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Abstract. A complex manifold is said to be a Bergman manifold if the Bergman kernel
form induces in the standard way a Kähler metric on the manifold. A Bergman manifold is
said to be canonically embeddable if the canonical map into a possibly infinite-dimensional

projective space defined using the Hilbert space of square-integrable holomorphic n-forms is
a holomorphic embedding. In this article we define for a canonically embeddable Bergman
manifold X the notion of Bergman meromorphic compactifications i : X ↪→ Z into com-
pact complex manifolds Z characterized in terms of extension properties concerning the

Bergman kernel form on X , and define the notion of minimal elements among such com-
pactifications. We prove that any such a compact complex manifold Z is necessarily Moishe-
zon. When X is given, assuming the existence of Bergman meromorphic compactifications
i : X ↪→ Z we prove the existence of a minimal element among them. More precisely,

starting with any Bergman meromorphic compactification i : X ↪→ Z we construct re-
ductions of the compactification, and show that any reduction necessarily defines a minimal
element. We show that up to a certain natural equivalence relation the minimal Bergman
meromorphic compactification is unique. Examples of such compactifications include Borel

embeddings of bounded symmetric domains into their compact dual manifolds and also those
arising from canonical realizations of bounded homogeneous domains as Siegel domains or
as bounded domains on Euclidean spaces and hence as domains on projective spaces.
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Motivated by the result of Clozel-Ullmo [CU, 2003] concerning germs of holomor-

phic isometries of the Poincaré disk into polydisks arising from a problem in Arithmetic

Dynamics, in Mok [Mo2, 2012] the author launched a systematic study of holomorphic

isometries up to normalizing constants first of all between bounded domains of Euclidean

spaces. Extension results obtained for such germs of holomorphic maps break down into

two types, viz., interior extension results which recover results of Calabi [Ca, 1953] in

these cases by a different method, and boundary extension results, which concern prop-

erties of extensions of graphs of such germs of holomorphic maps beyond boundaries

of the bounded domains. The latter type of results are not accessible by the method

of Calabi [Ca, loc. cit.] since the boundary of a bounded domain may completely dis-

appear once the domain is embedded into the infinite-dimensional complex projective

space P∞ by means of an orthonormal basis of the Hilbert space of square-integrable

holomorphic functions. Both interior and boundary extension results were extended to

the more general context of relatively compact domains of complex manifolds.

A complex manifold is said to be a Bergman manifold if the Bergman kernel form

induces in the standard way a Kähler metric on the manifold. A Bergman manifold X is

said to be canonically embeddable if the canonical map ΦX : X → P∞ defined using any

orthonormal basis of Hilbert space of square-integrable holomorphic n-forms is a holo-
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morphic embedding. Of particular interest in this article is the case where a canonically

embeddable Bergman manifold X is realized as a domain on a compact complex mani-

fold M in such a way that the Bergman kernel form KX(z, w) extends meromorphically

in (z, w) to M , as exemplified by the case of a bounded symmetric domain realized as an

open subset of its compact dual manifold by means of the Borel embedding. Since bi-

holomorphisms between Bergman manifolds induce holomorphic isometries with respect

to Bergman metrics, given any two compactifications i1 : X → M1 and i2 : X → M2

with the afore-said extension property on Bergman kernels, it follows readily from Mok

[Mo2] that the identity map on X extends to a meromorphic correspondence between

M1 and M2. In this article we are interested in such compactifications, and more

generally on compactifications i : X ↪→ M , called Bergman meromorphic compactifica-

tions, which satisfy slightly weaker extension properties concerning the Bergman kernel

forms which are nonetheless strong enough for meromorphic extendibility to remain

valid (cf. §2, especially Definition 2.1 and Corollary 2.2 for details). We prove that any

Bergman meromorphic compactication M of X is necessarily Moishezon, and moreover

that there exists a minimal element M0 among such compactifications, in the sense that

any Bergman meromorphic compactification M of X dominates such a minimal element

via a finite meromorphic map which extends the identity map on X. We call this the

minimal Bergman meromorphic compactification, which is uniquely determined up to

a bimeromorphic map which is biholomorphic on X. In order to prove the existence

of a minimal element, we introduce a procedure of reduction starting from any given

Bergman meromorphic compactication i : X ↪→ M , and show that a reduction of the

latter compactification is necessarily minimal in the sense we described.

Borel embeddings of bounded symmetric domains into their compact dual manifolds

are minimal Bergman meromorphic compactifications. We give further examples of such

compactifications given by canonical realizations of bounded homogeneous domains as

Siegel domains (cf. Pyatetskii-Shapiro [Py, 1969] or as bounded domains on Euclidean

spaces (cf. Xu [Xu, 2005]) and hence as domains on projective spaces.

For an introduction to results on bounded domains and more generally Bergman

manifolds revolving around holomorphic isometries up to normalizing constants and

related notions including holomorphic measure-preserving maps, we refer the reader to

the survey Mok [Mo1, 2011].
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§1 Summary of background and relevant results

We recall first of all the class of Bergman manifolds among complex manifolds and

also the subclass of canonically embeddable Bergman manifolds among them. For the

definitions recall first of all that the Bergman kernel form on an n-dimensional complex

manifold (assumed connected by convention) is defined in the standard way using any

orthonormal basis of the Hilbert space of square-integrable holomorphic n-forms. We

have the following definition from Mok [Mo2, Definition (2.2.1)].

Definition 1.1. Let X be a complex manifold and denote by ωX its canonical line

bundle. Suppose the Hilbert space H2(X,ωX) of square-integrable holomorphic n-forms

on X has no base points, and denote by KX(z, w) the Bergman kernel form on X.

Regarding KX(z, z) as a Hermitian metric h on the anti-canonical line bundle ω⋆
X , we

denote by βX ≥ 0 the curvature form of the dual metric h∗ on ωX , and write ds2X
for the corresponding semi-Kähler metric on X. We say that (X, ds2X) is a Bergman

manifold whenever ds2X and equivalently βX are positive definite. We call (X, ds2X) a

canonically embeddable Bergman manifold if furthermore the canonical map ΦX : X →
P((H2(X,ωX)⋆) is a holomorphic embedding.

