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In the study of germs of holomorphic isometries up to normalizing constants in

Mok [Mo5] between bounded domains with respect to the Bergman metric, denoted by

f : (Ω1;x1) → (Ω2;x2), it was established that the graphs of such germs of holomorphic

maps extend algebraically provided that the Bergman kernels KΩi(z, w) are rational in

(z, w) for i = 1, 2. This applies especially to the case where Ω1 b CN1 and Ω2 b CN2 are

bounded symmetric domains in their Harish-Chandra realizations, in which case it was

also established that the algebraic extension of the germ Graph(f) restricts on Ω1 ×Ω2

to the graph of a holomorphic isometric embedding. When Ω1 is irreducible and is of

rank ≥ 2 it follows from the proof of Hermitian metric rigidity in Mok [Mo1] that f is

necessarily totally geodesic, as observed in Clozel-Ullmo [CU]. It remains to understand

the case where Ω1 is of rank 1, i.e., Ω1 = Bn ⊂ Cn, n ≥ 1, is the complex unit ball.

Restricting holomorphic isometries to complex 1-dimensional slices of Bn by complex

affine lines, one obtains totally geodesic holomorphic curves which are isometric copies

of the Poincaré disk, thus holomorphic isometries of the Poincaré disk into bounded

symmetric domains are fundamental for the further study of holomorphic isometries be-

tween bounded symmetric domains. Non-standard examples of holomorphic isometric

embeddings of the Poincaré disk into polydisks and Siegel upper half-planes were found

in Mok [Mo5,§3, p.1647ff.], and a systematic study of the boundary behavior of arbi-

trary holomorphic isometric copies of the Poincaré disk on bounded symmetric domains

was undertaken in Mok [Mo4] and Mok-Ng [MN1], where one makes use of structural

equations concerning Gauss curvatures to study the asymptotic behavior of the sec-

ond fundamental form as a variable point on the isometrically embedded Poincaré disk

approaches a general boundary point.

While examining the asymptotic behavior of isometric copies of Poincaré disks,

it was found that holomorphic curves defined on a neighborhood of a boundary point

b ∈ ∂Ω of a bounded symmetric domain (in its Harish-Chandra realization) already

exhibit interesting asymptotic properties. Since ∂Ω decomposes into strata under the

action of Aut(Ω), one has to study the asymptotic behavior depending on the stratum

of ∂Ω where the boundary point b lies. In this article we will study the asymptotic

behavior in the simplest case, where the holomorphic curve on Ω concerned exits the

bounded symmetric domain Ω at a smooth point of ∂Ω. Let D b C be the unit disk

and denote by b0 ∈ ∂D a boundary point. Let U be an open neighborhood of b0 on C of
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the form U = D(b0; ϵ) for some ϵ > 0, i.e., U is the Euclidean disk of radius ϵ centered

at b0. Let Ω b Cn be a bounded symmetric domain in its Harish-Chandra realization,

and f : U → CN be a holomorphic embedding such that f(U ∩D) ⊂ Ω and such that

f(U ∩ ∂D) ⊂ Reg(∂Ω), the smooth part of ∂Ω. We will show that f is asymptotically

totally geodesic at z ∈ U ∩ D as the variable point z approaches the boundary circle.

We give a more precise estimate of the second fundamental form, and show that its

norm decreases at least at the rate of the Euclidean distance δ to the boundary circle.

In what follows D b C is the unit disk and ∥ · ∥ denotes the norm on tensors naturally

induced by the Kähler-Einstein metric g on Ω. Our principal result is the following

Main Theorem.

Main Theorem. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra

realization, and let f : U → CN be a holomorphic embedding such that f(U ∩D) ⊂ Ω

and such that f(U ∩ ∂D) ⊂ ∂Ω. Suppose for any b ∈ U ∩ ∂D, f(b) is a smooth point

of ∂Ω. Denote by σ(z) the second fundamental form at z = f(w) of the (locally closed)

complex submanifold S := f(U ∩ D) ⊂ Ω at f(z) with respect to the Kähler-Einstein

metric g on Ω. Then, for a general point b ∈ U ∩ ∂D, the second fundamental form

σ
(
f(w)

)
is asymptotically zero at b, i.e., lim

w∈U∩D,w→b
∥σ(f(w))∥ = 0. More precisely,

for any neighborhood U0 of b in CN such that U0 b U , there is a positive constant C

depending on U0 such that ∥σ(f(w))∥ ≤ Cδ(w) for any w ∈ U0 ∩ Ω.

§1 Classification of irreducible bounded symmetric domains

We start with a description of the classification of irreducible bounded symmetric

domains Ω. For more details we refer the reader to Wolf [Wo] and Mok [Mo2]. In what

follows M(p, q;C) denotes the complex vector space of p-by-q matrices Z with complex

coefficients, and Zt denotes the transpose of the matrix Z. The set of irreducible

bounded symmetric domains break down into four classical series and two exceptional

domains, as follows. We have

Irreducible Classical Symmetric Domains

DI
p,q :=

{
Z ∈M(p, q;C) : I − Z

t
Z > 0

}
, p, q ≥ 1;

DII
n :=

{
Z ∈ DI

n,n : Zt = −Z
}
, n ≥ 2;

DIII
n :=

{
Z ∈ DI

n,n : Zt = Z
}
, n ≥ 1;

DIV
n :=

(z1, . . . , zN ) ∈ CN : ∥z∥2 < 2 ; ∥z∥2 < 1 +

∣∣∣∣∣ 1

2

N∑
i=1

z2i

∣∣∣∣∣
2
 , n ≥ 3 .

Exceptional Domains

DV , of type E6, dimC
(
DV

)
= 16 ;

DV I , of type E7, dimC
(
DV I

)
= 27 .
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The duplications in the listing are as follows: DI
p,q

∼= DI
q,p; D

I
1,1

∼= DII
2

∼= DIII
1

∼= D,

the unit disk; DII
3

∼= DI
3,1

∼= B3, the 3-dimensional unit ball; DIII
2

∼= DIV
3 ; DI

2,2
∼= DIV

4

and DII
4

∼= DIV
6 . The Harish-Chandra embedding (cf. Wolf [Wo], Mok [Mo2]) gives a

canonical realization of every bounded symmetric domain as a bounded convex circular

domain in a complex vector space. The description of the irreducible classical bounded

symmetric domains Ω b CN in the above gives precisely the Harish-Chandra realizations

of these domains.

Denote by G0 = Aut0(Ω) the identity component of the automorphism group of

Ω. We say that Ω is of type g if the Lie algebra of the complexification GC of G0 is of

type g according to the classification theory of simple complex Lie algebras in terms of

Dynkin diagrams. The indices in the subscripts in the classical cases are subject to the

same restrictions as in the above. We have

(1) DI
p,q is of type An, n = p+ q − 1;

(2) DII
n is of type Dn;

(3) DIII
n is of type Cn;

(4) DIV
n is of type Dk+1 when n = 2k is even, and of type Bk+1 when n = 2k + 1 is

odd;

(5) DV is of type E6;

(6) DV I is of type E7.

§2 The Kähler-Einstein metric along a minimal disk

For the geometry of bounded symmetric domains, there is the important notion of

maximal polydisks. We have

Polydisk Theorem (cf. Wolf [Wo, p.280]). Let Ω be a bounded symmetric domain of

rank r, and g be a Kähler metric on Ω invariant under the identity component G0 =

Aut0(Ω) of the automorphism group Aut(Ω) of Ω. Then, there exists an r-dimensional

totally-geodesic complex submanifold Π biholomorphic to the polydisk Dr. Moreover,

G0 acts transitively on the space of all such polydisks, and Ω =
∪

{γΠ : γ ∈ K}, where
K ⊂ G0 is the isotropy subgroup at 0 ∈ Ω.

Any Π ⊂ Ω in the Polydisk Theorem is called a maximal polydisk of Ω. Thus, any

η ∈ T (Ω) is tangent to a maximal polydisk Π ⊂ Ω.

For the purpose of studying holomorphic curves on bounded symmetric domains

we will need to make use of calculations with respect to appropriate coordinate systems.

For notational simplicity we will assume for the time being that Ω b CN is an irreducible

bounded symmetric domain, in which case any Kähler metric g invariant under G0 must

already be Kähler-Einstein. Denote by H ⊂ G0 the Lie subgroup of automorphisms

which fix Π as a subset. Then, the restriction map ρ : H → Aut(Π) is surjective (by

Moore’s Restricted Root Theorem, cf. Wolf [Wo]), in other words H restricts to the

full automorphism group of the maximal polydisk Π. In particular, all factor disks of

Π ∼= Dr are of the constant Gaussian curvature −κ for the same constant κ > 0. By
3



a minimal disk on Ω we mean a factor disk in any maximal polydisk Π ⊂ Ω, noting

that from the above G0 acts transitively on the space of all minimal disks on Ω. We

normalize the choice of the canonical Kähler-Einstein metric g so that minimal disks

are of Gauss curvature −1.

Let K ⊂ G0 be the isotropy subgroup at 0 ∈ Ω. Write GC for the complexification

of G0, g
C for the (complex) Lie algebra of GC, g0 ⊂ gC for the (real) Lie algebra of

G0, which is a noncompact real form of gC, and k ⊂ g0 for the Lie algebra of K. Fix

a Cartan subalgebra h of k, hC := h ⊗R C ⊂ k ⊗R C := kC. hC ⊂ gC being also a

Cartan subalgebra of gC, we denote by ∆ ⊂
√
−1h⋆ the set of all roots of gC, and by

∆+
0 ⊂ ∆ the subset of all positive noncompact roots. Let µ ∈ ∆+

0 be the highest root,

H := {ρ ∈ ∆ : µ − ρ ∈ ∆}, and N := {ρ ∈ ∆+
0 : µ − ρ /∈ ∆}. Write p := Card(H)

and q := Card(N), 1 + p + q = N . For a root φ ∈ ∆ we denote by gφ ⊂ gC the root

space associated to φ, i.e., the complex 1-dimensional space of root vectors belonging

to φ. For a root ρ ∈ ∆+
0 we will write eρ for a vector belonging to ρ of unit length

with respect to the canonical Kähler-Einstein metric g, when we consider gρ ⊂ m+ and

identify m+ canonically with T0(Ω).

