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THE TWO GOLDBACH CONJECTURES

Ming-Chit Liu
(Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong, China)

Abstract: The article is for general readers who may have heard the name, Goldbach or Jingrun Chen (B 5ti%) and
would like to know some mathematical problems related to them. There are four sections in the article. The first two
sections are for those who are only interested in the stories, developments, latest results of the two Goldbach conjec-
tures, their differences in difficulty and Chen’ s achievement. If after having read the first two sections, one would like
to know more about mathematical information and explanation on the contents in the first two sections, one may go fur-

ther to the last two sections.

1 Historical Developments and Chen’s Theorem

Everyone knows that all positive integers can be classified as even integers 2,4,6,8,--- and odd integers 1,3,
5,7,--+ On the other hand, they can also be classified as prime numbers, 2,3,5,7,--- (we call any prime num-
ber >2 an odd prime) , composite numbers, 4,6,8,9,--- and the “building block” of integers, 1. These two
classifications are quite different. Prime numbers are rather hard to identify while even and odd integers have a
trivially simple outward appearance by their last digit. Based on human curiosity, one may ask

Are there simple relations between the above two classifications?

The following two conjectures are on these relations. On June 7, 1742 C. Goldbach (1690-1764) [ Gol] in his
letter to E. Euler (1707-1783) posed two conjectures on the representation of even and odd integers as sums of
primes. Nowadays these two conjectures with some modifications may be stated as follows:

G(2) — Every even integer not less than 6 is a sum of two odd primes.

G(3) — Every odd integer not less than 9 is a sum of three odd primes.
We call problems concerning G (2) and G(3) Goldbach’ s problems. About three weeks later on June 30,
1742, Euler [ Eul] replied to Goldbach that he believed the truth of G(2) (if so G(3) is also true, cf. (D-1)
in Section 2 below) although he could not verify it. Note that during 1742 there were no express communications
like telephone, e-mail, etc. Euler’s reply was a prompt one which seemed to indicate incidentally that he agreed
with Goldbach without any hesitation or reservation. Despite the prima facie statements in G(2) and G(3),
mathematicians, except for numerically checking the two conjectures, did not know how to start their attack. By
tedious computations during the almost two hundred years between 1742 and 1919, they could ensure nothing
about the truth of G(2) and G(3) although they could not find any positive integer for which either G(2) or G
(3) is false.

In the Second International Congress of Mathematicians (ICM) held at Paris 1900, the world renowned math-
ematician D. Hilbert (1862-1943) [ Hil] made a historic speech in which he posed twenty-three unsolved prob-
lems. These problems have profound impact and influence on mathematical development and research in the

twentieth century. Goldbach’s problems were included in Hilbert’ s eighth problem. Twelve years later in 1912,
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E. Landau (1877-1938) [ Lan] addressed in the fifth ICM at Cambridge, U. K. that according to the contempo-
rary stage of human knowledge, Goldbach’s problems were beyond attack.

The first significant achievement in the study of G(3) was obtained by G. H. Hardy (1877-1947) and J. E.
Littlewood ( 1885-1977 ) in their celebrated series of seven joint papers, °Partitio Numerorum’ published
between 1920 and 1928. In their third paper [ H-L-1] of the series concerning G(3), they proved
Hardy & Littlewood’ s Theorem (1923). Assume the GRH (see (A-2) in Section 3 below). Then there is a
positive effectively computable constant V such that each odd integer=V is a sum of three odd primes.

They added two extra conditions in G(3) , namely, the GRH and the constant V. Therefore, they did not set-
tle conjecture G(3) but had progressed a big step since, in their joint work, they created a powerful method
called the Circle Method (or the Hardy-Littlewood Method ). The main part of the method is based on some inte-
grals along the unit circle. Modifying the Circle Method, 1. M. Vinogradov (1891-1983) [ Vim] was successful
in removing the essential assumption GRH and proved
Vinogradov’s Theorem (1937). There is a positive effectively computable constant V such that for every odd
integer n=V (i. e. , every sufficiently large odd integer n) we have

n=p, +p, +p; where p; are odd primes.

That is, conjecture G(3) is true for each odd integer not less than V. We call this result the truth of the Quali-
tative Part of G(3). However, we are still unable to claim that G(3) is true since the value of V in Vino-
gradov’ s proof is too large, e. g. ,

log,, (V) <6,846,169.
We call the truth of V =9 the Quantitative Part of G(3). Therefore, if one can prove the quantitative part,
then G (3) is completely settled. Since 1937, the above bound for V has been reduced gradually by several
authors. Very recently in 2002, M. -C. Liu and T.Z. Wang [ L-W ] obtained
log,, (V) <1,347.
This is the best known result on the Quantitative Part of G(3), i.e., the gap between 9 and the above best
known bound for V forms the final unsettled part of G(3) as shown in the chart below.

9 14
| ) | Vinogradov's Theorem

I Quantitative Part of G(3) ! Quantitative Part of G(3)

» oddn

The first significant breakthrough in the attack upon G(2) was made by V. Brun (1885-1978). Using a
method called the Sieve Method, he obtained [ Bru]

Brun’s Theorem (1919/1920). Every sufficiently large even positive integer is a sum of two integers each hav-
ing at most nine prime factors, equal or distinct.

As usual, we denote this result by (9 +9) and so the Qualitative Part of G(2) is the truth of (1 +1). Attac-
king the (1 +1) from another point of view, about thirty years later after Brun’ s result, A. Renyi (1921-1970)
obtained [ Ren ]

Renyi’ s Theorem (1947/1948). There is a fixed positive integer k such that every sufficiently large even posi-
tive integer is a sum of a prime and a product of at most k primes. That is, the (1 +k) result is true.