Here H2(X,ωX) is said to have no base points if and only if the common zeros

of all ν ∈ H2(X,ωX) is the empty set. The advantage of using the Bergman ker-

nel form KX(z, w) lies in the fact that the latter form is defined independent of the

choice of local holomorphic coordinates, given that the norm of a holomorphic n-form

ν is simply the square-root of
∫
X
(
√
−1)n

2

ν ∧ ν. Bounded domains in the Euclidean

space and more generally bounded domains in a Stein manifold furnish examples of

canonically embeddable Bergman manifolds. In the case where X = D b Cn is a

bounded domain it is customary to define the Bergman kernel KD(z, w) in terms of

the space H2(D) of square-integrable holomorphic functions. In terms of the Eu-

clidean coordinates (z1, . . . , zn), for the Bergman kernel form we have KD(z, w) =

KD(z, w)
(√

−1
2 dz1 ∧ dz1

)
∧ · · · ∧

(√
−1
2 dzn ∧ dzn

)
. By Mok [Mo2, Theorem (2.2.1)] we

have the following general extension result for germs of holomorphic isometries up to

normalizing constants between canonically embeddable Bergman manifolds.

Theorem 1.1. Let M and Q be complex manifolds and let D b M resp. Ω b Q be a rel-

atively compact subdomain in M resp. Q. Suppose D and Ω are canonically embeddable

Bergman manifolds. Let x0 ∈ D, λ be a positive real number and f : (D,λ ds2D;x0) →
(Ω, ds2Ω; f(x0)) be a germ of holomorphic isometry. Suppose furthermore that KD(z, w)

extends meromorphically in (z, w) to M × D and likewise the Bergman kernel form

KΩ(ζ, ξ) extends meromorphically in (ζ, ξ) to Q×Ω. Then, the germ Graph(f) ⊂ D×Ω

at (x0, f(x0)) extends to an irreducible complex-analytic subvariety S♯ ⊂ M ×Q. If in

addition (Ω, ds2Ω) is complete as a Kähler manifold, then S := S♯ ∩ (D × Ω) is the

graph of a holomorphic isometric embedding F : (D,λ ds2D) → (Ω, ds2Ω). If (D, ds2D) is

furthermore assumed to be complete as a Kähler manifold, then F : D → Ω is proper.

§2 Bergman meromorphic compactifications

Let (X, ds2X) be a canonically embeddable Bergman manifold. We consider first
3



of all open embeddings i : X ↪→ Z into compact complex manifolds Z for which the

Bergman kernel form KX(z, w) extends meromorphically in (z, w) to Z × Z. As an

application of Theorem 1.1, we have

Corollary 2.1. Let (X, ds2X) be a canonically embeddable Bergman manifold. For k =

1, 2 let ik : X ⊂ Zk be an open embedding of X into a compact complex manifold Zk

such that, identifying X with Xk := ik(X), the Bergman kernel form KX(z, w) extends

meromorphically in (z, w) to Zk ×Zk. Then, the identity map idX : X → X extends to

a correspondence between Z1 and Z2.

Proof. Since the identity map idX : X → X is a holomorphic isometry with respect to

the Bergman metric, by Theorem 1.1, Graph(idX) ⊂ X ×X extends to an irreducible

complex-analytic subvariety S ⊂ Z1 × Z2. The canonical projections πi : S → Xi;

i = 1, 2; are generically finite maps since S contains Graph(idX), i.e., the diagonal of

X, as an open subset. In other words, S ⊂ Z1 ×Z2 is a correspondence, as desired. �

Let (X, ds2X) be an n-dimensional Bergman manifold. At a point (x, x′) ∈ X×X, in

terms of holomorphic coordinates (zi) on a neighborhood U of x on X and holomorphic

coordinates (wj) on a neighborhood U ′ of x′ on X, we have KX(z, w) = s(z, w)dz1∧· · ·∧
dzn∧dw1∧· · ·∧dwn. OnX×{x′} we can write KX(z, x′) = σx′(z)∧dw1∧· · ·∧dwn, where

σ is a holomorphic n-form on X, and σx′(z) = s(z, x′)dz1 ∧ · · · ∧dzn on a neighborhood

of x. We may say that KX,x′ is uniquely determined modulo a choice of normalization

at x′, more precisely modulo a choice of an ordered basis for T ∗
x′(X), normally given by

the ordered basis at x′ defined by the differentials of a choice of holomorphic coordinates

at x′. Writing now w ∈ X (in place of x′ ∈ X) for a variable point on X, we have on

X × {w} a holomorphic n-form KX,w := σw on X which is uniquely determined up

to a non-zero multiplicative constant. As will be obvious in the ensuing discussion the

statements concerning KX,w will be independent of the choices made. We are now ready

to define the notion of a Bergman meromorphic compactification.

Definition 2.1. Let (X, ds2X) be an n-dimensional canonically embeddable Bergman

manifold, and i : X ↪→ Z be an open embedding of X into a compact complex manifold Z.

Choose any base point x0 ∈ X and define σ0 := KX,x0 , which is uniquely determined up

to a non-zero multiplicative constant. Writing KX(z, w) = K♭
X(z, w)

((√
−1

)n2

σ0(z) ∧

σ0(w)
)

on X, we say that i : X ↪→ Z is a Bergman meromorphic compactification if

and only if (a) the function K♭
X(z, w) extends meromorphically in (z, w) from X × X

to Z × Z; and (b) there exists an open embedding i : X ↪→ Z ′ into a compact complex

manifold Z ′ such that the identity map idX extends to a (possibly) branched covering

ξ : Z ′ → Z and such that ξ⋆(σ0) extends meromorphically to Z ′.

