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Abstract. We show that the base complex manifold of an effectively parametrized

holomorphic family of compact canonically polarized complex manifolds ad-

mits a smooth invariant Finsler metric whose holomorphic sectional curva-

ture is bounded above by a negative constant. As a consequence, we show

that such base manifold is Kobayashi hyperbolic.
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1. Introduction

In the study of the moduli space Mg (and the Teichmüller space Tg) of

compact Riemann surfaces of genus g ≥ 2, the Weil-Petersson metric plays

an important role, and it has been widely studied. In particular, Ahlfors

([Ah1], [Ah2]) showed that the Weil-Petersson metric on Tg is a Kähler

metric whose Ricci and holomorphic sectional curvatures are negative. Roy-

den [R] later proved that the holomorphic sectional curvature of the Weil-

Petersson metric is bounded away from zero. Subsequently Wolpert [Wo]

showed that the Weil-Petersson metric is of holomorphic sectional curvature

bounded above by − 1
2π(g−1) . One immediate consequence of Wolpert’s result

isMg is Kobayashi hyperbolic. It is interesting and natural to ask whether

similar results hold for the moduli spaces of higher dimensional manifolds.

An n-dimensional compact complex manifold M is said to be canonically

polarized if its canonical line bundle KM is ample. It follows from results of

Aubin [Au] and Yau [Y] that every compact complex manifold with ample

canonical line bundle admits a Kähler-Einstein metric of negative Ricci cur-

vature, which is unique up to a positive multiplicative constant. As such,
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one can identify the moduli space of canonically polarized manifolds with

that of Kähler-Einstein manifolds of negative Ricci curvature (see [NS], [V]

and the references therein for existence and quasi-projectivity results on the

moduli space of canonically polarized manifolds). The first breakthrough

in the computation of the curvature for the Weil-Petersson metric on the

moduli space of such higher dimensional manifolds is given by Siu [S2],

which we recall here briefly. Let π : X → S be a holomorphic family of

compact canonically polarized complex manifolds over a complex manifold

S, i.e., π : X → S is a surjective holomorphic map of maximal rank be-

tween two complex manifolds X and S, and each fiber Mt := π−1(t), t ∈ S,

is a compact complex manifold such that KMt is ample. When the fam-

ily π : X → S is effectively parametrized (i.e., the Kodaira-Spencer map

ρt : TtS → H1(Mt, TMt) is injective for each t ∈ S), the Weil-Petersson

metric on S induced from the Kähler-Einstein metrics on the fibers is a

non-degenerate Kähler metric (cf. (2.5)). In [S2], Siu computed the curva-

ture of the Weil-Petersson metric arising from such families (see also [Sch1]

for a simplified formula under the additional assumption that the Kodaira-

Spencer map ρt : TtS → H1(Mt, TMt) is surjective for each t ∈ S). It turns

out that in general, one cannot decide the sign of the holomorphic sectional

curvature of the Weil-Petersson metric except in some restrictive cases, say,

when H2(Mt,
∧2 TMt) = 0 for all fibers Mt of the family. Nonetheless, we

show in this article that the base manifold of any effectively parametrized

holomorphic family of canonically polarized manifolds admits a Finsler met-

ric with appropriate curvature property, which will imply that such base

manifold is necessarily Kobayashi hyperbolic. We state our main result as

follows:

Theorem 1. Let π : X → S be an effectively parametrized holomorphic

family of compact canonically polarized complex manifolds over a complex

manifold S. Then S admits a C∞ Aut(π)-invariant Finsler metric whose

holomorphic sectional curvature is bounded above by a negative constant. As

a consequence, S is Kobayashi hyperbolic.

We refer the reader to Section 3 for the definition of an “Aut(π)-invariant

Finsler metric whose holomorphic sectional curvature is bounded above by

a negative constant”. We also recall that a complex manifold (or more gen-

erally a complex space) X is said to be Kobayashi hyperbolic if its Kobayashi

pseudo-distance function dX is a distance function on X (i.e., dX(x, y) > 0

for all x 6= y ∈ X). Here dX can be characterized as the largest among all

the pseudo-distance functions δX on X satisfying δX(f(a), f(b)) ≤ d∆(a, b)

for all holomorphic maps f : ∆→ X and a, b ∈ ∆, where ∆ is the unit disc
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in C and d∆ is the hyperbolic distance function on ∆ (see e.g. [Kob] for

other equivalent definitions of dX).

We remark that Theorem 1 improves an earlier result of Viehweg and

Zuo [VZ], which implies that S is Brody hyperbolic; that is, there exists no

non-constant holomorphic function from the complex plane C to S (see also

[Kov1], [Kov2] and [Mi] for related algebraic versions of such result, namely

that algebraic morphisms from abelian varieties or C∗ to S are necessarily

constant, and that when S ⊂ P1, the cardinality of P1 \ S is at least three).

Here we recall the well-known fact that a complex manifold (or more gen-

erally a complex space) X is necessarily Brody hyperbolic if it is Kobayashi

hyperbolic, and these two notions of hyperbolicity coincide when X is com-

pact. Nonetheless, there are examples of non-compact Brody hyperbolic

complex manifolds which are not Kobayashi hyperbolic (see e.g. [Kob, p.

104] for such an example). The approach in [VZ] depends on positivity re-

sults for direct images of certain associated sheaves, and it is quite different

from ours. We also remark that as in [VZ], Theorem 1 can be regarded

as a result on the moduli stacks associated to the coarse moduli spaces of

canonically polarized manifolds. As suggested by one of the referees, we will

indicate some underlying parallel ingredients in the respective approaches

of [VZ] and this paper (see Remark 10 at the end of this paper).

We describe briefly our approach as follows. The starting point is the cur-

vature computation of the usual Weil-Petersson metric h1 in [S2] (see the

curvature formula in (2.6) in §2). We may regard this as the first level com-

putation. The curvature expression of h1 encompasses a good term which

is negative and a bad term which is non-negative. We observe that the bad

term can be expressed as a ratio h2/h1, where h2 is some Finsler pseudomet-

ric on the the tangent space TS of the parameter space S, which is induced

through the diagonal embedding of TS into the symmetric product S2(TS)

endowed with a generalized Weil-Petersson Finsler pseudometric (which, for

simplicity, is also denoted here by h2). The second level computation is

the technical derivation of the curvature of h2. A prototype of this com-

putation is the first level computation which was done in [S2]. The key

point of our argument is to group the resulting curvature terms of h2 into

a good term involving h2/h1 and a bad term involving h3/h2, where h3 can

be interpreted as another Finsler pseudometric on TS arisen similarly. The

process is repeated. Hence for each ` ≥ 1, we construct at the `-th level a

generalized Weil-Petersson Finsler pseudometric h` on S measuring the `-th

symmetric power of a tangent vector on the base and corresponding to the

`-th composition of the Kodaira-Spencer map associated to a given tangent

vector. We derive the key estimate that the curvature of h` is expressed as
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the sum of a good term involving h`/h`−1 and a bad term involving h`+1/h`
(see Proposition 6 in §8). Our strategy is to control the bad term at the

(`− 1)-th level by the good term at the `-th level. This process terminates

after a finite number of steps because of the following simple observation:

Since h` is given by the L2 norms of the harmonic representatives of the

cohomology classes in H`(Mt,∧`TMt) corresponding to the image of the

`-th iteration of the Kodaira-Spencer map, it follows that the bad term at

the n-th level must vanish, where n = dimCMt. We remark that the iter-

ated Kodaira-Spencer maps (and similar cohomological vanishing results as

mentioned above) play an important role in the study of variation of Hodge

structures, and they have also been used in [Mi], [Kov2] and [VZ]. To carry

out our plan, we construct the final Finsler metric h as a suitable finite

linear combination of the h
1/`
` ’s. From a simple direct computation which

corresponds to a Gauss equation type argument, we show that the curvature

of h is bounded from above by a linear combination involving the h`’s and

their curvatures. Finally by adjusting the coefficients of the h
1/`
` ’s in the

definition of h carefully pertaining to the comparison of arithmetic and geo-

metric means, we show that the curvature estimates of the h`’s at various

levels can be combined together to conclude that the holomorphic sectional

curvature of h is bounded above by a negative constant (see Proposition 7

in §9).

We may break up our proof of Theorem 1 into three steps. In terms of

the above description, the first step of the current paper is a direct gener-

alization of the curvature formula for ` = 1 to the cases of higher values

of `, resulting in Proposition 4 in §8. The proof of this step follows closely

the original formulation of Siu [S2]. The second step is to observe that the

first term on the right hand side of the expression in Proposition 4 allows

us to use a telescopic argument to estimate the bad term of the curvature

of the generalized Weil-Petersson metric h` in terms of the good term in

the curvature expression of h`+1. The third step is the careful choice of a

suitable combination of the h`’s to make sure that a negative upper bound

of the holomorphic sectional curvature can be obtained. For the sake of

a clear, self-contained presentation, we include all necessary details in the

computations.

The approach in this article is motivated in part from [SY1] and [SY2], in

which higher order jets and appropriate Schwarz lemma are used to handle

situations where the use of the first order jet is not sufficient for hyperbolicity

of the manifold. Nonetheless, in this article, instead of higher order jets, we

make use of symmetric powers of the first order jet of the base manifold S
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and their cohomological images along the fibers arising from the Kodaira-

Spencer map. The expression of the curvature estimates in Proposition 6

given in terms of a good and a bad term, is motivated by Ahlfors work on

associated curves ([Ah3]) and also the proof of Schwarz Lemma in ([SY1],

Lemma 4.4.1). The formulation of Proposition 6 is crucial for a telescopic

argument in the proof of Proposition 7.

After we had completed this work, we were drawn to attention of a re-

cent preprint (arXiv: 1002.4858) by Schumacher (which has appeared subse-

quently as [Sch2]), which, among other results, gives rise to Finsler metrics

of negative holomorphic sectional curvature on relatively compact subsets

of S (see [Sch2, Proposition 14]). But this does not lead to Kobayashi hy-

perbolicity or Brody hyperbolicity of S itself, except in the case when S

is compact (see Remark 11 at the end of this paper for more retrospective

remarks on the respective approaches of the two papers).

The organization of this paper is as follows. In Section 2, we give some

background materials and introduce some notations. In Section 3, we intro-

duce the generalized Weil-Petersson Finsler pseudometrics, whose curvatures

are computed in Sections 4-8. In Section 9, we give the construction of the

desired Finsler metric, which leads to the Kobayashi hyperbolicity of S.

The authors would like to express their thanks to Professor Yum-Tong

Siu for his suggestions and inspirations to study the topic treated in this

paper. The authors would also like to thank Professor Ngaiming Mok for

his interest in this work. Part of this research was done while the authors

were visiting the Institute of Mathematical Research at the University of

Hong Kong, and the authors would like to express their gratitude to the

institute for their hospitality. The authors are also indebted to the referees

for helpful comments and suggestions.

2. Background materials and the Weil-Petersson metric

Let π : X → S be an effectively parametrized holomorphic family of

n-dimensional compact canonically polarized complex manifolds over an m-

dimensional complex manifold S. Let Mt := π−1(t) for each t ∈ S. Since

the canonical line bundle KMt of each Mt is ample, it follows from a well-

known result of Yau [Y] that Mt admits a Kähler-Einstein metric g(t) of

constant Ricci curvature k < 0. It is easy to see that k can be chosen

to be independent of t ∈ S, and with such a choice of k, g(t) is uniquely

determined and g(t) varies smoothly with t. Denote the Kähler form of g(t)

by ω(t) for each t ∈ S. Consider the relative canonical line bundle on X
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given by KX|S := KX ⊗ (π∗KS)−1, so that KX|S

∣∣∣
Mt

= KMt for each t ∈ S.

The volume forms associated to the ω(t)’s defines a Hermitian metric λ on

K−1
X|S , and one obtains a d-closed (1, 1)-form on X given by

(2.1) ωX :=
2π

k
c1(K−1

X|S , λ)

such that ωX
∣∣
Mt

= ω(t) for each t ∈ S.

We will adopt the following notation throughout this article, unless stated

otherwise. We will use (z, t) = (z1, · · · , zn, t1, · · · , tm) to denote local holo-

morphic coordinate functions on some coordinate open subset of X , so that π

corresponds to the coordinate projection map (z, t)→ t, and t = (t1, · · · , tm)

also forms local holomorphic coordinate functions on some coordinate open

subset of S. As such, for fixed t, z = (z1, · · · , zn) also forms local holo-

morphic coordinate functions on some open subset of the fiber Mt. We will

index components of tensors on Mt in the holomorphic tangential directions

by Greek alphabets α, β, etc (with the range 1, 2, · · · , n), while those in the

complexified tangential directions are indexed by lower case Latin letters

a, b, c, d, etc (with the range 1, 2, · · · , n, 1̄, 2̄, · · · , n̄). On the other hand,

the components of tensors along the base directions will be indexed by the

letters i, j (with the range 1, 2, · · · ,m), etc. We also adopt the Einstein

summation notation for indices along the fibers. We denote ∂α := ∂
∂zα and

∂ᾱ := ∂
∂zα for α = 1, · · · , n, and ∂i := ∂

∂ti
for i = 1, · · · ,m, etc.