Let P ( GC be the maximal parabolic subgroup of GC containing K (and hence

its complexification KC). By the Borel embedding β : Ω ∼= G0/K ↪→ GC/P := M ,

the bounded symmetric domain Ω is realized as an open subset of its compact dual

M , e.g., the type-I domain DI
p,q as an open subset of its compact dual G(p, q), the

Grassmannian manifold of p-planes in Cp+q. The Harish-Chandra embedding gives an

open embedding Ω b CN , where CN can be canonically identified with a Zariski open

subset of the compact dual M , giving Ω b CN ⊂ M . On the irreducible Hermitian

symmetric manifold M of the compact type a minimal rational curve is a rational curve

of degree 1 with respect to the positive generator of H2(M,Z) ∼= Z. A non-zero (1,0)-

vector tangent to a minimal rational curve is called a minimal rational tangent. For the

highest root µ ∈ ∆+
0 , the root spaces gµ resp. g−µ generate a 3-dimensional complex

Lie algebra gC[µ] = gµ + g−µ + [gµ, g−µ] isomorphic to sl(2,C) corresponding to a Lie

subgroup GC[µ] ⊂ GC such that GC[µ] ∼= PSL(2,C) and such that the GC[µ]−orbit C

of 0 = eP ∈ M is a minimal rational curve on M . The intersection C ∩ Ω is the orbit

of a real form G0[µ] ⊂ GC[µ] such that G0[µ] is isomorphic to PSU(1, 1). Moreover,

C ∩ Ω = G0[µ] · 0 is a minimal disk on Ω. For a general reference cf. Wolf [Wo].

Regarding tangents to minimal disks we have the following result from Mok [Mo1].

Lemma 1. Let Ω b CN ⊂ M be the Harish-Chandra realization Ω b CN of an irre-

ducible bounded symmetric domain Ω together with the Borel embedding Ω ⊂ M into

its dual Hermitian symmetric space M of the compact type. Let S ⊂ PT (Ω) be the

subset consisting of projectivizations of non-zero vectors η tangent to minimal disks,

and C ⊂ PT (M) be the set of projectivizations of minimal rational tangents. Then

S = C ∩ PT (Ω). As a consequence, denoting by Sx ⊂ PTx(Ω) the fiber of π : S → Ω

over x ∈ Ω, in terms of trivializations of PT (Ω) given by Harish-Chandra coordinates
4



we have S = S0 × Ω ⊂ PT0(Ω)× Ω = PT (Ω).

We note that the last statement follows from S = C ∩ PT (Ω). In fact, S ⊂ PT (M)

is invariant under GC, the identity component of the automorphism group of M , hence

it is in particular invariant under the abelian Lie subgroup M+ := exp(m+) ⊂ GC

corresponding to the abelian subalgebra m+ ⊂ gC in the Harish-Chandra decomposition

gC = m+⊕kC⊕m−, where m+ is the direct sum of gρ, ρ ∈ ∆+
0 , and m− = m+. From the

construction of the Harish-Chandra embeddingM+ ⊂ GC preserves CN , andM+ acts as

the group of Euclidean translations when restricted to CN . Thus, from S = C ∩ PT (Ω)
it follows that the fiber Sx of S over x ∈ Ω is identified with S0 via the Euclidean

translation τx : CN → CN defined by τx(z) = z + x. We denote by τ̃x ∈ GC the unique

automorphism which restricts to τx on CN . Noting that the minimal rational curves

C passing through 0 ∈ Ω ⊂ M are compactifications of complex 1-dimensional linear

subspaces Cη, [η] ∈ S0, we write C = Cη. For x ∈ CN , a minimal rational curve C ′

passing through x is the closure of a complex 1-dimensional affine line L ⊂ CN . Thus

L = τx(Cη) = Cη + x, and C ′ = τ̃x(Cη) = τx(Cη) = L = Cη + x ⊂ M . In particular,

for x ∈ Ω, minimal disks on Ω passing through x are of the form L∩Ω for a certain class

of complex 1-dimensional affine linear subspaces L ⊂ CN passing through the point.

Making use of orthonormal bases consisting of root vectors as in the above we have

the following preparatory lemma about the expression of the Kähler-Einstein metric g

along a minimal disk.

Lemma 2. Choose an orthonormal basis {ek}Nk=1 of T0(Ω) ∼= CN consisting of root

vectors of unit length such that e1 belongs to the highest root µ, ek belongs to some root

ρ ∈ H for 2 ≤ k ≤ p+1, and eℓ belongs to some root ρ ∈ N for p+2 ≤ ℓ ≤ N . Then, e1
is a minimal rational tangent at 0. Moreover, writing D0 := Ce1 ∩ Ω for the minimal

disk tangent to e1 and expressing in terms of the Euclidean coordinates (z1, · · · , zN )

corresponding to the choice of orthonormal basis {ek}Nk=1, for any point z ∈ D0, the

matrix
(
gij(z)

)N
i,j=1

representing the Kähler-Einstein metric g at z ∈ D0 is a diagonal

matrix.

Proof. The fact that e1 is a minimal rational tangent and D0 ⊂ Ω is a minimal disk

is in Wolf [Wo] (cf. Lemma 1 here and the paragraph following it). Let H ∈ h and

consider the real 1-parameter subgroup exp(RH) ⊂ exp(h) ⊂ K. The 1-parameter

group exp(RH) acts as a group of unitary transformations on CN ∼= T0(Ω) fixing Ω as

a set, and we will use the same notation to denote both the unitary transformations

and the automorphisms of Ω which are the restrictions of the unitary transformations

to Ω. We also write etH for exp(tH). Recall that the set of all roots ∆ lie in
√
−1h∗.

For any ρ ∈ ∆+
0 , gρ is an eigenspace of ad(H), and, writing H ′ = −

√
−1H, we have

etH(vρ) = eρ(H
′)itvρ for any vρ ∈ gρ, noting that ρ(H ′) = −

√
−1ρ(H) ∈ R since ∆ ⊂√

−1h∗. If H ∈ h such that µ(H) = 0, then etH(vµ) = vµ for any vµ ∈ gµ. In particular,

exp(tH) fixes every point z on the minimal disk D0 = Ce1 ∩ Ω. Since exp(h) ⊂ K acts

as a group of isometries on Ω, for any x ∈ D0 and for any ξ, η ∈ Tx(Ω), we must have
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g(ξ, η) = g
(
etHξ, etHη

)
. Let now ρ, τ ∈ ∆+

0 be distinct positive noncompact roots. If

now we choose ξ = eρ = ei and η = eτ = ej , at x ∈ D0 we must have

gij(x) = g(eρ, eτ ) = g
(
etHeρ, etHeτ

)
= g

(
eρ(H

′)iteρ, eτ(H
′)iteτ

)
= e(ρ(H

′)−τ(H′))itg(eρ, eτ ) = e(ρ(H
′)−τ(H′))itgij(x) ,

for every t ∈ R, and we will be able to complete the proof of Lemma 1 if we can verify

(♯) Given any ρ, τ ∈ ∆+
0 there exists H ∈ h such that µ(H) = 0 and ρ(H) ̸= τ(H) ,

since (♯) obviously implies that gij(x) = 0 for every x ∈ D0 and for i ̸= j. To verify

(♯) note first of all that there exists a central element H0 ∈
√
−1h ⊂ h ⊗R C such

that [H0, v] = v for any v ∈ T0(Ω), so that, given any H ∈ h, replacing H by H♭ :=

H − µ(H)H0 we obtain H♭ ∈ h such that µ(H♭) = 0. Finally, to verity (♯) it remains

to show that given any ρ, τ ∈ ∆+
0 , there exists H ∈ ∆+

0 such that τ(H) ̸= ρ(H) (hence

also τ(H♭) ̸= ρ(H♭)), which is obvious since ∆+
0 spans

√
−1h∗ over R. The proof of

Lemma 1 is complete. �

As will be seen later on, for practical purposes it is more convenient to do compu-

tations on a domain of type A, D or E, in which case all the roots are of equal length.

For that reason it is convenient to identify an irreducible bounded symmetric domain of

type B or of type C as a complex submanifold of another irreducible bounded symmetric

domain of type A, D or E. More precisely, we have

Lemma 3. Let Ω′ b CN ′
be an irreducible bounded symmetric domain in its Harish-

Chandra realization. Then Ω0 can be embedded into an irreducible bounded symmetric

domain Ω b CN of type A, D or E as a totally geodesic complex submanifold such that

Ω0 is the intersection of Ω with a complex vector subspace of CN .

