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Abstract

Let G = (V4, Vi, E) be a balanced bipartite graph with 2n vertices. The bipartite binding
number of G, denoted by B(G), is defined to be n if G = K,, ,, and
min  min |N(S)|/|S|

ie{1,2} 0#sCv;
IN(S)|<n

otherwise. We call G bipancyclic if it contains a cycle of every even length m for 4 < m < 2n.
The purpose of this paper is to show that if B(G) > 3/2 and n > 139, then G is bipancyclic;
the bound 3/2 is best possible in the sense that there exist infinitely many balanced bipartite
graphs G that have B(G) = 3/2 but are not Hamiltonian.
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1 Introduction

Let G = (V, E) be a graph. The binding number of G, denoted by b(G), is defined to be

min [N (S)I/1S],
IN(S)I<IV]

where N(S) ={v €V : uv € E for some u € S}. This parameter was introduced by Woodall
[8] to measure how well the vertices of G are bound together; in particular, if b(G) is large, then
G has lots of edges fairly well distributed. The binding number resembles some other graph
invariants, such as the minimum degree, connectivity, and toughness, in certain ways, while
provides more global structural information. In the literature there are a number of results
showing that various properties of G are consequences of assumptions on the value of b(G),

including the following theorem on Hamiltonian cycles.
Theorem 1.1 (Woodall [8]) Every graph G with b(G) > 3/2 is Hamiltonian.

Call G pancyclic if it contains a cycle of every length m for 3 < m < |V|. As conjectured by
Woodall [8] and proved by Shi [6, 7], this assertion can be strengthened as follows.

Theorem 1.2 (Shi [6, 7]) Every graph G with b(G) > 3/2 is pancyclic.

Observe that for bipartite graphs, the binding number does not give much information about
their structures (or well-boundness) when compared to nonbipartite graphs. For instance, both
K, (a complete bipartite graph) and nK5 (union of n disjoint edges) have binding number 1
for n > 1; their structures, however, are dramatically different. Furthermore, for any bipartite
graph G = (V1,Va, E), we have b(G) < min {|V2|/|V1|, |V1|/|V2|} < 1. Hence neither Theorem
1.1 nor Theorem 1.2 applies to G. In graph theory it is common for results to have a “bipartite”
version; such a typical example is Jackson’s theorem [3], which asserts that every 2-connected
k-regular graph with at most 3k vertices is Hamiltonian. Haggkvist [2] conjectured that every
2-connected k-regular bipartite graph G with at most 6k — 6 vertices is Hamiltonian, which was
confirmed by Jackson and Li [4] when G contains at most 6k — 38 vertices. So a natural question
to ask is: What are the counterparts of the above binding number theorems on bipartite graphs?
To find the answer, clearly we need a new concept of binding number in order to better reflect
the bipartiteness.

Let G = (V1, V4, E) be a balanced bipartite graph with 2n vertices. The bipartite binding
number of G, denoted by B(G), is defined to be n if G = K, ,, and

min  min |N(S)|/|95]

ie{1,2} 0£5CV;
IN(S)|<n

otherwise. We call G bipancyclic if it contains a cycle of every even length m for 4 < m < 2n. The

purpose of this paper is to establish the following bipartite version of the above two theorems.



Theorem 1.3 Let G be a balanced bipartite graph with 2n vertices. If B(G) > 3/2 andn > 139,
then G is bipancyclic.

We shall exhibit infinitely many balanced bipartite graphs G that have B(G) = 3/2 but are
not Hamiltonian in Section 2 (see Proposition 2.5). So the bound 3/2 in our theorem is best

possible. Moreover, the proof techniques of our theorem are substantially different from those
of Theorems 1.1 and 1.2.

Let us introduce some notations before proceeding. Given a graph G, we use V(G) and
E(G) to denote its vertex set and edge set, respectively. For each v € V(G), we use d(v) and
N (v) to denote its degree and neighborhood, respectively. For each S C V(G), it is clear that
N(S) = Uyes N(v). For each subgraph H of G, let G — H denote the subgraph of G induced by

V(G) —V(H), and set Ng(S) := N(S)NV(H). When G is a bipartite graph with bipartition
(V1,Va), we set V;(H) :=V;NV(H) fori=1,2.

Throughout this paper, we use C, to denote a cycle of length n, and assume that each
cycle C' has an implicit clockwise orientation. With this assumption, UZC and v, will stand for
the successor and predecessor of a vertex v on C' under this orientation, respectively; we shall
drop the subscript C if there is no danger of confusion. We define v** recursively by v1° = v
and vt0*+D = (p1t)* for 4 > 0, and define v—* analogously. For any two vertices u and v on
C, let uﬁv denote the path from u to v on C in the clockwise direction, and let u%v denote
the path from u to v on C in the counterclockwise direction. Set Clu,v] = V(ugv), and
C(u,v] := C[u,v] — {u}, etc. For each X C V(C) and i > 1, define X := {7 : z € X} and
X7 :={27": v € X}. If X = No(v) for some vertex v, then we shall simply write N/ (v)
and N;'(v) as opposed to the more cumbersome (N¢(v))** and (Neo(v))™ . We also define
X+0 .= X =: X0 for convenience.

The remainder of this paper is organized as follows. In Section 2, we derive some basic
properties satisfied by bipartite binding numbers. In Section 3, we show the existence of certain
nested cycle structures in G under some assumptions. In Section 4, we first establish a bipartite
version of the hopping lemma originally developed by Woodall [8], and then employ it to further
grow the nested cycle structures obtained in Section 3 under some other assumptions. In Section
5, we prove that G contains a cycle of every even length based on the aforementioned nested

cycle structures.

2 Preliminaries

Let G = (Vi, Va2, E) be a balanced bipartite graph with 2n vertices such that G # K, ,. Recall
the definition of the bipartite binding number B(G); a subset S of V;, for i = 1 or 2, is called a
binding set of G if [N (S)| < n and B(G) = |N(5)|/]S|.



The following proposition asserts that the value of B(G) is uniquely determined by G rather

than its balanced bipartition, so the bipartite binding number is well defined.

Proposition 2.1 Let G be a balanced bipartite graph. Then the value of B(G) is independent

of the choice of balanced bipartition.

Proof. If G is connected, then the choice of balanced bipartition is unique (up to permutation
of V1 and V3), so the statement holds trivially. It remains to consider the case when G is
disconnected.

Let (V1,V2) be a balanced bipartition of G such that the value of B(G) is minimized (let
¢ denote this minimum value) and, subject to this, a corresponding binding set S has smallest
possible size. We claim that S is entirely contained in one component of GG, for otherwise, let
G1,Ga,. .., Gy be all components of G that intersect S, where k > 2, and set S; := SNV(G;) for
1 <4 < k. From the minimality assumption on |S|, we deduce that |N(S;)| > ¢|S;| for all ¢ and
hence ¢|S| = X%, ¢|Si| < 2F_ | IN(Si)| = [N(S)| = ¢|S|, this contradiction justifies the claim.
It follows that for any balanced bipartition (U1, Us) of G, either S C Uy or S C Us. Therefore,
S is also a binding set of G with respect to bipartition (Uy, Us). |

Proposition 2.2 Every balanced bipartite graph G with B(G) > 1 is connected. |

Let us now illustrate bipartite binding numbers using two special classes of graphs.
-1
Proposition 2.3 B(Cy,) = n 5 forn > 3.
n—
Proof. Let (V1,V3) be the bipartition of Cy,, and let S be a nonempty subset of V;, i =1
or 2, with [N(S)| < n. From the structure of Cy,, we see that |S| < n — 2 and |S| < |N(S5)].

Hence

IN(S)| |S]+1 1 1 n—1
> =1 —>1 [
B R I )
with equality when S = V; — {u,v}, where u and v are two vertices in V; of distance 2 on Cl,.
So the statement is established. |

Let s and ¢ be two positive integers, and let sK5 @tK5 be the bipartite graph obtained from
the union of s disjoint edges a;b; for 1 < i < s by adding 2t vertices ¢y, ca,...,¢,d1,da, ..., d;
and adding edges a;d; and b;c; for all 1 <1i < s and 1 < j <t (see Figure 1). For convenience,
set A := {a1,aq9,...,as}, B := {b1,ba,...,bs}, C :=={c1,ca,...,¢t}, and D := {dy,da,...,d;}.
Clearly, sK3 @ tK 2 has a unique bipartition (V;, V2), where V3 = AUC and Vo = BU D.

Proposition 2.4 Let s and t be two positive integers. Then

1
o I{E Zf 821,
B(sK> & 1K) = s s—1+t

kmin{;, i} if s> 1.
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Figure 1: sKy @ tK»

Proof. Let G = sKy ®tK5 and let S be a binding set of G. Symmetry allows us to assume
that S C V4. Thus |[N(S)| < |Vz| by definition.

If s=1,thena; ¢ S. So.SC C and N(S)={b1}. As S is a binding set of G, we must have
S = C. Therefore, B(G) = |N(S5)|/|S| = 1/t.