In the past several decades both Brun’s Theorem and Renyi’ s Theorem have been improved gradually by dis-
coveries of new ideas and techniques in refinement of the Sieve Method, e. g. , the pioneered works [ Sel] by
A. Selberg (19172007 )and [ Lin] by Yu. V. Linnik (1915-1972). As a culmination of these discoveries, the
result (1 +3) was obtained within a period of three years independently by E. Bombieri [ Bom] in 1965, A. 1.
Vinogradov [ Vai] in 1966, and A. A. Buchstab [ Buc] in 1967. About ten years later Bombieri was awarded a
Fields Medal of 1974 because of his important contribution in several branches of mathematics including the result
(1 +3). Finally, by adding an ingenious new idea to the previous methods, Jingrun Chen ( ff5i#) (1933-
1996) obtained [ Cjr] in 1966 and 1973 the following best known result (1 +2) on G(2).
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Chen’ s Theorem (1966 & 1973). There is a positive non-effectively computable constant N, such that for each
even integer n=N, we have

n=p+P,
where p is a prime and P, is either a prime or a product of two primes.

Chen’ s Theorem is so deep and difficult that so far the result (1 +2) has resisted all further improvement for
almost half a century. On some occasions, Chen’ s Theorem has already been called by experts the Goldbach-
Chen Theorem.

Note that Chen’ s Theorem is still not the truth of the Qualitative Part of G(2) (i.e., not (1 +1)) unless we
can replace the P, there by a prime. So there still does not exist a chart on even n for G(2) like the one above
for G(3). Optimists believe that Chen’ s Theorem is only “a stone’s throw” away from (1 +1) while pessi-
mists trust that all present available knowledge including the Sieve Method is not powerful enough to settle (1 +
1). Anyway, Chen’s Theorem constituted a climax of the Sieve Method.

The reader may feel curious that the author has mentioned two not contiguous years, 1966 and 1973 ( seven
years apart) for the single result (1 +2) obtained by Chen alone. Those who are now over forties may still re-
member that the Cultural Revolution in China had lasted for the ten years from 1966 to 1976 ( sometimes it is also
called the “Ten-Year Riot” ). Just before the Cultural Revolution, Chen obtained his (1 +2) and announced it
at the Chinese Academy of Sciences, Beijing and the announcement was published as a paper (of two pages on-
ly) in Kexue Tongbao (1966) [ Cjr]. Then because of the Cultural Revolution, all academic activities in China
had been severely interrupted for several years until 1973. Since no detailed proof was published by Chen imme-
diately after his announcement, especially, since except Chen himself no one in the world can give a proof of
what Chen announced in 1966, the result (1 +2) was not recognized by the academic world before 1974. After
having obtained Chen’ s paper published in Sci. Sinica, (1973) [ Cjr] where a proof of (1 +2) was given, H.
Halberstam and H. -E. Richert included (1 +2) in their book, Sieve Methods (1974) [ H-R]. Then Chen’ s
(1 +2) was internationally recognized. That is why the author mentioned the two different years, 1966 and
1973, for Chen’ s Theorem. During these seven years, Chen worked in an extraordinarily chaotic environment,
and suffered from great political difficulties and hardship [ Wan, Chapter 9 ]. Unfortunately, during these seven
years, in the peaceful world outside China (comparing with the riotous China in the Cultural Revolution) some
even began to suspect whether Chen had made some fatal errors in his proof of (1 +2) and could not fill the gaps.

¢

The above story indicates that Chen’ s achievement on (1 +2) was a “solo performance in the mathematical
world” for seven years. The 7-year (1966 to 1973) absence of essential progress on G(2) outside China singled
out Chen’ s ingenious ability in the attack upon G(2) which was much more well advanced than the contempora-
ry works on Goldbach’ s problems in the world.

Clearly, some areas of the number theory research in China before the Cultural Revolution have once reached
the very frontiers in the world. The record of Chen’s (1 +2) has already lasted for more than four decades and
indeed is important enough to form a notable part of the history in mathematics.

We have seen that the historical developments of G(2) and G(3) are quite different. In the next section, we

will try to discuss and explain some obvious differences between G(2) and G(3) in more details.

2 Some Differences between G(2) and G(3)

Historical developments of G(2) and G(3) indicate that G(2) is tougher than G(3) in resistance of attacks.
If we go through the proofs in details of Chen’s Theorem and Vinogradov’s Theorem, we would not be sur-
prised at all by these developments. For these proofs, one may read, for example, [ Dav, Chapter 26 ] for Vino-
gradov’ s Theorem and [ H-R, Chapter 11 ] for Chen’ s Theorem. In this section, instead of proofs of these two

theorems, we will look into the following five quite obvious differences between G(2) and G(3). With these



4 I NN - O SNC Y 548

differences we could sense that the solution of G(2) lies much deeper than G(3).

We denote the set of all positive integers by N and the set of all prime numbers by P . For a,b e N if a divides
b we write alb or otherwise a 1 b. #S means the number of all elements in the (finite) set S.

(D-1). It is obvious that G(2) is a problem of two independent ( prime) variables while G(3) is of three inde-
pendent ( prime) variables. That is, in solving G(3) we have one more freedom than G(2) in choosing inde-
pendent variables from P . Note that actually both Vinogradov’ s Theorem and Chen’ s Theorem are merely
results of three independent ( prime) variables since the P, in Chen’ s Theorem may be a product of two primes.
On the other hand, plainly the truth of G(2) implies the truth of G(3), since the integer 3 is an odd prime and
(6<) n -3 is an even integer if n( =9) is an odd integer. In the following (D4) we see that even from a
result which is extremely far away from the truth of the Qualitative Part of G(2) we can still obtain the truth of
the Qualitative Part of G(3).