The Ricci tensor of g(t) is locally given byRαβ̄(t) = −∂α∂β̄ log(det(gγδ̄(t))),

and the Kähler-Einstein condition means that Rαβ̄(t) = kgαβ̄(t) on each Mt.

When no confusion arises, we sometimes drop the parameter t, and we sim-

ply write Rαβ̄ for Rαβ̄(t), etc. We also write the (1, 1)-form in (2.1) as

ω =
√
−1gIJ̄(z, t)dwI ∧ dw̄J , where w can be z or t and the indices I, J can

be i or α, etc. In particular, one has gαβ̄ = gαβ̄(t) along each fiber Mt.

Next we recall the ‘horizontal lifting’of vector fields as defined by Schu-

macher in [Sch1]. First one notes that the orthogonal complement of Ker(π∗ :

TX → TS) in TX with respect to ω defines a smooth ‘horizontal’ vector

subbundle THX ⊂ TX . For t ∈ S and a local tangent vector field u (of

type (1, 0)) on an open subset U of S, one easily sees that there exists a

unique lifting of u to a smooth vector field vu (of type (1, 0)) on π−1(U)

such that π∗vu = u and vu(z, t) ∈ THX for each (z, t) ∈ π−1(U). Such

vu is called the horizontal lifting of u (with respect to ω). With respect

to the family π : X → S, let ρt : TtS → H1(Mt, TMt) denote the associ-

ated Kodaira-Spencer map for each t ∈ S. For each fixed t ∈ U , it follows

from standard deformation theory that Φ(u(t)) := ∂̄vu
∣∣
Mt
∈ A0,1(Mt) is

a Kodaira-Spencer representative of ρt(u(t)), i.e., ρt(u(t)) =
[
Φ(u(t))

]
in
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H1(Mt, TMt). By [Sch1, p. 342, Proposition 1.1], one knows that Φ(u(t)) is

harmonic with respect to the ∂̄-Laplacian � = ∂̄∂̄∗ + ∂̄∗∂̄ on Mt. In partic-

ular, the horizontal lifting vu of u is actually a (special type of) ‘canonical

lifting’ in the sense of Siu in [S2], which refers to any lifting of u such that

Φ(u(t)) is the harmonic representative of ρt(u(t)) for each t. When u = ∂/∂ti

is a coordinate vector field, we will simply denote its horizontal lifting by

vi := v∂/∂ti and the associated harmonic Kodaira-Spencer representative by

Φi := Φ(∂/∂ti). Write Φi = (Φi)
α
β̄
∂α ⊗ dz̄β. It is easy to see that vi and the

(Φi)
α
β̄
’s are given locally by

vi = ∂i + vαi ∂α, where vαi := −gβ̄αgiβ̄, and(2.2)

(Φi)
α
β̄ = ∂β̄v

α
i = −∂β̄(gγ̄αgiγ̄).(2.3)

(see [Sch1, p. 342, equation (1.2)]). Here gβ̄α denotes the components of

the inverse of gαβ̄ (and not that of gIJ̄ , which may not be invertible). For a

given tensor T of covariant degree 1 and of contravariant degree 1, we recall

that the components (along the fiber direction) of its Lie derivative LviT
with respect to vi are given locally by

(2.4) (LviT )ba = ∂i(T
b
a) + T bc ∂av

c
i − T ca∂cvbi

(see e.g. [S2, p. 268]), and similar formula holds for tensors of higher degree.

We recall that the Weil-Petersson metric h(WP ) =
∑n

i,j=1 h
(WP )

ij̄
dti ⊗ dt̄j on

S is defined by

(2.5) h
(WP )

ij̄
(t) :=

∫
Mt

〈Φi,Φj〉
ωn

n!
, where 〈Φi,Φj〉 := (Φi)

γ
ᾱ(Φj)δβ̄gγδ̄g

ᾱβ

denotes the pointwise Hermitian inner product on tensors, possibly of mixed

types, with respect to ω (we note that the definition of h(WP ) in [S2, p. 273]

differs from (2.5) by a factor of 4). We remark that it follows from the

assumption on the injectivity of ρt that h(WP ) is positive definite on each

TtS. It follows from Koiso’s result [Koi] that h(WP ) is Kähler. Let R(WP )

denote the curvature tensor of h(WP ). By [S2, p. 296], the components of

R(WP ) with respect to normal coordinates (of h(WP )) at a point t ∈ S are

given by
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R
(WP )

ij̄k ¯̀ (t) = k

∫
Mt

((�− k)−1〈Φi,Φj〉) · 〈Φk,Φ`〉
ωn

n!
(2.6)

+ k

∫
Mt

((�− k)−1〈Φk,Φj〉) · 〈Φi,Φ`〉
ωn

n!

+ k

∫
Mt

〈(�− k)−1LviΦk,LvjΦ`〉
ωn

n!

+

∫
Mt

〈H(Φi ? Φk), H(Φj ? Φ`)〉
ωn

n!
.

Here by normal coordinates of h(WP ) at the point t ∈ S, we mean h
(WP )

ij̄
(t) =

δij , and ∂kh
(WP )

ij̄
(t) = ∂k̄h

(WP )

ij̄
(t) = 0 (see [S2, p. 275]). Also, H(Φi ? Φk)

is some harmonic ∧2T 1,0Mt-valued (0, 2)-form constructed from Φi and Φk

(see (3.3), (3.4) and (3.10) for the general definition).

Remark 1. As remarked in [S2, p. 297], when i = j and k = `, the

first on the right hand side of (2.6) is negative, while the second and third

terms are semi-negative. However, the fourth term is semi-positive, which

hitherto poses a big obstacle in trying to deduce hyperbolicity properties of

the moduli space by using the Weil-Petersson metric (except under some

restrictive conditions amounting to the vanishing of the fourth term).

3. Generalized Weil-Petersson Finsler pseudo-metrics

Throughout Section 3, we let π : X → S be an effectively parametrized

holomorphic family of n-dimensional compact canonically polarized complex

manifolds over an m-dimensional complex manifold S as in Theorem 1. Let

Mt := π−1(t) for each t ∈ S. In this section, we are going to construct some

Finsler pseudo-metrics on S via constructions similar to (2.5). To facilitate

our subsequent discussion, we first recall some standard definitions.

A Finsler pseudo-metric h on the complex manifold S is simply a con-

tinuous function h : TS → R such that h(u) ≥ 0 for all u ∈ TS and

h(cu) = |c|h(u) for all u ∈ TS and c ∈ C. If, in addition, h(u) > 0 for all

0 6= u ∈ TS, then we say that h is a Finsler metric on S. A Finsler pseudo-

metric h is said to be C∞ (resp. C` for a non-negative integer `) if for any

open subset U ⊂ S and any non-vanishing C∞ section ut of TS
∣∣
U

, h(ut) is a

C∞ (resp. C`) function on U . For a C2 Finsler metric h on S, a point t ∈ S
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and a non-zero tangent vector u ∈ TtS, the holomorphic sectional curvature

K(u) of h in the direction u is simply given by

(3.1) K(u) = sup
R
K(R, h

∣∣
R

)(t),

where the supremum is taken over all local one-dimensional complex sub-

manifolds R of S satisfying t ∈ R and TtR = Cu, and K(R, h
∣∣
R

)(t) is the

sectional curvature of (the Riemannian metric) (R, h
∣∣
R

) at t (cf. (9.13)).

We say that the holomorphic sectional curvature of the Finsler metric h

on S is bounded above by a negative constant if there exists a constant

C > 0 such that K(u) < −C for all 0 6= u ∈ TS. We remark that in

the special case when the Finsler metric h arises as the length function of

a Hermitian metric, the holomorphic sectional curvature of h (as a Finsler

metric) agrees with that of the associated Hermitian metric. For the family

π : X → S as above, we say that a Finsler pseudometric (or Finsler met-

ric) h on S is Aut(π)-invariant if f∗h = h for any pair of automorphisms

(F, f) ∈ Aut(X ) × Aut(S) satisfying f ◦ π = π ◦ F . Here Aut(X ) denotes

the group of self-biholomorphisms on X , etc.

Next we introduce some definitions on the fibers Mt’s of π : X → S. For

integers p, q, r, s ≥ 0 and t ∈ S, let Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt)

be given by

Φ =
1

p!r!

∑
1≤α1,··· ,αr≤n
1≤β1,··· ,βp≤n

Φα1···αr
β1···βp

∂α1 ∧ · · · ∧ ∂αr ⊗ dz̄β1 ∧ · · · ∧ dz̄βp ,

(3.2)

Ψ =
1

q!s!

∑
1≤γ1,··· ,γs≤n
1≤δ1,··· ,δq≤n

Ψγ1···γs
δ1···δq

∂γ1 ∧ · · · ∧ ∂γs ⊗ dz̄δ1 ∧ · · · ∧ dz̄δq with

Φ
σ(α1)···σ(αr)

τ(β1)···τ(βp)
= sgn(σ) · sgn(τ) · Φα1···αr

β1···βp
, for all σ ∈ Sr, τ ∈ Sp, etc.

Here Sp denotes the permutation group on p elements, and sgn(σ) de-

notes the signature of the permutation σ, etc. Now we define Φ ? Ψ ∈
A0,p+q(∧r+sTMt) given by

Φ ? Ψ :=
1

p!q!r!s!

∑
Φα1···αr
β1···βp

·Ψγ1···γs
δ1···δq

∂α1 ∧ · · · ∧ ∂αr ∧ ∂γ1 ∧ · · · ∧ ∂γs(3.3)

⊗ dz̄β1 ∧ · · · ∧ dz̄βp ∧ dz̄δ1 ∧ · · · ∧ dz̄δq ,

where the summation is taken over all 1 ≤ α1, · · · , αr, β1, · · · , βp, γ1, · · · , γs,
δ1, · · · , δq ≤ n. Thus the operator ? means taking wedge product on the
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level of forms as well as that of tangent vectors. It is easy to check that

Φ ? Ψ =
1

(p+ q)!(r + s)!

∑
A,B

(
Φ ? Ψ

)A
B
∂A ⊗ dz̄B with(3.4)

(
Φ ? Ψ

)A
B

=
∑

σ∈Sr+s
τ∈Sp+q

sgn(σ) · sgn(τ)

p!q!r!s!
Φ
σ(α1)···σ(αr)

τ(β1)···τ(βp)
·Ψσ(αr+1)···σ(αr+s)

τ(βp+1)···τ(βp+q)
,

where A = (α1, · · · , αr+s), B = (β1, · · · , βp+q), ∂A := ∂α1 ∧ · · · ∧ ∂αr+s ,
dz̄B := dz̄β1 ∧ · · · ∧ dz̄βp+q , and the summation in the first line of (3.4) runs

through all integral values ofA, B satisfying 1 ≤ α1, · · · , αr+s, β1, · · · , βp+q ≤
n. We will skip the easy checking that for any Φ ∈ A0,p(∧rTMt), Ψ ∈
A0,q(∧sTMt) and Υ ∈ A0,c(∧dTMt), one has

Φ ? Ψ = (−1)pq+rsΨ ? Φ,(3.5)

∂(Φ ? Ψ) = ∂Φ ? Ψ + (−1)pΦ ? ∂Ψ, and(3.6)

Φ ? (Ψ ? Υ) = (Φ ? Ψ) ? Υ(3.7)

In particular, we may write Φ ? Ψ ? Υ unambiguously.

Remark 2. (i) When p = r and q = s, one has Φ ? Ψ = Ψ ? Φ.

(ii) When q = s = 0 (so that Ψ is a scalar-valued function on Mt), Φ ? Ψ

is simply given by pointwise multiplication of Φ by the function Ψ.

(iii) From (3.6), one easily sees that if Φ and Ψ are ∂-closed, then Φ ? Ψ is

also ∂-closed. If, in addition, either Φ or Ψ is ∂-exact, then Φ?Ψ is ∂-exact.

In particular, the operator ? induces a homomorphism on the associated

cohomology groups, which we denote by the same symbol. Explicitly, we

have

? : H0,p(∧rTMt)⊗H0,q(∧sTMt)→ H0,p+q(∧r+sTMt)

given by

[Φ] ? [Ψ] := [Φ ? Ψ]

for any classes [Φ] ∈ H0,p(∧rTMt) and [Ψ] ∈ H0,q(∧sTMt) represented by

Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt) respectively.

For a cohomology class µ ∈ H0,p(∧rTMt), we denote by H(µ) the unique

harmonic representative of µ. In particular, for any ∂-closed representative

Φ(∈ A0,p(∧rTMt)) of µ, one easily sees that H(µ) = H(Φ), where H(Φ)

denotes the harmonic projection of Φ (with respect to ω(t)).