If s > 1, then A — S # (). Furthermore, SN A = () provided SN C # (), for otherwise
we would have N(S) = Vs, a contradiction. It follows that S is either a proper subset of A
or a subset of C. Thus |N(S5)| equals |S| + ¢ in the former case and s in the latter case. As
S is a binding set of G, either S = A — {a;} for some 1 < i < s or § = C. From the defi-

-1+t
nition we further deduce that B(G) = |N(S)|/|S| = min { s e T

-, 7}, completing the proof. i
t s—1

The following proposition asserts that the bound 3/2 in Theorem 1.3 is indeed the threshold

for a balanced bipartite graph to be Hamiltonian or bipancyclic.

Proposition 2.5 Let G = sKo®tKy. Then B(G) = 3/2 if s = 2t+1, and G is not Hamiltonian
if s> 2+ 1.

Proof. The first statement follows instantly from Proposition 2.4. If s > 2t + 1, then
G — (C' U D) contains precisely s components (see Figure 1), with s > |C'U D|. It follows that

G contains no Hamiltonian cycle. |

The following lemma gives an alternative definition of the bipartite binding number.



Lemma 2.6 Let G = (V1, V2, E) be a balanced bipartite graph with 2n vertices. If G # Ky,

then B(G) is the largest nonnegative number ¢ such that
¢N(S)| > (¢ —1)n+ 15|
for every nonempty subset S of V; (i = 1,2).

Proof. By definition, it suffices to show that for any given constant ¢ > 0, the following two
statements are equivalent:

(a) ¢|N(S)| > (¢ — 1)n + | S| for every nonempty S C V; and i = 1,2;

(b) IN(S)| > min{c|S|,n} for every nonempty S C V; and i = 1,2.

To this end, let S be a nonempty subset of V; for i = 1 or 2, and let T':= V3_; — N(S). Then
N(T) and S are disjoint subsets of V;, so |[N(T')| + |S| < n and hence

(© IN(D)| <n—|S| <n—1.

If (a) holds, then (with 7" in place of S) either ¢|N(T)| > (¢ — L)n+ |T'| = en — |[N(95)] or
T = (). In the former case, |[N(S)| > min{c(n — |[N(T)|),n} > min{c|S|,n} by (c). In the latter
case, Va_; — N(S) = 0. So |[N(S)| = n > min{¢|S|,n}. Combining these two cases, we obtain
(b).

Conversely, if (b) holds, then (with 7" in place of S) either |N(T")| > min{c|T|,n} =
min{cn — ¢|N(S)|,n} or T'= . In the former case, ¢|N(S)| > cn — |[N(T)| > (¢ — 1)n+ |S| by
(¢). In the latter case, V3_; — N(S) = (. So [N(S)| = n and hence ¢|N(S)| = cn > (c—1)n+|S|.

Combining these two cases, we establish (a). 1

As usual, we use §(G) to denote the minimum degree of a graph G. The above lemma yields

a lower bound on ¢§(G) when restricted to |S| = 1.

Corollary 2.7 Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices. If B(G) >

c >0, then
(c=1)n+1
Y

(G) >

Lemma 2.8 Let G = (V1,Va, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2,
then
IN(S)| = [(n+2|5]+1)/3]

for every nonempty proper subset S of V; (i =1,2).
Proof. As the statement holds trivially if G = K, ,,, we assume hereafter that G # K, .
Let B(G) = c and let S be a nonempty proper subset of V; for i = 1,2. By Lemma 2.6, we have

-1 —
(c—Dn+ls| _ _n-Is|

N 2 -



This together with n — |S| > 0 and ¢ > 3/2 implies

2(n —|S])

N —
IN)| >0 - =20

and hence the desired statement holds. ]

The following lemma will play an important role in the subsequent proofs.

Lemma 2.9 Let G = (V4, Vs, E) be a balanced bipartite graph with 2n vertices and with B(G) >
3/2. Let X CV; and Y C Va_;, with i =1 or 2, be nonempty sets such that | X|, |Y|, |N(X)|,
and |[N(Y)| are all less than n. If |Y| > |[N(X)| — t for some nonnegative integer t, then
IN(Y)| > |X|+ (2n+4)/5 —t.

Proof. Symmetry allows us to assume that ¢ = 1. For S = X,Y, by Lemma 2.8 and the
definition of B(G), we have

(2.1)

n+2|8|+1 3|S\+1}

|N<s>|zmax{ oS e

It follows that

2| X 1 3|X 1
Y!>|N<X>r—t>max{”+’ e, 31X -t}

3 ’ 2
Plugging this inequality into (2.1) (with S =Y"), we obtain

(oo (B ) 41 3 (20 ) 1)
3 ’ 2

IN(Y)| > max

Consequently,
IN(Y)| = [X |+ max {f (), g(t)} — ¢,

where f(x) :== (n+ 2+ 2)/3 and g(x) := (n —x + 2)/2. Observe that f(z) is an increasing
function of x, while g(z) is a decreasing function of z, and that f(x¢) = g(xo) = (2n+4)/5, with
xo = (n+2)/5. Hence max {f(x), g(x)} > f(xo) for all z. Therefore |[N(Y)| > |X |+ f(xo)—t =
| X |+ (2n+4)/5 —t, as desired. 1

3 Nested Cycle Structures

Let £ and m be two positive integers with £ > m + 2, let C' = aqas .. . asga; be a cycle of length
k, where a;41 = a;r for each i (with agr11 = a1), and let D be obtained from C' by adding m
chords a;aom43—; for 1 < i < m. We write D as a1az .- - @G2m+202m+3 - - - a2xa1, and denote any

m

graph isomorphic to D by Ci (see Figure 2 for C%;). Observe that CI} contains m + 1 nested
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cycles Coi, Cop—2, . . ., Cop—a2y, simultaneously. Intuitively, C} can be viewed as a ladder with m

rungs; our proof will rely heavily on such ladders. For any vertex v on D, define v := vg and

v~ :=vg. For any two vertices u and v on D, define wDv = uCv and Dlu,v] := Clu,v], etc.
To establish the main result, we first show the existence of Cy, C{}, and one of C3, C%,, and

C%,. The following statement and its proof are inspired by its counterparts on general graphs

due to Reiman [5].

Lemma 3.1 Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices. If |E| >
g (1 + v4n — 3), then G contains a Cy.

Proof. Suppose G contains no Cy. Consider triples of the form (z, {y, z}) such that x € V;,
Yy, z € Vo with y # z, and that z is adjacent to both y and z. Since G contains no Cy, each pair
{y, 2z} gives rise to at most one such triple. Hence the number of such triples is at most <g)

On the other hand, since each = € V] gives rise to exactly (d(;)) such triples, the number of
triples of the above form is equal to > .y, (d(;)). Let 0 = 3" ¢y, d(z)/n. Then o = |E|/n. As
the extended binomial coefficient (;) is a convex function, by definition (‘27) <1 > zev; (d(;)). So

1
(g) <1 (g) and hence 02 — o — (n—1) < 0. Solving this inequality yields o < 3 (1 +V4n — 3).

n

Therefore |E| < g (1 + V4n — 3), a contradiction. 1

Lemma 3.2 Let G = (V1,Va, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2
and n > 3, then G contains a Cy.

Proof. By Lemma 2.8, we have §(G) > [(n + 3)/3]. This together with n > 3 implies
|E| > nd >n[(n+3)/3] > 2(1 +4n = 3).
Thus the statement follows instantly from Lemma 3.1. |
By Propositions 2.3 and 2.4, Cg and 3Ky ® K2 have bipartite binding numbers 2 and 3/2,

respectively, yet neither of them contains a C4. So the figures in the above lemma are both

sharp.



Lemma 3.3 Let G = (V1, Va2, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2
and n > 10, then G contains a C}.

Proof. By Lemma 3.2, G contains a cycle x1y1zoy2x1 of length 4, with X = {x1,22} C V)
and Y = {y1,y2} C Vo. For i = 1,2, define X; = N(y;) — X and Y; = N(z;) - Y.

Assume on the contrary that G contains no C¢. Then there is no edge between X; U Xo
and Y7 UYs. Furthermore, x; ¢ N(Y2) or y1 ¢ N(X32). Symmetry allows us to assume that
x1 ¢ N(Y2). Thus Y1 NY; = (). By Lemma 2.8, we obtain |X1| > [(n+3)/3] —2 = [(n—3)/3],
and the same is true for |Yi| and |Y2|. Hence |Y; U Ya| > 2[(n — 3)/3].

As X is nonempty and X; N N(Y; UY3) = (0, we have

n > |X1|+|N(Y1U3Y2)|
> ((n—3)/31+§-2[(n—3)/31,

son >4[(n—3)/3] + 1 and hence n > 4(n — 3)/3 4+ 1, which implies n < 9, a contradiction. 1

Lemma 3.4 Let G = (V1, V5, E) be a balanced bipartite graph with 2n vertices. If B(G) > 3/2
and n > 14, then G contains at least one of C3, C3,y, and C%,.