(D-2). The constant V in Vinogradov’s Theorem is effectively computable and so the attack upon the Quantita-
tive Part of G(3) (i.e., to prove V=9) could be started as soon as the Qualitative Part of G(3) has been set-
tled in 1937 (i.e., immediately after Vinogradov’s Theorem was obtained). On the other hand, the constant
N, in Chen’ s Theorem is non-effectively computable. That is, although the number of independent ( prime) var-
iables in the Qualitative Part of G(2) is released to possibly three but not strictly two (i.e. , the (1 +2) but not
the (1 +1)), it is still not possible to assign a numerical value to the N, in Chen’ s Theorem with the existing
knowledge. If in future, for any even integer n= N, we can replace the P, in Chen’ s Theorem by a prime but the
constant N, is still non-effectively computable then we can only claim that the Qualitative Part of G(2) (i.e.
the (1 +1)) is settled but do not know how to start our attack immediately upon the Quantitative Part of G(2)
(i.e., to prove N, =6). So it is still hopeless to finally settle G(2) unless N, is effectively computable. This
phenomenon shows the toughness of G(2) and reflects the striking depth of Chen’ s work.

The reason why the N, in Chen’ s Theorem is non-effectively computable is interestingly mysterious and will
be explained in Section 3, ( A-3) and Section 4. It should be noted that, by the same reason causing the non-ef-
fectiveness of the N, in Chen’ s Theorem, the corresponding N, in the weaker result (1 +3) is also non-effective-
ly computable.
(D-3). Assuming the GRH and applying the Circle Method, in 1997 J. M. Deshouillers, G. Effinger, H. Te
Riele and D. Zinoviev [ DERZ] obtained that the constant V in Vinogradov’ s Theorem satisfies V =9. Inde-
pendently , under the GRH, V =9 was also obtained by combining the two results by Y. Saouter [ Sao ] in 1998
and D. Zinoviev [ Zin] in 1997. They did not settle the Quantitative Part of G(3) because of the extra assump-
tion, GRH (cf. Hardy & Littlewood’ s Theorem). However, their result strongly supports the belief in the truth
of G(3). On the other hand, under the GRH, the Circle Method does not work well for G(2). In 1924, G. H.
Hardy and J. E. Littlewood [ H-L-2 ] obtained that
under the GRH for any & >0 there is a positive effectively computable constant N, depending on & only such that
we have

#E(N) <N"*** for any N=N,

where E(N) = {neN :2In<N,n#p, +p, for any p, ,p, P |. (2-1)

Note that the truth of G(2) is equivalent to the much stronger result

#E(N) =1 for any N=2

since G(2) is true if and only if E(N) = {2} for any N=2. That is, unlike G(3) even under the GRH the
result on #E(N) is still extremely far away from the truth of #E£(N) = N° for N=2 since the difference between
the two bounds for #E£(N), N"*** and 1 =N is a vast difference in order of infinity. We shall provide further
evidence on essential differences between G(2) and G(3) in the next (D-4) and (D-5).
(D-4). One can easily verify that the following extremely weak Result (E) on G(2) is powerful enough to
obtain the Qualitative Part of G(3), i.e., the Vinogradov’s Theorem.
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Result (E). There is a positive effectively computable constant N, such that
#E(N) <N/ (logN)’ for any integer N=N,.
Here and in what follows, log denotes the logarithm function with the number e( =2. 71828---) as the base.
Claim: Result (E) implies Vinogradov’ s Theorem.
Proof. For any ke N \{1,2} put
S(2k) =S=1{2k+3 -pe[4,2k]:pecP} (2-2)
where [4,2k] denotes the closed interval of real numbers with end points 4 and 2k. So each p appearing in S is

odd. Let 77(x) denote the number of primes<x, i.e., w(x) = Y, 1. Then

P=x

#S=m(2k) -1
since p =2 is not counted in S and 2k ¢ P. By the Prime Number Theorem ( see Section 3, (A-1)) we have
]}LIL}#S/(Zk/log(2k)) =1. (2-3)
Next let
A(2k) =A=1{2t €[4,2k]:teN} and
F(2k) ={2te[4,2k]:teN, 2ts#p, +p, for any p, ,p, e P\ {2} }. (24)
Note that

SCA and F(2k) CA.
Now, since 6 ¢ F(2k) for k=3, we always have
A\F(2k) is not an empty set.
If there exists k, e N \{1,2} such that

for each s e A\F(2k,) we always have s ¢ S (2-5)
then A\F(2k,) CA\S.
This gives #( A\F(2k,) ) <#(A\S)
or #F(2k, ) =#S (2-6)

since both F(2k,) and S are subsets of A.

Next note that since by (2-1) and (2-4) the only difference between E(2k) and F(2k) is about the integers
2 and 4, we see that

#F(2k) =#E(2k) for every k=3.
By Result (E) with N, =6, i.e. ,
#F(2k) <2k/(log(2k) )’ for any 2k=N,
and (2-3) we see that there is a positive effectively computable constant N, such that
#S > #F(2k) for any 2k=N,

since XIEE log(x) = . From this and (2-6) we conclude that the k, in (2-5) must satisfy 2k, <N,. This proves

that (2-5) is false if 2k, =N, or that

SN (A\F(2k) ) is not empty for any 2k=N,.
So by (2-2) and (2-4) for any 2k=N, there is p e P \ {2} such that 2k +3 - p e SN (A\F(2k) ) and

2k+3 -p=p, +p, forsome p,,p,eP\{2}. (2-7)
Let V=N, +3. For any odd integer n=V let 2k =n -3( =N, ). By (2-7) we have

n=2k+3=p+p, +p,,
i.e., every odd integer n=V is a sum of three odd primes. This is Vinogradov’s Theorem and the proof of our
Claim is complete.
Following the above arguments we see that actually in view of the Prime Number Theorem we can even replace

the 2 in Result (E) by any fixed constant > 1, i.e. , by a further weaker bound than that in Result (E) above,
we can still obtain Vinogradov’ s Theorem.