For the rest of this section, we fix an integer ` satisfying 1 6 ` 6 n. Let

Φ,Ψ ∈ A0,`(∧`TMt) with components as given in (3.2) (with p = q = s =
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r = `). Their pointwise inner product is given by

(3.8) 〈Φ,Ψ〉 :=
1

(`!)2
Φα1···α`
β1···β`

Ψ
α′1···α′`
β
′
1···β

′
`

gα1α′1
· · · gα`α′`g

β1β
′
1 · · · gβ`β

′
` ,

and their L2-inner product on Mt is given by

(3.9) (Φ,Ψ) =

∫
Mt

〈Φ,Ψ〉ω
n

n!
.

We denote by ‖Φ‖2 :=
√

(Φ,Φ) the fiberwise L2-norm of Φ. Then for each

t ∈ S and u1, . . . , u`, u
′
1, . . . , u

′
` ∈ TtS, we define, in terms of (3.9),

(u1 ⊗ · · · ⊗ u`, u′1 ⊗ · · · ⊗ u′`)WP(3.10)

:= (H(ρt(u1) ? · · ·? ρt(u`)), H(ρt(u
′
1) ? · · ·? ρt(u

′
`)))

= (H(Φ(u1) ? · · ·? Φ(u`)), H(Φ(u′1) ? · · ·? Φ(u′`))).

Here each Φ(ui) is the harmonic representative of ρt(ui) as given in Section

2. It is easy to see that (3.10) extends to a positive semi-definite Hermitian

bilinear form on ⊗`TtS, which varies smoothly in t. We simply call it the

generalized Weil-Petersson pseudo-metric on ⊗`TS.

Now for each t ∈ S and u ∈ TtS, we define

(3.11) ‖u‖WP,` := (u⊗ · · · ⊗ u︸ ︷︷ ︸
`−times

, u⊗ · · · ⊗ u︸ ︷︷ ︸
`−times

)
1
2`
WP .

It is easy to see that each ‖ · ‖WP,` is a Finsler pseudo-metric on S, i.e.,

‖u‖` > 0 and ‖cu‖WP,` = |c|‖u‖WP,` > 0 for all c ∈ C and u ∈ TS. We

simply call ‖ · ‖WP,` the `-th generalized Weil-Petersson Finsler pseudo-

metric on S.

Remark 3. (i) We remark that ‖ ‖WP,1 is simply the norm function of the

Weil-Petersson metric defined in (2.5), and is positive definite under the

assumption that each ρt is injective.

(ii) For a pair of automorphisms (F, f) ∈ Aut(X )×Aut(S) satisfying f ◦π =

π ◦ F , one easily sees that the restriction of F to the fibers are isome-

tries with respect to the Kähler-Einstein metrics on the fibers, i.e., one has

(F
∣∣
Mt

)∗g(f(t)) = g(t) for all t ∈ S. This follows readily from the Aut(Mt)-

invariance of the Kähler-Einstein metric g(t) on each Mt. As a consequence,

one easily sees that each ‖ ‖WP,` is Aut(π)-invariant.

(iii) In Section 9, we will use the ‖ ‖WP,`’s to construct a Finsler metric

on S whose holomorphic sectional curvature is bounded above by a negative

constant. For this purpose, we will need to compute
√
−1∂∂ log ‖u‖2WP,`,

which is the main content of the next few sections.
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4. Computation of Curvature

In Sections 4-8, we are going to study the generalized Weil-Petersson

Finsler pseudometrics on S. More specifically, we will estimate the holo-

morphic sectional curvatures of the restrictions of these pseudometrics to

local one-dimensional complex submanifolds of S (at those points where the

restrictions are non-degenerate). In the process, we will make some compu-

tations of considerable independent interest and in a slightly more general

setting.

We fix a coordinate open subset U ⊂ S with coordinate functions t =

(t1, . . . , tm) such that the origin t = 0 lies in U . For each t ∈ S and each

coordinate tangent vector ∂
∂ti

, we recall the horizontal lifting vi and the

harmonic representative Φi of ρt(
∂
∂ti

) on Mt as given in (2.2) and (2.3)

respectively. Fix an integer ` satisfying 1 6 ` 6 n, and let J = (j1, . . . , j`)

be an `-tuple of integers satisfying 1 6 jd 6 m for each 1 6 d 6 `. We

denote by

(4.1) ΨJ := H(Φj1 ? · · ·? Φj`) ∈ A
0,`(∧`TMt)

the harmonic projection of Φj1 ? · · · ? Φj` . As t varies, we still denote the

resulting family of tensors by ΨJ (suppressing its dependence on t), when

no confusion arises. We are going to compute ∂i∂i log ‖ΨJ‖22 (as a function

on U) wherever ΨJ 6≡ 0 on Mt. For this purpose, we will need to consider

families of tensors on the fibers (or in short, relative tensors) arising from

restrictions of tensors on X to the fibers. We will sometimes adopt the

semi-colon notation to denote covariant derivatives of tensors on Mt, so

that (Φi)
β
α;γ := ∇γ(Φi)

β
α (= (∇ ∂

∂zγ
Φi)

β
α), etc. Also the raising and lowering

of indices for components of tensors on Mt are with respect to ω(t), so that

(Φi)α,β = gγβ(Φi)
γ
α, etc, unless stated otherwise. First we have

Lemma 1. (i) [vi, ∂α] = −(Φi)
β
α∂β.

(ii) For a smooth (n, n)-form Υ on X , one has

∂

∂ti

∫
Mt

Υ =

∫
Mt

LviΥ and
∂

∂t
i

∫
Mt

Υ =

∫
Mt

LviΥ.

(iii) [vi, vj ] = gγα∂γ(gvivj )∂α − gβγ∂γ(gvivj )∂β.

(iv) (Φi)α,β = (Φi)β,α for all α, β.

(v) Lvi(gαβdz
α ∧ dzβ) = (Φi)β,γdz

β ∧ dzγ = 0. In particular, one has

Lvi(ωn) = 0 (as relative tensor).

Here [·, ·] denote the Lie bracket of two vector fields.
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Proof. (i) follows readily from (2.2) and (2.3). (ii), (iii), (iv) and (v) can be

found [Sch1, Lemma 2.1], [Sch1, Lemma 2.6], [Sch1, Proposition 1.1] and

[Sch1, Lemma 2.2] respectively. �

Next we generalize the constructions in (3.8) and (3.9) to (relative) tensors

of mixed type. Let A`(Mt) (resp. Aq,p(Mt)) denote the space of C∞ `-

forms (resp. (q, p)-forms) on Mt. It is easy to see that there exists a unique

pointwise Hermitian bilinear pairing 〈 , 〉1 on A`(Mt) satisfying the identity

on (n, n)-forms on Mt given by

〈φ, ψ〉1
ω(t)n

n!
= (−1)

`(`−1)
2 φ ∧ ψ ∧ ω(t)n−`

(n− `)!
for φ, ψ ∈ A`(Mt).

Together with the identity Lvi(φ∧ψ) = (Lviφ)∧ψ+φ∧ (Lviψ) and Lemma

1(v), one easily checks that

(4.2) Lvi〈φ, ψ〉1 = 〈Lviφ, ψ〉1 + 〈φ,Lviψ〉1.

Now we consider the decomposition A`(Mt) = ⊕q+p=`Aq,p(Mt), and let CW,1
be the corresponding (linear) Weil operator on A`(Mt) which acts by scalar

multiplication by (
√
−1)q−p on each summand Aq,p(Mt). It is easy to check

that the (positive definite) L2-inner product on A`(Mt) with respect to ω(t)

is given by

(4.3) (φ, ψ) =

∫
Mt

〈CW,1(φ), ψ〉1
ωn

n!
.

Next we consider the space C∞(∧`′TCMt) (resp. C∞(∧rTMt ∧ ∧sTMt))

of C∞ `′-complexified vector fields (resp. (r, s)-vector fields) on Mt, where

TCMt = TMt⊗RC denotes the complexified tangent bundle of Mt. With re-

spect to the decomposition C∞(∧`′TCMt) = ⊕r+s=`′C∞(∧rTMt ∧∧sTMt),

we denote by CW,2 the corresponding Weil operator on C∞(∧`′TCMt) given

by scalar multiplication by (
√
−1)r−s on each summand C∞(∧rTMt∧∧sTMt).

Then by using the standard identity Lvi(φ(η)) = (Lviφ)(η) + φ(Lviη) for

φ ∈ A`′(Mt) and η ∈ C∞(∧`′TCMt), one easily sees that 〈 , 〉1 (with `

replaced by `′) induces a Hermitian bilinear pairing 〈 , 〉2 on C∞(∧`′TCMt)

satisfying a Leibniz rule similar to (4.2) and such that the (positive defi-

nite) L2-inner product on C∞(∧`′TCMt) with respect to ω(t) can be de-

fined in terms of 〈 , 〉2 and CW,2 as in (4.3) (with the subscript 1 replaced

by 2). Finally we consider the space A`(∧`′TCMt) with decomposition

A`(∧`′TCMt) = ⊕q+p=`,r+s=`′Aq,p(∧rTMt∧∧sTMt) and corresponding Weil

operator CW given by scalar multiplication by (
√
−1)q−p+r−s on each sum-

mand Aq,p(∧rTMt ∧ ∧sTMt). As before, we denote the (positive definite)

L2-inner product and the corresponding L2-norm on A`(∧`′TCMt) with re-

spect to ω(t) by ( , ) and ‖ ‖2 respectively. Then one easily checks that the
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tensor product of 〈 , 〉1 with 〈 , 〉2 gives rise to a Hermitian bilinear pairing

〈 , 〉 on A`(∧`′TCMt) such that for all Υ,Υ′ ∈ A`(∧`′TCMt), one has

Lvi〈Υ,Υ′〉 = 〈LviΥ,Υ′〉+ 〈Υ,LviΥ′〉, and(4.4)

(Υ,Υ′) =

∫
Mt

〈CW (Υ),Υ′〉ω
n

n!
.(4.5)

Remark 4. We note that the expression 〈CW ( ), 〉 in (4.5) is the pointwise

(positive definite) inner product on A`(∧`′TCMt) induced by ω(t). Also, for

a given integer `, CW simply restricts to the identity map on A0,`(∧`TMt),

so that the formulas in (3.9) and (4.5) agree with each other.

For our application in Section 9, we will be interested in the expression

∂i∂i log ‖ΨJ‖22 with j1 = j2 = · · · = j` = i. Nonetheless, we will consider

here ∂i∂i log ‖ΨJ‖22 in the general case when the j`’s can be different. Note

that

∂i∂i log ‖ΨJ‖22 = ∂i(
∂i‖ΨJ‖22
‖ΨJ‖22

)

=
∂i∂i‖ΨJ‖22
‖ΨJ‖22

−
(∂i‖ΨJ‖22)(∂i‖ΨJ‖22)

‖ΨJ‖42
.(4.6)

From direct computation using Lemma 1(i) and (v), (4.4) and (4.5) (noting

that CW (ΨJ) = ΨJ (cf. Remark 4)), one has

∂i‖ΨJ‖22 =
∂

∂ti

∫
Mt

〈ΨJ ,ΨJ〉
ωn

n!

=

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈ΨJ ,LviΨJ〉
ωn

n!
.(4.7)

We will see from Lemma 3 in Section 5 that the component of LviΨJ in

A0,`(∧`TMt) is ∂-exact on Mt. Together with the harmonicity of ΨJ , it

follows that

(4.8)

∫
Mt

〈ΨJ ,LviΨJ〉
ωn

n!
= 0

as a function on the base manifold. Thus we have

∂i‖ΨJ‖22 =

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!
, and similarly,

∂i∂i‖ΨJ‖22 = ∂i∂i‖ΨJ‖22 =
∂

∂t
i

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!

=

∫
Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
.(4.9)
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Upon differentiating the complex conjugate of (4.8), one gets, as in (4.9),

0 =
∂

∂ti

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!

=

∫
Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
.(4.10)

Together with (4.9) and the identity LviLvi = LviLvi + L[vi,vi], one has

∂i∂i‖ΨJ‖22 = I + II + III, where(4.11)

I : = −
∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
,(4.12)

II : =

∫
Mt

〈L[vi,vi]ΨJ ,ΨJ〉
ωn

n!
= (L[vi,vi]ΨJ ,ΨJ),

III : =

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= (LviΨJ ,LviΨJ).

Here the last equality in the second line of (4.12) follows from the fact

that only the component of L[vi,vi]ΨJ in A0,`(∧`TMt) (on which CW is the

identity mapping) will contribute towards the integral in that line. Likewise,

the last equality in the third line of (4.12) follows from the fact that LviΨJ ∈
A0,`(∧`TMt), which can be verified easily by a direct calculation using (2.4).