Proof. Let D = Z1y1Z20223y371 be a C} in G; the existence of D is guaranteed by Lemma
3.3. Recall the definition, x1y92 is an edge in D. Set X := {z1,z2,23} and Y = {y1,¥2,¥3}.
Symmetry allows us to assume that X C V; and Y C V,. Define Ni(z3) = N(z3) — Y,
No(xz3) = N(Ni(z3)) — X, and N3(z3) = N(Na(z3)) — Y. Define N;(y3) symmetrically for
1< <3,

Assume on the contrary that G contains none of C%, C%,, and C%,. We propose to show that
N(N;(z3)) " N;j(ys) =0 for alll <4, j <3. (3.1)

Otherwise, let (i,7) be a pair such that N(N;(xz3)) N N;(y3) # 0 and, subject to this, i + j
is minimum. Then i = j (mod 2) and G[{z3,ys} U (Ui_, Ny(23)) U (U/_, Ny(y3))] contains an
(z3,y3)-path 7 of length i + j + 1. It follows that y3zigaz2y2T37yYs is a Cgﬂ-ﬂ in G, this
contradiction establishes (3.1).

By taking i = j = 1 in (3.1), we see that Na(z3) N Ni(y3) = 0, so y3 ¢ N(Na(z3)). Repeated
application of Lemma 2.8 yields

|Ni(z3)] > [(n+3)/3] = [Y]> (n—6)/3,

|Na(z3)| > [(n+2[Ni(z3)| +1)/3] — [X]| > (5n — 36)/9,

INs(z3)] > [(n+2|Na(23)| +1)/3] = |V = {ys} > (19n — 117)/27, and
IN(N3(z3))| > [(n+2|N3(z3)| +1)/3] > (65n —207)/81.



Similarly, |[N3(y3)| > (19n—117)/27. In view of (3.1), N(NN3(x3)) and N3(y3) are disjoint subsets
of Vi, so |[N(Ns(z3))| + | N3(ys3)| < n, which implies 41n < 558 and hence n < 14, contradicting
the hypothesis. ]

Let us digress briefly to introduce a term and make some simple observations, which will be
used to show the existence of the aforementioned ladders.

Let D = aqas ... agar . ..asa1 be a C’%k, where k > 4 and a; € Vi(D). A family (Ag, A1,..., A),
with 2 <t <4, of subsets of V(D) is called good if the following two conditions are satisfied:

e AgUAT U---UAT CVR(D), and

o Af ﬂA;rj C{veVa(D): {v7"v7} N Dlag,as) # 0} for all 0 <i < j <t

Lemma 3.5 Suppose (Ag, A1, ..., As) is good. Then the following statements hold:
(i) If t = 4 and ag ¢ AF? N A2, then |Ao| + X0, |A| <k +7;
(i) If t € {2,3}, then ' _|As| < k+ [5t/2].

Proof. Since (Ag, A1,...,A:) is a good family of subsets of V(D), it is a routine matter to
check using definition that (where A} exists only when ¢ > i for each i)
(1) AgN AT and Ag N A5? are both subsets of {ag, a4, ag};
(2) Ap N A?{S and Ag N Afl are both subsets of {ag, a4, ag, ag};
(3) A N AF? is a subset of {a4,ag};
(4) Af n A§3, A;Q N Ag,f?’, Afn A% and A;Q N Afl are all subsets of {a4, ag,ag}; and

(5) A3 N AJ* is a subset of {ag, ag}.
In the remainder of our proof, we use f(v) to denote the number of sets in {Ag, A3?, A3, Af*}
if t =4 and in {Ag, A],..., A} if t € {2,3} that contain a vertex v.

(i) By (4) and (5), ag is contained in at most one set in {A32, A$®, A} so f(az) < 2. By
(5), we have f(as) < 3. By hypothesis, ag ¢ A32 N AF>. So f(ag) < 3. From (1) we deduce
that f(ag) < 3. For all vertices v € Va(D) — {az, a4, as, ag}, from (1), (2), (4), (5) we see that

f(v) < 1. Combining the above observations, we obtain

Aol + A2+ AT + [T = X fo) SPA(D)+T=k+T.
veVa(D)
Thus (i) is established.
(ii) Let us consider the case when t = 2. By (3), we have as ¢ A] N A3% So f(az) < 2.
Clearly, f(a4) < 3 and f(ag) < 3. Moreover, from (1) and (3) we deduce that f(v) < 1 for all
v € V(D) — {ag, a4, a¢}. Hence

[ Aol + [AT [+ AF% = D" fv) < [Va(D)| +5 =k + [5t/2].
veVa(D)

10



It remains to consider the case when ¢ = 3. By (3) and (4), a2 is contained in at most one
set in {A], Ag% AF3}. So f(ag) < 2. Clearly, f(as) < 4 and f(ag) < 4. From (1) and (3), we
see that ag is contained in at most one set in {Ag, AT, A3}, so f(ag) < 2. Moreover, for all
vertices v € Va(D) — {ag, a4, ag, asg}, from (1)-(4) we deduce that f(v) < 1. Therefore,

Z\A\— 3 f(v) < |Va(D)] +8 =k + [5t/2].

veVa(D)

This completes the proof of the present lemma. |

Lemma 3.6 Let G = (Vi, Vo, E) be a balanced bipartite graph with 2n vertices, let D = ajaz - .- ag
ar...agkay be a C3 in G with k > 4, and let Xo, X1, ..., Xt be disjoint subsets of V(G — D)
with t € {3,4} such that

(i) Xo={xo}, where {xg,a1} C Vi;

(ii) | X1] =1 ift =4; and

(i1i) X; C N(X;—1) for1 <i<t.
Suppose u is a vertex in Np(zo) — {as,as}. Let Ag := Np(u®) — {ut? w22} and A; =
Np(X;) for 1 <i <t. If G contains none of C§k+2, C§k+4 and 022k+67 then (Ao, A1,...,As) is
a good family of subsets of V(D).

Proof. Assume the contrary: there exist 0 < i < 7 < ¢t and v € A;-H N A;rj such that
{v7", v} N Dlag,as] = 0. Set H := G — D.

Let us first consider the case when i = 0. Now v € Np(u™) — {ut?, u (=21 v=7 € Np(X;)
and {v,v=7}NDlaz, as] = . Observe that both u and v are in Vo and u ¢ D(v~7, v) (for otherwise
v =u"? and j € {3,4}, a contradiction). Let x; be a neighbor of v/ in X; and let P be an
(%0, xj)-path of length j in H[UgZOXS]. Since u € Va(D) and v € Ag C Va(D) — {ut2, ut2(t=2)}
we have v/ # u and hence u ¢ D[v™/,v). This together with {v,v=7} N D[as,as] = () implies
that either D[v=7 v] C D[u*,a;] or D[v=7,v] C D[ag, u]. Therefore

o G1as agﬁuxoﬁxj Jguﬂ)Bal if D[v™7,v] C D[ut,a1],
ialag...%ﬁvﬂxj Pmouﬁmﬁﬁal if D[v=7,v] C Dlag, u]

isa 022k 4o in G, contradicting the hypothesis.

Next, let us consider the case when i > 1. Now v™% € Np(X;) and v™J € Np(X;). Let
z; be a neighbor of v™* in X; and let y; be a neighbor of v™7 in X;. By (iii), H[U._, 5X;]
contains a path Q := x4_3x4o...2; of length i — (¢t — 3), where z; € X for t —3 < s < 4.
Similarly, H[ngt_ng] contains a path R := y;_3y;—2...y; of length j — (¢t — 3), where ys € X,
for t —3 < s < j. Since |X;—3| = 1, we have z;_3 = y;—3. Let £ be the largest subscript with
t—3<{¢<isuchthat 2y =yp. Then 0 <i—¢ < (t—1)— (t —3) < 2. Set S::a:it_):cgﬁyj.
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Clearly, S is a path in H[ngt_3Xs} of length j — i + 2(i — ¢). Thus we obtain a 022k+2(iff)+2
. . = .
from D by replacing v™7 Bv_l with v™7y; S x;v™", contradicting the hypothesis again. |

Our next two lemmas show that if G contains a C%k, denoted by D, such that G — D has a
path with length at least three, then we can find a C3, in G based on the above two lemmas,
for some t with £ +1 <t <k+ 3.

Lemma 3.7 Let G = (V1,Va, E) be a balanced bipartite graph with 2n vertices, let D = a1az - - . ag
az...askay be a C3 in G, and let mow1x22374 be a path in G—D such that Np(xo)—{az, as, as, as}
# (0. If B(G) > 3/2, n > 139, and k > 4, then G contains at least one of C§k+2, C’sz+4, and

2
02k+6 :

Proof. Assume on the contrary that
G contains none of Cjy, 5, Capy, and C3y . (3.2)

By Proposition 2.2, G is connected. Symmetry allows us to assume that xy and a; are in the
same color class of G, for otherwise, rewrite D as biby...bgbr...barb1, where b; = ar_; for
1 <4< 6. Then zy and by are in the same class, as desired. Renaming subscripts of V;’s if
necessary, we may assume that {zg, a1} C Vj.