(D-5). The method applied for Vinogradov’s Theorem is the Circle Method while for Chen’ s Theorem the
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Sieve Method is applied. The two methods are entirely different although both depend heavily on results of distri-
bution of prime numbers. However, there is a common feature of these two methods, namely, Chen (in 1966 &
1973) and Vinogradov (in 1937) were successful in showing that for even integers n ( =N, for G(2) ) or odd
integers n ( =V for G(3)) the following inequalities hold.
NG = 2#(5) - #(j) >0 for j=2,3
where ./ (2) denotes the number of solutions of the equation
n=p+P,
and ./ (3) denotes the number of solutions of the equation
n=p;+p, +p;
and .7 (j) >0 and £(j) >0 for j =2,3 denote a lower bound for the main term and an upper bound for the error
term in the estimation of the ./(j) respectively. Next, we are going to take one more step to look into these
() and £(j) and shall discover that the inequality for positive ./ (2)
M(2) >E(2) (2-8)
is very tight while the .7 (3) > #(3) is rather slack.
In the proof of Chen’ s Theorem we have
(2) =AIl and #(2) =BII
where for any even integer n=N,
I =p1;[3(1 _(‘1)—171)2)3!,%»1(2 :;)n/ (logn)® > (0.66)n/(logn)* where p e P (29)
and A, B are positive constants with

A-B>0.67.
So ./ {2) > (0.67)II for even integer n=N, and
liniI M(2)/#(2) is the positive constant A/B,

i.e., #(2) and #(2) are of the same order of infinity and . 7Z(2) dominates %(2) only because A is slightly
larger than B. This shows the severe tightness of the inequality in (2-8). We shall come back to ./ (2) with
some further explanation in Section 4, Remark 4-3.
On the other hand, in the proof of Vinogradov’s Theorem, we have that for any odd integer n=V
(3) :Ln(l —%)l‘[(l . -
2 pin (p=1)")ptn (p-1)
fixed constant D >3 there is a positive constant K depending on D only such that
“(3) <Kn’/(logn)”.
So . /(3) >(0.65)n*/(logn)* for n=V and
lim #(3)/#(3) =,

n—o ,Z{n
i.e., .Z(3) is of higher order of infinity than #(3) and .Z(3) dominates #(3) overwhelmingly. Hence the
inequality .Z(3) > #(3) is rather slack.
Once again, this difference indicates that G(2) is much more difficult than G(3). The tightness of .Z(2) >

)nz/(log:{n)3 > (0.66)n°/(logn)’ where p e P and that for any

#(2) probably supports the belief by some experts in this field that Sieve Method is not powerful enough to settle
G(2) even only for the Qualitative Part of G(2).

Remark 2-1. By the way it should be mentioned that the significant work in evaluation or estimation of some im-
portant constants should not be ignored although usually the estimation work may be tedious. Actually, the esti-
mation of constants needs not only more effort and time in their research, but also much deeper understanding
about the original profound ideas in those inequalities involved. Chen succeeded in proving his Theorem because
of not only his ingenuity in adding new ideas in the Sieve Method, but also his ingenuity in numerical estimation
of the constant B in (D-5). Another example on the importance of constant estimation is about a remarkable

milestone record of the Linnik Constant. D. R. Heath-Brown in 1992 [ Hea ] obtained the upper bound 5.5 for
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the Linnik Constant by his significant numerical estimation of those constants involved in the zero-free regions

and zero density of the Dirichlet L-functions.

3 The Prime Number Theorem, the GRH and Theorems S, W & B

In this section we shall give some very brief description about ( A-1) The Prime Number Theorem, ( A-2)
The GRH and (A-3) Non-effectiveness of the N,.
(A-1) The Prime Number Theorem.
By examining

a(x)/(x/log(x)) for 1 <x<10°.
C.F. Gauss (1777-1855) in 1792 [ Gau] and A. M. Legendre (1752-1833) in 1798 [ Leg] conjectured inde-
pendently that
limz(x)/(x/log(x)) =1.

X— 0

Both of them tried to prove the conjecture in vain. Since then, the conjecture has attracted the attention of emi-
nent mathematicians for more than a century. In 1851 P. L. Chebyshev (1821-1894) [ Cpl ] made an important
step towards the proof of the conjecture by showing that
if w(x)/(x/log(x) )tends to a limit then the limit is 1.
In 1859 B. Riemann (1826-1866) [ Rie] attacked the problem by using the theories and techniques in complex
analysis. Although he was unable to settle completely the conjecture before his untimely death at the age of
forty, his discoveries and ingenious methods for connecting the distribution of prime numbers to the properties of
Riemann-zeta function had a very profound influence on this successors’ work. For the first thirty years after
Riemann’s paper [ Rie] was published, there was virtually no progress. It was as if it took the mathematical
world that much time to digest Riemann’ s ideas. Eventually, just before the end of the 19th century, in 1896,
using analytic methods due to Riemann, J. Hadamard (1865-1963) [Had] and C. de la Vallee Poussin(1866-
1962) [Pou] independently proved the conjecture, i.e. ,
limz(x)/(x/log(x)) =1.

xX—®

The result is now called the Prime Number Theorem.
(A-2) The GRH or the Generalized Riemann Hypothesis.
Let Z denote the set of all integers. For any m,n e Z we denote the Greatest Common Divisor of m and n by
(m,n). For any g e Nif g divides m —n we write m=n(modgq).
Definition 3-1. Ler g e N. The complex-valued function y defined on Z is called a Dirichlet Character ( or Char-
acter) Modulo q denoted by y(modgq) if y is not identically zero and satisfies

(1) x(mn) =x(m)x(n) for any m,neZ ,

(i) x(m+q) =x(m) forany meZ , i.e. , y is periodic with period q,

(i) x(m) =0 if (m,q) #1.
Remark 3-2. It can be proved that for each ¢ € N there are exactly ¢ (¢ ) Dirichlet characters modulo ¢ where
&(q) is called the Euler Function defined by

¢(q) =#{meN:m<q, (m,q) =1}.