In the next few sections, we will compute the terms I, II and III separately.

5. Computation of I

For the computation of the expression I in (4.12), we begin with some

preliminary discussions. For a relative tensor Υ ∈ ⊕p,q,r,sAq,p(∧rTMt ∧
∧sTMt), we denote by Υ

(q,p)
(r,s) the component of Υ in Aq,p(∧rTMt ∧∧sTMt).

Lemma 2. Let K ∈ A0,p(∧rTMt) be a relative tensor. Then we have

(5.1) ∂((LviK)
(0,p)
(r,0)) = (Lvi(∂K))

(0,p+1)
(r,0) .

Proof. By linearity, we just need to verify (5.1) for the special case when K

is locally given by a single term, i.e., K = f ∂α1 ∧· · ·∧∂αr ⊗dzβ1 ∧· · ·∧dzβp
for some function f and some integers α1, . . . , αr, β1, . . . , βp. Then

∂K = (∂σf)∂α1 ∧ · · · ∧ ∂αr ⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβp .
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Hence

(Lvi(∂K))
(0,p+1)
(r,0)(5.2)

= (∂i∂σf + vγi ∂γ∂σf)∂α1 ∧ · · · ∧ ∂αr ⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβp

+(∂σf)(∂γvσi )∂α1 ∧ · · · ∧ ∂αr ⊗ dzγ ∧ dzβ1 ∧ · · · ∧ dzβp

+

p∑
`=1

(∂σf) · (∂γvβ`i )∂α1 ∧ · · · ∧ ∂αr

⊗dzσ ∧ dzβ1 ∧ · · · ∧ dzβ`−1 ∧ dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp .

Similarly,

(LviK)
(0,p)
(r,0)

= (∂if + vγi ∂γf)∂α1 ∧ · · · ∧ ∂αr ⊗ ∧dzβ1 ∧ · · · ∧ dzβp

+

p∑
`=1

f(∂γv
β`
i )∂α1 ∧ · · · ∧ ∂αr ⊗ dzβ1 ∧ · · · ∧ dzβ`−1 ∧ dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp .

Hence

∂((LviK)
(0,p)
(r,0))

(5.3)

= (∂σ∂if + ∂σv
γ
i ∂γf + vγi ∂σ∂γf)∂α1 ∧ · · · ∧ ∂αr ⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβp

+

p∑
`=1

((∂σf) · (∂γvβ`i ) + f ∂σ∂γv
β`
i ) · ∂α1 ∧ · · · ∧ ∂αr

⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβ`−1 ∧ dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp .

We may now compare the right hand sides of the identities (5.2) and (5.3).

The first and the fourth terms of (5.2) corresponds to the first and the fourth

terms of (5.3) respectively. The second term of (5.2) corresponds to the third

term of (5.3) and vice versa. The fifth term of the right hand side of (5.3)

vanishes, since ∂σ∂γv
γ`
i is symmetric in σ, γ, but dzσ ∧ dzβ1 ∧ · · · ∧ dzβ`−1 ∧

dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp is anti-symmetric in σ, γ. The lemma follows. �

Lemma 3. The relative tensor (LviΨJ)
(0,`)
(`,0) is ∂-exact on each Mt.

Proof. Since ΨJ is the harmonic projection of Φj1 ? · · ·? Φj` on each Mt, it

follows that

(5.4) ΨJ = Φj1 ? · · ·? Φj` + ∂K

for some relative tensor K ∈ A0,`−1(∧`TMt). Thus

(LviΨJ)
(0,`)
(`,0) = (Lvi(Φj1 ? · · ·? Φj`))

(0,`)
(`,0) + (Lvi(∂K))

(0,`)
(`,0).

By a direct calculation similar to Lemma 2, one easily sees that
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(Lvi(Φj1 ? · · ·? Φj`))
(`,0)
(0,`)(5.5)

=
∑̀
s=1

Φj1 ? · · ·? Φjs−1 ? (LviΦjs)
(1,0)
(0,1) ? Φjs+1 ? · · ·? Φj` .

By [S2, p. 281-282], for each js, there exists a relative tensor Kjs ∈
A0,1(TMt) such that (LviΦjs)

(1,0)
(0,1) = ∂Kjs on each Mt. Note that each

relative tensor Φjs, 1 6 s 6 `, is harmonic and thus ∂-closed on each Mt.

Thus by Remark 2(iii), each term of the right hand side of (5.5) is ∂-exact

on Mt. Hence (Lvi(Φj1 ? · · · ? Φj`) is ∂-exact on each Mt. By Lemma 2,

(Lvi(∂K))
(`,0)
(0,`) is also ∂-exact on each Mt. Thus (LviΨJ)

(`,0)
(0,`) is ∂-exact on

each Mt. �

Let Φi · ΨJ ∈ A0,`−1(∧`−1TMt) be the relative tensor with components

given by

(5.6) (Φi ·ΨJ)
α1···α`−1

β1···β`−1
= (Φi)σγ · (ΨJ)

γα1···α`−1

σβ1···β`−1
.

Lemma 4. Let Φi and ΨJ be as in (4.1). Then for any Υ ∈ A0,`−1(∧`−1TMt),

we have

(5.7) 〈Φi ·ΨJ ,Υ〉 = 〈ΨJ ,Φi ? Υ〉.

Proof. To prove (5.7), we need to verify that, in terms of normal coordinates,

(5.8)
1

((`− 1)!)2
(Φi)σγ(ΨJ)

γα1···α`−1

σβ1···β`−1
·Υβ1···β`−1

α1···α`−1
=

1

(`!)2
(ΨJ)

γα1···α`−1

σβ1···β`−1
·(Φi ? Υ)

σβ1···β`−1

γα1···α`−1

(cf. Remark 4). Note that

(Φi ? Υ)
σβ1···β`−1

γα1···α`−1
=

1

((`− 1)!)2

∑
τ,κ∈G`

sgn(τ)sgn(κ) · (Φi)
τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)
,

where G` is the set of all permutations of ` elements. Thus the right hand

side of (5.8) is equal to

1

(`!)2
· 1

((`− 1)!)2

∑
τ,κ∈S`

sgn(τ)sgn(κ)(ΨJ)
γα1···α`−1

σβ1···β`−1
(Φi)

τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)

=
1

(`!)2
· 1

((`− 1)!)2

∑
τ,κ∈S`

(ΨJ)
κ(γ)κ(α1)···κ(α`−1)

τ(σ)τ(β1)···f(β`−1)
(Φi)

τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)

=
1

(`!)2
· (`!)2

((`− 1)!)2
(ΨJ)

γα1···α`−1

σβ1···β`−1
(Φi)σγΥ

β1···β`−1

α1···α`−1
,

where the numerator (`!)2 arises from the pairs (τ, κ) ∈ S` × S`. This

verifies (5.8). �



18 WING-KEUNG TO AND SAI-KEE YEUNG

Lemma 5. We have ∂
∗
(Φi ·ΨJ) = 0.

Proof. For any Υ ∈ A0,`−2(∧`−1TMt), we have

(∂
∗
(Φi ·ΨJ),Υ) = (Φi ·ΨJ , ∂Υ)

=

∫
Mt

〈Φi ·ΨJ , ∂Υ〉ω
n

n!
(cf. (4.5) and Remark 4)

=

∫
Mt

〈ΨJ ,Φi ? ∂Υ〉ω
n

n!
(by Lemma 4)

=

∫
Mt

〈ΨJ , ∂(Φi ? Υ)〉ω
n

n!
(since ∂Φi = 0)

= (∂
∗
ΨJ ,Φi ? Υ)

= 0 (since ΨJ is harmonic),

which gives the lemma. �

For Υ ∈ A0,p(∧rTMt), we denote D2
∗
Υ ∈ A0,p(∧r−1TMt), given by

(D2
∗
Υ)

α1···αr−1

β1···βp
= −∇σΥ

σα1···αr−1

β1···βp
.

(cf. [S2, p.288] and Section 7). Following the argument of [S2, p. 280-281],

we have

Lemma 6. The tensor D2
∗
((LviΨJ)

(0,`)
(`,0)) is ∂-exact. Explicitly, we have

(5.9) ∇σ(LviΨJ)
σα1···α`−1

β1···β`
= (∂(Φi ·ΨJ))

α1···α`−1

β1···β`
.

Proof. To verify (5.9), we first note that

(LviΨJ)
σα1···α`−1

β1···β`
= (∂i+v

γ
i ∂γ)(ΨJ)

σα1···α`−1

β1···β`
+
∑̀
s=1

∂βsv
γ
i (ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
,

In normal coordinates, the first partial derivatives of the metric tensor all

vanish. Upon interchanging the order of the partial derivatives and using

(2.3), we have

∇σ(LviΨJ)
σα1···α`−1

β1···β`

= (∂σ∂i + ∂σv
γ
i ∂γ + vγi ∂σ∂γ)(ΨJ)

σα1···α`−1

β1···β`

+
∑̀
s=1

{∂σ∂βsv
γ
i (ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
+ ∂βsv

γ
i ∂σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
}

= (∂i∂σ + (Φi)
γ
σ∂γ + vγi ∂γ∂σ)(ΨJ)

σα1···α`−1

β1···β`

+
∑̀
s=1

{∂βs(Φi)
γ
σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
+ ∂βsv

γ
i ∂σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
}.
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The first, the third and the fifth terms vanish from the identity ∂
∗
Ψ = 0 (as

a relative tensor). Hence we have

∇σ(LviΨJ)
σα1···α`−1

β1···β`
= (Φi)

γ
σ∂γ(ΨJ)

σα1···α`−1

β1···β`
+
∑̀
s=1

∂βs
(Φi)

γ
σ·(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
,

which, together with the identity ∂ΨJ = 0, is easily seen to be equal to the

right hand side of (5.9). �

Now we proceed to compute I. First we note from (2.3) and (2.4) that

LviΨJ =(LviΨJ)
(0,`)
(`,0)

+
1

(`− 1)!`!

∑
(Φi)σδ (ΨJ)α1···α`

σβ1···β`−1
∂α1 ∧ · · · ∧ ∂α` ⊗ dz

δ ∧ dzβ1 ∧ · · · ∧ dzβ`−1

− 1

(`− 1)!`!

∑
(Φi)

γ
σ(ΨJ)

α1···α`−1σ

β1···β`
∂α1 ∧ · · · ∧ ∂α`−1

∧ ∂γ ⊗ dzβ1 ∧ · · · ∧ dzβ` ,

where the last term involves the use of the equality (ΨJ)
σα1···α`−1

β1···β`
∂γ ∧ ∂α1 ∧

· · ·∧∂α`−1
= (ΨJ)

α1···α`−1σ

β1···β`
∂α1∧· · ·∧∂α`−1

∧∂γ . Let Φi ↘ ΨJ ∈ A1,`−1(∧`TMt)

and Φi ↗ ΨJ ∈ A0,`(∧`−1TMt ∧ TMt) be given by

(Φi ↘ ΨJ)α1···α`
δβ1···β`−1

:= (Φi)σδ (ΨJ)α1···α`
σβ1···β`−1

and(5.10)

(Φi ↗ ΨJ)
α1···α`−1γ

β1···β`
:= (Φi)

γ
σ(ΨJ)

α1···α`−1σ

β1···β`

respectively, so that we have (LviΨJ)
(1,`−1)
(`,0) = Φi ↘ ΨJ and (LviΨJ)

(0,`)
(`−1,1) =

−Φi ↗ ΨJ . Note that from consideration of type, one has

CW ((LviΨJ)
(0,`)
(`,0)) = (LviΨJ)

(0,`)
(`,0), CW (Φi ↘ ΨJ) = −Φi ↘ ΨJ , and

CW (Φi ↗ ΨJ) = −Φi ↗ ΨJ .

Together with (4.5), it follows readily that∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= ((LviΨJ)

(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0))

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).(5.11)

To compute the first term on the right hand side of (5.11), we first recall

from Lemma 3 that there exists some K ∈ A0,`−1(∧`TMt) such that

(5.12) ∂K = (LviΨJ)
(0,`)
(`,0).