Suppose i : X ↪→ Z is a Bergman meromorphic compactification in the sense of

Definition 2.1 with respect to the choice of a base point x0 ∈ X. Replacing x0 by x1 ∈ X

and defining σ1 := KX,x1 , we have

K♭
X(z, w)

(
σ0(z) ∧ σ0(w)

)
= K♭

X(z, w)
σ0(z)

σ1(z)

(
σ0(w)

σ1(w)

)(
σ1(z) ∧ σ1(w)

)
.
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Noting that from the choice of σ0, K
♭
X(z, x0) is from Definition 1.1 a non-zero constant

function, we have σ0(z)
σ1(z)

= 1
K♭

X
(z,x1)

up to a non-zero multiplicative constant and we see

that K♭
X(z, w) is replaced by

K♭
X(z,w)

K♭
X
(z,x1)K♭

X
(x1,w)

up to a non-zero multiplicative constant.

Thus, the assumption (a) that K♭
X(z, w) extends meromorphically in (z, w) from X×X

to Z×Z is independent of the choice of a base point x0 ∈ X. Assuming (a) the condition

(b) is also independent of the choice of the base point x0 ∈ X. In fact, replacing the

base point x0 by x1 ∈ X, σ0 is replaced by some σ1 ∈ H2(X,ωX) such that σ1 = hσ0

for some meromorphic function h on X which by (a) extends meromorphically to Z, so

that ξ⋆σ1 = (h ◦ ξ)(ξ∗σ0) extends meromorphically to Z ′.

Observe also that i : X ↪→ Z is a Bergman meromorphic compactification whenever

the differential (n, n)-form KX(z, w) extends meromorphically in (z, w) from X ×X to

Z×Z. Moreover, from the proof of the extension theorem given in Mok [Mo2, Theorem

2.2.1] (Theorem 1.1 of the current article), the starting point is the functional identity

in Eqn.(4) given by

−
√
−1∂∂ logK♭

Ω(f(z), f(z)) = −λ
√
−1∂∂ logK♭

D(z, z) ;

logK♭
Ω(f(z), f(z)) = λ logK♭

D(z, z) ,

in the notation of the statement of Theorem 1.1 here. As is evident from the arguments

in Mok [Mo2], imposing the weaker requirements on the meromorphic extendibility

of K♭
D(z, w) to M × M in (z, w) in place of the same on KD(z, w), together with

the meromorphic extendibility of K♭
Ω(ζ, ξ) to Q × Q in (ζ, ξ) in place of the same on

KΩ(ζ, ξ), we can still derive the theorem basing on the functional identity in Eqn.(4)

there. (The meanings of the functions K♭
D(z, w) and K♭

Ω(ζ, ξ) are analogous to that of

K♭
X(z, w) as given in Definition 2.1 here.) In particular, in the equidimensional case we

are considering, where D = Ω = X and f : D → Ω is the identity map idX on X, and

M = Z1, Q = Z2 are compact complex manifolds, we have the following strengthened

version of Corollary 2.1.

Corollary 2.2. Let (X, ds2X) be a canonically embeddable Bergman manifold. For k =

1, 2 let ik : X ↪→ Zk be Bergman meromorphic compactifications. Then, the identity

map idX : X → X extends to a correspondence between Z1 and Z2.

As an example of a Bergman meromorphic compactification letX be the underlying

complex manifold of an n-dimensional Hermitian symmetric manifold of the noncompact

type. Then, X is biholomorphic to a bounded symmetric domain D b Cn by means

of the Harish-Chandra embedding. Let Z be the compact dual manifold of X and

i : X ↪→ Z be the Borel embedding. (For instance, X = Bn is the n-dimensional

complex unit ball, Z = Pn is the n-dimensional projective space, and i : Bn ↪→ Pn is

given by the standard embeddingBn b Cn and the standard compactification Cn ⊂ Pn.)

Then, the Bergman kernel form KX(z, w) extends meromorphically in (z, w) to Z × Z

(cf. §5). Let µ : Z ′ → Z be a finite ramified covering from a compact complex manifold

Z ′ onto Z, such that, for some connected component X ′ ⊂ Z ′ of µ−1(X), the map µ|X′

maps X ′ bihiolomorphically onto X. Z ′ can be regarded as a Bergman meromorphic
5



compactification of X when we identify X with X ′ by means of (µ|X′)
−1

, noting that

the Bergman kernel form on X ′ can be obtained by pulling back the Bergman kernel

form KX on X by µ. Take two ramified covers µ1 : Z1 → Z and µ2 : Z2 → Z

of compact complex manifolds Z1 and Z2 branched outside of X ⊂ Z, and define

S0 ⊂ Z1 × Z2 by S0 :=
{
(z1, z2) : µ1(z1) = µ2(z2)

}
. Then, X ⊂ Z1 and X ⊂ Z2 are

Bergman meromorphic compactifications and the correspondence S ⊂ Z1 ×Z2 as given

in Theorem 1.1 is simply the irreducible component of S0 containing Graph(idX).

Remark If in the definition of Bergman meromorphic compactifications i : X ↪→ Z

we dropped the requirement (b), viz., that there exists an open embedding i : X ↪→ Z ′

into a compact complex manifold Z ′ such that the identity map idX extends to a

(possibly) branched covering ξ : Z ′ → Z and such that ξ⋆(σ0) extends meromorphically

to Z ′, Corollary (2.2) would still hold true. We choose nonetheless to introduce the

current definition for two reasons. On the one hand, as will be seen in §3 and §4, for
the purpose of constructing a minimal Bergman meromorphic compactification by a

reduction process, it is necessary from the methods of proofs to extend the class of

compactifications i : X ↪→ Z considered beyond those for which the Bergman kernel

form KX(z, w) extends meromorphically in (z, w) to Z×Z, since it is not clear that the

latter class is preserved when passing to desingularized models of quotient spaces. On

the other hand, adding (b) implies that the Bergman kernels extend at least as multi-

valued sections of the ambient manifold, so that the requirements on the Bergman kernel

may be said to be algebraic, at least when Z is a projective manifold. (As will be proven

in Corollary 3.1, Z is in general always Moishezon, i.e., bimeromorphic to a projective

manifold.)