Proof. According to the classification given in §1, Ω is of type A, D or E, except in the

case of DIII
n , n ≥ 3, which is of type Cn, and in the case of DIV

n , when n = 2k + 1

is odd, which is of type Bk+1. Clearly DIII
n ⊂ DI

n,n, which is of type A2n−1 from the

inclusionMs(n;C) ⊂M(n, n;C), whereMs(n;C) stands for the complex vector space of

symmetric n-by-n matrices with complex entries. Furthermore DIV
2k+1 ⊂ DIV

2k+2, which

is of type Dk+2, when (z1, · · · , zn) is identified with (z1, · · · , zn, 0). Clearly each of

the embeddings DIII
n ⊂ DI

n,n and DIV
2k+1 ⊂ DIV

2k+2 is given by the intersection of the

ambient domains by complex vector subspace. Denote by (Ω′,Ω) a pair of bounded

symmetric domains which is either (DIV
2k+1, D

IV
2k+2), k ≥ 2 or (DIII

n , DI
n,n), n ≥ 3, and

by ν : Ω′ → Ω the standard embedding. To prove Lemma 3 it remains to check that

the embedding ν : Ω′ → Ω is totally geodesic. To see this, denoting by G′
0 the identity

component of the automorphism group of Ω′ and by K ′ ⊂ G′
0 the isotropy subgroup at

0 ∈ Ω′ ⊂ Ω, the holomorphic embedding ν : Ω′ ∼= G′
0/K

′ → G0/K ∼= Ω is equivariant

with respect to a group homomorphism φ : G′
0 → G0, and to check total geodesy it
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suffices to check the second fundamental form at the point 0 ∈ Ω′ ⊂ Ω. But since Ω is

invariant under the symmetric z → −z at the origin, the Riemann-Christoffel symbols

of (Ω, g) with respect to the canonical Kähler-Einstein metric g vanishes at 0, and the

second fundamental form of the linear section ν(Ω′) = Ω ∩ T0(Ω′) is necessarily zero at

0 ∈ Ω′ ⊂ Ω, proving that ν : Ω′ → Ω is indeed totally geodesic. The proof of Lemma 3

is complete. �

For the purpose of computing the canonical Kähler-Einstein metric in terms of

Euclidean coordinates, it is convenient to make use of totally geodesic Hermitian sym-

metric manifolds of rank 1, i.e., those isomorphic to Bn. We have in particular the

following lemma which explains why it is convenient to work with domains of type A,

D or E, where all roots are of equal length.

Lemma 4. Suppose Ω b CN , Ω = G0/K in standard notation, is an irreducible

bounded symmetric domain in its Harish-Chandra realization equipped with the canonical

Kähler-Einstein metric g such that minimal disks are of Gauss curvature −1. Suppose

ρ, τ ∈ ∆+
0 , ρ ̸= τ , are of maximal length and ρ− τ is a root then Dρ,τ := (gρ⊕gτ )∩Ω is

a totally geodesic complex submanifold isometrically biholomorphic to the complex unit

2-ball B2 equipped with the canonical Kähler-Einstein metric h of constant holomorphic

sectional curvature −1.

Proof. We collect here some basic facts about maximal polydisks in the proof of the

Polydisk Theorem stated in the above and refer the reader to Wolf [Wo]. Suppose the

irreducible bounded symmetric domain Ω is of rank r. Let Π ∼= Dr be a standard

maximal polydisk passing through 0 ∈ Ω constructed from root spaces, as follows. A

set of roots Φ ⊂ ∆+
0 is said to be strongly orthogonal if and only if ρ ± τ /∈ ∆ for any

ρ, τ ∈ Φ. Let ρ1 = µ ∈ ∆+
0 be the highest root, and, for k ≥ 0, let ρk+1 be inductively

the highest root (with respect to some choice of a lexicographic ordering) in ∆+
0 strongly

orthogonal to {ρ1, · · · , ρk}, if the set of such roots is non-empty. Then, the maximal set

Ψ of strongly orthogonal roots constructed this way is of cardinality r, and the maximal

polydisk Π is the orbit of 0 under the group G0[Ψ] which is the direct product of G0[ρ],

ρ ∈ Ψ. As a consequence, T0(Π) is spanned by root spaces gρ, ρ ∈ Ψ. Moreover, all

roots in Ψ are of maximal length, so that R (eρ, eρ; eρ, eρ) = −1 for any ρ ∈ Ψ. Recall

that Ω =
∪
{γΠ : γ ∈ K}, so that any vector η ∈ T0(Ω) is equivalent under the action

of the isotropy group K ⊂ G0 to a vector in T0(Π).

From the preceding discussion it follows that for any η ∈ T0(Ω) of unit length with

respect to g, we have −1 ≤ Rηηηη ≤ − 1
r , r = rank(Ω), and equality holds if and only if

η is a minimal rational tangent, in which case Ω∩Cη is a minimal disk on Ω. Let eρ ∈ gρ,

eτ ∈ gτ be unit vectors, and write ξ = aeρ+beτ , |a|2+|b|2 = 1. Since ρ and τ are positive

noncompact roots of maximal length we have R(eρ, eρ; eρ, eρ) = R(eτ , eτ ; eτ , eτ ) = −1.

In particular, Dρ := Ω ∩ Ceρ and Dτ := Ω ∩ Ceτ are minimal disks on Ω. In the
7



expansion for Rξξξξ we get

Rξξξξ = |a|4R(eρ, eρ; eρ, eρ) + 4|a|2|b|2R(eρ, eρ; eτ , eτ ) + |b|4R(eτ , eτ ; eτ , eτ )

= −
(
|a|4 + 2|a|2|b|2 + |b|4

)
= −

(
|a|2 + |b|2)2 = −1 .

(1)

Here in the expansion for Rξξξξ we use the fact that R(eρ, eρ; eτ , eτ ) = − 1
2 since

ρ − τ is a root, and that all other terms in the expansion such as R(eρ, eρ; eρ, eτ ) and

R(eρ, eτ ; eρ, eτ ) are zero. To see the latter statement, taking e−ρ resp. e−τ to be eρ
resp. eτ and denoting by B the (complex bilinear) Killing form on g, for some real

number c we have R(eρ, eρ; eρ, eτ ) = cB([eρ, eρ], [eρ, eτ ]) = cB(Hρ, Nρ,−τeρ−τ ) , where

Hρ := [eρ, e−ρ] belongs to the Cartan subalgebra h ⊂ g and Nρ,−τ is some real constant,

from which it follows readily that R(eρ, eρ; eρ, eτ ) = 0 . Similarly R(eρ, eτ ; eρ, eτ ) =

cB([eρ, eτ ], [eτ , eρ]) = cB
(
Nρ,−τeρ−τ , Nτ,−ρeτ−ρ

)
= 0 , since the root spaces are mutu-

ally orthogonal on g with respect to the Hermitian bilinear form B(·, ·) induced by the

Killing form B. (Alternatively, one can check the curvature identities R(eρ, eρ; eρ, eτ ) =

R(eρ, eτ ; eρ, eτ ) = 0 from curvature inequalities on Hermitian symmetric spaces as in

Mok-Zhong [MZ]). As to the former statement that R(eρ, eρ; eτ , eτ ) = − 1
2 we have

R(eρ, eρ; eρ, eρ) = cB(Hρ, Hρ) while

R(eρ, eρ; eτ , eτ ) = R(eρ, eτ ; eτ , eρ) = cB([eρ, eτ ], [eρ, eτ ])

= cB(Nρ,−τeρ−τ , Nρ,−τeρ−τ ) = cN2
ρ,−τB(eρ−τ , eρ−τ ) .

On the other hand, since the maximal (−τ)-chain associated to the root ρ ∈ ∆ is given

by (ρ, ρ − τ), we have N2
ρ,−τ = 1

2 B(Hρ−τ , Hρ−τ ) (cf. Helgason [Hel], p.176). Since

all roots are of equal length, it follows by comparing curvature formulas above that

R(eρ, eρ; eτ , eτ ) = − 1
2 R(eρ, eρ; eρ, eρ) = − 1

2 , completing the proof of the curvature

identity (1).

From (1) it follows that any ξ ∈ gρ⊕gτ is a minimal rational tangent. Since Dρ,τ =

(gρ ⊕ gτ )∩Ω ⊂ Ω is the intersection of Ω with a vector subspace, for any x ∈ Dρ,τ , the

tangent space Tx(Dρ,τ ) is identified with T0(Dρ,τ ) in the trivialization T (Ω) = T0(Ω)×Ω.

Hence, by Lemma 1, for any x ∈ Dρ,τ , any ξ(x) ∈ Tx(Dρ,τ ) is a minimal rational tangent.

Let σ be the second fundamental form of Dρ,τ in Ω with respect to the canonical Kähler-

Einstein metric g on Ω. Since any ξ(x) ∈ Tx(Dρ,τ ) is tangent to a minimal disk lying

on Dρ,τ it follows that σ
(
ξ(x), ξ(x)

)
= 0 for any ξ(x) ∈ Tx(Dρ,τ ). By polarization we

conclude that σ ≡ 0 on Dρ,τ . As a consequence Dρ,τ ⊂ Ω is a totally geodesic complex

submanifold. Since
(
Dρ,τ ; g

∣∣
Dρ,τ

)
is of constant holomorphic sectional curvature −1 it

must be of rank 1 and hence isometrically biholomorphic to the complex unit 2-ball B2

equipped with the canonical Kähler-Einstein metric h of constant holomorphic sectional

curvature −1. The proof of Lemma 4 is complete. �

Using Lemma 4 and adopting the notation of Lemma 2, we have the following

explicit description of the canonical Kähler-Einstein metric along a minimal disk.
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Lemma 5. Let Ω b CN be an irreducible bounded symmetric domain of type A, D or

E in its Harish-Chandra realization, Ω = G0/K, equipped with the canonical Kähler-

Einstein metric such that minimal disks on Ω are of Gauss curvature −1. Fix a Cartan

subalgebra h ⊂ k and let {ek}Nk=1 be a basis of T0(Ω) ∼= CN consisting of root vectors of

unit length, with e1 belonging to the highest root vector µ ∈ ∆+
0 , ek belonging to some

root ρ ∈ H for 2 ≤ k ≤ p+ 1, and eℓ belonging to some root τ ∈ N for p+ 2 ≤ ℓ ≤ N .