Lemma 7. Let K be as in (5.12). Suppose that ∂
∗
K = 0. Then

D2
∗
K = −�(�− k)−1(Φi ·ΨJ).
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Proof. The proof is similar to [S2, p.282]. First we have

∇σ(∂K)
σα1···α`−1

β1···β`

= ∇σ(
∑̀
s=1

(−1)s+1∇βsK
σα1···α`−1

β1···βs−1βs+1···β`
)

=
∑̀
s=1

(−1)s+1
[
∇βs∇σK

σα1···α`−1

β1···βs−1βs+1···β`

+
∑̀

r=1,r 6=s
R γ

σβs βr
K
σα1···α`−1

β1···βr−1γβr+1···βs−1βs+1···β`

+R σ
σβsτ

K
τα1···α`−1

β1···βs−1βs+1···β`
+

`−1∑
r=1

R αr
σβsγ

K
σα1···αr−1γαr+1···α`−1

β1···βs−1βs+1···β`

]
.(5.13)

The second term on the right hand side of (5.13) is zero, because of the

symmetry of R γ

σβs βr
in r and s and the skew-symmetry of the expression

(−1)s+1K
σα1···α`−1

β1···βr−1γβr+1···βs−1βs+1···β`
in r and s. The fourth term on the right

hand side of (5.13) is also zero, because of the symmetry of R αr
σβsγ

in σ and

γ and the skew symmetry of K
σα1···αr−1γαr+1···α`−1

β1···βs−1βs+1···β`
in σ, γ. Together with

(5.12) and the identity R σ
σβsτ

= kδβsτ from Kähler-Einstein condition, we

have

∇σ(LviΨJ)
σα1···α`−1

β1···β`
=
∑̀
s=1

(−1)s+1∇βs∇σK
σα1···α`−1

β1···βs−1βs+1···β`

+ k
∑̀
s=1

(−1)s+1K
βsα1···α`−1

β1···βs−1βs+1···β`
.(5.14)

Combining (5.14) with Lemma 6, we have

(∂(Φi ·ΨJ))
α1···α`−1

β1···β`
= −(∂(D2

∗
K))

α1···α`−1

β1···β`
+ k Γ

α1···α`−1

β1···β`
, where(5.15)

Γ
α1···α`−1

β1···β`
:=
∑̀
s=1

(−1)s+1K
βsα1···α`−1

β1···βs−1βs+1···β`
.(5.16)

In particular, the tensor Γ ∈ A0,`(∧`−1TMt) with components given as in

(5.16) is ∂-exact. Thus we may write Γ = ∂F̃ for some F̃ ∈ A0,`−1(∧`−1TMt).

Without loss of generality, we may choose F̃ such that ∂
∗
F̃ = 0. Upon

rewriting (5.15), we have

(5.17) ∂(Φi ·ΨJ +D2
∗
K − kF̃ ) = 0.
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In normal coordinates, we have, from (5.16),

(∂
∗
Γ)
α1···α`−1

β1···β`−1
= −(∂σΓ)

α1···α`−1

σβ1···β`−1

= −∂σK
σα1···α`−1

β1···β`−1
+

`−1∑
s=1

(−1)s+1∂σK
βsα1···α`−1

σβ1···βs−1βs+1···β`−1
.

Since ∂
∗
K = 0, it follows that ∂σK

βsα1···α`−1

σβ1···βs−1βs+1···β`−1
= 0. Thus we have

(∂
∗
Γ)
α1···α`−1

β1···β`−1
= (D2

∗
K)

α1···α`−1

β1···β`−1
. Together with (5.17), we have

(5.18) ∂(Φi ·ΨJ + ∂
∗
Γ− kF̃ ) = 0.

Let

(5.19) Q := Φi ·ΨJ + ∂
∗
Γ− kF̃ .

By Lemma 5, Φi · ΨJ is ∂
∗
-exact. Recall also that ∂

∗
F̃ = 0. Thus all the

three terms on the right hand side of (5.19) are ∂
∗
-closed. Hence we have

∂
∗
Q = 0. Together with (5.18), it follows that Q is harmonic. Since Γ = ∂F̃

and ∂
∗
F̃ = 0, one easily sees that

�F̃ = (∂
∗
∂ + ∂∂

∗
)F̃ = ∂

∗
Γ,

which, together with (5.19), gives

(5.20) Q = Φi ·ΨJ + (�− k)F̃ .

Let F := F̃ + Q
k . Then it follows from (5.20) and the harmonicity of Q that

Φi ·ΨJ + (�− k)F = 0.

Thus, F = −(�− k)−1(Φi ·ΨJ). Hence we have

D2
∗
K = ∂

∗
Γ = �F̃ = �F = −�(�− k)−1(Φi ·ΨJ). �

Our main result in this section is the following

Proposition 1. We have∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ) + (Φi ·ΨJ ,Φi ·ΨJ)

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Proof. First we compute ((Lvi(ΨJ)
(0,`)
(`,0), (Lvi(ΨJ)

(0,`)
(`,0)). Let K be as in (5.12),

so that ∂K = (LviΨJ)
(0,`)
(`,0). Without loss of generality, we may choose K
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so that ∂
∗
K = 0, so that Lemma 7 is applicable to K. Now, in normal

coordinates, we have∫
Mt

(LviΨJ)λ1···λ`α1···α`(LviΨJ)α1···α`
λ1···λ`

ωn

n!

=

∫
Mt

(∂K)λ1···λ`α1···α`(LviΨJ)α1···α`
λ1···λ`

ωn

n!

= −
∫
Mt

Kλ1···λ`
α2···α`∇α1(LviΨJ)α1···α`

λ1···λ`

ωn

n!

= −
∫
Mt

Kλ1···λ`
α2···α`(∂(Φi ·ΨJ))α2···α`

λ1···λ`

ωn

n!
(by Lemma 6)

=

∫
Mt

∇α1K
α1λ2···λ`
α2···α` (Φi ·ΨJ)α2···α`

λ2···λ`

ωn

n!

=

∫
Mt

(�(�− k)−1(Φi ·ΨJ))λ1···λ`α2···α`(Φi ·ΨJ)α2···α`
λ2···λ`

ωn

n!
(by Lemma 7).

This implies that

((LviΨJ)
(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0)) = (�(�− k)−1(Φi ·ΨJ),Φi ·ΨJ)

= k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ) + (Φi ·ΨJ ,Φi ·ΨJ).

Together with (5.11), one obtains the proposition readily. �

6. Computation of II

We recall the following

Lemma 8. ([Sch1, Lemma 2.8) One has

(�− k)(〈vi, vj〉) = 〈Φi,Φj〉.

Similar to [Sch1, Lemma 2.7], one has

Proposition 2.

(L[vi,vi]ΨJ ,ΨJ) = −(〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉).

Proof. By Lemma 1(iii) and direct calculation, one has

(L[vi,vi]ΨJ)α1···α`
β1···β`

= −〈vi, vi〉;σ∂σ(ΨJ)α1···α`
β1···β`

+ 〈vi, vi〉;δ∂δ(ΨJ)α1···α`
β1···β`

(6.1)

+
∑̀
s=1

∂γ(〈vi, vi〉;αs)(ΨJ)
α1···αs−1γαs+1···α`
β1···β`

+
∑̀
s=1

∂βs(〈vi, vi〉
;δ)(ΨJ)α1···α`

β1···βs−1δβs+1···β`
.
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By pairing the first term on the right hand side of (6.1) with ΨJ , we have

−〈vi, vi〉;σ∂σ(ΨJ)α1···α`
β1···β`

(ΨJ)β1···β`α1···α` = −〈vi, vi〉;σ∂σ
(
(ΨJ)α1···α`

β1···β`
(ΨJ)β1···β`α1···α`

)
+ 〈vi, vi〉;σ(ΨJ)α1···α`

β1···β`
∂σ(ΨJ)β1···β`α1···α` .(6.2)

Since ∂ΨJ = 0, we have

(6.3) ∂σ(ΨJ)β1···β`α1···α` =
∑̀
s=1

(−1)s+1∂αs(ΨJ)β1···β`α1···αs−1σαs+1···α` .

This is substituted into the last term of (6.2). We also substitute (6.3)

(with the running index σ replaced by δ) into the second term on the right

hand side of (6.1). Then one easily sees that the L2-pairing of the resulting

expression of (6.1) with ΨJ is given by∫
Mt

(L[vi,vi]ΨJ)α1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
= II1 + II2 + II3 + II4 + II5,

where

II1 : = −
∫
Mt

〈vi, vi〉;σ∂σ
(
(ΨJ)α1···α`

β1···β`
(ΨJ)β1···β`α1···α`

)ωn
n!
,

II2 : =
∑̀
s=1

(−1)s+1

∫
Mt

〈vi, vi〉;σ(ΨJ)α1···α`
β1···β`

∂αs(ΨJ)β1···β`α1···αs−1αs+1···α`
ωn

n!
,

II3 : =
∑̀
s=1

(−1)s+1

∫
Mt

〈vi, vi〉;δ∂βs(ΨJ)β1···βs−1δβs+1···β`(ΨJ)β1···β`α1···α`
ωn

n!
,

II4 : =
∑̀
s=1

∫
Mt

∂γ(〈vi, vi〉;αs)(ΨJ)
α1···αs−1γαs+1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
,

II5 : =
∑̀
s=1

∫
Mt

∂βs(〈vi, vi〉
;δ)(ΨJ)α1···α`

β1···βs−1δβs+1···β`
(ΨJ)β1···β`α1···α`

ωn

n!
.

Upon integrating by parts, one easily sees that

II1 = −
∫
Mt

(�〈vi, vi〉) · 〈ΨJ ,ΨJ〉
ωn

n!
.

In II4 and for each fixed s, we rename the running index αs by σ and then

replace γ by αs. This gives

II4 =
∑̀
s=1

∫
Mt

∂αs(〈vi, vi〉;σ)(ΨJ)
α1···αs−1αsαs+1···α`
β1···β`

(ΨJ)β1···β`α1···αs−1σαs+1···α`
ωn

n!
.
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Then one easily seen that

II2 + II4 =

∫
Mt

(ΨJ)α1···α`
β1···β`

(∂Υ)β1···β`α1···α`
ωn

n!
, where

Υβ1···β`
α1···α`−1

:= 〈vi, vi〉;σ(ΨJ)β1···β`σα1···α`−1
.

Since ∂
∗
ΨJ = 0, it follows that II2 + II4 = 0. Similarly, one checks that

II3 + II5 =

∫
Mt

(∂Υ̂)α1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
= 0, where

Υ̂α1···α`
β1···β`−1

:= 〈vi, vi〉;δ(ΨJ)α1···α`
δβ1···β`−1

.

Summarizing the above discussion and using Lemma 8, one has

(L[vi,vi]ΨJ ,ΨJ)

= −(�〈vi, vi〉, 〈ΨJ ,ΨJ〉)
= −(�(�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
= −(〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉). �

7. Computation of III

Our main result in this section is the following

Proposition 3. We have

(LviΨJ ,LviΨJ) =− k((�− k)−1(LviΨJ),LviΨJ) + (Φi ? ΨJ ,Φi ? ΨJ)

− (H(Φi ? ΨJ), H(Φi ? ΨJ)).

We are going to prove Proposition 3 by generalizing the arguments in

[S2, p. 287-295]. Let ` be a fixed integer satisfying 1 6 ` 6 n. Sim-

ilar to [S2, p. 288], we denote by X(`) the space of (relative) tensors

Ξ ∈ A(⊗`T ∗Mt ⊗ ⊗`T ∗Mt) with components Ξα1···α`,β1···β` possessing the

following three properties:

(P-i) Ξα1···α`,β1···β` is skew-symmetric in any pair of indices αi, αj for i < j,

i.e.,

Ξ
α1···(αj)i···(αi)j ···α`,β1···β` = −Ξα1···α`,β1···β` ,

where (αi)j means that the i-th index αi is replaced by αj , etc.

(P-ii) Ξα1···α`,β1···β` is symmetric in the two `-tuples of indices (α1, · · · , α`)
and (β1, · · · , β`), i.e.,

Ξα1···α`,β1···β` = Ξβ1···β`,α1···α` .
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(P-iii) For given indices α1, · · · , α`−1, and β1, · · · , β`+1, one has

`+1∑
ν=1

(−1)νΞ
α1···α`−1βν ,β1···β̂ν ···β`+1

= 0,

where β̂ν means that the index βν is omitted.

As in [S2, p. 289], for s = 1, 2, we let Ds denote the operator X(`) given

by taking ∂ to the s-th `-tuple of skew-symmetric indices, and we let Ds
∗

denote the adjoint operator of Ds. Also, we denote �s = Ds
∗
Ds + DsDs

∗
,

and we denote by Hs the harmonic projection operator on X(`) with respect

to �s. The Green’s operator on X(`) with respect to �s is denoted by Gs.

Lemma 9. For any Ξ ∈ X(`), we have

(a) D1D2Ξ = D2D1Ξ,

(b) D1
∗
D2Ξ = D2D1

∗
Ξ,

(c) D1
∗
D2
∗
Ξ = D2

∗
D1
∗
Ξ,

(d) D1D2
∗
Ξ = D2

∗
D1Ξ,

(e) �1Ξ ∈ X(`),

(f) �1Ξ = �2Ξ, and

(g) if D1Ξ = 0, then (�1 − k)−1D2
∗
Ξ = D2

∗
G2Ξ.