§3 Reduction of Bergman meromorphic compactifications

Corollary 2.2 is a consequence of the proof of Theorem 1.1 in the special case of

a biholomorphism between two complex manifolds. In this case, we are going to show

that the multivalence of the extended map arises in general exactly as in the example

in the last paragraph of §2.

First of all we give a reduction result for Bergman meromorphic compactifications.

Let (X, ds2X) be an n-dimensional canonically embeddable Bergman manifold, and i :

X ↪→ Z be a Bergman meromorphic compactification of X. Given any finite set of

distinct points {x0, · · · , xm} on X we have a meromorphic map Ψm : X 99K Pm given by

Ψm(z) = [KX,x0(z), · · · ,KX,xm(z)]. Recall that for 0 ≤ i ≤ m the holomorphic n-form

KX,x0(z) on X is uniquely determined only up to a non-zero multiplicative constant.

Hence, Ψm : X 99K Pm is well-defined only up to projective linear transformations on Pm

of a special form. We define now the notion of a reduced meromorphic compactification.

Definition 3.1. The map i : X ↪→ Z is said to be a reduced Bergman meromorphic

compactification if and only if there exists a finite number of points xi ∈ X, 0 ≤ i ≤
m, such that the meromorphic map Ψm : X → Pm extends to a generically injective

meromorphic map Ψ♯
m : Z 99K Pm.

The generic injectivity of Ψ♯
m is satisfied if and only if, writing E ⊂ Z for the set of
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indeterminacy of Ψ♯
m and defining Y := Ψ♯

m(Z − E), Ψ♯
m : Z 99K Y is a bimeromorphic

map. Next, we establish a reduction result for Bergman meromorphic compactifications.

Proposition 3.1. Let (X, ds2X) be a canonically embeddable Bergman manifold, and

i : X ↪→ Z be a Bergman meromorphic compactification. Then, there exists a reduced

Bergman meromorphic compactification i♭ : X ↪→ Z♭, a meromorphic map µ : Z →
Z♭ which maps i(X) ⊂ Z biholomorphically onto i♭(X) ⊂ Z♭, such that i♭ = µ ◦ i.

Equivalently, there exists a reduced Bergman meromorphic compactification i♭ : X ↪→
Z♭, a smooth modification ρ : Ẑ → Z with the blow-up locus E ⊂ Z lying outside of X,

and a ramified covering ν : Ẑ → Z♭ such that i♭ = ν ◦ î, where î : X ↪→ Ẑ is an open

holomorphic embedding such that i = ρ ◦ î.

Proof. Assume for the time being that the Bergman kernel form KX(z, w) extends

meromorphically in (z, w) from X × X to Z × Z. Let (xi)
∞
i=0 be a dense sequence of

points on X. Consider σi := KX,xi . By the reproducing property of KX(z, w), for

x ∈ X, a square-integrable holomorphic n-form ν ∈ H2(X,ωX) is orthogonal to KX,x if

and only if ν(x) = 0. Thus, any ν in the orthogonal complement of the linear span of

σi, 0 ≤ i < ∞, must vanish on the dense set (xi)
∞
i=0 and hence identically on X. In other

words, H2(X,ωX) is the topological linear span of σi, 0 ≤ i < ∞. By the Gram-Schmidt

process, we obtain from {σi}∞i=0 an orthonormal basis {τi}∞i=0 of H2(X,ωX). (Note that

for k ≥ 1 it is possible that σk is linearly dependent on σ0, · · · , σk−1.) Since KX(z, w)

extends to Z × Z as a function meromorphic in (z, w), each σi = KX,xi , 0 ≤ i < ∞,

extends meromorphically from X to Z. Furthermore, each τi, 0 ≤ i < ∞, is expressed

by the Gram-Schmidt process as a linear combination of a finite number of σj , and as

such each τi extends meromorphically to Z. By assumption, the canonical map ΦX :

X → P
(
H2 (X,ωX)

⋆)
is a holomorphic embedding. For each integer m ≥ 1, let Φm :

X 99K Pm be the meromorphic mapping defined by Φm(z) = [τ0(z)), τ1(z), · · · , τm(z)].

Let Am ⊂ X be the base locus of Φm. We have A1 ⊃ A2 · · · ⊃ Am ⊃ · · · . Since by

assumption H2(X,ωX) has no base locus on X, we have
∩∞

m=1 Am = ∅.

By the meromorphic extension of each τi to Z we see that Am = Vm ∩ X, where

Vm ⊂ Z is a complex-analytic subvariety. Since each complex-analytic subvariety of

the compact complex manifold Z has at most a finite number of irreducible branches,

it follows that by adjoining a finite number of elements τi, we have Am = ∅ for m

sufficiently large. Since the canonical map ΦX : X → P
(
H2 (X,ωX)

⋆)
is a holomorphic

embedding, using the same argument one deduces that for m sufficiently large, Φm :

X → Pm is a holomorphic embedding. Choose such a positive integer m and denote

by Φ♯
m : Z 99K Pm the meromorphic extension of Φm from X to the compact complex

manifold Z. Write E ⊂ Z for the set of indeterminacies of Φ♯
m, where E ∩X = ∅, and

define Y = Φ♯
m(Z − E). Let α : Y ′ → Y be a normalization of Y . The holomorphic

map Φm : X → Y lifts to Φ′
m : X → Y ′, mapping X biholomorphically onto an

open subset X ′ of Y ′ (noting that Y ′ is locally irreducible). Denote by γ : Z♭ → Y ′

a desingularization of Y ′ such that γ is unramified over the smooth part Reg(Y ′), so

that in particular γ|γ−1(X′) : γ−1(X ′) → X ′ is a biholomorphism. Identifying now

X naturally with γ−1(X ′), we have an open embedding i♭ : X ↪→ Z♭. By definition,
7



identifying X with i♭(X), the function K♭
X(z, w) on X extends meromorphically in

(z, w) from X ×X to Z♭ ×Z♭. Since Φ♯
m : Z 99K Y is bimeromorphic, replacing Z by a

smooth modification ρ : Ẑ → Z with the blow-up locus E ⊂ Z lying outside of X, and

denoting by î : X ↪→ Ẑ the canonical lifting of i : X ↪→ Z, we have a lifting of Φ♯
m to a

ramified covering ν : Ẑ → Z♭ such that i♭ = ν ◦ î. To verify that the open embedding

i♭ : X ↪→ Z♭ is a Bergman meromorphic compactification it remains to check condition

(b) in Definition 3.1. Using the (possibly) branched covering ν : Ẑ → Z♭, and denoting

by σ♭
0 the holomorphic n-form on i♭(X) ⊂ Z♭ corresponding to the holomorphic n-

form σ0 on i(X) ⊂ Z, ν∗(σ♭
0) = ρ∗(σ0) extends meromorphically to Ẑ. The proof of

Proposition 3.1 is thus complete under the extra assumption that KX(z, w) extends

meromorphically to Z ×Z. Tautologically the Bergman meromorphic compactification

i♭ : X ↪→ Z♭ is reduced.

