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Abstract. We study bona fide holomorphic isometric embeddings of the unit disk ∆ into poly-

disks ∆p (p ≥ 2) with sheeting number equals p and the assumption that all component functions
of such embeddings are non-constant. We prove that all such embeddings are congruent to the

p-th root embedding (cf. [8]).

1. Introduction

In 2010, Ng [8] has proven the global rigidity of the p-th root embedding when p ≥ 2 is an odd
integer or p = 2. However, the case when p ≥ 4 is an even integer is still not known even for
the case p = 4. Mok [7] has expected that the p-th root embedding is at least locally rigid for
any integer p ≥ 2. For the proof of the global rigidity of the p-th root embedding when p ≥ 2 is
odd, Ng [8] has relied on the bijectivity of certain rational function Rµ|∂∆ : ∂∆ → ∂∆ and the
unimodular value of different branches of the holomorphic isometric embeddings fl around a point
on the boundary of the unit disk which is not a branch point of any component functions of fl.
However, for the case of 4-th root embedding, such rational function Rµ|∂∆ : ∂∆→ ∂∆ is neither
injective nor surjective. This shows that the method in [8] does not apply to the case of 2q-th root
embedding, where q ≥ 2 is an integer. In this article, all holomorphic isometric embeddings

f = (f1, . . . , fp) : (∆, kds2
∆)→ (∆p, ds2

∆p)

will be assumed to be genuine, i.e. all component functions of f are non-constant, as mentioned
in [9], p. 7. Denote by HI1(∆,∆p; p) the set of all genuine holomorphic isometric embeddings
(∆, ds2

∆)→ (∆p, ds2
∆p) with the sheeting number n = p and the isometric constant k = 1 as in [7].

We shall prove that the p-th root embedding is globally rigid as a map in HI1(∆,∆p; p) based on
the theory developed in [8] and [6] as follows:

Theorem 1.1. (Global Rigidity of the p-th Root Embedding)
Let p ≥ 2 be an integer. If f : (∆, ds2

∆) → (∆p, ds2
∆p) is a holomorphic isometric embedding with

sheeting number n = p, then f is the p-th root embedding up to reparametrizations.

Remark. The theorem says that any map f ∈ HI1(∆,∆p; p) is congruent to the p-th root embed-
ding for any integer p ≥ 2 in the sense of [6], p. 1648.

2. Preliminaries

In this article, we essentially follow the settings in [8], and basic results from [8] are provided
as follows. Let ∆ = {z ∈ C | |z| < 1} be the open unit disk in the complex plane C and
P1 = C t {∞} be the Riemann sphere. The unit disk ∆ is always equipped with the Bergman

metric ds2
∆ = 2Re(gdz ⊗ dz), where g = −2 ∂2

∂z∂z log(1 − |z|2). For integer p ≥ 2, let ∆p =
{(z1, . . . , zp) ∈ Cp | |zj | < 1, 1 ≤ j ≤ p} be the polydisk which is viewed as p copies of ∆.
Moreover, ∆p is equipped with the Kähler metric ds2

∆p , which is the product metric induced from
the Poincaré metric ds2

∆. More precisely, we take the real analytic function −2
∑p
j=1 log(1− |zj |2)

as Kähler potential for ds2
∆p (cf. [8], p. 2908).

From [6], any germ of holomorphic isometric embedding f : U → ∆p can be extended to
a holomorphic isometric embedding g : (∆, kds2

∆) → (∆p, ds2
∆p), where U ⊂ ∆ is some open

neighborhood of 0 and f(0) = 0. For simplicity, we denote this extension also by f . Therefore, we
can let f = (f1, . . . , fp) : ∆→ ∆p be a holomorphic isometric embedding with isometric constant
k and f(0) = 0, where k is an integer satisfying 1 ≤ k ≤ p by [8]. One can define a map h by

h = Ψ ◦ f ◦ ψ
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for some ψ ∈ Aut(∆) and Ψ ∈ Aut(∆p) such that Ψ(f(ψ(0))) = 0, then h is called a reparametriza-
tion of f as in [8], p. 2910. From [6], f can be extended continuously to a continuous map

f̃ = (f̃1, . . . , f̃p) : ∆→ ∆p such that f̃ |∆ = f . In [8], we have the following functional equation

p∏
µ=1

(
1− |fµ(z)|2

)
= (1− |z|2)k

and also the polarized functional equation

p∏
µ=1

(
1− fµ(z)fµ(w)

)
= (1− zw)k.