Proof. The proofs of the above properties of X(`) follow mutatis mutandis

from those in [S2, p. 289-292], which treated the case when ` = 2. We will

leave the details to the reader. �

Remark 5. (i) Let Y (`) denote the space of smooth covariant tensors Ξ

with two `-tuples of skew-symmetric indices of anti-holomorphic type, i.e.,

the components of Ξ ∈ Y (`) are of the form Ξα1···α`,β1···β` and they satisfy

(P-i). Let X(`)⊥ denote the orthogonal complement of X(`) in Y (`) with re-

spect to the L2-inner product on Mt. Then it follows readily from Lemma

9(e) that �1Ξ ∈ X(`)⊥ if Ξ ∈ X(`)⊥. Thus the spectral decomposition of

Y (`) with respect to �1 induces a corresponding orthogonal decomposition of

X(`). Then it follows easily that H1(Ξ) ∈ X(`) if Ξ ∈ X(`).

(ii) One easily sees from Lemma 9(f) that G1Ξ = G2Ξ (and thus also

H1(Ξ) = H2(Ξ)) for Ξ ∈ X(`).

Let Φi,ΨJ (with |J | = `) be as in (4.1). By lowering indices of these

objects, we obtain corresponding covariant tensors, which will be denoted

by the same symbols (when no confusion arises). For example, ΨJ also

denotes the covariant tensor with components given by

(ΨJ)α1···α`,β1···β` = gγ1β1 · · · gγ`β`(ΨJ)γ1···γ`α1···α` .

Lemma 10. For each 1 6 ` 6 n, we have ΨJ ∈ X(`) and Φi?ΨJ ∈ X(`+1).
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Proof. We are going to prove Lemma 10 by induction on `. Note that when

` = 1, property (P-i) is void, while property (P-ii) and property (P-iii)

coincide. By Lemma 1(iv), this common property is satisfied by ΨJ = Φj1 ,

where J = (j1). Thus ΨJ = Φj1 ∈ X(1). Moreover, as mentioned in [S2,

p. 289], a simple direct verification shows that Φi ? Ψj1 = Φi ? Φj1 ∈ X(2).

Now we make the inductive assumption that ΨJ ′ ∈ X(`−1), when |J ′| = `−1

and Φi ? ΨJ ′ ∈ X(`). Then when J = (j1, . . . , j`) with |J | = `, we have,

upon lowering indices, ΨJ = H1(Φj1 ? ΨJ ′), where J ′ = (j2, . . . , j`). By

inductive assumption, since |J ′| = `− 1, we have Φi ? ΨJ ′ ∈ X(`). Together

with Remark 5(i), it follows that ΨJ ∈ X(`) as well. Thus, it remains to

show that Φi ? ΨJ ∈ X(`+1) (upon lowering indices). Since Φi ? ΨJ is a

∧`+1TMt-valued (0, `+ 1)-form, it is easy to see that upon lowering indices,

Φi ? ΨJ possesses property (P-i). We have deduced from the inductive

assumption that ΨJ ∈ X(`), and thus it possesses property (P-ii). Together

with symmetry property of Φi in Lemma 1(iv), one easily sees that Φi ? ΨJ

possesses property (P-ii). Next we are going to verify property (P-iii) for

Φi ? ΨJ . For fixed indices α1, . . . , α`, β0, . . . , β`+1, and in terms of normal

coordinates, we consider the expression

A =
`+1∑
ν=0

(−1)ν(Φi ? ΨJ)
β0···β̂ν ···β`+1,βνα1···α`

=
`+1∑
ν=0

(−1)ν(Φi ? ΨJ)
β0···β̂ν ···β`+1

βνα1···α`

=

`+1∑
ν=0

(−1)ν
∑

σ,τ∈G`+1

sgn(σ)sgn(τ)

(1!)2(`!)2
(Φi)

σ(β0)

τ(βν)
(ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

τ(α1)···τ(α`)
.

Let G′`+1 (resp. G′′`+1) be the subset of G`+1 consisting of those permu-

tations which fix the first object (resp. does not fix the first object), so

that

(7.1) G`+1 = G′`+1 qG′′`+1.

Then we may write

(`!)2 ·A = B + C, where

B :=
∑

τ∈G′`+1

sgn(τ)
( ∑
σ∈G`+1

`+1∑
ν=0

(−1)νsgn(σ)(Φi)
σ(β0)

βν
(ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

τ(α1)···τ(α`)

)
,

C :=
∑

τ∈G′′`+1

sgn(τ)
( ∑
σ∈G`+1

`+1∑
ν=0

(−1)νsgn(σ)(Φi)
σ(β0)
∗ (ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

∗···βν ···∗

)
.
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Here, each ∗ denotes some αi determined by τ. For a given ν, by considering

those σ ∈ G`+1 such that σ(β0) = βµ ( 6= βν), we have

B =
∑

τ∈G′`+1

sgn(τ) · `! ·
( `+1∑
ν=0

ν−1∑
µ=0

(−1)ν+µ(Φi)
βµ

βν
(ΨJ)

β0···β̂µ···β̂ν ···β`+1

τ(α1)···τ(α`)

+

`+1∑
ν=0

`+1∑
µ=ν+1

(−1)ν+µ−1(Φi)
βµ

βν
(ΨJ)

β0···β̂ν ···β̂µ···β`+1

τ(α1)···τ(α`)

)
.

From the symmetry property of Φi (cf. Lemma 1(iv)), it is easily to see that

each term of the first double summation above is matched by a corresponding

term of the second double summation, and it follows that B = 0. Similarly,

one has

C =
∑

τ∈G′′`+1

sgn(τ) · `! ·
`+1∑
ν=0

( ν−1∑
µ=0

(−1)ν+µ(Φi)
βµ
∗ (ΨJ)

β0···β̂µ···β̂ν ···β`+1

∗···βν ···∗

+

`+1∑
µ=ν+1

(−1)ν+µ−1(Φi)
βµ
∗ (ΨJ)

β0···β̂ν ···β̂µ···β`+1

∗···βν ···∗

)
= 0,

where the last equality follows from property (P-iii) for ΨJ , upon re-grouping

the terms with common factor (Φi)
βµ
∗ . �

Lemma 11. We have

(i) D2
∗
(Φi ? ΨJ) = D1(LviΨJ),

(ii) ∂(Φi ? ΨJ) = 0, and

(iii) ∂
∗
(LviΨJ) = 0.

Proof. The proof of (i) is similar to [S2, p. 288], and the proof of (iii) is

similar to [S2, p. 286]. (ii) follows from Remark 2(ii) and the ∂-closedness

of Φi and ΨJ . �

Now we are ready to give the proof of Proposition 3 by following the

arguments as in [S2, p. 292-293].

Proof of Proposition 3. First we have

(LviΨJ ,LviΨJ)(7.2)

= ((�− k)(�− k)−1(LviΨJ),LviΨJ)

= (�(�− k)−1(LviΨJ),LviΨJ)− k((�− k)−1(LviΨJ),LviΨJ).
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Now we consider the first term on the right hand side of (7.2). Upon lowering

indices, it is given by

(�1(�1 − k)−1(LviΨJ),LviΨJ)

= ((�1 − k)−1�1(LviΨJ),LviΨJ)

= ((�1 − k)−1D1
∗
D1(LviΨJ),LviΨJ)

(since D1
∗
(LviΨJ) = 0 by Lemma 11(iii))

= (D1
∗
(�1 − k)−1D2

∗
(Φi ? ΨJ),LviΨJ) (by Lemma 11(i))

= ((�1 − k)−1D2
∗
(Φi ? ΨJ), D1(LviΨJ))

= (D2
∗
G2(Φi ? ΨJ), D2

∗
(Φi ? ΨJ))

(by Lemma 10, Lemma 11(i), (ii) and Lemma 9(g))

= (D2D2
∗
G2(Φi ? ΨJ),Φi ? ΨJ)

= (�2G2(Φi ? ΨJ),Φi ? ΨJ) (since G2D2 = D2G2

and D2(Φi ? ΨJ) = 0 (by Lemma 11(ii) and Lemma 10))

= (Φi ? ΨJ ,Φi ? ΨJ)− (H1(Φi ? ΨJ), H1(Φi ? ΨJ))

(since H2 = H1 on X(`+1) by Remark 5(ii)).

Upon raising indices and together with (7.2), one obtains Proposition 3

readily. �

8. The curvature estimates

First we have the following

Lemma 12. One has

(Φi ? ΨJ ,Φi ? ΨJ) = (Φi ·ΨJ ,Φi ·ΨJ) + (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Proof. Recall that

(Φi ? ΨJ ,Φi ? ΨJ)

=
1

((`+ 1)!)2

∫
Mt

(Φi ? ΨJ)
α1···α`+1

β1···β`+1
(Φi ? ΨJ)

β1···β`+1

α1···α`+1

ωn

n!

=
1

((`+ 1)!)2

∫
Mt

∑
σ,τ,σ′,τ ′∈G`+1

sgn(σ)sgn(τ)sgn(σ′)sgn(τ ′)

(`!)4

·(Φi)
σ(α1)

τ(β1)
(ΨJ)

σ(α2)···σ(α`+1)

τ(β2)···τ(β`+1)
(Φi)

τ ′(β1)

σ′(α1)
(ΨJ)

τ ′(β2)···τ ′(β`+1)

σ′(α2)···σ′(α`+1)

ωn

n!
.
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By writing σ′ = σ′′ ◦ σ, τ ′ = τ ′′ ◦ τ (so that sgn(σ)sgn(σ′) = sgn(σ′′), etc),

one easily sees that

(Φi ? ΨJ ,Φi ? ΨJ)

=
1

((`+ 1)!)2

∫
Mt

∑
σ,τ∈G`+1

(Φi)
σ(α1)

τ(β1)
(ΨJ)

σ(α2)···σ(α`+1)

τ(β2)···τ(β`+1)

·
( ∑
σ′′,τ ′′∈G`+1

sgn(σ′′)sgn(τ ′′)

(`!)4
(Φi)

τ ′′(τ(β1))

σ′′(σ(α1))
(ΨJ)

τ ′′(τ(β2))···τ ′′(τ(β`+1))

σ′′(σ(α2))···σ′′(σ(α`+1))

) ωn
n!

=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
( ∑
σ′′,τ ′′∈G`+1

sgn(σ′′)sgn(τ ′′)

(`!)4
(Φi)

τ ′′(β1)

σ′′(a1)
(ΨJ)

τ ′′(β2)···τ ′′(β`+1)

σ′′(α2)···σ′′(α`+1))

) ωn
n!

(from symmetry of the expression in σ, τ).

Next we consider the partition G`+1 = G′`+1 qG′′`+1 as given in (7.1). Then

we may write

(Φi ? ΨJ ,Φi ? ΨJ) = I(G′`+1,G
′
`+1) + I(G′`+1,G

′′
`+1) + I(G′′`+1,G

′
`+1) + I(G′′`+1,G

′′
`+1),

where

I(G′`+1,G
′
`+1) :=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
( ∑
σ∈G′`+1

∑
τ∈G′`+1

sgn(σ)sgn(τ)

(`!)4
(Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

)ωn
n!
,

I(G′`+1,G
′′
`+1) :=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
( ∑
σ∈G′`+1

∑
τ∈G′′`+1

sgn(σ)sgn(τ)

(`!)4
(Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

)ωn
n!
,

and I(G′′`+1,G
′
`+1), I(G′′`+1,G

′′
`+1) are defined similarly. Note that |G′`+1| = `! and

|G′′`+1| = ` · `!. Now for each σ ∈ G′`+1, (as a permutation on (α1, . . . , α`+1)),

one has σ(α1) = α1 and sgn(σ) = sgn(σ|(α2,··· ,α`+1)). Thus,

I(G′`+1,G
′
`+1) :=

1

(`!)4

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

α2···α`+1

·
( ∑
σ∈G′`+1

∑
τ∈G′`+1

(Φi)
β1
a1

(ΨJ)
β2···β`+1

β1···β`+1

)ωn
n!

=
1

(`!)4
· (`!)2

∫
Mt

(Φi)
α1

β1
(Φi)

β1
a1
· (ΨJ)

α2···α`+1

β2···β`+1
(ΨJ)

β2···β`+1

α2···α`+1

)ωn
n!

= (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉) (cf. (3.8) and (3.9)).
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Next we consider I(G′`+1,G
′′
`+1). For each σ ∈ G′`+1 and τ ∈ G′′`+1 (so that

σ(α1) = α1 and τ(β1) = βµ with µ 6= 1), one easily sees as before that

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1
· sgn(σ)sgn(τ) · (Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

= (−1)µ−2(Φi)
α1

β1
(ΨJ)

α2···α`+1

βµβ2···β̂µ···β`+1

· (−1)µ−1 · (Φi)
βµ
α1

(ΨJ)
β1···β̂µ···β`+1

α2···α`+1

= −`!(`− 1)!〈Φi ↘ ΨJ ,Φi ↘ ΨJ〉 (cf. (3.8) and (5.10)).