In general, by assumption there exists an open embedding i′ : X ↪→ Z ′ into a

compact complex manifold Z ′, such that idX extends to a (possibly) branched covering

ξ : Z ′ → Z and such that ξ∗(σ0) extends meromorphically to Z ′. Then, obviously the

Bergman kernel KX(z, w) extends meromorphically to Z ′. The preceding arguments

then apply to give a reduction i′♭ : Z ′ → Z ′♭ and a meromorphic map µ′ : Z ′ → Z ′♭ with

the desired properties. Suppose z′1, z
′
2 are unramified points of ξ such that ξ(z′1) = ξ(z′2)

and such that µ′ is holomorphic at z′1 and z′2. It follows from the definition of µ′, which

can be equivalently defined by pull-backs of certain meromorphic functions on Z (serving

as inhomogeneous coordinates for the image of Φ♯
m), that we must have µ′(z′1) = µ′(z′2),

and hence µ′ : Z ′ → Z ′♭ descends to µ : Z → Z ′♭. It suffices now to take Z♭ to be Z ′♭

to complete the proof of Proposition 3.1. �

From the existence of the meromorphic map Φ♯
m : Z 99K Y of maximal rank

n = dim(X) over X we deduce readily

Corollary 3.1. Let (X, ds2X) be a canonically embeddable Bergman manifold, and i :

X ↪→ Z be a Bergman meromorphic compactification of X. Then, Z is a Moishezon

manifold.

We define now a natural equivalence relation among Bergman meromorphic com-

pactifications of a given canonically embeddable Bergman manifold, as follows.

Definition 3.2. Let X be a canonically embeddable Bergman manifold. We say that two

Bergman meromorphic compactifications i1 : X ↪→ Z1 and i2 : X ↪→ Z2 are equivalent

to each other if and only if, identifying X with an open subset of Z1, resp. Z2, the

identity map idX extends to a bimeromorphic map between Z1 and Z2.

Starting with a Bergman meromorphic compactification i : X ↪→ Z we have con-

structed in Proposition 3.1 a reduced Bergman meromorphic compactification i♭ : X ↪→
Z♭, which is well-defined up to equivalence. A priori the latter depends on the choice

of a dense sequence (xi)
∞
i=0 on X and the choice of a positive integer m such that

Ψm : X → Pm is an embedding. We will call i♭ : X ↪→ Z♭ a reduction of i : X ↪→ Z.

Next, we introduce the notion of minimal Bergman meromorphic compactifications.
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§4 Minimality of reduced Bergman meromorphic compactifications

Given a canonically embeddable Bergman manifold X, there is a natural partial

ordering among its Bergman meromorphic compactifications i : X ↪→ Z, where i1 :

X ↪→ Z1 is said to dominate i2 : X ↪→ Z2 if and only if i2 = ρ◦ i1 for some meromorphic

mapping ρ : Z1 99K Z2 where ρ restricts to a biholomorphic map from i1(X) ⊂ Z1

onto i2(X) ⊂ Z2. A minimal element among Bergman meromorphic compactifications

of i : X ↪→ Z with respect to this partial ordering will be called a minimal Bergman

meromorphic compactification. In other words, we have

Definition 4.1. Fixing a canonically embeddable Bergman manifold X, a Bergman

meromorphic compactification i0 : X ↪→ Z0 is said to be minimal if and only if, given

any Bergman meromorphic compactification i : X ↪→ Z, the biholomorphism h : i(X) →
i0(X) corresponding to the identity map idX extends to a meromorphic map η : Z → Z0.

For a given canonically embeddable Bergman manifold X, we now relate the re-

duction of its Bergman meromorphic compactifications to the notion of minimality in

Definition 4.1. When a single Bergman meromorphic compactification i : X ↪→ Z is

given, Proposition 3.1 gives a reduction i♭ : X ↪→ Z♭ such that the identity map idX
extends to a meromorphic map η : Z → Z♭. It is not clear that up to equivalence

i♭ : X ↪→ Z♭ is independent of the choices made in the construction. We proceed in fact

to prove that when i : X ↪→ Z is given, up to equivalence i♭ : X ↪→ Z♭ is independent of

the choice of a dense sequence (xi)
∞
i=0 of points on X and the choice of an integer m > 0

such that Ψm : X ↪→ Pm is an embedding, and that furthermore up to equivalence

i♭ : X ↪→ Z♭ is in fact independent of the choice of a Bergman meromorphic compacti-

fication i : X ↪→ Z to start with. The latter will imply that any reduction i♭ : X ↪→ Z♭

of any Bergman meromorphic compactification i : X ↪→ Z gives the minimal Bergman

meromorphic compactification (which is unique up to equivalence). In what follows, for

a meromorphic map α : A → B between two Moishezon manifolds, writing E ⊂ A for

the set of indeterminacies of α, by the graph of α, denoted by Graph(α), we will mean

the topological closure of Graph(α|A−E) in A×B. Graph(α) ⊂ A×B is a subvariety.

We have the following main result of the current article.

Main Theorem (Theorem 4.1). Let (X, ds2X) be a canonically embeddable Bergman

manifold admitting a Bergman meromorphic compactification i : X ↪→ Z. Then, X

admits a minimal Bergman meromorphic compactification i0 : X ↪→ Z0. Furthermore,

any two minimal Bergman meromorphic compactifications of X are equivalent in the

sense of Definition 3.2.