By Proposition 4.2 in [8], there is an irreducible 1-dimensional projective algebraic subvariety
V ⊂ P1 × (P1)p such that V extends the graph of f . Moreover, the projection map π : V → P1,
(z, w1, . . . , wp) 7→ z, is a finite branched covering map. Let π be n-sheeted for some positive integer
n. Let Pµ : V → P1 × P1 be the projection map Pµ(z, w1, . . . , wp) = (z, wµ) for 1 ≤ µ ≤ p. Then
Vµ := Pµ(V ) ⊂ P1 × P1 is again a 1-dimensional projective algebraic subvariety extends the graph
of the component function fµ. The the projection map πµ : Vµ → P1, (z, wµ) 7→ z, is a finite
branched covering which is sµ-sheeted, where sµ is an integer dividing n. By Lemma 4.3 in [8], if
(z, w1, . . . , wp), (ζ, ξ1, . . . , ξp) ∈ V are any two points, then

p∏
µ=1

(
1− wµξµ

)
=
(
1− zζ

)k
.

Moreover, from Lemma 4.4 in [8], if (z, w1, . . . , wp) ∈ V and z ∈ C ⊂ P1, then wµ ∈ C ⊂ P1

for 1 ≤ µ ≤ p. From [8], for 1 ≤ µ ≤ p, there is a rational function Rµ : P1 → P1 such that
z = Rµ(fµ(z)), Rµ(∂∆) ⊂ ∂∆ and Rµ

(
1
w

)
= 1

Rµ(w)
, where ∂∆ is the boundary of the unit disk

∆. The sheeting number of a component function fµ is defined to be the degree of the rational
function Rµ for 1 ≤ µ ≤ p.

Lemma 2.1 (Ng, [8]). Let h be a component function of a holomorphic isometric embedding
∆ → ∆p and sheeting number of h be q. If h has exactly two distinct branch points, then h is a
component function of the q-th root embedding up to reparametrizations.

Now, sµ is the sheeting number of fµ. Moreover, from [8], we also have

p∑
µ=1

1

sµ
= k

and sµ|n for 1 ≤ µ ≤ p. Furthermore, the degree n of the branched covering π satisfies p
k ≤ n ≤ 2p−1

by [8].
The terminology of ramification index follows [3], p. 217 while a ramification point of a map

mentioned in this article is the same as a branch point mentioned in [3], p. 217. Moreover, given a
finite branched covering map π : S → P1, where S is a 1-dimensional projective algebraic variety,
then a ∈ P1 is called a branch point of π if a = π(c) for some ramification point c of π.

Definition 2.2 ([7], p.261). Let f : (∆, kds2
∆) → (∆p, ds2

∆p) be a holomorphic isometric embed-
ding, where k is the isometric constant. Then f is said to be globally rigid if and only if for any
holomorphic isometric embedding g : (∆, kds2

∆) → (∆p, ds2
∆p), we have g = Ψ ◦ f ◦ ψ for some

ψ ∈ Aut(∆) and Ψ ∈ Aut(∆p).

Denote by H = {τ ∈ C | Imτ > 0}. Define a map ρp : H → Hp by

ρp(τ) =
(
τ

1
p , γτ

1
p , . . . , γp−1τ

1
p

)
,

where γ = e
iπ
p and τ

1
p = r

1
p e

iθ
p if τ = reiθ, 0 < θ < π. From [6], the map ρp is a non-totally

geodesic holomorphic isometric embedding. Then, the p-th root embedding Fp : ∆ → ∆p can be
defined from ρp via the Cayley transform ι : H → ∆, τ 7→ τ−i

τ+i and target automorphisms.
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3. Boundary Behaviour of Holomorphic Isometric Embeddings

In this section, we are going to investigate how each component function f̃ j behave on the
boundary ∂∆ of the unit disk ∆.