Write D0 := Ce1 ∩ Ω, which is a minimal disk. Then, for (z1, 0, · · · , 0) ∈ D0 we have

g11 =
2

(1− |z1|2)2
; gkk =

2

1− |z1|2
for 2 ≤ k ≤ p+ 1;

gℓℓ = 2 for p+ 2 ≤ ℓ ≤ N ; gij = 0 for i ̸= j, 1 ≤ i, j ≤ N .

Proof. Since e1 belongs to a highest root µ, it is a minimal rational tangent, so that

D0 = C∩Ω is a minimal disk on (Ω, g). By Lemma 2 the metric tensor g is diagonalized

along the minimal disk D0 when one uses a basis consisting of root vectors of unit

length. Thus,

gij = 0 for i ̸= j, 1 ≤ i, j ≤ N . (1)

Since all roots are of the same length for Ω of type A, D or E and since µ − τ ∈
∆+

0 by assumption, by Lemma 2 Dµ,τ := (gµ + gτ ) ∩ Ω ⊂ Ω is a totally geodesic

complex submanifold such that
(
Dµ,τ ; g|Dµ,τ

)
is a totally geodesic submanifold of (Ω, g)

isomorphic to the complex unit 2-ball
(
B2, h

)
equipped with the canonical Kähler-

Einstein metric of constant holomorphic sectional curvature −1. As is well-known, on(
B2, h

)
the metric tensor

(
hij

)
along the minimal disk B1 ⊂ B2, B1 × {0}, is given by

h11 =
2

(1− |z1|2)2
; h22 =

2

1− |z1|2
; h12 = h21 = 0 . (2)

On the other hand, if µ− τ /∈ ∆+
0 , then µ and τ are strongly orthogonal to each other,

and Dµ,τ := (gµ + gτ ) ∩ Ω is again a totally geodesic complex submanifold isomorphic

to the bidisk
(
D2, s

)
=

(
D, ds2D

)
×
(
D, ds2D

)
, where ds2D denotes the Poincaré metric of

constant Gaussian curvature −1 on the unit disk D. On
(
D2, s

)
we have

s11 =
2

(1− |z1|2)2
; s22 = 2; s12 = s21 = 0 . (3)

The proof of Lemma 5 is complete. �

§3 Asymptotic behavior of the second fundamental form along a holomorphic

curve exiting along smooth points of ∂Ω

(3.1) For the study of holomorphic curves on a bounded symmetric domain Ω in its

Harish-Chandra realization exiting along Reg(∂Ω), the smooth part of an irreducible

bounded symmetric domain Ω, we will first prove a transversality statement. For its

proof we will need to make use of some bounded exhaustion function on Ω which ex-

tends to a smooth function on a neighborhood of Ω arising from Herman [Her] in the

description of Ω as the unit ball with respect to some Banach norm.
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Lemma 6. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra real-

ization. Then, there exists a convex bounded exhaustion function ρ defined on a neigh-

borhood of Ω such that for any smooth boundary point b ∈ ∂Ω, ρ is defined and smooth

on some neighborhood Ub of b in CN .

Proof. By the Herman Convexity Theorem (Herman [Her], cf. Wolf [Wo]), Ω b CN can

be identified as the unit ball in T0(Ω) ∼= CN with respect to the Hermann norm ∥ · ∥H .

Define ρ(z) = ∥z∥H − 1 for z ∈ CN . Then, ρ is in fact defined everywhere on CN ,

and its restriction to Ω is a bounded convex exhaustion function on Ω. In particular,

ρ is a bounded plurisubharmonic exhaustion function on Ω. Now, the norm ∥z∥H is

smooth on a neighborhood of z ∈ CN if and only if the level sets of ρ are smooth real

hypersurfaces on a neighborhood of z, which holds true for z = b ∈ ∂Ω a smooth point

of ∂Ω. �

We are ready to formulate and prove the transversality statement.

Lemma 7. For the unit disk D let b0 ∈ ∂D, U be an open neighborhood of b0 of the

form U = D(b0; ϵ) for some ϵ > 0, f : U → CN be a holomorphic embedding such that

f(U ∩D) ⊂ Ω, f(U ∩∂D) ⊂ ∂Ω. Suppose for any b ∈ U ∩∂D, f(b) is actually a smooth

point of ∂Ω. Then, for a general point b ∈ U ∩ ∂D, ∂f(b) is transversal to the complex

tangent space Tf(b)(∂Ω) ∼= Cn−1.

Proof. We argue by contradiction. Consider the function φ(w) = ρ(f(w)) defined on

U . We have φ(w) < 0 for w ∈ U ∩ D and φ(w) = 0 for z ∈ U ∩ ∂D. Suppose

df(w) ∈ T 1,0
f(w)(∂Ω) for any w ∈ U ∩ ∂D. For a general point b ∈ U ∩ ∂D, i.e., for all b

on the circular arc U ∩ ∂D except for a discrete subset of the latter, there exists ϵb > 0

such that, writing Ub = D(b; ϵb), the smooth function φ vanishes along Ub ∩ ∂D exactly

to the order k ≥ 1 (where a priori the integer k depends on b).

Write ψ = |w|2 − 1 < 0 on D. Then on Ub we have −φ = (−ψ)kh where h is

smooth and positive on Ub, i.e., φ = (−1)k−1ψkh. We have

0 ≤
√
−1∂∂φ = (−1)k−1h

√
−1∂∂(ψk) + (−1)k−1ψk

√
−1∂∂h

+ (−1)k−1
√
−1∂(ψk) ∧ ∂h+ (−1)k−1

√
−1∂h ∧ ∂(ψk)

(1)

Noting that

√
−1∂∂(ψk) =

√
−1∂(kψk−1∂ψ) = k(k − 1)ψk−2

√
−1∂ψ ∧ ∂ψ + kψk−1(

√
−1∂∂ψ)

= k(k − 1)ψk−2
√
−1∂ψ ∧ ∂ψ +O(|ψ|k−1) , (2)

substituting (2) into (1) we have

0 ≤
√
−1∂∂φ = (−1)k−1k(k − 1)hψk−2

√
−1∂ψ ∧ ∂ψ +O(|ψ|k−1)

= −k(k − 1)h(−ψ)k−2
√
−1∂ψ ∧ ∂ψ +O(|ψ|k−1) . (3)
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Since |dψ| ̸= 0 on a neighborhood of the unit circle the right hand side is strictly negative

at w ∈ U ∩D sufficiently close to b and, we have reached a contradiction unless k = 1,

as desired. �

For the proof of the Main Theorem we will need the following lemma which describes

the complex tangent space at a smooth boundary point of an irreducible bounded sym-

metric domain Ω b CN . In what follows for a smooth point y ∈ ∂Ω, T 1,0
y (∂Ω) ⊂ Ty(CN )

stands for the complex vector subspace of (1,0)-vectors tangent to ∂Ω, where the holo-

morphic tangent space Ty(CN ) is canonically identified with the complex vector space

T 1,0
y (CN ) of complexified tangent space of type (1,0).

Lemma 8. In the notation of Lemma 7, for a general point b ∈ U ∩ ∂D, we have

f∗g(w) =
(

2
(1−|w|2)2 + s(w)

)
|dw|2 on Ub ∩ D, where Ub = D(b; ϵb) ⊂ U for some

ϵb > 0, and s is a smooth function defined on a neighborhood of Ub.

Proof. We start by describing a potential function for the canonical Kähler-Einstein

metric g on the irreducible bounded symmetric domain Ω, recalling that g is normalized

so that minimal disks on Ω are of Gauss curvature −1. Consider the Bergman metric

ds2Ω on Ω, noting that g = Ads2Ω for some constant A > 0. Denote by ωΩ the Kähler

form of (Ω, ds2Ω), and by KΩ(z, z
′) the Bergman kernel on Ω, which can be described

as follows (cf. Faraut-Korányi [FK, pp.76-77]). We have KΩ(z, z
′) = CΩ

h(z,ζ)m , where

CΩ > 0, m is a positive integer and h is a polynomial in (z1, · · · , zN ; z′1, · · · , z′N ) with

the following property (cf. Faraut-Korányi [FK, pp.76-77]). Let Π ∼= Dr be a maximal

polydisk on Ω passing through 0. We may choose Harish-Chandra coordinates such that

Π is exactly the unit polydisk Dr ×{0}. For z ∈ Ω, there exists γ ∈ K = Aut0(Ω) such

that γ(z) = (a1, · · · , ar) ∈ Π and we have

h(z, z) = (1− |a1|2)× · · · × (1− |ar|2) .

The function τ(z) = −h(z, z) is in fact a defining function for U ∩Ω, vanishing exactly

to the order 1 along U ∩ ∂D. (As an example, we have τ(z) = det
(
I − Z

t
Z
)
in the

case of a type-1 domain Ω = DI
p,q.) Then, We have ωΩ(z) =

√
−1∂∂ logK(z, z) =

−m
√
−1∂∂ log h(z, z). Restricting ds2Ω to a minimal disk of Ω, e.g., to any of the

coordinate disks of Π, we see that minimal disks are of Gauss curvature − 2
m on Ω. By

the normalization on g that minimal disks are of Gauss curvature −1 it follows that the

Kähler form ωg is given by ωg = −m
2 ω

2
Ω = −2

√
−1∂∂ log h(z, z). Thus −2 log h(z, z) =

−2 log(−τ) is a potential function for g on Ω.