Proof. Given two minimal Bergman meromorphic compactifications i0 : X ↪→ Z0 and

i′0 : X ↪→ Z ′
0, identifying X as an open subset of Z0, resp. Z ′

0, the identity map idX
extends meromorphically in both directions, and thus to a bimeromorphic map between

Z0 and Z ′
0, and it follows that the minimal Bergman meromorphic compactification i0 :

X ↪→ Z0 is uniquely determined up to equivalence. We claim that any minimal Bergman

meromorphic compactification i0 : X ↪→ Z0 is reduced. To see this let i♭ : X ↪→ Z♭
0 be

a reduction of i0 : X ↪→ Z0. By construction we have a meromorphic map µ : Z0 → Z♭
0

which induces the biholomorphism from i0(X) ⊂ Z0 and i♭0(X) ⊂ Z♭
0 arising from the

9



identity map idX , i.e., µ
∣∣
i0(X)

= i♭0 ◦ i−1
0 , where i−1

0 denotes the inverse map of the

biholomorphism i0 : X
∼=−→ i0(X). On the other hand, by minimality, there exists a

meromorphic map γ : Z♭
0 → Z0 which induces by restriction the biholomorphism from

i♭0(X) ⊂ Z♭
0 to i0(X) ⊂ Z0 arising from the identity map idX , i.e., γ

∣∣
i♭0(X)

= i0 ◦ (i♭0)−1,

where (i♭0)
−1 denotes the inverse map of the biholomorphism i♭0 : X

∼=−→ i♭0(X). By

definition µ
∣∣
i0(X)

: i0(X)
∼=−→ i♭0(X) and γ

∣∣
i♭0(X)

: i♭0(X)
∼=−→ i0(X) are inverses of

each other. Hence, Graph(µ) and Graph(γ) are transposes of each other, i.e., (y, y♭) ∈
Graph(µ) if and only if (y♭, y) ∈ Graph(γ). Suppose µ : Z0 → Z♭

0 is not bimeromorphic.

Then, for a general point x♭ ∈ Z♭
0, there exists an open neighborhood U of x♭ and two

distinct open subsets V1, V2 ⊂ Z0 such that µ
∣∣
Vi

maps Vi biholomorphically onto U

for i = 1, 2. Then, for any y♭ ∈ U , there is yi ∈ Vi; i = 1, 2; such that µ(yi) = y♭.

Both (y1, y
♭) and (y2, y

♭) belong to Graph(µ), and hence both (y♭, y1) and (y♭, y2) must

belong to Graph(γ), which is a contradiction since γ is a (meromorphic) map on Z♭
0.

Hence, the claim is proved.

To prove Theorem 4.1 it suffices therefore to prove that any reduction i♭ : X ↪→ Z♭

of any Bergman meromorphic compactification i : X ↪→ Z is the same up to equivalence.

Equivalently, we have to show that, given any two reduced Bergman meromorphic

compactifications i1 : X ↪→ Zi; i = 1, 2; and identifying X as an open subset of Z1,

resp. Z2, the identity map idX extends to a bimeromorphic map η : Z1 → Z2.

Denote by Xk the image of ik : X ↪→ Zk; k = 1, 2. In place of idX we will write

f : X1

∼=−→ X2 and consider the problem of extension of Graph(f). By Theorem 2.2.1,

Graph(f) extends to an irreducible complex-analytic subvariety S ⊂ Z1 × Z2. We are

going to prove that f : X1

∼=−→ X2 extends to a meromorphic map F : Z1 99K Z2.

Given this, and applying the same statement with X1 and X2 interchanged, we will

have proved that F is a bimeromorphic map. To prove that f extends meromorphically

to Z1 we are going to argue by contradiction. Supposing that the general fiber of the

projection π1 : S → Z1 consists of s ≥ 2 points, we obtain by analytic continuation two

distinct branches f ′ and f ′′ over some nonempty connected open subset U ⊂ X1 ⊂ Z1.

Denote by x1 ∈ X1, x2 ∈ X2 base points such that f(x1) = x2. Consider ν1 := KX1,x1

and ν2 := KX2,x2 chosen such that ν1, resp. ν2, is of norm 1 in H2 (X1, ωX1), resp.

H2 (X2, ωX2). Following Mok [Mo2, proof of Theorem 2.2.1, Eqn.(1)], define K♭
X1

and

K♭
X2

by

KX1(z, w) = K♭
X1

(z, w)
(
ϵnν1(z) ∧ ν1(w)

)
; KX2(ζ, ξ) = K♭

X2
(ζ, ξ)

(
ϵnν2(ζ) ∧ ν2(ξ)

)
.

(1)

Here ϵn stands for some non-zero complex number depending only on n, and the notation

K♭
X1

, resp. K♭
X2

, is understood to mean the extension of the function to a meromorphic

function in (z, w), resp. in (ζ, ξ), to Z1 × Z1, resp. Z2 × Z2. From the functional

identity given in Mok [Mo2, proof of Theorem 1.2.1, Eqn.(4)] together with the obvious

adaptation to the situation of manifolds starting with the functional identity in Mok

[Mo2, proof of Theorem 2.2.1, Eqn.(4)] we have the identity

K♭
X2

(f ′(z), f(w)) = K♭
X2

(f ′′(z), f(w)) = K♭
X1

(z, w) (2)
10



for any w ∈ X1 and for any z ∈ U . Thus, for any ξ ∈ X2 and z ∈ U , writing

K♭
X2,ξ

(ζ) = K♭
X2

(ζ, ξ) we have

K♭
X2,ξ

(f ′(z))

K♭
X2,x2

(f ′(z))
=

K♭
X2,ξ

(f ′′(z))

K♭
X2,x2

(f ′′(z))
. (3)

For the map Φ♯
m : Z2 99K Pm as defined in analogy to the proof of Proposition 3.1 we

conclude that

Φ♯
m(f ′(z)) = Φ♯

m(f ′′(z)) , (4)

for any m ≥ 1, contradicting with the assumption that the Bergman meromorphic

compactification i2 : X2 ↪→ Z2 is reduced. The proof of Theorem 4.1 is complete. �

From the proof of Theorem 4.1 we have

Theorem 4.2. Let (X, ds2X) be a canonically embeddable Bergman manifold admitting

a Bergman meromorphic compactification i : X ↪→ Z. Then, up to equivalence any

reduction i♭ : X → Z♭ is the unique minimal Bergman meromorphic compactification.