Let H = G — D and u € Np(zg) — {ag,as4}. Define X; := {z1}, Xo := {z2}, X3 :=
Ny (z2) — {z1}, X4 := Np(X3) — {zo,z2} and X5 := Ng(X4) — (X3 U {z1}) (see Figure 3).
Note that X, X9, X3, X4, and X5 are disjoint subsets of V(H) — {zo}. By (3.2), we have

X3 X4 X5

Figure 3: D and X;’s

Ny(ut)N(X1UX3UX;5) =0, so Ng(ut), X1, X3, and X5 are disjoint subsets of Vo(H), which
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implies that |Ng(u™)| + |X1] + | X3] + | X5| < n — k and hence

[N (uh)] + [Na(z2)] + [Ng (Xa) — (XsU{or})] < n— k. (3-3)
Set Ag := Np(u™) — {u™?,u™} and A; := Np(X;) for 1 <i < 4. By Lemma 3.6,

(Ao, A1, Az, A3, Ay) is a good family of subsets of V(D). (3.4)

Observe that
as ¢ A3? N AL, (3.5)

for otherwise, a4 is adjacent to zo and ag is adjacent to some vertex z in X3. It follows that
a2a3x3x2a4a5a63a2 is a C3,,, in G, this contradiction to (3.2) establishes (3.5).
From (3.4), (3.5), and Lemma 3.5, we deduce that |Ag| + |Aa| 4+ |A3| + |A4| < k + 7. Hence

INp(u")| + [Np(2)| + [Np(X3)| + |Np(Xy)| < k +9.
Adding this inequality to (3.3) yields
IN ()| + [N (z2)| + [Np(X3)| + [N(X4)| = |X3] < n + 10. (3.6)

By (3.2), we have Np(X3) C Vi(D) — {u*} and Np(Xy4) C Vao(D) — ({u=2,u*?} — {az2, as}),
so |[N(X;)| < nfori=3,4. As [X4| = |[Ny(X3) — {zo, 22} > |[N(X3)| — (|Np(X3)| + 2), the
triple (X,Y,t) = (X3, X4, |[Np(X3)| + 2) satisfies the hypothesis of Lemma 2.9 and hence

IN(X4)| = [X5] + (2n +4)/5 = (IND(X3)| + 2).

Combining this inequality with (3.6) gives |N(u™")| + |N(z2)| + (2n — 6)/5 < n + 10. Thus, by
Lemma 2.8, we obtain 2(n+3)/34(2n—6)/5 < n+10, which implies n < 138, this contradiction

completes the proof of our lemma. |

Lemma 3.8 Let G = (V1, Va, E) be a balanced bipartite graph with 2n vertices, let D = a1az - - - ag
a7 ...as01 be a C’%k in G, and let zox129T3 be a path in G—D such that Np(xzo)—{as, a3, as,as}
# 0. If B(G) > 3/2, n > 139, and k > 4, then G contains at least one of 0221@-5-2’ C§k+4, and

2
CQkJrG :

Proof. Assume on the contrary that
G contains none of Cay o, C3 4, and Oy 4. (3.7)

By symmetry, we may assume that {zg,a1} C V; (see the first paragraph of the proof of the

preceding lemma).
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Let H=G—-D and u € ND(SUQ) — {ag,a4}. Define X7 := NH(I‘()) — {Ig}, X9 = NH(Xl) —
{zo}, and X3 := Ny (X2)— X1. If there exists a vertex x4 in Ny (x3) —{xo, 22}, then zozixox324
would be a path in G — D and thus we reach a contradiction to (3.7) by Lemma 3.7. Therefore

Ny (x3) € {wo, 22} (3.8)
Similarly,
NH(Xg) - {xo} U Xo. (39)

By (3.7), we have Ngy(u™) N (X3 U X3) = 0, so Ng(u™), X1, and X3 are disjoint subsets of
Vo(H). Tt follows that [Ny (u™)| + | X1] + |X3| < n — k and hence

[N (u™)| + [Nu(X2)| <n — k. (3.10)

From Lemma 3.6, we see that (Np(u™) — {u™?}, Np(X1), Np(X2), Np(X3)) is a good family of
subsets of V(D). By Lemma 3.5, we thus obtain

(INp(u™)| = 1) + [Np(X1)| + [Np(X2)| + [Np(X3)| < k + 8.
Adding this inequality to (3.10) yields
d(u™) + |[Np(X1)| + [N (X2)[ + [Np(X3)| < n +9. (3.11)

In view of (3.7), we get Np(X1) C Vi(D) — {u*} and Np(X3) C Va(D) — ({u=2,u™?} —
{CLQ,OL4}). Hence ‘N(XZ)’ < nfori= 1,2. As |X2| = |NH(X1)—{JJOH > ‘N(Xl)‘—(|ND(X1)|+1),
the triple (X,Y,t) = (X1, Xo,|Np(X1)| + 1) satisfies the hypothesis of Lemma 2.9 and hence

IN(X2)| = | X1 + (2n +4)/5 = (INp(X1)[ +1).
Combining this inequality with (3.11) gives
du®) +|X1|+ (2n+4)/5 -1+ |Np(X3)| <n+9.

Using (3.8), we obtain |[Np(X3)| > |Np(x3)| = |N(z3)| — |[Ng(x3)| > d(x3) —2, so d(u+)+(2n+
4)/5+(d(z3)—2) < n+9. From Lemma 2.8, it follows that (n+3)/3+(2n+4)/54+(n+3)/3—-2 <

n + 9. Therefore n < 123, this contradiction completes the proof of our lemma. |

4 A Generalized Bipartite Hopping Lemma

The Hopping Lemma was first introduced by Woodall [8] in his proof of Theorem 1.1, which
demonstrates that the approach of iterating cycle exchanges can be highly effective for finding

long cycles. Variations of the lemma were subsequently developed by various authors for use
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in different works. In particular, Ash [1] developed a basic version of the hopping lemma for
bipartite graphs.
The following lemma is an extract of results from Ash [1] (see Lemmas 4.3, 4.4, 4.9, 4.16;

see also Jackson and Li [4]).

Lemma 4.1 (Ash [1]) Let G = (V1, Vs, E) be a bipartite graph, and let C be a longest cycle of
G such that the number of components of G — C' is as small as possible and, subject to this, a
smallest component H of G — C' is as small as possible. Suppose there exist a € V1 — V(C) and
be Vo —V(C) such that either a and b are both isolated vertices in G — C or V(H) = {a,b}.
For each vertex v in G —C, set Yp(v) := 0, and define recursively sets X;(v) and Y;(v) fori >1
by X;(v) := Ne(Yici(v) U{v}) and Yi(v) :={y € C: y~,y" € X;(v)}. Set X, := U;>1X;(v)
and Y, 1= U;>1Y;(v). Then the following statements hold:

(i) N(Y,) C X, forv € {a,b};

(it) XaNYy,=0=X,NY,;

(iii) 1 X NXp| <1 and | X, NXy| < 1; and

(i) XfNnXy=0=X,NX,ifabe E.

For convenience, set C9, := Co for all k > 2. Observe that in Ash’s lemma C' is assumed
to be a longest cycle of G under certain restrictions, while in our proof we need a generalized
version which can be used to deal with the case when G contains some C3} (not necessarily a
longest one) but no C3;_ , for m > 0 under some other restrictions. Let us now present this
generalized bipartite hopping lemma, which ensures that the ladder structure can be preserved

when growing a cycle.

Lemma 4.2 Let G = (V1, Vo, E) be a bipartite graph, and let D = @1az - - - Gam+202m+3 - - - 2141,
be a C3y in G, with m > 0 and a; € Vi. Suppose G contains neither Cyy 5 nor another Cyy,
denoted by D', such that G — D’ has fewer components than G — D, and suppose there exist
a€Vi—V(D) and b € Vo — V(D) such that both of them are isolated vertices in G — D. For
each vertex v in G — D, set Yo(v) := 0, and define recursively sets X;(v) and Yi(v) fori > 1
by X;(v) := Np(Yi—1(v) U{v}) — D(a1,a9m+2) and Y;(v) := {y € D : y~,y" € X;(v)}, where
D(ay,a9ms2) = 0 if m = 0. Set X, := U;>1X;(v) and Y, := U;>1Yj(v). Then the following
statements hold:

(1) N(Y,) C X, UD(ay,azm+2) for v e {a,b};

(it) XoNYy,=0=X,NY,; and

(iii) | XFNXp| <1 and|X; NXp <1
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Since the proof of this lemma is very tedious, we postpone it till Section 6 so that the proof
of our main theorem proceeds in a smoother and more coherent way. Clearly, the following

monotonicity property holds for the objects defined in the above two lemmas:
X1(v) € Xo(v) C X3(v) C...C X, and Yi(v) CYa(v) CY3(v) C...CY,. (4.1)

As an application of the above generalized bipartite hopping lemma, let us derive the following

statement, which will be used later.