Lemma 3.1. Let f = (f1, . . . , fp) : (∆, kds2
∆) → (∆p, ds2

∆p) be a holomorphic isometric embed-
ding. Suppose that f j has a branch point a0 = eiθ0 ∈ ∂∆ for some j, 1 ≤ j ≤ p, where θ0 ∈ [0, 2π)

is a real number. Note that f can be extended continuously to f̃ = (f̃1, . . . , f̃p) : ∆ → ∆p by [6].

Then the component function f̃ j cannot map any arc {z = eiθ ∈ C | θ ∈ (θ0 − δ, θ0 + δ)} into

∂∆ for δ > 0. In particular, if f̃ j maps {z = eiθ ∈ C | θ0 ≤ θ < θ0 + δ} into ∂∆, then f̃ j maps
{z = eiθ ∈ C | θ0 − δ′ < θ < θ0} into ∆ for some δ′ > 0.

Proof. Suppose that a0 = eiθ0 is a branch point of h := f j ; more precisely, for the holomorphic
isometry f : ∆→ ∆p, f |Ua0∩∆ cannot extend holomorphically to Ua0 for any neighborhood Ua0 of

a0 in C. Consider h as a holomorphic mapH → H and denote by h̃ the extension of h toH, then we
identify a0 as a point a on the real line {z ∈ C | Imz = 0}. Let δ > 0 so that δ < min{2π−θ0, θ0−π}.
Suppose that h̃ maps {z ∈ C | Imz = 0, |z − a| < δH} into ∂H, where δH > 0 is some real number
so that {z ∈ C | Imz = 0, |z − a| < δH} can be identified with {z = eiθ ∈ C | θ0 − δ < θ < θ0 + δ}
via Cayley transform. Take a neighborhood Ua = {z ∈ C | |z−a| < δH} of a in C such that h̃ maps

Ia := {z ∈ Ua | Imz = 0} into ∂H. Note that h̃|Ua∩H is continuous and h̃|Ua∩H is holomorphic.

By Schwarz Reflection Principle ([4], p. 211), there exists a holomorphic function g : Ua → C such
that

g(z) = h̃(z) ∀ z ∈ {z ∈ Ua | Imz ≥ 0},
i.e. h̃|Ua∩H can be extended holomorphically to Ua. However, a is a branch point of h, this leads
to a contradiction.
Now, going back to the original holomorphic map h : ∆ → ∆, then the extension h̃ of h cannot
maps {z = eiθ ∈ C | θ0 − δ < θ < θ0 + δ} into ∂∆. �

Let f = (f1, . . . , fp) : ∆→ ∆p be a holomorphic isometric embedding with the isometric constant
k and f(0) = 0. Choose an arbitrary component function f j of f , suppose that {a1, . . . , am} ⊂ ∂∆
is the set of all distinct branch points of the finite branch covering πj : Vj → P1.

Lemma 3.2. With the same settings as above, we suppose that z0 ∈ ∂∆ is not a branch point of

f j, i.e. z0 ∈ A, where A ⊂ ∂∆ r {a1, . . . , am} is some connected component. If |f̃ j(z0)| = 1, then

|f̃ j(z)| = 1 for all z ∈ A, where A is the closure of A in ∂∆. Denote by f̃ = (f̃1, . . . , f̃p) : ∆→ ∆p

the continuous extension of f . In particular, if the set B of all distinct branch points of the finite
branched coverings π, πµ, 1 ≤ µ ≤ p, are the same, say B = {a1, . . . , am}, and isometric constant
of f equals k = 1, then for each connected component A′ ⊂ ∂∆ r {a1, . . . , am}, there is a unique

j = j(A′) ∈ {1, . . . , p} such that f̃ j(A′) ⊂ ∂∆.