§5 Examples of Bergman meromorphic compactifications

We provide now examples of Bergman meromorphic compactifications. As men-

tioned, for a bounded symmetric domain D b Cn in its Harish-Chandra realization,

the Bergman kernel KD(z, w) is a rational function in (z, w). It is in fact of the form

KD(z, w) = 1
QD(z,w) , where QD(z, w) is a polynomial in (z, w), as can be found in

Faraut-Korányi [FK, pp.76-77, especially Eqns.(3.4) and (3.9)]. Writing D b Cn ⊂ M

simultaneously for the Harish-Chandra embedding and the Borel embedding of D into

its compact dual manifold M , the Bergman kernel KD(z, w) extends rationally to M .

One can check directly from the explicit forms of the Bergman kernels that D ⊂ M is a

minimal Bergman meromorphic compactification. More conceptually, the latter is a spe-

cial case of the following general result concerning minimality of Bergman meromorphic

compactifications for complete circular domains.

Theorem 5.1. Let G b Cn be a bounded complete circular domain. Suppose the

Bergman kernel KG(z, w) extends to a rational function in (z, w), S is a compact com-

plex manifold, and Cn ⊂ S is a compactification of Cn birational to the standard com-

pactification Cn ⊂ Pn. Then, G ⊂ S is a minimal Bergman meromorphic compactifi-

cation. In particular, the Borel embedding D ⊂ M of a bounded symmetric D into its

compact dual manifold M is a minimal Bergman meromorphic compactification.

Proof. Since G b Cn is a bounded domain, the Bergman metric is defined on G. For

x ∈ X write KG,x(z) = KG(z, x), which will be regarded as a rational function on

Cn. Write i : G ↪→ S for the inclusion map, which is by the hypothesis a Bergman

meromorphic compactification. By Theorem 4.2, to prove Theorem 5.1 it remains to

show that i : G ↪→ S is reduced. Suppose otherwise. Then, the reduction i♭ : G ↪→ S♭

extends to a meromorphic map η : S → S♭ which is not bimeromorphic. Hence there

exist two disjoint non-empty connected open sets U1 ⊂ G, U2 ⊂ S −G such that i♭|U1

11



maps U1 biholomorphically onto i♭(U1) := U ♭, and η|U2 maps U2 biholomorphically onto

U ♭. Thus, there exists a biholomorphism φ : U1 → U2 such that, writing z2 := φ(z1),

η is holomorphic on both U1 and U2, and we have η(z2) = η(z1) = i♭(z1). By Theorem

4.2 the reduction i♭ : G → S♭ is up to equivalence uniquely determined, and can be

constructed from any choice of a dense sequence of points (xi)
∞
i=0 on G and any choice

of a positive integer m such that, writing Ψm = [KG,x0 , · · · ,KG,xm ], Ψm : G → Pm

is a holomorphic embedding on G. We may take x0 = 0 ∈ G. Since G is a circular

domain we have KG(e
iθz, eiθw) = KG(z, w) for any z, w ∈ G and any θ ∈ R. Taking

w = 0 we conclude that KG(z, 0) is a constant. From η(z2) = η(z1) it follows that

KG(z2, xi) = KG(z1, xi) for any nonnegative integer i. Since the sequence of points

(xi)
∞
i=0 is dense in G, it follows that

KG(z2, w) = KG(z1, w) (1)

for any w ∈ G. Expand now KG(z, w) as a power series at (0, 0) ∈ G × G and using

again the invariance of KG under the circle group action we have

KG(z, w) =
∑

|I|=|J|

cIJz
IwJ =

∑
J

hJ(z)wJ , hJ (z) =
∑

|I|=|J|

cIJz
I ; (2)

where in the summations I = (i1, · · · , in) and J = (j1, · · · , jn) range over n-tuples of

nonnegative integers, and |I| = i1 + · · · + in is the length of I, etc. For J = 0 we

have h0(z) = KG(z, 0) = c0,0 = KG(0, 0). For J of length 1 it follows that hJ is a

linear function. For 1 ≤ i, j ≤ n write aij = cEiEj
where Ek is the unique n-tuple of

nonnegative integers of length 1 with the entry 1 at the k-th position. Writing
(
gij

)
for the matrix expression of the Bergman metric ds2G = 2Re(g) in terms of Euclidean

coordinates, we have by expansion gij(0) =
a
ij

KG(0,0) and it follows that
(
aij

)
> 0.

Writing hj := hEj we conclude that h1, · · · , hn are linearly independent. From (1) and

(2) and differentiating against wj at 0 we conclude that

hj(z2) = hj(z1) for 1 ≤ j ≤ n . (3)

From the linear independence of the n linear functions h1, · · · , hn it follows that z2 = z1,

contradicting the definitions of U1 and U2. We have thus proven by argument by

contradiction that η : S → S♭ is bimeromorphic, i.e., i : G ↪→ S is reduced and hence a

minimal Bergman meromorphic compactification, as desired. �

We examine more generally (not necessarily bounded) domains G ⊂ Cn which are

biholomorphic to bounded domains, so that the Bergman kernel KG(z, w) on G is de-

fined, such that KG(z, w) extends to a rational function in (z, w). Taking Cn ⊂ Pn

to be the standard compactification, G ⊂ Pn is then a Bergman meromorphic com-

pactification. Examples of unbounded domains D ⊂ Cn on which the Bergman kernel

is rational are given by the unbounded realizations of bounded homogeneous domains

of Pyatetskii-Shapiro [Py] as Siegel domains of the first or second kind. Up to affine

transformations they are represented as normal Siegel domains D := D(VN , F ) as given
12



in Xu [Xu, Chapter 3], where the Bergman kernels KD are completely determined, and

they are rational, as given in [Xu, Theorem 3.26, Eqn.(3.131)]. There are also standard

realizations of D as bounded domains with respect to which the Bergman kernels remain

to be rational (cf. [Xu, Chapter 4]), especially the canonical bounded realizations D

defined by the Bergman mapping. In particular the boundary extension results for holo-

morphic isometries up to a normalizing constant with respect to the Bergman metric in