The Poincaré metric ds2D on D is given by ds2D = 2|dw|2

(1−|w|2)2 , and the associ-

ated Kähler form ωD is given by ωD =
√
−1∂∂(−2 log(1 − |w|2)). Write φ(w) =

−2 log(1 − |w|2). We have f∗ωg = −2
√
−1∂∂ log(−τ(f(w))). From the transversal-

ity result given in Lemma 7, choosing b ∈ ∂D generic and ϵb > 0 sufficiently small,

−τ(f(w)) vanishes exactly to the order 1 on a neighborhood of Ub ∩D on ∂D (where

Ub = D(b, ϵb)), and τ(f(w)) = (1 − |w|2)χ(w) where χ is a smooth positive function
11



defined on some neighborhood of Ub. It follows that f
∗ωg =

√
−1∂∂φ+

√
−1∂∂ logχ =(

2
(1−|w|2)2 + s(w)

)
(
√
−1dw ∧ dw), where s = ∂2 logχ

∂w∂w , and Lemma 8 follows. �

We proceed to describe complex tangent spaces T 1,0
y (∂Ω) for y ∈ Reg(∂Ω).

Lemma 9. Let Ω b CN be an irreducible bounded symmetric domain in its Harish-

Chandra realization. Let α ∈ T0(Ω) be a minimal rational tangent at the origin 0 ∈
CN and write Dα for the minimal disk passing through 0 and tangent to α. Suppose

y ∈ ∂Dα. Then, y ∈ ∂Ω is a smooth boundary point and the complex tangent space

T 1,0
y (∂Ω) ⊂ Ty(CN ) is the orthogonal complement of Cα a with respect to the Euclidean

metric. (Here Ty(CN ) is identified with CN in terms of the standard trivialization of

T (CN ) given by the Euclidean coordinates, and Cα ⊂ CN is regarded thus as a vector

subspace of Ty(CN ).)

Proof. We will use notations as those in Lemma 2. Let µ ∈ ∆+
0 be the highest root.

Modulo the action of the isotropy subgroup it suffices to consider the case where α ∈ gµ.

Denote by Kα ⊂ K the subgroup consisting of γ ∈ K such that dγ(α) = α. Since K

acts on CN as linear transformations so that γ(z) = dγ(0)(z) for any z ∈ CN , where

we identify T0(CN ) with CN canonically, we must have γ(y) = y for any y ∈ Kα. As

a consequence, the complex tangent space T 1,0
y (∂Ω) ⊂ Ty(CN ) is a complex hyperplane

invariant under Kα. Let now V ⊂ Ty(CN ) be the orthogonal complement of α (which

is identified as a tangent vector at y by Euclidean translation). To prove Lemma 8 it

remains to show that V = T 1,0
y (∂Ω). Suppose otherwise. Then, W := V ∩ T 1,0

y (∂Ω) ⊂
Ty(CN ) is of codimension 1 in T 1,0

y (∂Ω), and the orthogonal complement E ofW in V is

given by Cη, where η = α+ β for some non-zero β ∈ V , and E = Cη is invariant under

Kα. Expressing β =
∑
ρ∈Θ bρeρ, bρ ̸= 0, where the summation is performed over a non-

empty set of Θ ⊂ ∆+
0 − {µ}. Fixing ρ ∈ Θ, by the proof of Lemma 2 there exists some

H ∈ h such that α(H) = 0 and ρ(H) ̸= 0. Then, exp(RH) ⊂ Kα and etH(η), η = α+β,

is of the form α+β′(t), where β′(t) ̸= β for t ∈ R non-zero and sufficiently small. Hence,

E is not invariant under exp(RH), a plain contradiction. Thus, V = T 1,0
y (∂Ω) and the

proof of Lemma 9 is complete. �

(3.2) Reduction of the proof of Main Theorem in the irreducible case We are now

ready to give a proof of Main Theorem. Since the proof is long it will be given in three

separate subsections, starting in this subsection with a reduction of the proof. Only one

system of numbering of equations will be used throughout the proof of Main Theorem.

We have the following reduction of the proof of Main Theorem in the case where Ω is

an irreducible bounded symmetric domain.

Proposition 1. Let Ω b CN be an irreducible bounded symmetric domain. Let g be

the canonical Kähler-Einstein metric on Ω normalized so that minimal disks are of

constant Gauss curvature −1. In the notation of Main Theorem, for w ∈ U ∩D denote

by η(w) ∈ Tf(w)(Ω) a (1, 0)−vector of unit length with respect to g. Then, to prove Main
12



Theorem it suffices to prove that, as w approaches a general point b ∈ U ∩ ∂D

(†) R
η(w)η(w)η(w)η(w)

= −1 +O(δ(w)2)

Furthermore, (†) is satisfied provided that we have a decomposition η(w) = α(w)+ζ(w),

where α is a minimal rational tangent at f(w) ∈ Ω, and ζ(w) ∈ Tf(w)(Ω) satisfies

R
(
α(w), ζ(w); ν, ν′

)
= 0, such that ∥ζ(w)∥ = O(δ(w)).

Proof of Proposition 1. Write r = rank(Ω). For any unit tangent vector η of type (1,0)

on (Ω, g), we have

−1 ≤ Rηηηη ≤ − 1

r
, (1)

and equality holds if and only if η is a minimal rational tangent. Consider now the

Hermitian Riemann surface (U ∩ D, f∗g). On the one hand, for w ∈ U ∩ ∂D, writing

η = η(w) for a unit tangent vector proportional to df
(
∂
∂w )

)
(w), we have

Gauss curvature(U ∩D, f∗g) = R
η(w)η(w)η(w)η(w)

−
∥∥σ(f(w))∥∥2 . (2)

On the other hand, as w ∈ U ∩ D approaches a general point, by Lemma 8, f∗g =(
2

(1−|w|2)2 + s(w)
)
|dw|2 for w ∈ U ∩D near b, where s(w) is a smooth function defined

on some neighborhood of Ub, where Ub = D(b; ϵb) b U for some ϵb > 0. Thus, writing

ds2D = 2
(1−|w|2)2 for the Poincaré metric on D of constant Gauss curvature −1, we have

f∗g = u ds2D, where u is a smooth function on defined on a neighborhood of Ub, and

h(w) = 1 + O
(
δ(w)2

)
on Ub. Write f∗g = h |dw|2, so that h = 2u

(1−|w|2)2 . Noting the

curvature formula

(Gauss curvature (U ∩D, f∗g)) ·
√
−1dw ∧ dw = −

√
−1∂∂ log h , (3)

we have on Ub

Gauss curvature (U ∩D, f∗g) ·
∥∥∥∥ ∂

∂w

∥∥∥∥2
f∗g

=
−2

(1− |w|2)2
+O(1) , (4)

Noting that
∥∥ ∂
∂w

∥∥2
f∗g

= 2u
(1−|w|2)2 = 2(1+O(δ(w)2))

(1−|w|2)2 , and writing log h = −2 log(1−|w|2)+
log(2u), we conclude that

Gauss curvature (U ∩D, f∗g) = −1 +O
(
δ(w)2

)
(5)

on Ub. Combining (1), (2) and (5), to prove Main Theorem it suffices to show that

(†) R
η(w)η(w)η(w)η(w)

= −1 +O(δ(w))2 .

We proceed to give a reformulation of (†). Let Π ⊂ Ω be a maximal polydisk, Π ∼= Dr,

passing through 0 ∈ Ω. Any vector η ∈ T (Ω) is equivalent under the G0 = Aut0(Ω)
13



to some ξ ∈ T0(Π) ⊂ T0(Ω) (cf. the Polydisk Theorem), which can be chosen to be

ξ = (ξ1, · · · , ξr) in terms of the Euclidean coordinates on Π ∼= Dr, where ξk(w) is

real, 1 ≤ k ≤ r, and ξ1 ≥ · · · ≥ ξr ≥ 0. We call ξ = (ξ1, · · · , ξr) the normal form

of η under G0. For w ∈ U ∩ D we write ηw = (ξ1(w), · · · , ξr(w)) ∈ T0(Π) for the

normal form of η(w) ∈ Tf(w)(Ω) under G0. Thus, writing
√
2α = (1, 0, . . . , 0) we have

ηw =
√
1− (c(w))2 α + ζw, where

√
2ζw = (0, ξ2(w), . . . , ξr(w)), and c(w) := ∥ζw∥ =√

|ξ2|2 + · · ·+ |ξr|2, where ∥ · ∥ denotes ∥ · ∥g. Clearly R
(
α, ζw; ν, ν′

)
= 0 for any

ν, ν′ ∈ T0(Ω). As a consequence we have

Rηwηwηwηw =
(
1− (c(w))2

)2
Rαααα +Rζwζwζwζw = −1 + 2∥ζw∥2 +O

(
∥ζw∥4

)
. (6)

Thus, to prove (†) it is sufficient to show

(†)′ ∥ζw∥ = O(δ(w)) on Ub ∩D ,

which is equivalent to the last statement ∥ζ(w)∥ = O(δ(w)) in the statement of Propo-

sition 1. �

Since by assumption f(b) ∈ Reg(∂Ω), regarding Ω canonically as an open subset

of T0(Ω) the normal form of f(b) under the action on T0(Ω) of the isotropy group

K ⊂ G0 at 0 is given by (1, a2, . . . , ar) ∈ Reg(∂Π), where 1 > a2 ≥ · · · ≥ ar ≥ 0.

In other words, there exists γ ∈ K such that γ(f(b)) = (1, a2, . . . , ar) ∈ Reg(∂Π).

There exists an automorphism χ0 in Aut0(Π) such that χ0(1, a2, . . . , ar) = (1, 0, . . . , 0).

The automorphism χ0 of Π extends to an automorphism χ of Ω, and χ ◦ γ gives an

automorphism χ of Ω such that (χ ◦ γ)(f(b)) = χ(γ(f(b)) = (1, 0, . . . , 0). For the proof

of Main Theorem, without loss of generality we may assume that f(b) = (1, 0, . . . , 0) ∈
Reg(∂Π).