Let m,a e Z with (a,q) =1. It can be proved that the sum Y, of all the ¢(g) characters y(modgq) satisfies

odg)
X(ﬂgaq)/\/(m))}(a) =¢(q) if mzaélnojiq) or =0 otherwise (3-1)
where y(a) means the complex conjugate of y(a).
Definition 3-3. For any q e N, the following function f defined on Z by
f(m) =1if (m,q) =1 or =0 otherwise
satisfies Definition 3-1. We call this function the Principal Dirichlet Character Modulo q and denote it by
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Xo(modgq). Note that the only (by ¢(1) =1) character y(mod1) is in fact the principal character y,(mod1)
(=1foranymeZ).

Remark 3-4. If y(modg) has no period less than ¢, then we call it a Primitive Character Modulo ¢. It can be
proved that for any given y(modgq) there is a unique primitive character y( modr) such that rlg and y(m) =
Y (m)y,(m) for any m e Z where y, is the principal character modulo g. We say the y(modg) is induced by the
primitive y(modr). Actually, the converse is also true, namely, for any given primitive y( modr) if g e N with
rlg then there is a unique y(modg) induced by the s (modr).

Remark 3-5. Let C be the set of all complex numbers. It can be proved that for any ¢ € N the absolute value of
x(m) satisfies

ly(m)!l =1if (m,q) =1

and then we have |ly(m) | <1 for any m e Z . Therefore, for any s € C we have that the series ZI x(m)m™" con-

verges absolutely on the half-plane Re(s) >1 where

m® =exp(slog(m)) implies Im'| =m",

It can be proved that the sum function of the series 21 x(m)m™" is analytic (i.e., the derivative of the sum

function exists) for Re (s) > 1 and that the sum function can be extended analytically to C if y (mod g) #
Xo(modg) and to C \ {1} otherwise. We also have
d ©

ds X x(mym=" = - i;llog(m))((m)m"" for Re(s) >1. (32)

Definition 3-6. For each y(modgq) the analytic extension of i] x(m)m ™’ mentioned in Remark 3-5 is called the

Dirichlet L-function denoted by L(s,x). In particular, if g =1 we call the corresponding L(s,y,) the Rie-
mann-zeta Function denoted by {(s) , i.e. ,

£ (s)is analytic on C\{1} and {(s) =”i=l m~’ for Re(s) > 1.

Definition 3-7. It can be proved that there are infinitely many zeros p = + iy of L(s,xy) with 0 <8 <1 and that
these zeros lie symmetrically to the vertical line Re(s) =1/2, i.e. , both B +iy and 1 -3 + iy are zeros of L(s,
x). We call these zeros p Non-trivial Zero of L(s,y). It was conjectured by B. Riemann [ Rie] in 1859 that all
non-trivial zeros p of {(s) lie on the line Re(s) =1/2 or Re(p) =1/2. The conjecture is called the Riemann
Hpypothesis , usually abbreviated as RH. About all non-trivial zeros p of the L(s,y) in general there is a similar
conjecture , namely, all Re(p) =1/2. We call this conjecture the Generalized Riemann Hypothesis abbreviated
as GRH.

From the statements of G(2) and G(3) we see that they are closely related to the distribution of prime num-
bers. In Result 4-1 below we shall find a clear relation connecting some property of the distribution of prime
numbers and the location of non-trivial zeros of L(s,y). So it is natural to start attacks upon G(2) and G(3) by
assuming the GRH as in Hardy-Littlewood’ s Theorem and (D-3).

Remark 3-8. It can be proved that if y(modg) is induced by the primitive y( modr) then
L(sx) =L(sg) TI(1 =y (p)p™") for Re(s) >0,
where ,H] denotes the product over all prime divisors p of g. This shows that L(s,y) and L(s,) have the same

set of zeros p with Re(p) >0 since for each prime p, l(p)/p'l <1 if Re(s) >0.
(A-3) Non-effectiveness of the N,.

Here we shall give a very sketchy description on the reason why the N, in Chen’s Theorem is non-effectively
computable. However, if one would like to go into the details, one may refer to, for example [ Dav, Chapters
21, 22 &28] for Results 3-10 to 3-13 below.

Result 3-9. It can be proved that for any given T=2 there is an effectively computable positive absolute constant

C, such that there is at most one primitive character y( mod7) with 7<T for which the corresponding L(s,y) has
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a zero p lying in the region
Re(s) >1 —n(T) and I Im(s) | <T where n(T) =C,/logT. (3-3)

If such y(mod7) exits the zero p =B + iy is real, simple and unique, i.e. ,

B>1-n(T) and y =0.
So by Definition 3-7, 1 - is also a zero of L(s,y). We call the zero B( =) the Siegel Zero and y ( modF)
the Exceptional Character. Moreover, there is an effectively computable positive absolute constant C, such that
the zero 1 —B of L(s,y) satisfies

C,/ (77 (logi)?) <1 -B. (3-4)

By Remark 34, Results 3-8 and 3-9, if y(modg) with ¢<T is not induced by y(mod7) then (3-3) gives the

zero-free region for L(s,y). In particular,
all L(s,y) #0 for Re(s) =1. (3-5)
Result 3-10. For a better lower bound of 1 -3, C.L. Siegel (1896-1981) obtained [ Sie ]
Theorem S (1935). For any g >0 there is a non-effectively computable positive number C( &) depending on &
only such that
Cle)/7<1-p (3-6)
where B is the Siegel zero and 7 is the modulus of the Exceptional Character.