Proof. Note that A ⊂ ∂∆ is an open subset. Since z0 is not a branch point, ∃ a neighborhood
Uz0 of z0 in C such that f j |Uz0∩∆ can be extended holomorphically to Uz0 . More precisely, ∃
a holomorphic function g : Uz0 → C such that g(z) = f j(z) ∀ z ∈ Uz0 ∩ ∆. Note that f j is
non-constant, so g is a non constant holomorphic function on Uz0 ; otherwise, if g is a constant
function, then f j |Uz0∩∆ ≡ C for some constant C, this implies that f j ≡ C by the identity theorem

because Uz0 ∩∆ is an open subset. By the same procedure, for each z ∈ A, f j can be extended
holomorphically to some open neighborhood Uz of z in C, so f j can be extended holomorphically
to U :=

⋃
z∈A Uz, which is an open subset in C. Denote also by g = f j the extension of f j |U∩∆ to

U . Note that U does not contain any branch point of f j and |f j(z)|2 is real analytic on U .
By open mapping theorem, under the assumption that each f j is non-constant so that the extension
g : U → C is non-constant, so for any open subset V ⊂ U , g(V ) ⊂ C is open. Let A′ = f j(A).
If |f j(z0)| = 1 for some z0 ∈ A, then (f j)−1(A′) contains some nonempty smooth real-analytic
curve, actually A ⊂ (f j)−1(A′). For some open neighborhood U0 of z0 in U , g(U0) ⊂ C is an
open set containing the point f j(z0) =: eiφ0 by open mapping theorem. In particular, ∃ δ > 0
such that A0 = {eiφ ∈ ∂∆ | φ ∈ (φ0 − δ, φ0 + δ)} ⊂ g(U0), i.e. for each eiφ ∈ A0, ∃ ζ ∈ U
such that g(ζ) = eiφ ∈ ∂∆. By the functional equation, we have |f j(z)| 6= 1 whenever z 6∈ ∂∆,
so |f j(z)|2 = 1 for z ∈ I for some non-empty open subset I ⊂ A. By the Identity Theorem for
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real-analytic functions (see [5], Corollary 1.2.7), we have |f j(z)| = 1 ∀ z ∈ A. The rest follows
from the functional equation

p∏
µ=1

(
1− |fµ(z)|2

)
= 1− |z|2,

Lemma 6.1 in [8], and the above results. �

4. The Minimal Case

Let f = (f1, . . . , fp) : ∆ → ∆p be a holomorphic isometric embedding with isometric constant
k = 1, sheeting number n = p and f(0) = 0. From the settings in the introduction section, we
have sµ ≤ p and

∑p
µ=1

1
sµ

= 1 so that sµ = p for 1 ≤ µ ≤ p. Denote the p branches of f by

fl(z) = (f1
l (z), . . . , fpl (z)) defined on ∆ for l = 1, . . . , p, then we have the polarized functional

equation
p∏
j=1

(
1− f jl (z)f jk(w)

)
= 1− zw

for z, w ∈ ∆ and 1 ≤ l, k ≤ p. Let V ⊂ P1 × (P1)p be an irreducible projective algebraic curve
containing Graph(f), then π : V → P1, (z, ξ1, . . . , ξp) 7→ z, is a finite p-sheeted branched covering
over P1.

Lemma 4.1 (cf. [8]). Note that all branch points of fl are lying on ∂∆, so ∞ ∈ P1 is not a branch

point of the branched covering π : V → P1. Then for each l = 1, . . . , p, the set {f jl (∞) : 1 ≤ j ≤ p}
contains exactly one infinite value. Moreover, for each j = 1, . . . , p, the set {f jl (∞) : 1 ≤ l ≤ p}
contains exactly one infinite value.

Remark. A general version of this result has been mentioned implicitly in the proof of Proposition
5.3 in [8], p. 2914.