Mok [Mo2, Theorem 2.1.2] are applicable to the canonical bounded realizationsD and to

the unbounded realizations D as Siegel domains D. (To take care of the boundary of D
at infinity one can make use of the more general formulation of extension results in Mok

[Mo2, Theorem 2.2.1].) We note that the canonical bounded realizations defined by the

Bergman mapping include the Harish-Chandra realizations of bounded symmetric do-

mains, and the unbounded realization as Siegel domains include the Cayley transforms

of Korányi-Wolf [KW, 1965] of bounded symmetric domains.

Given a domain G ⊂ Cn which is biholomorphic to a bounded domain, and a base

point x0 ∈ G, the Bergman mapping σ : (G;x0) → (Cn; 0), σ(z) = (ζ1, · · · , ζn) is a

germ of biholomorphism at x0, taken to be defined up to a linear transformation on the

target Euclidean space, which may be given by the formula (cf. [Xu, Chapter 4, §1,
Eqn.(4.1)])

ζk =
∂

∂wk
log

KG(z, w)

KG(z0, w)

∣∣∣∣
w=x0

(Alternatively, as was originally done, the Bergman mapping can be normalized by

requiring the Bergman metric to agree with the Euclidean metric at 0 = σ(x0), in

which case it is uniquely determined up to unitary transformations.) When G b Cn is

a bounded symmetric domain in its Harish-Chandra realization, x0 = 0, the Bergman

mapping at 0 is a linear map. In this case we have ζk = 1
KG(0,0)

∂
∂wk

KG(z, w)
∣∣
w=0

. In

general if G ⊂ Cn is biholomorphic to a bounded domain, x0 ∈ G, and the Bergman

mapping σ : (G;x0) → (Cn; 0) extends to a biholomorphism, still to be denoted by

σ : G
∼=−→ D ⊂ Cn, σ(x0) = 0, then the Bergman mapping on D at 0 is a linear

map (cf. Xu [Xu, Chapter 4, Theorem 4.2]). From the latter observation and the

fact the arguments in the proof of Theorem 5.1 given in Eqns.(1)− (3) there, we have

readily the following result giving a sufficient condition for a Bergman meromorphic

compactification to be minimal when the compactifying manifold is birational to Pn.

Theorem 5.2. Let G ⊂ Cn be a domain biholomorphic to a bounded domain, so that

the Bergman kernel KG(z, w) and the Bergman metric ds2G are defined. Suppose the

Bergman kernel KG(z, w) extends to a rational function in (z, w), S is a compact com-

plex manifold, and Cn ⊂ S is a compactification of Cn birational to the standard com-

pactification Cn ⊂ Pn. Suppose furthermore that there exists some point x0 ∈ G such

that the Bergman mapping σ : (G;x0) → (Cn; 0) extends to a birational map on Cn.

Then, G ⊂ S is a minimal Bergman meromorphic compactification.

As special cases of Theorem 5.2 we have

Corollary 5.1. Let D ⊂ Cn be the realization of a bounded homogeneous domain as a

Siegel domain of the first or second kind, S be a compact complex manifold, and Cn ⊂ S
13



be a compactification birational to the standard compactification Cn ⊂ Pn. Then, the

inclusion i : D ↪→ S is a minimal Bergman meromorphic compactification. Further-

more, the canonical bounded realization D b Cn (uniquely determined up to linear

transformations when the base point is fixed) is also a minimal Bergman meromorphic

compactification.

Proof. Fix any base point x0 ∈ D, and let σ : (D;x0) → (Cn; 0) be the Bergman

mapping as a germ of biholomorphism. By Xu [Xu, Chapter 4, Theorem 4.7], σ extends

to a biholomorphism of D onto its image D, yielding the canonical bounded realization

σ : D
∼=−→ D ⊂ Cn. By Theorem 5.2 it suffices to check that σ extends further to

a birational map on Cn. This is implicit in [Xu, Chapter 4] as given by the explicit

calculations there in terms of a factorization σ = σ3 ◦σ2 ◦σ1. Here each σi, 1 ≤ i ≤ 3, is

a birational map from [Xu, Theorem 4.3 (for σ1), Theorem 4.5 (for σ2), and Theorem

4.7 (for σ3)]. The birationality of each σi comes from the description of σi as a matrix

of functions in upper triangular form. Typically, if f is a birationl map on Ck, g

is a birational map on Cℓ, and h : Ck 99K Cℓ is a rational map, then Φ(z, w) :=

(f(z), g(w)+ h(z)) is a birational map on Ck+ℓ. We refer the reader to [Xu, Chapter 4]

for details.

The last statement that D b S is a minimal Bergman meromorphic compactifi-

cation follows since minimality is unchanged under a birational map. (Alternatively,

noting that the Bergman mapping of D at 0 is a linear map, minimality of the Bergman

meromorphic compactification D b S follows from the proof of Theorem 5.1.) �

Remark For all known examples of Bergman meromorphic compactifications i :

X ↪→ Z of canonical embeddable Bergman manifolds, including those given here, the

Bergman kernel forms KX(z, w) extend meromorphically in (z, w) from X ×X to Z ×
Z. However, as mentioned in the Remark in §2, the latter extension property of the

Bergman kernel form does not a priori hold when one descends to a quotient manifold

obtained by a reduction of i : X ↪→ Z and by desingularization, and that is the reason for

defining Bergman meromorphic compactifications by imposing slightly weaker extension

properties related to the Bergman kernel form as given in Definition 2.1.
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