Comparing the two lower bounds (34) and (3-6) for the 1 —3 we see that Theorem S is considerably better
but we have to sacrifice the effectiveness, i. e., to replace the effectively computable C, by the non-effective
C(e).

Result 3-11. Applying Theorem S, A. Walfisz (1892-1962) obtained [ Wal ]
Theorem W (1935). For given fixed k=1 there are non-effectively computable positive constants C, and C, de-
pending on k only such that if for any non-principal y(modq) we have
g<(log(r))*

then

mgr/\ (m)y(m) <rexp( -C, /logﬁ) for r=C,
where N\ (m) is the von Mangoldt Function , i.e. , )\ (m) =log(p) if m=p* (i.e. , m is a power of a prime
p) and N\ (m) =0 otherwise.

Theorem W is non-effective since in the proof we have to apply the non-effective Theorem S.

Remark 3-12. Theorem W is in fact involved in the error term of the following non-effective Theorem W-S

(1935 [ Wal]) on the Prime Number Theorem for Arithmetic Progressions, namely, we have
> A ((m()1 = r/$(q) +Error
modgq

ms<r, m=a

if g<(log(r))" with k=1 and r=C, where ¢(g) is the Euler function and the Error is dominated by the bound
for 3 A (m)y(m) in Theorem W.

It is not surprising that Theorem W (and Theorem W-S) is one of the key tools in the attacks of G(2)
although it is non-effective since G(2) (and G(3) also) is essentially and closely related with the distribution of
prime numbers. Imagine that if the word “primes” in G(2) were replaced by “integers” then trivially it becomes
exercises of “finger-counting” for kids in any pre-kindergarten class while G(2) itself like a mysterious treasure
trove has been tantalizing so many genius mathematicians for so many years since 1742.

Result 3-13. Concerning the number of primes lying in arithmetic progression, E. Bombieri (1940-) obtained
[ Bom |
Theorem B (1965). Let A\ (m) be the von Mangoldt function and ¢(q) be the Euler function. Let a,q e N

with (a,q) =1. For n>r=3 write

E(rig,a) = T A(m) ) - (/9(9),

m<r, m=a( mo
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E(r,q) = max |E(r;q,a)! and E™ (n,q) = max E(r,q).
Let A >0 be fixed. Then there is a non-effectively computable positive constant Cs depending on A only such that if
nl/z(logn) —A$Q$nl/2
then
qZ,QE*(n,q) <C,n'?Q(logn)’. (3-7)

Theorem B is non-effective since in the proof we need the non-effective Theorem W.

Remark 3-14. In the proof of Chen’ s Theorem we have to apply Theorem B and Theorem W. Therefore the
constant N, in Chen’s Theorem is non-effectively computable.

By the way, it should be remarked that for G(3) , instead of the non-effective Theorem S, the effective (3-4)
is powerful enough to be applied in the proof of Vinogradov’s Theorem and so the constant V is effectively com-
putable.

In the next section more mathematical details than ( A-3) shall be given to further explain the relations of the

non-effectiveness among Theorems S, W, B and Chen’ s Theorem.

4  Further Explanation

In this section we shall give some concise description and simple mathematical explanation on the non-effec-
tiveness of Theorems W, B and Chen’ s Theorem as mentioned in Section 3 ( A-3). All these theorems are deep
and their proofs are difficult and lengthy but elegant. Here we shall only give those necessary mathematical
results for our explanation and have no intention at all to touch the details of any part of the proofs of these theo-
rems.

(A-4) Non-effectiveness of Theorem W.
For ¢ e N let y(modg) be any Dirichlet character and A (m) be the von Mangoldt function. Note that the series

i] AN(m)y(m)m™ is absolutely convergent for Re(s) >1 since |y(m) | <1 and for any (small) § >0,
(0<) A (m) is eventually less than m® as m increases. By Definition 3-6
L(sy) = ilx(m)m_s for Re(s) >1

and by the multiplication of the two absolutely convergent series (i.e. , the Cauchy product) , we have

L(s, ) 3 A (my(m)m™ = 3 m™ S y(m/d) N (d)x(d) =

m=1
ilm"‘/\/(m)log(m) = —L'(s,y) for Re(s) >1 by (32).
The above second equality holds since by the definition of A (m), A (d)#0 only when d is a power of some

prime p; and so
ro r
2N =323 N(p)) =3 t;log(p,) =log(m)
for m = ]L[lpj’/ Note that by (3-5), there are no zeros of L(s,y) in the half plane Re(s) =1. Then we obtain
=

—-L'(s,x)/L(s,x) :mi;,l A (m)y(m)m™" for Re(s) >1. (4-1)
It can be proved that for non-principal y(modg) the analytic function defined by (4-1) can be extended analyti-
cally beyond the line Re(s) =1 to Re(s) <1 except for those zeros of L(s,y) in the half plane Re(s) <1. Then
with some suitable closed contour on C by the Residue Theorem we can obtain Result 4-1 below.
Result 4-1. Let r=T=2, qe N and let y(modq) be any non-principal character modulo q. We have
Z A (mx(m) = = (Er*/B) = ( 3 r"/p) +Error (42)
where )\ (m) is the von Mangoldt function, p =B + iy are non-trivial zeros of the Dirichlet L-function L(s ) , B
is the Siegel zero(see Result 3-9) and E =1 if y =y (the exceptional character) and =0 if y#x. Here the sum
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> is over all p with 1Im(p) | <T but excludes the zeros B and 1 —B (if they exist).

lyl<T
Note that Theorem W is about the estimation on upper bound for the left hand side of the equation in (4-2).