Proof. Consider the polarized functional equation

p∏
j=1

(
1− f jl (z)f jl (w)

)
= 1− zw

for some fixed w ∈ B1(0; ε). Note that the order of pole at z =∞ is 1 on the right-hand side, and

so is the pole order on the left-hand side, so for each l = 1, . . . , p, the set {f jl (∞) : 1 ≤ j ≤ p}
contains exactly one infinite value.
Let Vj ⊂ P1 × P1 be the projective-algebraic subvariety extending Graph

(
f j
)
. Since f j(0) = 0,

we have (0, 0) ∈ Vj so that by Corollary 4.7 in [8], (∞,∞) ∈ Vj ⊂ P1 × P1. Hence, for each

j = 1, . . . , p, the set {f jl (∞) : 1 ≤ l ≤ p} contains at least one infinite value. Combining with the

first result, we prove that the set {f jl (∞) : 1 ≤ l ≤ p} contains exactly one infinite value for each
j = 1, . . . , p. �

4.1. Unimodular Values at Branch Points. Let f = (f1, . . . , fp) : (∆, ds2
∆) → (∆p, ds2

∆p) be
a holomorphic isometric embedding. Let π : V → P1 be the finite branched covering map, where
V ⊂ P1 × (P1)p is an irreducible projective-algebraic subvariety which extends the graph of f .
Suppose that the degree of π is n = p, we say that the sheeting number of f is n = p. Note that
π−1(∆) =

⊔p
l=1 Ul, where for 1 ≤ l ≤ p, Ul = Graph(fl) for some holomorphic isometric embedding

fl = (f1
l , . . . , f

p
l ) : (∆, ds2

∆) → (G′l, ds
2
G′l

), where G′l ⊂ (P1 r ∂∆)p is some connected component.

More precisely, if we denoted by ∆+ = ∆ and ∆− = P1 r ∆, then G′l can be written as

G′l = ∆χ1
l × · · · ×∆χpl ,

for some χjl ∈ {+,−}, 1 ≤ j, l ≤ p.
Note that all Rµ (1 ≤ µ ≤ p) have the same set of branch points by arguments after Lemma 6.3
in [8] (p. 2916). More precisely, the branching loci of π and πµ, 1 ≤ µ ≤ p, are the same (by
Lemma 6.3, [8]). Moreover, in [8], the ramification order of π at the point (z, w1, . . . , wp) ∈ V can
be defined as the ramification order of any Rµ at wµ, 1 ≤ µ ≤ p. Now, we define the ramification
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index of π at some point in V as in [3], p. 217. Now, we look for the number of unimodular
elements in the set

{fµl (ai) | 1 ≤ µ ≤ p}
for each branch point ai of π and 1 ≤ l ≤ p. The following lemma shows that the number is
actually the ramification index of π at (ai, f

1
l (ai), . . . , f

p
l (ai)) ∈ V .

Lemma 4.2. Fixing j ∈ {1, . . . , p}. Let {a1, . . . , am} ⊂ ∂∆ be the set of distinct branch points of
Rj and let the branching order of Rj at ai be bi for 1 ≤ i ≤ m, which is independent of the choice
of j (1 ≤ j ≤ p). For 1 ≤ i ≤ m, let v = (ai, f

1
l (ai), . . . , f

p
l (ai)) ∈ π−1(ai) be a ramification point

of π with ramification index s ≥ 2. Then ∃ distinct j1, . . . , js ∈ {1, . . . , p} such that |f jµl (ai)| = 1

for 1 ≤ µ ≤ s. Furthermore, if 2 ≤ s < p, then |f jl (ai)| 6= 1 for j 6∈ {j1, . . . , js}.

Proof. Choose an arbitrary ai in the set of all distinct branch points of π. Suppose that the
ramification index of Rj at f jl (ai) is equal to s for some j, l, s ∈ {1, . . . , p}, then the ramification
index of Rµ at fµl (ai) is also equal to s for 1 ≤ µ ≤ p (by Lemma 6.3 in [8]). Now, we fix
l ∈ {1, . . . , p}. In particular, after shrinking the ball B1(ai, ε) if necessary, for 1 ≤ µ ≤ p, a
Puiseux series for fµl around the branch point ai can be written as

fµl (z) = ϕµl

(
(z − ai)

1
s

)
∀ z ∈ B1(ai, ε),

where ϕµl is a holomorphic function on B1(0, ε
1
s ) for 1 ≤ µ ≤ p and ε > 0 is some constant by [1].