Recall that a maximal polydisk Π ⊂ Ω can be constructed as follows. Writing

Ω = G0/K as before and fixing a Cartan subalgebra h ⊂ k, we have a maximal set

Ψ of strongly orthogonal positive noncompact roots ψi ∈ Ψ, 1 ≤ i ≤ r, and Π ⊂ Ω is

the totally geodesic complex submanifold passing through 0 = eK such that T0(Π) =

gψ1 ⊕ · · · ⊕ gψr , where for a root ρ with respect to the Cartan subalgebra h, gρ ⊂ gC

denotes the (complex 1-dimensional) root subspace belonging to ρ. In what follows we

choose Euclidean coordinates (z1, · · · , zN ) on CN , such that a point (z1, · · · , zr) ∈ Π

corresponds to (z1, · · · , zr, 0, · · · , 0) ∈ CN , and such that, writing ei :=
∂
∂zi

for 1 ≤ i ≤
n. each ei is a root vector belonging to some noncompact positive root ρ with respect

to the Cartan subalgebra h. Write y = (1, 0, · · · , 0). Denote by ρ the defining function

of Ω given by ρ(z) = ∥z∥H − 1 as in Lemma 7 which is smooth on a neighborhood of y.

Choosing b ∈ U ∩ ∂D to be a general point, by Lemma 7 we know that

dρ(y)

(
df

(
∂

∂w

))
̸= 0 . (7)
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By Lemma 9, T 1,0(∂Ω) is the orthogonal complement of e1 in Ty(∂Ω) ∼= CN . It follows

hence from (7) that, writing f(z) = (f1(z), · · · , fn(z)), we have

f ′1(b) ̸= 0 . (8)

We are going to deduce (†) from (8). To illustrate the idea we will consider first of all

the very special case where Ω is a polydisk.

(3.3) Proof of Main Theorem of the special case of polydisks In the notation of Main

Theorem we assume now that Ω = Π = Dr is a polydisk. In the statement of Proposition

1 in (3.2), we assume that Ω is irreducible. The assumption was made so that we

have only one type of minimal disks, which are all equivalent to one another under

G0 = Aut0(Ω), and the canonical Kähler-Einstein metric can be normalized so that all

minimal disks are of constant Gauss curvature −1. In the general case, there is a type

of minimal disk arising from each of the irreducible factors, and a normalization of the

canonical Kähler-Einstein metric so that all types of minimal disks are of constant Gauss

curvature −1 is not always possible. However, if all the factors are identical, then this

remains possible, as is in the case where Ω is a polydisk Π ∼= Dr. In this section we will

deal with the case of polydisks. Then, for w ∈ U∩D we have f ′(w) = (f ′1(w), · · · , f ′r(w)).
The Kähler-Einstein metric g on Π is given by

g|Π =
2|dz1|2

(1− |z1|2)2
+ · · ·+ 2|dzr|2

(1− |zr|2)2
. (9)

Thus, ∥∥∥∥df( ∂

∂w

)∥∥∥∥2 =
2|f ′1(w)|2

(1− |f1(w)|2)2
+ · · ·+ 2|f ′r(w)|2

(1− |fr(w)|2)2
. (10)

In what follows we will write f ′(w) to mean the tangent vector df
(
∂
∂w

)
at the point

w ∈ U . The k-th term on the right-hand side of (10) is given by

2|f ′k(w)|2

(1− |fk(w)|2)2
=

∂2

∂w∂w
(−2 log(1− |fk|2)) . (11)

From S = f(U ∩D) ⊂ Π ⊂ Ω and f(U ∩ ∂D) ⊂ ∂Π and f(b) = (1, 0, · · · , 0) it follows
readily, shrinking the neighborhood U of b if necessary, we have f1(U)∩∂D ⊂ ∂Ω while

fk(U ∩D) b D. Hence 1 − |f1|2 = (1 − |w|2)s for some smooth function s defined on

U , hence the potential function −2 log(1− |fk|2) equals − log(1− |z1|2)+ log s while for

2 ≤ k ≤ r, the potential function −2 log(1 − |fk|2) is a smooth function defined on U .

It follows from (8) that

2|f ′1(w)|2

(1− |f1(w)|2)2
=

2

(1− |w|2)2
+O(1);

2|f ′k(w)|2

(1− |fk(w)|2)2
= O(1) for 2 ≤ k ≤ r (12)

on a neighborhood of b. Hence, for w ∈ U ∩D, the tangent vector f ′(w) is equivalent

under the action of Aut(Π) to a vector (ξ1(w), · · · , ξr(w)) ∈ T0(Π) where

|ξ1(w)|2 =
1

2δ(w)2
+O(1); |ξk(w)|2 = O(1) for 2 ≤ k ≤ r . (13)
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It follows that the tangent vector f ′(w) is equivalent under Aut(Π) to a non-zero multiple

of the tangent vector 1√
2
(µ1(w), · · · , µr(w)) ∈ T0(Π), where µk are real and nonnegative

for 1 ≤ k ≤ n, and furthermore

µ1(w) = 1 +O(δ(w)), µk(w) = O(δ(w)) , (14)

(Here in µ1(w) = 1+O(δ(w)) the term O(δ(w)) is necessarily nonpositive, but the sign

of the term is irrelevant to us.) It follows that, in the notation of used in formulating

the condition (†) in the above, we have

R
η(w)η(w)η(w)η(w)

= −1 +O
(
δ(w)2

)
, (15)

verifying (†) in the special case where S = f(U ∩D) lies on a maximal polydisk.

(3.4) Proof of Main Theorem in the general case For the general case of the proof of

Main Theorem, we will instead verify (†)′, which implies (†), as explained in the above.

We note that in the very special case where f(U ∩D) lies on a maximal polydisk above,

(12) implies that (†)′ is satisfied.
For the general case we first make some observations. By Lemma 3, every irre-

ducible bounded symmetric domain Ω0 can be embedded as a totally geodesic complex

submanifold of an irreducible bounded symmetric domain Ω = G0/K where G0 is a

noncompact real form of a Lie group of type A, D or E, so that all roots of g are of

equal length. From now on we assume for notational simplicity that Ω is irreducible, and

for the proof of Main Theorem in the irreducible case without loss of generality we will

assume that Ω = G0/K is of type A, D or E, in which case, fixing a Cartan subalgebra

h ⊂ k, every noncompact positive root ρ ∈ ∆+
0 is necessarily a minimal rational tangent.

Choose now an orthonormal basis of T0(Ω) consisting of roots of unit length belonging

to noncompact positive roots ρ ∈ ∆+
0 , and use Euclidean coordinates (z1, · · · , zN ) on

CN arising from such a choice of an orthonormal basis {eρ : ρ ∈ ∆+
0 }, Ω ⊂ CN ∼= T0(Ω).

As explained, for the proof of Main Theorem without loss of generality we may assume

that f(b) = (1, 0, · · · , 0) = e1. For w ∈ U ∩D we can make use of the Polydisk Theorem

to find a maximal polydisk Πw ⊂ Ω passing through 0 and containing the point f(w).

(Πw ⊂ Ω is not necessarily unique.) However, the tangent vector f ′(w) ∈ Tf(w)(Ω) is

not necessarily tangent to Πw, and, to verify the condition (†)′ it is necessary also to

consider the component of the tangent vector f ′(w) normal to Πw. As w approaches

b ∈ U ∩D for the purpose of doing estimates we will slightly modify the procedure. We

will move the point f(w) to the minimal disk D0 = Ce1∩Ω on which metric calculations

are easier, by Lemma 5.

If we identify Ω naturally as an open subset of T0(Ω) ∼= CN , then, for w ∈ U ∩D,

f(w) ∈ Ω is both a point on the bounded symmetric domain Ω and a vector on T0(Ω).

The vector η(w) := f ′(w), which is a tangent vector of type (1,0) at f(w) will then

be referred to as the velocity vector at w. Recall the maximal polydisk Π ⊂ Ω given
16



by Π = (gψ1 ⊕ · · · gψr ) ∩ Ω, where Ψ = {ψ1, · · · , ψr} is a maximal strongly orthogonal

set of positive noncompact roots and ψ1 = µ is the highest root. By the Polydisk

Theorem, given any w ∈ U ∩ D, there exists some γ = γw ∈ K such that γ(f(w)) =

(a1(w), · · · , ar(w)) ∈ Π, where ak(w) is real and nonnegative, and 1 ≥ a1(w) ≥ a2(w) ≥
· · · ≥ ar(w) ≥ 0. With the latter specifications each ak(w), 1 ≤ k ≤ r, is uniquely

determined.

Suppose wi ∈ U ∩ D, 1 ≤ i < ∞, is a sequence converging to b and we write γi

for γwi . Then, γi(f(wi)) = (a1(wi), · · · , ar(wi)). We write N+ = {1, 2, · · · , } for the

set of positive natural numbers. From the compactness of K and the boundedness of

{(a1(wi), · · · , ar(wi)) : 1 ≤ i < ∞} it follows that for some increasing function τ :

N+ → N+, the subsequence γτ(i) of γi converges to some γ∞ ∈ K and the subsequence

(a1(wτ(i)), · · · , ar(wτ(i))) of (a1(wi), · · · , ar(wi)) converges to some p ∈ Π, where p =

(c1, · · · , cr), 1 ≥ c1 ≥ c2 ≥ · · · cr ≥ 0, and we have γ∞(f(b)) = p. But since f(b) =

(1, 0, · · · , 0) is already in normal form, and the normal form of a tangent vector ξ ∈ T0(Ω)

is uniquely determined, we must have c1 = 1 and ck = 0 for 2 ≤ k ≤ r. Thus γτ(i)
converges to (1, 0, · · · , 0). Since this holds true for any choice of τ : N+ → N+ for

which both γτ(i) and (a1(wτ(i)), · · · , ar(wτ(i))) are convergent, it follows that in fact the

normal forms (a1(w), · · · , ar(w)) of f(w) must converge to (1, 0, · · · , 0) as w converges

to b. (Write h : T0(Ω) → Rr for the mapping which assigns to any tangent vector

ξ ∈ T0(Ω) its normal form h(ξ) ∈ Rr. The preceding elementary arguments show

precisely that h is continuous.)