Thus,

I(G′`+1,G
′′
`+1) :=

1

(`!)4
· `! · (` · `!) · (−`!(`− 1)!) · (〈Φi ↘ ΨJ ,Φi ↘ ΨJ〉)

= −(Φi ↘ ΨJ ,Φi ↘ ΨJ).

Similarly, one easily checks that

I(G′′`+1,G
′
`+1) = −(Φi ↗ ΨJ ,Φi ↗ ΨJ), and

I(G′′`+1,G
′′
`+1) = (Φi ·ΨJ ,Φi ·ΨJ),

and the lemma follows readily. �

Proposition 4. We have

∂i∂i log ‖ΨJ‖22

=
1

‖ΨJ‖22

(
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)

−k((�− k)−1(LviΨJ),LviΨJ)−
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi ? ΨJ), H(Φi ? ΨJ))
)
.

Proof. The proposition follows readily by combining (4.6), (4.9), (4.11),

(4.12), Proposition 1, Proposition 2, Proposition 3 and Lemma 12. �

Proposition 5. We have

∂i∂i log ‖ΨJ‖22 >
1

‖ΨJ‖22

(
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)(8.1)

−k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(H(Φi ? ΨJ), H(Φi ? ΨJ))

)
.

Proof. By considering the spectral decomposition of LviΨJ with respect to

�, one easily sees that

(8.2)

−k((�− k)−1(LviΨJ),LviΨJ) > (H(LviΨJ), H(LviΨJ)) = ‖H(LviΨJ)‖22.
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On the other hand, since ΨJ is harmonic, one clearly has

(8.3) ‖H(LviΨJ)‖2 >
∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣.

By combining (8.2), (8.3) and Proposition 4, one obtains Proposition 5 easily.

�

For a positive integer `, we define the relative tensor

(8.4) H(`) := H(Φi ? · · ·? Φi︸ ︷︷ ︸
`−times

),

so that H(`) = ΨJ with J given by the `-tuple (i, i, · · · , i). Note that H(`)

actually depends on i, but for simplicity, this is suppressed in the notation.

Lemma 13. For each ` ≥ 1, one has

(i) H(Φi ?H(`−1)) = H(`).

(ii) (Φi ·H(`), H(`−1)) = ‖H(`)‖22.

Here we adopt the convention that H(0) is the constant function 1.

Proof. From (5.4), (3.6) and the definition that H(0) is the constant function

1, one easily sees that Φi ? H(`−1) − Φi ? · · ·? Φi︸ ︷︷ ︸
`−times

is ∂-exact (resp. zero)

when ` ≥ 2 (resp. ` = 1 (cf. Remark 2(ii))). Together with the fact that the

harmonic projection of a ∂-exact form is zero, one obtains (i) immediately.

Next we see from Lemma 4 that

(8.5) 〈Φi ·H(`), H(`−1)〉 = 〈H(`),Φi ?H(`−1)〉.

Upon integrating both sides of (8.5) over Mt and using the harmonicity of

H(`) and (i), one obtains (ii) immediately. �

Remark 6. One easily sees from Lemma 13(i) that on Mt, H
(`) ≡ 0 =⇒

H(`′) ≡ 0 for all `′ > `. Equivalently, ‖H(`)‖2 = 0 =⇒ ‖H(`′)‖2 = 0 for all

`′ > `.

Now we state the main result in this section which is to be used later on

to prove hyperbolicity of S.

Proposition 6. Let i, `,H(`) be as in (8.4). Suppose ‖H(`)‖2 > 0 (so that

‖H(`−1)‖2 > 0 (cf. Remark 6)). Then we have

(8.6) ∂i∂i log ‖H(`)‖22 ≥
‖H(`)‖22
‖H(`−1)‖22

− ‖H
(`+1)‖22
‖H(`)‖22

.
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Remark 7. As in Lemma 13, we adopt in Proposition 6 the convention

that H(0) ≡ 1, so that by (2.1), ‖H(0)‖22 = Vol(Mt) =
(2π)nKn

Mt
knn! , which is

independent of t ∈ S (since Kn
Mt

is determined by a fixed class in H2n(M,Z),

where M is the underlying topological manifold of the Mt’s).

Proof of Proposition 6. We are going to apply Proposition 5 (with ΨJ given

by H(`)). First we consider the second term on the right hand side of (8.1).

By Lemma 8 (and with vi as given there), one has

(8.7) −k((�− k)−1〈Φi,Φi〉, 〈H(`), H(`)〉) = −k(〈vi, vi〉, 〈H(`), H(`)〉) ≥ 0,

since the integrand is pointwise non-negative onMt. (In fact, since 〈Φi,Φi〉 is

a nonnegative-valued and non-identically-zero real-analytic function on Mt,

it follows from the arguments in [Siu2, p. 297-298] that −k((�−k)−1〈Φi,Φi〉
is also a nonnegative-valued and non-identically-zero real-analytic function;

and together with such property of 〈H(`), H(`)〉, one easily sees that −k((�−
k)−1〈Φi,Φi〉, 〈H(`), H(`)〉) > 0.) For the last term of (8.1), we also note from

Lemma 13(i) that H(Φi ?H(`)) = H(`+1). Thus Proposition 5 implies that

∂i∂i log ‖H(`)‖22(8.8)

>
1

‖H(`)‖22

(
− k((�− k)−1(Φi ·H(`)),Φi ·H(`))− ‖H(`+1)‖22

)
.

For the first term above, we note that Φi · H(`) and H(`−1) are both in

A0,`−1(∧`−1TMt), and H(`−1) is harmonic. Now we take an orthonor-

mal basis of A0,`−1(∧`−1TMt) consisting of eigensections of � and with
1

‖H(`−1)‖2
H(`−1) as one of the (harmonic) basis elements. Then by consider-

ing the spectral decomposition of Φi ·H(`) with respect to �, one easily sees

that

−k((�− k)−1(Φi ·H(`)),Φi ·H(`)) ≥
∣∣(Φi ·H(`),

H(`−1)

‖H(`−1)‖2
)∣∣2

=
‖H(`)‖42
‖H(`−1)‖22

(by Lemma 13(ii)).

Together with (8.8), one obtains (8.6) readily. �

Remark 8. We remark that in the special case when ` = 1, the first two

terms of (8.1) coincide. Then one easily sees from the proof of Proposition

6 that (8.6) in this special case can be strengthened so that the following

inequality holds:

(8.9) ∂i∂i log ‖H(1)‖22 ≥ 2 · ‖H
(1)‖22

‖H(0)‖22
− ‖H

(2)‖22
‖H(1)‖22

.
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In the case of families of Riemann surfaces (i.e., when n = 1), one easily

checks that (8.9) leads readily to the same upper bound given by Wolpert

[Wo, Lemma 4.6] and mentioned in the beginning of this article. For the

sake of coherence and clarity in our subsequent discussion, we will only use

(8.6) (without incorporating (8.9)), which will already be sufficient for our

purpose.

9. Finsler metric and Kobayashi hyperbolicity

Let π : X → S be an effectively parametrized family of canonically polar-

ized manifolds as in Theorem 1. As before, we let Mt = π−1(Mt) for t ∈ S,

and denote n = dimCMt and m = dimC S. Without loss of generality, we

assume that n ≥ 2. We are going to construct a (non-degenerate) Finsler

metric on S, whose holomorphic sectional curvature is bounded above by

a negative constant. This will establish the Kobayashi hyperbolicity of S

readily. First we make some preparations.

LetN be a fixed positive integer satisfyingN ≥ n, and recall from Remark

7 the following constant (independent of t) given by

(9.1) A := Vol(Mt) =
(2π)nKn

Mt

knn!
.

We first consider the following two sequences of positive numbers {C`}1≤`≤n
and {a`}1≤`≤n given by

C1 : = min
{

1,
1

A

}
, C` =

C`−1

3
=

C1

3`−1
, 2 ≤ ` ≤ n,(9.2)

a1 : = 1, a` =
(3a`−1

C1

)N
=
( 3

C1

)N(N`−1−1)
N−1 , 2 ≤ ` ≤ n.(9.3)

Lemma 14. Let N ≥ n ≥ 2, A and {C`}1≤`≤n and {a`}1≤`≤n be as above,

and let κ be an integer satisfying 1 ≤ κ ≤ n. Then for all real numbers

x1, · · · , xκ > 0, we have

(9.4)
a1x

N+1
1

A
+

κ∑
`=2

(a`
`
·
xN+`
`

x`−1
`−1

− a`−1

`− 1
· xN−`+1

`−1 x``
)
≥ Cκ ·

κ∑
`=1

xN+1
` .

(When κ = 1, the first summation in (9.4) is understood to be zero.)

Proof. We are going to prove the inequality in (9.4) by induction on κ.

When κ = 1, (9.4) follows readily from the definition of a1 and C1. For

κ ≥ 2, let Tκ denote the left hand side of (9.4). Then one has

(9.5) Tκ = Tκ−1 + νκ, where νκ :=
aκ
κ
· x

N+κ
κ

xκ−1
κ−1

− aκ−1

κ− 1
· xN−κ+1

κ−1 xκκ.
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Together with the induction hypothesis (that (9.4) holds with κ replaced by

κ− 1), we have

(9.6) Tκ ≥ Cκ−1 ·
κ−1∑
`=1

xN+1
` + νκ.

First we consider the case when xκ ≤ µκxκ−1, where µκ :=
( (κ−1)Cκ

aκ−1

) 1
κ .

From (9.2) and (9.3), one easily sees that µκ ≤ 1. Thus in this case, we

have, from (9.5) and the definition of µκ,

νκ ≥ −
aκ−1

κ− 1
·xN−κ+1
κ−1 xκκ ≥ −

aκ−1

κ− 1
·µκκxN+1

κ−1 = −CκxN+1
κ−1 and xκ−1 ≥ xκ.

Together with (9.6) and the equality C`−1 = 3C` (cf. (9.2)), we have,

Tκ ≥ 3Cκ ·
κ−1∑
`=1

xN+1
` − CκxN+1

κ−1 ≥ Cκ ·
κ∑
`=1

xN+1
` ,

where the last inequality follows from the inequality xκ−1 ≥ xκ (so that

Cκx
N+1
`−1 ≥ Cκx

N+1
` ). Now it remains to consider the other case when xκ ≥

µκxκ−1. Substituting this into (9.5), one gets

νκ − CκxN+1
κ ≥

(aκ
κ
· µκ−1

κ − aκ−1

κ− 1
· 1

µN−κ+1
κ

− Cκ
)
xN+1
κ(9.7)

=
(
aκ −

κaκ−1

κ− 1
· 1

µNκ
− κCκ

µκ−1
κ

)µκ−1
κ xN+1

κ

κ
.

Since µκ ≤ 1, we have, from the definition of µκ,

aκ −
κaκ−1

κ− 1
· 1

µNκ
− κCκ

µκ−1
κ
≥ aκ −

κaκ−1

κ− 1
·
( aκ−1

(κ− 1)Cκ

)N
κ − κCκ

µκκ

≥ aκ −
κaκ−1

κ− 1
·
( 3κ−1aκ−1

(κ− 1)C1

)N
κ − κaκ−1

κ− 1

≥ aκ −
3NaNκ−1

CN1
≥ 0 (by (9.2)),

where the second last inequality can be verified readily by using the inequal-

ities N ≥ n ≥ κ ≥ 2 and aκ−1 ≥ 1 ≥ C1. Substituting this into (9.7), we

get νκ ≥ Cκx
N+1
κ . Together with (9.6) and the fact that Cκ−1 ≥ Cκ, one

obtains (9.4) readily. �

The following lemma is well-known and follows from a straightforward

computation (see also [Sch2, Lemma 8]).
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Lemma 15. Let U be a complex manifold, and φ`, 1 ≤ ` ≤ r, be positive

C2 functions on U . Then

(9.8)
√
−1∂∂ log(

r∑
`=1

φ`) ≥
∑r

`=1 φ`
√
−1∂∂ log φ`∑r
j=1 φj

.

From now on, we fix N = n!, and let {C`}1≤`≤n and {a`}1≤`≤n be the cor-

responding sequences as given in (9.2) and (9.3). Now we define a function

h : TS → R given by

(9.9) h(u) =
( n∑
`=1

a`‖u‖2NWP,`

) 1
2N

for u ∈ TtS and t ∈ S.

Here ‖ ‖WP,` is as defined in (3.11).

Lemma 16. h is a Aut(π)-invariant C∞ Finsler metric on S.

Proof. It is obvious that h(cu) = |c|h(u) for all c ∈ C and u ∈ TS.

