2] when m ≥ 1. Since both u1 and uf are in Vi for i = 1 or 2, we deduce that

1 < r < f . Using (T3), we get {ur−1, ur+1} ⊆ Xi−1(v). Let Ti−1 := u1u2 . . . urufuf−1 . . . ur+1.

We can now show that (T1)-(T4) (with i− 1 in place of i) are all satisfied by Ti−1; the details

of the proof are given below.

(T1) Since ur /∈ D[a1, a2m+2], it is clear that a1
−→
Da2m+2 must remain a subpath of Ti−1 when

m ≥ 1.

(T2) By assumption, u1 ∈ Xi−1(v). As remarked above, ur+1 ∈ Xi−1(v).

(T3) Since Ti satisfies (T3), the only possible vertex on Ti−1 that can violate (T3) is ur. However,

since ur /∈ Yi−2(v), we have ur /∈ Yh(v) for all h < i− 1 by (4.1).

(T4) This follows from the fact that V (Ti) = V (Ti−1) and that Ti satisfies (T4). As v0 /∈ Yi−1(v),

we have v0 /∈ Yi−2(v) as well by (4.1).

Hence the existence of Ti−1 contradicts Claim C(i− 1).

Case C3. {u1, uf} ∩Xi−1(v) = ∅.
As in Case C2, we can now deduce that u1 is adjacent to some us, and uf is adjacent to some

ur, where {us, ur} ⊆ Yi−1(v)−Yi−2(v) and 1 < s, r < f . By (T3), we have {ur−1, ur+1, us−1, us+1}
⊆ Xi−1(a). By (6.1), we obtain {ur, us} ∩D[a1, a2m+2] = ∅ when m ≥ 1. Set

Ti−1 :=

8<
:
us−1
←−
Tiu1us

−→
Tiuruf

←−
Tiur+1 if r ≥ s,

ur−1
←−
Tiu1us

−→
Tiufur

−→
Tius−1 if r < s.

It is then a routine matter to check that (T1)-(T4) (with i− 1 in place of i) are all satisfied by

Ti−1. Thus the existence of Ti−1 contradicts Claim C(i− 1).

This completes the proof of all the claims.
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