We are now ready to proceed with the proof of Main Theorem.

Proof of Main Theorem. Let Ω b CN be a bounded symmetric domain of rank r. For

notational simplicity we will assume that Ω is irreducible. At the end of the proof we

will explain the minor changes that need to be made to carry the proof over to the

reducible case. From the embedding Π ⊂ Ω we have naturally a monomorphism of Lie

groups Φ : Aut0(Π) → Aut0(Ω) = G0. In what follows for any λ ∈ Aut0(Π) ∼= Aut(D)r

the same symbol λ will also be used to denote Φ(λ) ∈ G0. For w ∈ U ∩D let λ = λw
be defined by

λ(z1, · · · , zr) =
(
z1,

z2 − a2(w)

1− a2(w)z2
, · · · , z2 − a2(w)

1− a2(w)zr

)
(16)

For w0 ∈ U ∩D consider hw0 : U ∩D → Ω defined by

hw0(w) = λw0(γw0(f(w))) . (17)

Then,

hw0(w0) = (a1(w), 0, · · · , 0) ∈ Π ; (18)

h′w0
(w) = dλw0((γw0(f(w))

(
(γw0(f

′(w))
)
. (19)

Here (γw0(f(w)) = γw0(f(w)) is a point on Ω while γw0(f
′(w)) = (γw0 ◦ f)′(w) is a tan-

gent vector at (γw0(f(w)). Denote by ⟨·, ·⟩e the Euclidean inner product on CN and by
17



∥ · ∥e the Euclidean norm. The mapping f : U ∩D → CN verifies the transversality con-

dition at b as is given in Lemma 7, which, under the normalization f(b) = (1, 0, · · · , 0),
is given by

⟨
f(b), f ′(b)

⟩
e
̸= 0, which is equivalently f ′1(b) ̸= 0. Since γw0 ∈ K is a

unitary transformation, we have⟨
γw0(f(w)), γw0(f

′(w))
⟩
e
=

⟨
f(w), f ′(w)

⟩
e
, (20)

which is equal to f ′1(b) ̸= 0 at w = b. We have⟨
hw0(w), h

′
w0

(w)
⟩
e
=

⟨
λw0(γw0(f(w)) , dλw0((γw0(f(w)))

(
(γw0(f

′(w))
)⟩

e
. (21)

Since λw0
, when regarded as automorphisms of Ω, converges to the identity map idΩ

in the Lie group G0, shrinking U if necessary there exists some open neighborhood

Ω♯ b CN of Ω such that λw0 is defined and holomorphic on Ω♯ whenever w0 ∈ U ,

and such that dλw0(w) converges uniformly on Ω♯ to the identity map on TΩ♯ as w0

converges to b. We may also assume without loss of generality that∣∣∣⟨f(w), f ′(w)⟩
e

∣∣∣ > 1

2
|f ′1(b)| > 0 for all w ∈ U . (22)

Given any ϵ > 0, shrinking U further if necessary, we may assume that∥∥dλ′w0
(w)(η)− η

∥∥
e
< ϵ∥η∥e (23)

for every w0 ∈ U ∩D, every w ∈ Ω′ and every η ∈ Tw(Ω
′). It follows that∣∣∣⟨λw0(γw0(f(w)) , dλw0(γw0(f(w)))

(
(γw0(f

′(w))
)⟩

e
−
⟨
γw0(f(w)), γw0(f

′(w))
⟩
e

∣∣∣ → 0

(24)

uniformly in w ∈ U as w0 ∈ U ∩ D approaches b. It follows from (20), (22) and (24)

that, shrinking the open neighborhood U of b further if necessary and substituting at

w = w0 we have

|
⟨
hw0(w0), h′w0

(w0)
⟩
e

∣∣ > 1

4
|f ′1(b)| > 0 (25)

for every w0 ∈ U ∩D.

Finally we combine (18) and (25) to get an estimate on the normal form of a vector

ηw ∈ T0(Ω) of unit length with respect to g which is equivalent under the action of

the holomorphic isometry group G0 to the velocity vector h′w(w) ∈ Thw(w)(Ω) as w ap-

proaches b. Here by (18), we have hw(w) = (a1(w), 0, · · · , 0), which lies on the minimal

diskD0, which allows us by Lemma 5 to describe the metric tensor
(
gij

)
(a1(w), 0, · · · , 0).

Since h′w(w) is uniformly bounded in the Euclidean norm for w ∈ U ∩D, we conclude

from (25) and Lemma 5 that h′w(w) is equivalent under G0 to a non-zero multiple of a

vector ξw ∈ T0(Ω) of the form

ξw =
⊕
ρ∈∆+

0

aρeρ; where aµ =
1

δ(w)
,

aρ = O

(
1√
δ(w)

)
whenever µ− ρ ∈ D, and

aτ = O(1) whenever τ ̸= µ and µ− τ /∈ D . (26)
18



For the case where Ω is irreducible to prove Main Theorem it remains to deduce (†)′

from (26). In the notation of Lemma 2, H stands for the set of all noncompact positive

roots ρ such that µ − ρ is a root, and N stands for the set of all noncompact positive

roots τ such that ρ ̸= µ and µ − τ is not a root. Write now H :=
⊕

{gρ : ρ ∈ H}, and
N :=

⊕
{gρ : ρ ∈ N}. We have T0(Ω) = Ceµ ⊕H⊕N . From (26) we deduce that

ηw =
1√

1 +O(δ(w))

(
eµ +

⊕
ρ∈H

(
O(

√
δ(w)

)
eρ +

⊕
τ∈N

O(δ(w))eτ

)
. (27)

It follows already from (27) that ηw converges to the minimal rational tangent eµ = α

at 0 ∈ Ω as w approaches b.

Recall the inclusions Ω b CN ⊂ M which incorporates the Harish-Chandra real-

ization Ω b CN and the Borel embedding Ω ⊂M of the bounded symmetric domain Ω.

Let π0 : T0(Ω)−{0} → PT0(Ω) be the natural projection. For a subvariety E ⊂ PT0(Ω)
we write Ẽ for its affinization π−1(E). Consider now the variety of minimal rational tan-

gents C0 ⊂ PT0(M) = PT0(Ω). C0 agrees with the highest weight orbit W0 ⊂ PT0(M)

of the isotropy representation of KC (cf. Hwang-Mok [HM, p.360ff.]). On the other

hand, given a highest weight µ ∈ ∆+
0 , for α = eµ ∈ W̃0, writing C̃0 = W̃0 = KCα,

by considering the differential of the map Φ : KC → T0(Ω) given by Φ(γ) = dγ(α)

it follows readily that Tα(C̃0) = Cα + H. (Alternatively, the same statement can be

deduced from the Grothendieck decomposition TM |C ∼= O(2)⊕O(1)p ⊕Oq of the tan-

gent bundle TM over a minimal ration curve C passing through 0 with T0(C) = Cα
(cf. [HM, loc. cit.]) and from the general fact that T0(C̃0) = Pα, where Pα is the

positive part of the Grothendieck decomposition of T (M)|C at 0 ∈ C (cf. [HM, pp.224-

225]).) Thus, in a neighborhood of α, the complex manifold C̃0 can be parametrized by

Uϵ := {ξ ∈ Cα+H : ∥ξ∥ < ϵ} for some ϵ > 0, given by φ(ξ) = ξ + ζ(ξ), where ζ(ξ) is

orthogonal to Cα + H (i.e., ζ(ξ) ∈ N ) for every ξ ∈ Uϵ, and where φ(ξ) ≤ C∥ξ∥2 for

some positive constant C and for every ξ ∈ Uϵ. (Actually, φ(ξ) is a quadratic map in ξ,

thus defined on all of the tangent space Cα +H, cf. [HM, p.377], but we will not use

the latter fact.). Given this, rewriting in (27) the unit vector ηw as

ηw =
α+ ξw + χw√

1 + ∥ξw∥2 + ∥χw∥2
, (28)

where ξw ∈ H and χw ∈ N , we deduce from (27) that

ηw =
(α+ ξw + φ(ξw)) + (χw − φ(ξw))√

1 + ∥ξw∥2 + ∥χw∥2
:= αw +

χw − φ(ξw)√
1 + ∥ξw∥2 + ∥χw∥2

, (29)

where αw ∈ C̃0 from the definition of φ. Thus, ηw = αw + ζw, where ζw ∈ N , and it

follows from (27) that

∥ζw∥ ≤ ∥χw∥+ ∥φ(ξw)∥ ≤ ∥χw∥+ C∥ξw∥2

= O(δ(w)) +
(
O
(√

δ(w)
))2

= O(δ(w)) . (30)
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From now on we write H = Hα and N = Nα. From the discussion above it follows

that Nα = (Cα+H)
⊥
, i.e., Nα is the orthogonal complement of Cα + Hα in T0(Ω)

with respect to the metric g, equivalently with respect to the Euclidean metric. The

highest weight orbit W ⊂ PT0(Ω) is in fact the K-orbit of [α] which turns out to

be complex-analytic. (It is the unique complex-analytic K-orbit by the Borel-Weil

Theorem). For any α′ ∈ C̃0, regarding α′ as a highest weight vector with respect to

some choice of a Cartan subalgebra h′ ⊂ k, and we have likewise Tα′(C̃0) = Cα′ +Hα′

and Nα′ = (Cα′ +Hα′)
⊥
, where Hα′ resp. Nα′ is defined in analogy to Hα resp. Nα.