Moreover, one sees from Remark 3 that h(u) > 0 if u 6= 0. Thus h is a

Finsler metric on S. Next we note that the Aut(π)-invariance of h follows

readily from that of the ‖ ‖WP,`’s (cf. Remark 3). To verify the smoothness

of h, we take a C∞ local section u of TS
∣∣
U

over an open subset U of S such

that ut 6= 0 for each t ∈ U (here ut denotes the value of u at t), then for

each 1 ≤ ` ≤ n, ‖ut‖2`WP,` is a C∞ function in t, since it is given in (3.10)

as an integral with the integrand varying smoothly in t. For each integer `

satisfying 1 ≤ ` ≤ n, since N/` = n!/` is still a positive integer, it follows

that ‖ut‖2NWP,` = (‖ut‖2`WP,`)
N
` is still a C∞ function in t (even at points t

where ‖ut‖2NWP,` = 0). Together with the fact that h(ut) > 0 for each t ∈ U ,

it follows readily that h(ut) is a C∞ function in t. �

Remark 9. From the proof of Lemma 16, it is easy to see that as long as

the positive integer N in (9.9) is divisible by 1, 2, · · · , n, the resulting Finsler

metric is still C∞.

Let u ∈ TS and ` be an integer satisfying 1 ≤ ` ≤ n. Similar to (8.4), we

denote

(9.10) H(`)(u) := H(Φ(u) ? · · ·? Φ(u)︸ ︷︷ ︸
`−times

),

where Φ(u) is the harmonic representative of ρt(u) as in Section 2. This

gives rise to a function r : PTS → Z given by

(9.11) r([u]) := max{`
∣∣H(`)(u) 6= 0} for 0 6= u ∈ TS,
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where [u] denotes the class of u in PTS. Since ρt is injective for each t ∈ S,

it follows that 1 ≤ r([u]) ≤ n for each [u] ∈ PTS. Now we let R be a local

one-dimensional complex submanifold of S. Then it is easy to see that r

induces a function rR : R→ Z given by

(9.12) rR(t) := r([ut]) for t ∈ R,

where ut is any non-zero vector in TtR. Let κ be an integer satisfying

1 ≤ κ ≤ n. We say that a point to ∈ R is a κ-stable point of R if there exists

an open neighborhood Uto of to in R such that rR(t) = κ for all t ∈ Uto .
We also recall that the sectional curvature K(R, h

∣∣
R

)(to) of h
∣∣
R

at a point

to ∈ R is given by

(9.13) K(R, h
∣∣
R

)(to) = −
∂t∂t̄ log((h( ∂∂t))

2)

(h( ∂∂t))
2

∣∣∣
t=to

,

where t denotes a local holomorphic coordinate function on some open subset

of R containing to.

Proposition 7. Let R be a local one-dimensional complex submanifold of

S, and let to ∈ R be a κ-stable point of R for some integer 1 ≤ κ ≤ n. Let

h be the Finsler metric on S as given in (9.9). Then

K(R, h
∣∣
R

)(to) ≤ −
Cκ

κ
1
N a

1+ 1
N

κ

,

where aκ and Cκ are as in (9.3) and (9.2) (with N = n!).

Proof. Since to is a κ-stable point of R, there exists an open neighborhood

U of to in R such that for all 0 6= u ∈ TU , one has H(`)(u) = 0 (and thus

‖u‖WP,` = 0) for all ` > κ, and H(`)(u) 6= 0 for all 1 ≤ ` ≤ κ (cf. Remark

6). In particular, the Finsler metric h on U can be written as

(9.14) h(u) =
( κ∑
`=1

a`‖u‖2NWP,`

) 1
2N

for all u ∈ TU

(recalling that N = n!). Shrinking U if necessary, we may assume that U
is an open coordinate subset of R with coordinate function t. To compute

(9.13), we denote, as in (8.4), the relative tensor on the fibers over U given

by H(`) := H(`)( ∂∂t) for each `. Together with the definition of ‖ ‖WP,` in

(3.11), we may further rewrite (9.14) as

(9.15) h(
∂

∂t
) =

( κ∑
`=1

a`‖H(`)‖
2N
`

2

) 1
2N

on U .
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Then we have

∂t∂t̄ log((h(
∂

∂t
))2) =

1

N
· ∂t∂t̄ log

( κ∑
`=1

a`‖H(`)‖
2N
`

2

)
(9.16)

≥ 1

N
·
∑κ

`=1 a`‖H(`)‖
2N
`

2 · ∂t∂t̄ log
(
a`‖H(`)‖

2N
`

2

)
∑κ

`=1 a`‖H(`)‖
2N
`

2

(by Lemma 15)

=
B∑κ

`=1 a`‖H(`)‖
2N
`

2

, where

B : =

κ∑
`=1

a`
`
· ‖H(`)‖

2N
`

2 · ∂t∂t̄ log
(
‖H(`)‖22

)
.

By Proposition 6 (and with ‖H(0)‖22 as there), we have

B ≥
κ∑
`=1

a`
`
· ‖H(`)‖

2N
`

2 ·
( ‖H(`)‖22
‖H(`−1)‖22

− ‖H
(`+1)‖22
‖H(`)‖22

)
(9.17)

=
a1‖H(1)‖22
‖H(0)‖22

+

κ∑
`=2

(a`
`
· ‖H

(`)‖
2(N+`)

`
2

‖H(`−1)‖22

− a`−1

`− 1
· ‖H(`−1)‖

2(N−`+1)
`−1

2 · ‖H(`)‖22
)

≥ Cκ ·
κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ,

where the second line is obtained by regrouping the terms of the first line

(involving H(`) and H(`−1) for given `) and using that fact that ‖H(κ+1)‖2 =

0, and the last inequality follows from Lemma 14 (with x` given here by

‖H(`)‖
2
`
2 ). By Hölder inequality and using the fact that a` ≥ a`−1, we have

κ∑
`=1

a` · ‖H(`)‖
2N
`

2 ≤
( κ∑
`=1

aN+1
`

) 1
N+1

( κ∑
`=1

‖H(`)‖
2(N+1)

`
2

) N
N+1

=⇒
κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ≥ 1(

κaN+1
κ

) 1
N

·
( κ∑
`=1

a`‖H(`)‖
2N
`

2

)N+1
N
.(9.18)

Combining (9.16), (9.17) and (9.18), we get

∂t∂t̄ log((h(
∂

∂t
))2) ≥ Cκ

κ
1
N a

1+ 1
N

κ

·
( κ∑
`=1

‖a`H(`)‖
2N
`

2

) 1
N

=
Cκ

κ
1
N a

1+ 1
N

κ

· (h(
∂

∂t
))2,

where the last equality follows from (9.15). Together with (9.13), one obtains

the proposition readily. �
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Lemma 17. Let R be a local one-dimensional complex submanifold of S,

and let QR := {t ∈ R
∣∣ t is a κ-stable point of R for some 1 ≤ κ ≤ n}.

Then QR is a dense subset of R (with respect to the usual topology).

Proof. We take a point to ∈ R and an open neighborhood U of to in R.

Since the function rR in (9.12) takes values in the discrete set {1, 2, · · · , n},
rR
∣∣
U

necessarily attains maximum value, say κ, at some point t1 ∈ U for

some 1 ≤ κ ≤ n. Now we take a smooth non-vanishing vector field ut on

some open neighborhood of t1 in U . Then it is easy to see that H(κ)(ut) (as

defined in (9.10)) varies smoothly in t. Since we also have H(κ)(ut1) 6= 0 (as

rR(t1) = κ), it follows that there exists some open neighborhood V of t1 in

U such that H(κ)(ut) 6= 0 (and thus rR(t) ≥ κ) for all t ∈ V . Together with

the definition of κ as the maximum value of rR
∣∣
U

, it follows that rR(t) = κ

for all t ∈ V . Hence t1 ∈ QR. Since to and U are arbitrary, one concludes

that QR is dense in R. �

We are ready to give the proof of Theorem 1 as follows:

Proof of Theorem 1. Let π : X → S be as in Theorem 1, and let n := dimMt.

Let h be as in (9.9). From Lemma 16, we know that h is an Aut(π)-

invariant C∞ Finsler metric on S. Take a point t ∈ S, and let R be a local

one-dimensional complex submanifold of S passing through t (i.e. t ∈ R).

By Lemma 17, there exists a sequence of points {tj}∞j=1 in QR such that

limj→∞ tj = t in R. In particular, each tj is a κj-stable point of R for some

integer κj satisfying 1 ≤ κj ≤ n. Let {Cκ}1≤κ≤n and {aκ}1≤κ≤n be as in

(9.2) and (9.3) (with N = n!). By Proposition 7, we have, for each j,

K(R, h
∣∣
R

)(tj) ≤ −
Cκj

κ
1
N
j a

1+ 1
N

κj

≤ − Cn

n
1
N a

1+ 1
N

n

,

where the last inequality follows from the facts that Cκ decreases with κ

while aκ increases with κ. Together with the fact that h
∣∣
R

is C∞ (cf. Lemma

16), one concludes readily that

K(R, h
∣∣
R

)(t) ≤ − Cn

n
1
N a

1+ 1
N

n

,

where the above upper bound is a negative constant independent of t and

R. Hence the holomorphic sectional curvature of the Finsler metric h on

S is bounded above by a negative constant. Finally it is well-known (and

follows from standard arguments involving the usual Ahlfors lemma) that

the existence of a Finsler metric h on S with the above curvature property

implies readily that S is Kobayashi hyperbolic (cf. e.g. [Kob, p. 112,

Theorem 3.7.1]). �
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Remark 10. We indicate here some underlying parallel ingredients in the

respective approaches of [VZ] and this paper. We recall that by taking di-

rect images of the exterior powers of the relative tangent bundle TX|S, one

obtains the Higgs bundle
( n⊕
i=0

Riπ∗ ∧i TX|S ,
n⊕
i=0

ρi
)
, where the Higgs field

ρi : TS ⊗ Riπ∗ ∧i TX|S → Ri+1π∗ ∧i+1 TX|S is given by the Kodaira-Spencer

map. For each p ≥ 0, the composition of the ρi’s, i = 0, 1, · · · , p − 1, also

gives rise the p-th iterated Kodaira-Spencer map ρ(p) : SpTS → Rpπ∗∧pTX|S
(see e.g. [VZ]). Denote by p0 the maximal number such that ρ(p0) is not the

zero map on SpTS. Then as pointed out by one of the referees, a key ingre-

dient in deriving the (Brody or Kobayashi) hyperbolicity of S is to show that

the locally free part of the image F (p0) := ρ(p0)(Sp0TS) ⊂ Rp0π∗ ∧p0 TX/S is

negatively curved (in certain sense) with respect to certain Hermitian metric.

In [VZ], the above Higgs bundle is embedded in a logarithmic system of Hodge

bundles associated to the Hodge filtration of an auxiliary variation of polar-

ized Hodge structures constructed by taking the middle dimensional relative

de Rham cohomlogy on the cyclic cover of X ramified along a generic section

of suitable multiple of the relative canonical sheaf. Under such embedding,

F (p0) lies in the kernel of the Kodaira-Spencer map from the corresponding

Hodge bundle, and the kernel is negatively curved from a well-known curva-

ture computation of Hodge metric by Griffiths (see e.g. [Gri]). In this paper,

the corresponding ingredient is the negativity of the curvature of F (p0) with

respect to the p0-th Weil-Petersson pseudometric, which can be seen readily

from Proposition 6 (upon letting ` = p0 in Proposition 6 and noting that the

last term of (8.6) is zero when ` = p0). To derive the Kobayashi hyperbol-

icity of S, one actually needs to consider all the components of the Higgs

bundle from i = 0 to i = p0, which is manifested in the Finsler metric in

(9.9) (noting that the terms ‖u‖WP,` in (9.9) are zero for all ` > p0).

Remark 11. Finally we give some retrospective remarks on the respective

approaches of [Sch2] and this paper. As mentioned earlier, the curvature

computation for the Weil-Petersson metric of a family of higher dimen-

sional manifolds began with the paper of Siu in [S2], where Proposition 4

for ` = |J | = 1 was formulated and proved. The result of Siu in [S2] was

reformulated and reproved by Schumacher in [Sch1]. Both Proposition 4 of

this paper and Theorem V of [Sch2] are generalizations of the result of [S2]

to ` > 1 following Siu’s approach to various extent. This corresponds to

the first step mentioned in the introduction. In this step, our formulation of

Proposition 4 works directly for our purpose, and our approach and grouping

of terms actually follow closely the original approach of [S2]. We provide
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sufficient details to make the presentation clear and readily verifiable to the

readers.

In our second step as described in Section 1, we have utilized the first

term on the right hand side of the expression in Proposition 4 (i.e., −k((�−
k)−1(Φi ·ΨJ),Φi ·ΨJ)) to achieve the estimates in (8.6). This is crucial for

us to start a telescopic argument to handle the bad term in (8.6) inductively

on ` and set up the stage for the choice of constants for (9.10) in our third

step. In contrast to our work here, [Sch2] utilizes the term corresponding to

the second term on the right hand side of the expression in our Proposition

4 (i.e., −k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)). As such it only leads to an upper

bound of the holomorphic sectional curvature depending on the base point x

in the family, which yields a result on hyperbolicity only if the base manifold

is compact.
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