Note that ϕµl (0) = fµl (ai) for 1 ≤ µ ≤ p and we have the functional equation

p∏
µ=1

(
1− fµl (z)fµl (ai)

)
= 1− zai

for such fixed l. Writing z = ai + (ζ − ai)s, then for 1 ≤ µ ≤ p, we have

fµl (ai + (ζ − ai)s) = ϕµl (ζ − ai) ∀ ζ ∈ B1(ai, ε
1
s ),

and thus
p∏

µ=1

(
1− ϕµl (ξ)ϕµl (0)

)
= −aiξs

for ξ ∈ B1(0, ε
1
s ).

Suppose that |f jl (ai)| = |ϕjl (0)| = 1 for some j ∈ {1, . . . , p}. Consider the rational function

Rj : P1 → P1, then the holomorphic function w(ξ) = ϕjl (ξ) defined on B1(0, ε
1
s ) give a local

parametrization of some branch of P1 around f jl (a) ∈ P1, namely Rj(w(ξ)) = ξs + a, so
∂ϕjl
∂ξ (0) =

w′(0) 6= 0.

For 1 ≤ µ ≤ p, either 1 − ϕµl (ξ)fµl (ai) has a zero of order 1 at ξ = 0 or 1 − ϕµl (0)fµl (ai) =
1− |fµl (ai)|2 6= 0.
Since the right hand side vanish to the order s at ζ = ai, ∃ distinct j1, . . . , js ∈ {1, . . . , p} such

that |f jkl (ai)| = |ϕjkl (0)| = 1 for 1 ≤ k ≤ s. Moreover, if 1 ≤ s < p, then |fµl (ai)| = |ϕµl (0)| 6= 1 for
µ ∈ {1, . . . , p}r {j1, . . . , js}. �

4.2. Proof of Theorem 1.1. Now, we look for structures of the branched covering map π : V →
P1 from the functional equation, which provide further relations between different branches. The
following proposition shows that for each distinct points x, y ∈ π−1(ai), the ramification index of
π at x is the same as that of π at y for each i = 1, . . . ,m.

Proposition 4.3. Let π : V → P1 be the n-sheeted branched covering map as before, and
{a1, . . . , am} be the set of all distinct points of π. Suppose that n = p. If v ∈ π−1(ai) is a
ramification point of π with ramification index s ≥ 2, then s · |π−1(ai)| = p, where |π−1(ai)|
denotes the cardinality of the set π−1(ai). Moreover, we have 2 ≤ m ≤ 3.

Proof. Choosing an arbitrary branch point ai of π. Note that in this case, ramification index of
πµ at (ai, f

µ
l (ai)) is the same as ramification index of Rµ at fµl (ai) for 1 ≤ µ ≤ p.

Now, we choose a ramification point f1
l (ai) of R1 with ramification index s (1 < s ≤ p), then
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fµl (ai) is a ramification point of Rµ with ramification index s for 1 ≤ µ ≤ p. As in the proof of
Lemma 4.2, one has

fµl (z) = ϕµl

(
(z − ai)

1
s

)
∀ z ∈ B1(ai, ε)

for some ε > 0 and some holomorphic function ϕµl defined on B1(0, ε
1
s ). Consider the functional

equation
p∏

µ=1

(
1− fµl (z)fµk (ai)

)
= 1− zai.

for arbitrary k ∈ {1, . . . , p}. Rewriting the above equation as

(4.1)

p∏
µ=1

(
1− ϕµl (ξ) fµk (ai)

)
= 1− (ξs + ai)ai = −aiξs.