Theorem W becomes non-effective since we have to apply the non-effective Theorem S to handle the possible ex-
istence of the Siegel zero Bin (4-2).
(A-5) Non-effectiveness of Theorem B.
For a,q,re Nwith (a,g) =1, by (3-1) we have
S x(a) X N (m)x(m) =5 N(m)3 x(a)x(m) =¢(q) 3 A(m) (43)

m<r, m=a(m

where the sum Y, is over all the ¢(¢g) Dirichlet characters x(modg).
X

Now Theorem B is on the estimate of the sum over g in (3-7) involving the term

max max I( Z/\(m) )—(r/qb(q)>|,

r<n (a,q) =1 m<r, m=a(mod
where the sums of A (m) over m<r with r<n and mEa( modg) form the main issue for the estimation. Then

for non-principal y(modg) , the sums Y, A (m)y(m) on the left hand side of (4-3) are involved. Theorem B

then becomes non-effective because we have to apply the non-effective Theorem W to handle them.
(A-6) The Non-effectively Computable N, in Chen’ s Theorem.
For clarity, we begin our explanation from the following lemma of Chen.

Let p,p’,p;,p; € P and P, be either a prime or a product of two primes. For a given n e N and any ¢ >2 let

P(t) =TI p (44)

For any given even ne N | let re

S(n)={peP:p<n, ptn, (n-p, P(n")) =1}. (4-5)
It can be shown that there is an effectively computable constant N, >0 such that for any n e N with 21n and n=
N, we have

#S(n) >AIl
(and so S(n) is non-empty ) where AIl =.7(2) was mentioned in (D-5) and (2-9). In what follows, we
always assume n € N with 2|n and n=N,. We call such n a large even integer. For the given n and p e S(n) let
(%) be the sum over all p, such that
n"’<p, <n'”?, p,fnandp, In-p. (4-6)

For the given n,p e S(n) and p, satisfying (4-6) let (%) be the sum over all p, such that

n'? sp, < (n/pl)l/z, potn, pyln-pand (n-p)/pp,eP. (4-7)
As usual, we assign zero value to an empty sum.
Lemma. For any given large even n e N we have

#in-p:p<n,n-p=P,} = Y { 2(%‘,)

peS(n)

) 21} (4-8)

2 (1) (h2)

Remark 4-3. Since we shall not go into the proof of Chen’s Theorem in details, for simplicity, in (4-8) we
have omitted some conditions from the original version ( see, for example, (2.1) in [ H-R, p.321]) of the cor-
responding set S(n) in Chen’s proof. Anyway, the Lemma here is closed enough ( for our explanation in ( A-
6) ) to the original starting point of Chen’ s adventure in G(2) for the destination (1 +2). Therefore, in what
follows we ignore the difference between (4. 8) and the corresponding inequality in Chen’ s proof. Note that if
we can prove that there is a positive ( non-effectively computable) constant N, =N, such that for any even integer

n=N, we have a positive value of the sum Z in (4-8) then we obtain (1 +2) or Chen’s Theorem. Actually,

peSin)
with the #(2) and BII in (D-5) and (2-9) Chen could prove that the sum of the last two sums in (4-8) satisfies
1 o .
>33 {1 +31 } <BII=#(2) if n=N, and 2.

Therefore, by this bound together with #S(n) > AII for even n=N,=N,, Chen could obtain that the right hand
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side of (4-8) is larger than (A - B)II = (0. 67)II which is the lower bound for the number of primes p satisfy-
ing n —p = P, for the given even integer n=N,, i.e., the ./ (2) in Section 2 (D-5).

The sum (2) in (4-8) was introduced by pioneers who eventually obtained (1 +3) while the sum (Z)(Z) was
P1 p1)(p2

introduced by Chen himself in 1966. By this additional ingenious new idea and his skillful but complicated techniques

involving many deep theorems, Chen could obtain a good enough upper bound for the triple sum g(, )(Z) (Z) to
pesS(n) (py) (py

achieve the goal (1 +2). This forms Chen’ s spectacular “solo performance in the mathematical world” for the

seven years from 1966 to 1973.

Proof (of the Lemma). Let S, = {n-p:p<n,n-p=P,}. Foreach peS(n) let {---}{ (p) denote
1 1
1-—>1-—= 1%
{ 2 %) 2 %)(%) }
So (4-8) is #S,= ;( ) {+-} (p). Since #S,=0, in order to prove the inequality (4-8) we only need to consider
peS(n
those p € S(n) such that {---} (p) >0. Now, {---} (p) <1 and #S, is a counting function, i.e. , its value
jumps up by 1 for each count. Therefore, it suffices to prove that if {--+} (p) >0 for some p e S(n) then this p

satisfies n —p € S,. We consider two cases, (i) the sum Y, is empty and (ii) the sum Y, is non-empty. Since
(p1) (p1)
we are only interested in {---} (p) >0, case (ii) is in fact the case > 1 =1.
(p1)

Consider case (i). In this case we have both sums Y, and >, Y, are empty and hence the values of these sums
r1) (p1) (p2)

are zero. As a consequence, {---|(p) =1. On the other hand, for any given p e S(n) if (Z) is an empty sum
1

then by (4-6) for each p, with

n'""<p, <n'?, p, tn we have p, { n—p.