Lemma 4.3 Let G = (V1, Va2, E) be a balanced bipartite graph with 2n vertices, and let D =
a1a2 . .. A2m42a2m43 - - - agga1 be a CFf in G, with m > 0. Suppose G does not contain another
C3r, denoted by D', such that G — D' has fewer components than G — D, and suppose there
exista € Vi — V(D) and b € Vo — V(D) such that both of them are isolated vertices in G — D.
If B(G) >3/2 and m +2 <k <n—3m—1, then G contains a C3}_,.

Proof. Assume the contrary: G contains no C3} 5. Recall Lemma 4.2 and consider the sets
X;(a)* and X;(a)™ for i > 1. By (4.1) and Lemma 4.2(iii), each of X;(a)™ and X;(a)~ contains
at most one vertex in X;(b). Hence | X;(a)™NX;(a)™| = | X;(a)T|+|X;(a)"|—|X;(a)TUX;(a)"| >
[ Xi(a) ¥ + | Xi(a)™| = [Vi(D) — X;(b)| — 2 = (2| Xi(a)| — 2) — (k — [Xi(b)]). By the definition of

Yi(a), we have
Yi(a)| > | Xi(a)™ N Xi(a)™| = (21Xi(a)] - 2) = (k — | Xi(b)]).
Similarly,
Yi(b)] > [ X:(b) " N Xi(b) 7| = (21X:(b)] — 2) — (k — | Xi(a)])-
Adding these two inequalities yields
Yi(a)| + [Yi(b)| = 3[Xi(a)] + 3] Xi(b)] — 2k — 4.

From the definition, (4.1) and Lemma 4.2(ii), it is clear that Y;(a) C Vi(D)— D(a1, azm+2) —
X1(b). As D(ay,azm+2) NVi(D) # 0 if m > 1 and X1(b) # 0 if m = 0, we have Y;(a) # Vi(D).
Therefore Y;(a) U {a} is a proper subset of V; for all ¢ > 0. Since a is an isolated vertex
of G — D, from the definition, (4.1) and Lemma 4.2(i), we deduce that N(Y;—1(a) U {a}) C
Xi(a) U (Van D(a1,azm+2)). This together with Lemma 2.8 implies that
nt ¥ (@) +3

3 5
50 3| Xi(a)| > n+2|Y;—1(a)| — 3(m — 1). Similarly, 3|X;(b)| > n + 2|Y;—1(b)| — 3(m — 1). Hence

[ Xi(a)| +m = [N (Yio1(a) U{a})| =

Yi(@)| + [Yi(0)] > 20+ 2|Yio1(a)| + 2 Yima ()] — 6(m — 1) — 2k — 4
— 2([Yi1(a)| + [Yie1 (B)]) + 200 — k) — 6m + 2
> 2([Yie1(a)| + Vi1 (B)]) + 4 (as k < n—3m - 1),
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which implies
Yi(a)| +1Yi(b)| + 4 = 2([Yie1(a)| + [Yie1(b)[ +4) .

Since Yp(a) = Yy(b) = 0, it follows that |Y;(a)| + |Yi(b)| + 4 > 272 for all 4 > 1, and hence
[Yi(a)| + |Y;i(b)| — oo as i — oo, which is absurd. ]

5 Proof of Theorem 1.3

The proof of our theorem comes in three steps, and different steps require different counting
techniques. Actually we have already carried out Step 1 in Section 3 by showing the existence of
Cy, C¢, and one of CZ, C%,, and C%, in G. Based on such a ladder and Lemma 4.3, we can now
proceed to Step 2, which aims to prove that G contains a Cy for every k with 2 < k <n — 6.

Lemma 5.1 Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices and with a C%k.
If B(G) >3/2,n>139, and 4 < k <n —7, then G contains at least one of C’22k+2, C’22k+4, and

2
Ckve-
Proof. By hypothesis, G contains a subgraph D = ajas...agar...aska; (with a; € V1),

which is a C%k. Assume on the contrary that G contains none of C’sz Y C%k 44, and C’22k L6 Let

us make some simple observations about G — D.
Claim 1. No component H of G — D satisfies min{|Vi(H)|, |Vo(H)|} > 2.

Suppose for a contradiction that min{|V;(H)|, |Vo(H)|} > 2 for some component H of G—D.
Then H contains a path zgxizoxs, with g € Vi (H). By Lemma 3.8, we have Np(xg)UNp(z3) C
Dilag, as], so Np(xg) C {az,as4} and Np(x3) C {as,as}. Using Lemma 2.8, we obtain | Ny (z;)| =
d(xz;) — |[Np(x;)| > (n—3)/3 for i = 0,3. Thus |V;(H)| > (n—3)/3 > 45 fori=1,2.

Symmetry allows us to assume that |Vi(H)| > |Va(H)|. Let us show that there exist two
distinct vertices v1 and vy in Vi (H) such that

Np(vi) — {ag,as} #0 for i =1,2. (5.1)

Otherwise, there is a subset X of Vi (H) with |X| > |Vi(H)| — 1 such that Np(X) C {a2,a4}.
So |[N(X)| < n and hence |Ngy(X)| = [N(X)| — |[Np(X)| > 3|X|/2 -2 > B|Vi(H)| - 7)/2 >
(B|Va(H)| —7)/2 > |Va(H)| as Va(H) > 45, a contradiction. Therefore (5.1) is true.

Set A := Np(v1) and B := Ng(A) — {v1}. If Ny(B) — A contains a vertex z, then,
letting y € Np(z) and © € Ny(y), the path vizyz is fully contained in G — D, contradicting
Lemma 3.8. So Ny (B) C A, which in turn implies Vi(H) = BU{v1} and Vo(H) = A. Hence
|A] > (n—3)/3 > 45 and vy € B. Let ug € Ny(v2) and u; € A — {us}. Then vougviuy is a path
in G — D, which contradicts Lemma 3.8. So Claim 1 is justified.

Claim 2. Each component of G — D contains at most two vertices.
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Suppose the contrary: some component H of G — D has at least 3 vertices. By Claim
1, we have min{|Vi(H)|, |Vo(H)|} < 1. So H is a star. By symmetry, we may assume that
Vi(H) = {z1,z9,...,2,} and Vao(H) = {y}, where r > 2. Set X := Vi(H) — {z1}. Since G

contains no 022k: 4o

Np(z1) N N} (y) € {az, as},
ND(.%'l) N NB2(X) g {a27a47a/6}7 and
N (y) N NHH(X) € {as, ap}-

So each of a and a4 is contained in at most two sets in { Np(z1), N3%(X), Nj (y)}. Consequently,
INp(z1)] + NS ()| + INH2(X)| < [Va(D) — {ag,a4,a6}| + 7 = k + 4. By Lemma 2.8, we have
INp ()| = [N (1)~ {y} > n/3, Np ()| = IN(g)| 7 > (n+3)/3—r, and [Np(X)| = |N(X) -
{y}| > (n+2|X|+1)/3—1 = (n+2r—4)/3. Therefore, n/3+(n+3)/3—r+(n+2r—4)/3 < k+4,
which implies that 3n < 3k +r + 13 < n + 2k + 13 and hence &k > n — 7, contradicting the
hypothesis. This proves Claim 2.

Claim 3. G — D contains at most one isolated edge.

To justify this, we assume that both x1y; and x2ys are two isolated edges of G — D, with
{z1,22} €V} and {y1,y2} C Vo. We propose to show that

ND(IL’l) N Ngz(mg) - {ag, ay, CLG} (52)
or  Np(y1) N N2 (y2) C {as,as,ar}.

Suppose not. Then there exist two vertices v1 € Np(x1) N NEQ(:UQ) — {ag,a4,a6} and vy €
Np(y1) " Np2(y2) — {as, as, ar}. By symmetry, we may assume that vy € D(vg,a1). If vg = vy
then, by replacing v; v1 with vy y1z1v1 in D, we get a C§k+2 in G, this contradiction implies
that va # vy . So va € D(vy 2, v1 %] € D(az,vy?]. Tt follows that

P P —— —2 —2
aiay ... a6a73v2 Y2207 51}23/13011)13@1

is a C3, ., in G, a contradiction. So (5.2) holds.

By symmetry, we may assume that
Np(x1) N Np%(w2) C {ag, as, ag}- (5.3)
Since G contains no C3;, 4o, clearly we have
Np(z1) N Nj(y1) € {az, ag}- (5.4)
Moreover,

INp(y1)™ N Np?(x2) — {as,a6}| < 1, (5.5)
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for otherwise, let {ui,us} € Np(y1) N Nj(z2) such that {uy,us} N {ag, a5} = 0, where uy €
D(ul,al]. Then
aias ... aﬁﬁul_acgu;gulylugﬁal

isa C3, 5 in G, a contradiction. Let z be the vertex in Np (y1)TNNP?(29)—{a4, ag}, if any. Then
each of ag and ay is contained in at most two of the sets in {Np(z1), Np(y1)", Np2(w2) — {2}}.
Consequently, [Np(e1)| + NG ()] + (N32(w2)] — 1) < Va(D) — {az, as, aghl +7 = k+4. By
Lemma 2.8, we have |[Np(y1)| = |N(y1) — {x1}| > n/3, and the same holds for |Np(z;)| for
i =1,2. Thus 3(n/3) —1 < k+ 4 and hence k > n — 5, contradicting the hypothesis. So Claim
3 is established.