From (30) we have ηw = αw + ζw, where αw ∈ C̃0, ζw ∈ Nα, and ∥ζw∥ = O(δ(w)).

However, to verify (†)′ we have to prove instead ηw = α′
w+ζ

′
w where α′

w ∈ C̃0, ζ ′w ∈ Nα′
w

and ∥ζ ′w∥ = O(δ(w)). We claim that this is indeed the case. To this end denote

by p : N → C̃0 the (smooth) normal bundle of C̃0 as a Riemannian submanifold of

T0(Ω) − {0}, Thus, over β ∈ C̃0 we have Nβ = Tβ(C̃0)⊥ = Nβ . Thus, N ⊂ C̃0 × T0(Ω)

by definition. The canonical projection of C̃0 × T0(Ω) onto the second factor T0(Ω)

restricts to a mapping on N which we denote by q : N → T0(Ω). Consider the mapping

Φ : N → T0(Ω) defined by Φ(n) = p(n) + q(n). Clearly, Φ is an open embedding of

some neighborhood U of the zero section Z ∼= C̃0 in N onto a neighborhood U of C̃0
in T0(Ω). Φ is indeed the exponential map of the normal bundle N in the sense of

Riemannian geometry, and the open neighborhoods U ⊃ Z and U ⊃ C̃0 can be chosen

such that, if χ ∈ U , u ∈ U and χ = Φ(u), then p(u) ∈ C̃0 is the unique point on C̃0
closest to χ. From now on Φ will stand for the diffeomorphism Φ|U : U → U . Since

ηw is of unit length, when ζw is sufficiently small, using the exponential map Φ we can

write ηw = αw + ζw = α′
w + ζ ′w, where α

′
w = p(Φ−1(ηw)) ∈ C̃0 and ζw ∈ Nα′

w
. From

ηw = αw + ζw we see that the Euclidean distance of ηw to C̃0 is of order O(δ(w)).

Since ∥ζ ′w∥ realizes the latter minimal distance, we have also ∥ζ ′w∥ = O(δ(w)). We have

therefore verified (†)′ in the case where Ω is irreducible, and completed the proof of

Main Theorem in the irreducible case.

Finally, we observe that the proof also applies to the case where Ω is reducible.

Writing Ω = Ω1 × · · · × Ωm, m ≥ 2, for the decomposition of Ω into the Cartesian

product of irreducible bounded symmetric domains Ωℓ, 1 ≤ ℓ ≤ m, the nonsingular part

Reg(∂Ω) of the boundary of Ω b CN in its Harish-Chandra realization is given by the

disjoint union Reg(∂Ω) = Reg(∂Ω1)×Ω2×· · ·Ωm∪ · · · ∪ Reg(Ω1)×· · ·×Ωm−1×∂Ωm. In

the notation as in the statement of Main Theorem, suppose f : U → Ω is a holomorphic

curve such that f(U ∩ D) ⊂ Ω and f(U ∩ ∂D) ⊂ ∂Ω, and such that f(b) ∈ Reg(∂Ω)

for a general point b ∈ U ∩ ∂Ω. Because of the decomposition of Reg(∂Ω) as given

in the above, shrinking U if necessary without loss of generality we may assume that

f(U ∩ ∂D) lies on one of the m connected components of Reg(∂Ω) as given in the

above. Renaming and reshuffling the factor domains Ωk, 1 ≤ k ≤ m, we may assume

f(U ∩∂D) ⊂ Reg(∂Ω1)×Ω2×· · ·×Ωm. The arguments for the proof of Main Theorem

carry over almost verbatim with the following minor modification, viz., we normalize
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the Kähler-Einstein metric so that the Gauss curvature of a minimal disk D on Ω1 is of

Gauss curvature −1. The holomorphic map f = (f1, · · · , fm), where for 1 ≤ k ≤ m, we

have fk : U → Ωk. Focusing at points converging to a general point b ∈ U where f is an

embedding on a neighborhood of b and composing with an automorphism of Ω we may

assume without loss of generality that f(b) = ((1, 0, . . . , 0); 0; . . . ; 0). Then fℓ(w) =

O(δ(w)) for 2 ≤ ℓ ≤ m. For the rest of the arguments, writing fk = (f1k , . . . , f
Nk

k )

with respect to the Euclidean coordinates on Ωk b CNk , we have (f jℓ )
′(w) = O(1) for

2 ≤ ℓ ≤ m and 1 ≤ j ≤ mℓ, from which it follows, in analogy to the case of the

polydisk as given in (12), we have dfℓ
(
∂
∂w

)
= O(1) as w approaches b. The arguments

leading to the curvature formula (†) carry over when we apply the arguments for the

irreducible case to the factor f1 and the arguments for the case of the polydisk to the

other components fℓ, 2 ≤ ℓ ≤ m. Here we note that in dealing with f1, for the argument

analogous to the reduction of (†) to (†)′ we need only to argue with the variety of

minimal rational tangents C0(Ω1) of Ω. The other varieties of minimal rational tangents

Ωℓ, 1 ≤ ℓ ≤ m are irrelevant. The proof of Main Theorem is complete. �

Remarks

In the statement of Main Theorem in place of a canonical Kähler-Einstein metric we may

take g to be any Aut(Ω)-invariant Kähler-Einstein metric g, i.e. g = π∗
1g1 + · · ·+π∗

mgm
where, for 1 ≤ k ≤ m, gk is a canonical Kähler-Einstein metric on Ωk, which is uniquely

determined up to a positive scalar constant, and where πk : Ω → Ωk are the canonical

projections. The proof is identical.

(3.5) Concluding Remarks One of the original motivations for proving Main Theorem

was to study asymptotic behavior of holomorphic isometric embeddings of the Poincaré

disk into bounded symmetric domains, whose graphs extend by Mok [Mo5] to affine-

algebraic subvarieties. For such mappings Main Theorem implies that, in the case where

the general boundary point is a regular point of ∂Ω and where the isometric embedding

is asymptotically totally geodesic at a general boundary point, ∥σ∥2 must vanish to the

order 2, i.e., it is of the first kind in the terminology of Mok [Mo4].

Another motivation was the study of holomorphic measure-preserving maps from

an irreducible bounded symmetric domain to a Cartesian product of the same domain, in

the sense of Clozel-Ullmo [CU], to which we refer the reader for definitions, in relation to

the determination of commutants of certain modular correspondences of quotients X :=

Ω/Γ of irreducible bounded symmetric domains by torsion-free lattices. In [CU] the

authors derived germs of holomorphic measure-preserving maps from such commutants

and reduced the problem essentially to a problem in complex differential geometry.

The latter problem was solved in the case of the unit disk Ω = D in [CU], in the

case of higher-dimensional complex unit balls Ω = Bn, n ≥ 2, in Mok [Mo5] and in

the case where Ω is of rank ≥ 2 by Mok-Ng [MN2]. As a consequence, the following

result (Theorem 1.1.2 of Mok-Ng [MN2]) on holomorphic measure-preserving maps was
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established.

Theorem (Mok-Ng [MN2]). Let Ω b Cn be an irreducible bounded symmetric do-

main, and Γ ⊂ Aut(Ω) be a torsion-free lattice. Write X := Ω/Γ and let Y ⊂ X ×X

be a measure-preserving algebraic correspondence with respect to the canonical measure

dµΩ on Ω. Then, Y is necessarily a modular correspondence.

In the case of Ω = Bn, n ≥ 2, a stronger statement was established in Mok [Mo3]

using Alexander’s Theorem, where we actually proved that the graph of the germ of a

holomorphic measure-preserving map f = (f1, · · · , fp) : (Ω; 0) → (Ω; 0) × · · · × (Ω; 0),

where each fk is of maximal rank for 1 ≤ k ≤ p, is necessarily totally geodesic in

Ω × (Ω × · · · × Ω). The same statement for Ω of rank ≥ 2 was established in Mok-Ng

[MN2] by means of an Alexander-type theorem, where a germ of holomorphic map on

CN at b ∈ Reg(∂Ω) mapping Ω into Ω and ∂Ω into ∂Ω was shown to be necessarily the

restriction of an automorphism γ ∈ Aut(Ω). On the other hand, in the case of the unit

disk D, in which case a holomorphic measure-preserving map is nothing other than a

holomorphic isometry (up to a normalizing constant), examples of Mok [Mo5] show that

the same statement fails, and in Clozel-Ullmo [CU] the theorem above for Ω = D was

established by proving that Graph(f) extends to an affine-algebraic variety in C × Cp

and by making use of the underlying action of Γ on Ω. Main Theorem in the current

article shows that for any irreducible bounded symmetric domain, the germ of map f

as in the above arising from commutants of certain modular correspondences must be

asymptotically totally geodesic when restricted to minimal disks passing through b if b

is chosen generically. (In the case of the unit disk D one only requires the special and

much simpler case of Main Theorem for polydisks as was given in (3.3).) Coupled with

the underlying action of Γ on Ω this shows that f is necessarily itself totally geodesic,

since the behavior of f (after extension) on a fundamental domain of Ω is recaptured

by the asymptotic behavior of f as the base point x ∈ Ω approaches a general regular

boundary point b ∈ Reg(Ω) owing to Γ-equivariance. Main Theorem therefore gives a

uniform proof of the above theorem without resorting to Alexander-type Theorem.
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