By this together with (n—p,P(n""*)) =1 in (4-5) we have, in view of (44)

(n-p, IIp" )=1 (49)
P’<nl/3.p"fn
Then we have
p'=n"" for each p’ with p'ln -p (4-10)

since if there were p’ <n'” with p’In — p then by (4-9) we must have p’|n and so in fact this p’ equals to the p
from S(n). This is impossible as by (4-5) for each p e S(n) we have p{ n. Then now by (4-10) we have
n-p=~p,. (4-11)

For if there were more than two prime divisors of n —p let us consider n —p =p\p,p5. By (4-10) all p; =n"".
This gives n >n —p=(n"")>. Tt is impossible and our proof for case (i) is complete, i.e. , if the sum (Z} is
P1

empty then this p e S(n) satisfies (4-11) orn-peS,.

Next, consider case (ii) Y, 1 =1. In this case, by (4-6) n —p has precisely one prime divisor p, from the range
P1
I:nl/l() 1/3 1/10

,n’”) with p, ¥ n. This together with (n—p,P(n’")) =1 in (4-5) gives n —p =p,m for some m e N with

(m, TIp'" )=1 (4-12)
P <nl/3,p'tn
If m =1 then obviously, n —p €S,. On the other hand, (Z)(Z) 1 =0 as there is no p, dividing m as in (4-7). So {---}
JAPANS)

(p) =1 —% >0 by (2)1 =1. That is, the p e S(n) causing m =1 is counted on both sides of the inequality (4-8).

P1

Now, consider m=2. By (4-12), if p’Im then p’=n"" and hence m = P, by the same arguments as for (4-
11). For if m =p!pip,=(n"")’ then we have the contradiction, n>n —p =p,m >m=n. Now, either (ii-a) m
has exactly two prime divisors or (ii-b) m is a prime. Consider (ii-a). If m has exactly two prime divisors, by
(4-12) write

m =p,p, with n'” <p, <p,.

Then (n-p)/(p,p,) =p;ePand n-pe¢S, as n—p=p,p,p;. Now p,{n. For if p,In then p, =p by p,|n -
p. But by (4-5), peS(n) does not divide n. Furthermore, we must have p, < (n/p,)"* otherwise there is the
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following contradiction.
n>n-p=pp.,p;=p,p;=p, (n/p,) =n.
Then for this p e S(n) there is at least one pair of p, and p, such that all the conditions, (4-6) and (4-7) in the

sum Y Y are satisfied and as a consequences, > > 1=1. Then {---} (p) <1 —% —% =0. That is, the p e

(p1) (p2) (p1) (p2)
S(n) causing m = p,p, is not counted on both sides of the inequality (4-8).

It remains to consider case (ii-b). In (ii-b) m is a prime. Write m=p, or n —p =p,p,( =P, ). This shows

that (n—p)/p,p, ¢ P and then the sum Y 3 is an empty sum or =0, and so {:-|{ (p) =1 —%>O. That is,

(p1) (p2)

this p has positive contribution to the sum 2 in (4-8). Meanwhile, this p e S(n) satisfies n — p = P, and is

peS(n)

counted in the set S, in (4-8). This completes our proof of the Lemma.

Remark 4-4. In order to obtain a good upper bound for the term caused by the sum Z( )(Z) in (4-8), in view
peS(n)(p

of (4-5) and (4-6) we may follow those pioneers who obtained (1 +3) to treat the sum
#{peP:p<n, p=n(modp,), (n-p, P(n")) =1}. (4-13)

/10 <p /3 pitn

Note that the main condition in (4-13) is concerned with a system of relations (usually, called congruences)
p=n(modp,) with (n,p,) =1. It can be shown that with the help of the Chinese Remainder Theorem, this is
to deal with those primes p lying in an arithmetic progression a + g€ , where £ e N is a variable and a,q e N are
determined by n and all the p, from (4-13) with a <q and (a,q) =1. It is well known that by Dirichlet’ s Theo-
rem (1837 in [ Dir] by P. G. L. Dirichlet (1805-1859) ) there are infinitely many primes p lying in any given
arithmetic progression a + gf with (a,q) =1, € e N. Furthermore, similar to the Prime Number Theorem, the
number of primes p with p<<n lying in a + g€ is about n/(p(g)log(n)) where ¢(g) is the Euler function. So
in the treatment of (4-13), they dealt with the estimation involving

(_ S1 )=/ (¢(q)log(n))) (4-14)

p<n, p=a(modq)

by applying Theorem B where the estimation involved, in average of ¢, is for

(,ZAm) |- (/o). (4-15)

m<n, m=a(mod
We can consider (4-15) instead of (4-14) because it is not difficult to show that estimation for (4-14) is equiv-

alent to estimation for

( Zlog(p) ) - (w/(6(q))

p<n, p a(
which is the main term in (4-15) by the definition of the von Mangoldt function A (m). The error caused by
only taking the main term from (4-15) is absorbed amply by the total acceptable error of the estimation for (4-

13). Next, in the treatment for a good upper bound of the term caused by the triple sum % )(2) Z) in (4-8),
peS(n)(py)(p2

it was found that we can apply Theorem W directly together with some deep results including theorems on Large
Sieve to achieve the goal. Now both Theorems B and W are non-effective and hence the N, in Chen Theorem is
non-effective.

Remark 4-5. Plainly, the Lemma, (4.8) performs the function as a “Sieve” to select those primes p satisfying
n —p = P, by shifting out all unqualified primes. This is the reason why we call the main method applied in the
attacks on G(2) the Sieve Method.
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