Now let D be a C’%k in G such that the number of components of G — D is as small as
possible. Recall that 4 < k < n — 7. By Claims 2 and 3, G — D contains two isolated vertices
a € Vi —V(D)and be Vo, — V(D). From Lemma 4.3 (with m = 2), we see that G contains a

C3..5- This contradiction completes the proof of our lemma. 1

The objective of Step 3 is to show that every Co, with n — 6 < k < n — 1, can be extended
to a Cogyo in G.

Lemma 5.2 Let G = (V1, Vs, E) be a balanced bipartite graph with 2n vertices and with a Coy.
If B(G) >3/2,n>139, and n —6 < k <n—1, then G contains a Coj 2.

Proof. Assume on the contrary that G contains no Coiys. Let C be a Cy in G such that the

number of components of G — C' is as small as possible. Let us make some simple observations

about G — C.

Claim 1. G — C contains no path of length 3.

Suppose the contrary: zoxixors is a path in G — C. By symmetry, we may assume that
zo € V. Since G contains no Coyg, we deduce that No(xo), NJ(z1), NE2(zs), and N> (z3)
are disjoint subsets of V1(C). Hence

INe(wo)| + [NE (21)] + [NE? (w2)| + [NE (3)] < k.

By Lemma 2.8, we have |N¢(x;)| > d(z;)) —(n—k) > (n+3)/3— (n—k) = (3k —2n+3)/3 for
0 < i < 3. It follows that 4(3k —2n + 3)/3 < k, so 8n > 9k + 12 > 9(n — 6) + 12 and hence
n < 42, contradicting the hypothesis. Thus Claim 1 is justified.

Claim 2. Each component of G — C' contains at most two vertices.

Otherwise, some component H of G — C has at least three vertices. By Claim 1, H contains
no path of length 3. Hence at least one of V1 (H) and V,(H) contains only one vertex. Symmetry
allows us to assume that Vao(H) = {u}. Then all vertices in V;(H) are adjacent to u. Let v be
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a vertex in Vi(H) and set X := Vi(H) — {v}. Since G contains no Cay19, we see that N (u),
Nc(v), and NZ?(X) are disjoint subsets of Va(C). So [Ng (u)| + [Ne(v)| + ING*(X)| < k and
hence

(d(u) —7) + (d(v) = D) + (IN(X)[ - 1) <k, (5.6)

where r := |Vi(H)|. By Lemma 2.8, we have |[N(X)| > (n+2|X|+1)/3 = (n+2r —1)/3 and
min{d(u),d(v)} > (n+ 3)/3. This together with (5.6) implies 3n <3k+r+1<n+2k+1,so

k > n — 1 and hence k = n, this contradiction justifies Claim 2.

Claim 3. G — C contains at most one isolated edge.

Assume on the contrary that z1y; and zys are two isolated edges of G—C, with {z1,z2} C Vj
and {y1,y2} C Vo. Then k < n — 2. Since G contains no Cojt2, we have Ne(z;) N NJ (y;) = 0
for i = 1,2. Tt is easy to see that at least one of No(z1) N NA?(x2) and Ne(y1) N NA2(ye) is
empty, for otherwise G would contain a Coj49, a contradiction. Symmetry allows us to assume
that No(x1) N NG2(x2) = 0. Then k > [Ne(21) U N&2(22) U N& (y1)| = [Ne(a1)| + NG (22) U
N& ()| = |Nc(z1)| + N2 (22)| + IN& ()| — NG (z2) N NG (y1)|. By Lemma 2.8, each of
INc(x1)], NG (y1)], and |[NA?(z2)| is at least n/3. Hence |NZ2(z2) N N&(y1)| > n—k > 2,

which again implies the existence of Cor49 in G. This contradiction establishes Claim 3.

Claim 4. G — C contains no isolated vertex.

Otherwise, by Claim 2, there exist a € V; —V(C) and b € Vo — V(C') such that both of them
are isolated vertices in G — C (as G is balanced). From Lemma 4.3 (with m = 0), it follows

instantly that GG contains a Cay49, this contradiction proves Claim 4.

From Claims 1-4, we deduce that G — C contains only two vertices, say a and b, with a € V}
and b € Vs, and that ab € E. This in turn implies that C is a longest cycle in G. Thus Lemma
4.1 is applicable to the triple (C;a,b). For each i > 1 and v € {a, b}, let X;(v) and Y;(v) be as
defined in this lemma. By definition, (4.1) and Lemma 4.1(ii), Y;(a) C Vi(C) — X1(b). Hence
Yi(a) U {a} is a proper subset of V; for all ¢« > 0. Similarly, Y;(b) U {b} is a proper subset of V;
for all i > 0. Therefore, for ¢ > 1 and v € {a,b}, Lemma 2.8 applies to S = Y;_1(v) U {v}. As

each of a and b has exactly one neighbor outside C, we have

S n+2(Yiei(v)[+1)+1 - n+2|Y;_1(v)|

X; -

Xi(w)] > S d
Thus 3|X;(v)] > n + 2|Y;—1(v)]. By (4.1) and Lemma 4.1(iv), both X;(a)* and X;(a)™ are
subsets of V1(C) — X;(b). So |Xi(a)™ N X;(a)~| = | Xi(a)T| + | Xi(a)"| — | Xi(a)T U X;(a)~| >

2| X;(a)| — (k —|X;(0)]). As X;(a)™ N X;(a)” C Y;(a), we have

Yi(a)| = 2[Xi(a)] = (k = [Xi(D)])-
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Similarly, |Y;(b)| > 2|X;(b)| — (k — | Xi(a)|). Adding these two inequalities yields
Yi(a)| + [Yi(b)| = 3| Xi(a)| + 3| X:(b)| — 2k.
Hence

Yi(a)| + [Yi(0)] = (2n + 2[Yi—1(a)| + 2[Yi-1(b)]) — 2k
2(|Yicr(a)| + [Yiea (D)]) + 2(n — k)
> 2([Yia(a)| + [Yiea (0)]) + 2,

which implies
Yi(a)| + [Yi(b)[ +2 = 2 ([Yi-1(a)| + [Yie1(b)| + 2).

Therefore, |Y;(a)| + |Y;(b)| +2 > 2i*!1 — 00 as i — oo. This contradiction completes the proof

of our lemma. |

Now we are ready to establish the main result of this paper.

Proof of Theorem 1.3. By Lemmas 3.2-3.4, G contains a Cy, a C¢, and at least one of
C3, C%), and C%,. By Lemma 5.1, if G contains a C3, for any k with 4 < k < n — 7, then G
contains at least one of C’%k iy C’%k 44, and C22k 16~ Recall that every 022757 with ¢ > 4, contains
cycles Cot, Cot_o, and Cy_4 simultaneously. From all these observations, we conclude that G
contains a cycle Cyy, for every k with 2 < k < n — 6. This together with Lemma 5.2 implies that
G contains a Cy for every k with 2 < k < n. Therefore G is bipancyclic. |

6 Proof of Lemma 4.2

As stated before, Lemma 4.1 aims to deal with a longest cycle under certain restrictions, while
Lemma 4.2 is intended for a ladder (not necessarily a longest one) under some other restrictions.
Nevertheless, the basic ideas underlying their proofs are essentially similar, whose origin can be
traced back to Woodall [8].

The proof of Lemma 4.2 is based on the following four claims A(i,j), B(i,7), B*(i,j) and

C(i) for all natural numbers ¢ and j.

Claim A(z,j5). There do not exist two disjoint paths Pyj = uiug ... uy and Qij = Uf1Ufys ... Ug
with the following properties:

(P1) a13a2m+2 is a subpath of either Pj; or Q;; when m > 1;

(P2) {ur,upi1} € Xi(a) and {us,ug} C X;(0);

(P3) if us € Yy(a) for some h <i and s & {f,qg}, then {us_1,us+1} C Xn(a);

(P4) if us € Yu(b) for some h < j and s ¢ {1, f + 1}, then {us—1,us+1} C Xn(b); and
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(P5) either V(P;;) UV (Qij) = V(D) or V(P;;) UV (Qi;) = V(D) — {ag,bo} for some ag €
Vi(D) —Yi—1(a) and by € Va(D) — Y;_1(b) such that apby € E(G).

Claim B(i,j). There does not exist a path R;j = uyug ... uy with the following properties:
(R1) a13a2m+2 is a subpath of R;j when m > 1;

(R2) {ur,us} € Xila);

(R3) if us € Yy(a) for some h < i, then {us_1,us+1} C Xpn(a);

(R4) if us € Yy, (b) for some h < j and s ¢ {1, f}, then {us—1,ust1} C Xp(b); and

(R5) V(R;;) = V(D) —{ao} for some apg € X;(b).

Claim B*(i,j). There does not exist a path Rj; = ujuz ... uy with the following properties:
(r1) a13a2m+2 is a subpath of R;; when m > 1;

(TQ) {ula Uf} - X](b)7

(r3) if us € Yy (b) for some h < j, then {us—1,ust1} C Xp(b);

(r4) if us € Yn(a) for some h <i and s ¢ {1, f}, then {us_1,us+1} C Xp(a); and

(r5) V(R;;) = V(D) — {bo} for some by € X;(a).

Claim C(z). For each v € {a,b}, there does not exist a path T; = ujus ... us with the following
properties:

(T1) a13a2m+2 is a subpath of T; when m > 1;

(T2) {ur,upy © Xi(v);

(T3) if us € Yp(v) for some h < i and s ¢ {1, f}, then {us_1,us+1} € Xp(v); and

(T4) V(T;) = V(D) — {vo} for some vy € V(D) —Y;_1(v) with N(vg) € V(D) U {v}.

Observe that if m > 1, then
Y;(v) N Dla1, agm+2) =0 for each v € {a,b} and j > 1, (6.1)

because X;(v) N Daz,azm+1] = 0. We shall repeatedly use this simple observation in the

subsequent proofs.

Proof of Lemma 4.2 (assuming Claims A(4, j), B(4,7), B*(¢,7) and C(i) for all ¢ and j).
(i) Suppose the contrary: N(Y,) is not a subset of X, U D(ay, agm+2) for v = a or b. By
definition, we have N(Y;(v)) € X;11(v)UD(a1, azm+2) for some i > 1. So N(Y;(v)) € V(D) and
hence N(vg) ¢ V(D) for some vy € Y;j(v). In view of (6.1), we obtain vy ¢ D[ai, azm+2] when
m > 1. Note that Y, and v are both contained in Vj for j = 1 or 2, so N(vg) € V(D) U {v}.
As Yy(v) = 0, there exists a subscript h with 1 < h < ¢ such that vy € Y, (v) — Y3_1(v). Thus
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{vg,vg} € Xp(v), and vg € V(D) — Ys_1(v). Setting T}, := vaera, we see that conditions
(T1)-(T4) (with h in place of i) are all satisfied by T}, and hence Claim C(h) is violated. This
contradiction implies that N(Y,) C X, U D(a1, agm+2) for v = a and b.

(ii) Suppose u € X;(b) N Yj(a) for some subscripts ¢ and j. Then {u~,u"} C X;(a). By
(6.1), u ¢ Dlai, azm42] if m > 1. Setting ap := u and R;j := v Du~, we see that conditions
(R1)-(R5) are all satisfied by R;j, so Claim B(,j) is violated. Hence X;(b) NY;(a) = 0 for all
subscripts ¢ and j, which implies that X, NY, = (). Similarly, from Claim B*(%, j) we can deduce
that X;(a) NY;(b) = 0 for all subscripts ¢ and j, and hence X, NY; = 0.

(iii) Suppose u and v are two distinct vertices in X N X,. Then there exist subscripts i and
j such that {u~,v"} C Xj(a) and {u,v} € X;(b). As none of u™, u, v~, and v is contained in
Dlag, agm+1] when m > 1, either D[ai, agm+2] € D[u,v™] or Dlai,asm+2] € D[v,u~]. Setting
P;j :=u~ Dv and Q;; := v~ Du, we see that conditions (P1)-(P5) are all satisfied by P;; and Q;;,
and hence Claim A(i, j) is violated. This contradiction implies that | X N X;| < 1. Similarly,
we have | X, N X;| < 1. So the lemma is established. |

From the preceding proof, we conclude that
Z1) Claim A(i, j) implies that | X;(a)™ N X;(b)| <1 and |X;(a)” N X,;(b)| < 1;
Z2) Claim B(i,j) implies that X;(b) NY;(a) = 0;
Z3) Claim B*(i,j) implies that X;(a) NY;(b) = 0; and
Z4) Claims C(h), for all A with 1 < h <4, imply that N(Y;(v)) C X;y1(v) U D(a1, agm+2) for
v € {a,b}.

We shall appeal to these observations in the following inductive proof of the above claims for all

(
(
(
(

possible subscripts.

Proof of Claims A(1,1), B(1,1), B*(1,1) and C(1).

Suppose such paths Pi; and ()11 exist. Then a is adjacent to u; and w1, and b is adjacent
to uy and ug. If V(P11) UV(Q11) = V(D), then we can obtain a C3j_, from D by adding a
and b, a contradiction. If V(P11) UV (Q11) = V(D) — {ag, bp} for some ag € V1 (D) — Yy(a) and
by € Va(D) — Yy(b) such that apby € E(G). Then we can get another CJ}, denoted by D', on
the vertex set (V(D) — {ao,bo}) U {a,b} such that G — D" has at least one component fewer
than G — D, because both a and b are isolated vertices in G — D while agby € E(G). This
contradiction justifies Claim A(1,1).

Suppose such a path Ry; exists. Then a is adjacent to u; and uy¢, and V(R11) = V(D) —{ao}
for some ag € X1(b) (so apb € E(G)). Hence we can obtain another C3}, denoted by D', on
the vertex set (V(D) — {ap}) U {a} such that G — D" has at least one component fewer than
G — D, because both a and b are isolated vertices in G — D while apb € E(G). This contradiction
justifies Claim B(1,1). Similarly, Claim B*(1,1) also holds.
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Suppose such a path 77 exists. Then v is adjacent to u; and uy, and V(T1) = V(D) — {vo}
for some vy € V(D) with N(vg) € V(D) U{v}. Hence we can obtain another C%}, denoted by
D', on the vertex set (V(D) — {vo}) U {v} such that G — D’ has at least one component fewer
than G — D, because v is an isolated vertex in G — D while N (vg) € V(D)U{v} = V(D")U{wo}.
This contradiction justifies Claim C(1).

Proof of Claims A(i,j), B(i,j7) and B*(¢,5) for ¢ +j > 2.
We proceed by induction on ¢ + j. Suppose i + j > 2 and A(ig, jo), B(i0,jo), B*(i0,jo) hold
for all subscripts ig and jg with ig + jo <1 + 7.

(1) To prove A(i, j), suppose on the contrary that such paths P;; and Q;; exist. By symmetry,

we may assume that ¢ > j (so ¢ > 1). Let us distinguish among three cases.

Case Al. {ul,Uf+1} g Xi_l(a).
In this case let P,_1; := F;; and Q-1 := Q;j. Then the existence of such two paths
contradicts Claim A(i — 1, 7).

Case A2. Precisely one of u; and uyyq is in X;_1(a).

In this case symmetry allows us to assume that u; € X;_1(a) while upiq ¢ X;_1(a). Then
uf41 is adjacent to some y € Y;_q1(a)—Yi—2(a). If y ¢ V(P;;UQ;;) then, by (P5), we have V (P;;U
Qij) = V(D) —{ag,bo} and y € {ag, by}, where ag € V1(D) —Y;_1(a) and by € Vo(D) —Y;_1(b).
It follows that y = ap ¢ Yi—1(a), a contradiction. Hence y = u, for some s with 1 < s < g.
By (6.1), us ¢ D[a1, a2m+2] when m > 1. By Claim B(i — 1, j) and (Z2), X;(b) N Yi—1(a) = 0,
sos ¢ {f,9}. As {ui,urp1} C Xi(a), we see that u; € Vo and us € N(usy1) C Vi, and
hence s ¢ {1, f + 1}. Consequently, either 1 < s < for f+1 < s < g. By (P3), we have
{us—1,us+1} C Xi—1(a). Set

— — .
{ulPijusufHQijug ifl<s< f,
P = i
(

P if f+1<s<y,
H
U1 Pijuy if1<s<f,
Qi1 = — —
us—1Qiup1usQijug if f+1<s5<g.

Let us show that (P1)-(P5) (with ¢ — 1 in place of i) are all satisfied by Pi_;; and Q;_1,;.
Suppose 1 < s < f. Then the details of the proof are given below.

(P1) As us ¢ Dlay,agm+2], it is clear that a16a2m+2 remains a subpath of either Pj_; ; or
Qz‘—l,j when m Z 1.

(P2) By assumption, u; € X;_1(a) and {us,ug} € X;(b). As remarked above, u,—1 € X;_1(a).

(P3) Since P;j and Q;; satisfy (P3), the only possible vertex on P, j UQ;—1 ; that can violate
(P3) is us. However, since us ¢ Y;_2(a), we have ug ¢ Yj(a) for all h < i —1 by (4.1).

24



(P4) Since P;; and Q;; satisfy (P4), the only possible vertex on P;j_; ; U Q;_1 ; that can violate
(P4) is ug41. However, since Claim B(i — 1, j) implies X;(b) NY;_i(a) = 0 (recall (Z2)),
we have us ¢ X;(b). This together with usijus € E(G) and us € V(D) — D(a1, aam+2)
implies w11 ¢ Yj_1(b), and hence usi; ¢ Y3 (b) for all h < j by (4.1).

(P5) This follows from the fact that V(P;;UQ;;) = V (P;—1,;UQi—1,;) and that P;; and Q;; satisfy
(P5). Also, if P;; and @Q;; miss ag € V1(D) — Y;_1(a), then we have ag € Vi(D) — Y;_2(a)
as well by (4.1).

The proof goes along the same line when f+1 < s < g.

Case A3. {ui,uf41}NX;_1(a) =0.

As in Case A2, we can now deduce that u; is adjacent to some wu, € Y;_1(a) — Y;_2(a),
and uyy1 is adjacent to some u, € Y;_i(a) — Yj_2(a), where 2 < r,s < g —1 and {r,s} N
{f,f+1} = 0. By (P3), we have {u,_1,up41,us—1,us+1} C X;—1(a). By (6.1), we obtain
{ur, us} N Dlar, agm+2] = 0 when m > 1. Symmetry allows us to assume that u, € P;; whenever
u, = us, and r < s whenever u, and ug are two distinct vertices both on P;; or both on Q;;.
Thus there are four possibilities for r and s altogether: (i) 1 <r < f < f+1 < s < g; (ii)
Il<s<f<f4l<r<g(ii)l<r<s<fior(iv) f+1l<r<s<g. Set

'u,ﬂ_l Z-julurﬁi_;u]c fl<r<f<f+l<s<y,
Py om J'url_ifufﬂus}—%_;u]c fl<s<f<f+l<r<ayg,
usr1Pijuy ifl<r<s<f,
tu5_1<62_,-ju7«u1]7i;uje ff+l<r<s<yg,
;{uS_I&jquusQ_ﬁ-ug fl<r<f<f+1l<s<yg,
us_llzulurQ—i;ug fl<s<f<f+1l<r<yg,

Qi1 =

— —
Up—1 ijuluTPijusu]c+1Qijug ifl<r<s<f/f,

] — ,
'Lur_lajufﬂusQijug iff+l<r<s<g.

Again, it is a routine matter to check that (P;_1 ;, Qi1 ) satisfies (P1)-(P5) (with ¢ —1 in place
of 7). This contradiction to Claim A(i —1, j) completes the proof for the present case. Therefore
Claim A(i,j) is established.

(2) Let us now justify Claims B(1,j) for j > 1. Assume such a path R;; exists with
corresponding ag € X;(b). Then ag ¢ X;_1(b), for otherwise Claim B(1,j — 1) is violated.
Hence ag is adjacent to some u, € Y;_1(b) — Yj_2(b), where 1 < r < f. By Claim B*(1,j — 1)
and (Z3), we have Y;_1(b) N X1(a) = 0, so u, ¢ X1(a). This together with {ui,us} C Xi(a)
implies 1 <7 < f. By (R4), {up—1,ur41} € X;_1(b). By (6.1), we have u, ¢ D[a1, azm2] when
m > 1. Let P j 1 :=wuuz... up_1, Q1j-1 = upuf_1...ur41, and by := u,. Then it is easy to
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see that (P1)-(P5) (with (1,7 — 1) in place of (7,7)) are all satisfied by (P ;—1,@1,—1). This
contradiction to Claim A(1,j — 1) establishes Claim B(1, j) for all j > 1.
Similarly, we can justify Claim B*(1,7) for all j > 1.

(3) Next, let us justify Claim B(i,j) for ¢ > 1. Assume such a path R;; exists with corre-
sponding ag € X;(b). We consider three cases.

Case B1. {’LLl,Uf} - Xi,l(a).
In this case set R;_; j := R;;. Then the existence of this path contradicts Claim B(i — 1, j).

Case B2. Precisely one of u; and uy is in X;_1(a).

In this case symmetry allows us to assume that u; € X;_1(a) while uy ¢ X;_1(a). Then uy is
adjacent to some y € Y;_i(a)—Y;_2(a). By Claim B(i—1,j) and (Z2), we have X;(b)NY;_1(a) =
0, so y # ag, for otherwise ag € X;(b) NYi—i(a), a contradiction. In view of (R5), we have
V(D) = V(R;;) U{ao}, so y € V(R;;) and hence y = u, for some r with 1 <r < f. By (6.1), we
get u, ¢ Dlay, agmy2] when m > 1. As {u1,ur} C X;(a) C Vo and u, € N(us) C Vi, we obtain
1 <r < f. It follows from (R3) that u, 1 € X;_1(a). Let Ri_1; := uiug ... upuptif_q ... Upry1.
Then (R1)-(R5) (with ¢ — 1 in place of i) are all satisfied by R;_1 j; the details of the proof are

given below.

(R1) Since u, ¢ Dla1,agm+2], it is clear that a13a2m+2 remains a subpath of R;_;; when
m > 1.

(R2) By assumption, u; € X;_1(a). As remarked above, u,+1 € X;_1(a).

(R3) Since R;; satisfies (R3), the only possible vertex on R;_1; that can violate (R3) is w,.
However, since u, ¢ Y;_2(a), we have u, ¢ Y,(a) for all h <i—1 by (4.1).

(R4) Since R;; satisfies (R4), the only possible vertex on R;_; ; that can violate (R4) is uy.
However, by Claim B(i — 1, j) and (Z2), we have X;(b) NY;_1(a) = 0, so u, ¢ X;(b).
This together with usu, € E(G) and u, € V(D) — D(a1, agm42) implies uy ¢ Y;_1(b), and
hence uy ¢ Y3 (b) for all h < j by (4.1).

(R5) This follows from the fact that V(R;;) = V(R;—1,;) and that R;; satisfies (R5).

Therefore the existence of R;_1 ; contradicts Claim B(i — 1, 7).

Case B3. {uj,usf} NX;_1(a) =0.

As in Case B2, we can now deduce that u; is adjacent to some u,, and uy is adjacent to some
ur, where {us, u,} CY;_1(a)—Yi—2(a)and 1 < s, r < f. By (R3), we have {uy_1, up41,Us—1, Ust1}
C X;-1(a). By (6.1), we obtain {u,,us} N D[ai,azm+e] = 0 when m > 1. Set

( = .
Us— 1 Rijurus Rijurup Rijuge 1 if r > s,

R 1j:= — — .
Up—1 Rijuius Riju puy Rijus 1 if r < s.
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It is then a routine matter to check that (R1)-(R5) (with ¢ — 1 in place of ¢) are all satisfied by
R;_1 ;. Thus the existence of R;_; ; contradicts Claim B(i — 1, j).
Similarly, we can justify Claim B*(i, j) for all i > 1.

Proof of Claim C(i) for i > 1.

We proceed by induction on i. Suppose ¢ > 1 and C(ig) holds for all 7y with 1 < iy < i. To
prove C(i), assume on the contrary that such a path T; exists with corresponding vy ¢ Yi—1(v)
such that N(vyg) € V(D) U {v}, where v € {a,b}. We consider three cases.

Case C1. {uj,us} € X;_1(v).
In this case set T;_1 := T;. Then the existence of this path contradicts Claim C(i — 1).

Case C2. Precisely one of u; and uy is in X;_1(v).

In this case symmetry allows us to assume that u; € X;_i(v) while uy ¢ X;_1(v). Then
uy is adjacent to some y € Y;_1(v) — Yi_2(v). As vy ¢ Yi_1(v), we have y # vg. Using (T4),
we see that y € V(T;), so y = u, for some r with 1 < r < f. In view of (6.1), we obtain
ur ¢ Dla1, azm+2] when m > 1. Since both w; and uy are in V; for i = 1 or 2, we deduce that
1 <r < f. Using (T3), we get {uy—1,ur+1} € X;—1(v). Let Tj_1 := uiua ... UpUptip_1 ... Up41-
We can now show that (T1)-(T4) (with ¢ — 1 in place of i) are all satisfied by T;_1; the details
of the proof are given below.

(T1) Since u, ¢ D[a1, azm+2], it is clear that a13a2m+2 must remain a subpath of T;_; when
m > 1.

(T2) By assumption, u; € X;—1(v). As remarked above, u,+1 € X;—1(v).
(T3) Since T; satisfies (T3), the only possible vertex on T;_; that can violate (T3) is u,. However,
since u, ¢ Y;_o(v), we have u, ¢ Y} (v) for all h <i—1 by (4.1).
(T4) This follows from the fact that V(T;) = V(T;-1) and that 7T} satisfies (T4). As vy ¢ Y;—1(v),
we have vy ¢ Y;_2(v) as well by (4.1).
Hence the existence of T;_; contradicts Claim C(i — 1).
Case C3. {ui,us} NX;_1(v) =0.
As in Case C2, we can now deduce that u; is adjacent to some u,, and uy is adjacent to some
uy, where {ug, u,} CY;_1(v)—Y;_2(v)and 1 < s, r < f. By (T3), we have {u,_1, U411, us—1,ust1}
C X;-1(a). By (6.1), we obtain {u,,us} N Dla1, agm+t2] = 0 when m > 1. Set

{us—liulusﬁurufﬁur+l if r > s,
Ty =
iur_lﬁulusiu]curﬁus_l if r < s.

It is then a routine matter to check that (T1)-(T4) (with i — 1 in place of 7) are all satisfied by
T;—1. Thus the existence of T;_; contradicts Claim C(i — 1).
This completes the proof of all the claims. |
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