Note that ϕµl (0) = fµl (ai). Since there is a rational function Rµ such that z = Rµ(fµl (z)),

each fµl is one-to-one on ∆ (note that fµl extends continuously on ∆ by [6]). Suppose that

f jl (ai) = ϕjl (0) = 1

fjk(ai)
for some j ∈ {1, . . . , p}, then follows from the same arguments in the

proof of Lemma 4.2, we have
∂ϕjl
∂ξ (0) 6= 0. Hence, for 1 ≤ µ ≤ p, either 1− ϕµl (ξ)fµk (ai) has a zero

of order 1 at ξ = 0 or 1− ϕµl (0)fµk (ai) 6= 0.
Therefore, by comparing the vanishing order of both sides of the above functional equation (4.1)
as ξ → 0, we see that ∃ distinct µ1, . . . , µs ∈ {1, . . . , p} such that

(4.2) fµνl (ai) = ϕµνl (0) =
1

fµνk (ai)
, 1 ≤ ν ≤ s.

Moreover, if s < p, then fµl (ai) 6= 1

fµk (ai)
for µ 6∈ {µ1, . . . , µs}. Similarly, for the chosen arbitrary

k ∈ {1, . . . , p} in above argument, let the ramification index of Rµ at fµk (ai) be s′ for some
1 ≤ s′ ≤ p and ∀ µ, 1 ≤ µ ≤ p (here s′ = 1 means that Rµ is unramified at fµk (ai)). Then one can
write

fµk (z) = ψµk

(
(z − ai)

1
s′
)
∀ z ∈ B1(ai, ε

′)

for some ε′ > 0 and some holomorphic function ψµk defined on B1(0, ε′
1
s′ ). Consider the functional

equation

(4.3)

p∏
µ=1

(
1− fµk (z)fµl (ai)

)
= 1− zai

as above. Similar to above arguments, we compare the vanishing order of both sides of the above
functional equation (4.3) as z → ai, then ∃ distinct j1, . . . , js′ ∈ {1, . . . , p} such that

(4.4) f jνk (ai) =
1

f jνl (ai)
, 1 ≤ ν ≤ s′.

Moreover, if s′ < p, then f jk(ai) 6= 1

fjl (ai)
for j 6∈ {j1, . . . , js′}. Combining (4.2) and (4.4), we see

that s = s′. Since k ∈ {1, . . . , p} is chosen arbitrarily, the ramification index of Rµ at fµk (ai) is
precisely s for 1 ≤ µ, k ≤ p. Hence, we have

|π−1(ai)| · s = p

and thus s|p and |π−1(ai)||p. Moreover, since 2 ≤ s ≤ p, we have

p = |π−1(ai)| · s ≥ 2|π−1(ai)|

so that |π−1(ai)| ≤ p
2 . Since ai is chosen arbitrarily, we have |π−1(ai)| ≤ p

2 for i = 1, . . . ,m. Now,
from the Riemann-Hurwitz formula, we have

2p− 2 =

m∑
i=1

bi =

m∑
i=1

(
p− |π−1(ai)|

)
≥

m∑
i=1

p

2
=
mp

2
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and thus m ≤ 4(p−1)
p < 4, i.e. m ≤ 3. We already know that m ≥ 2 in [8], so we conclude that

2 ≤ m ≤ 3.
�

Remark. We also have the Riemann-Hurwitz formula for the p-sheeted branched covering map π
as follows:

2p− 2 =

m∑
i=1

p

(
1− 1

vi

)
,

where vi · |π−1(ai)| = p for 1 ≤ i ≤ m.

Corollary 4.4. (Global Rigidity of the (2q + 1)-th Root Embedding)
Let p = 2q + 1 be an odd integer, where q ≥ 1 is an integer. Let f : ∆ → ∆p be a holomorphic
isometric embedding with isometric constant k = 1 and n = p, then f is the p-th root embedding
up to reparametrization.

Remark. This corollary has been proven by Ng (cf. Theorem 6.5 in [8]) via another method (cf.
Lemma 6.4 in [8]).

Proof. We shall use notations mentioned in Proposition 4.3. If p ≥ 2 is odd, then since s|p, we
have s = p

|π−1(ai)| ≥ 3 for each i by Proposition 4.3. Therefore, bi = p − |π−1(ai)| ≥ p − p
3 = 2p

3

and thus

2p− 2 =

m∑
i=1

bi ≥ m ·
2p

3
=⇒ m ≤ 3 · p− 1

p
< 3 =⇒ m ≤ 2.

On the other hand, we have m ≥ 2, so we have m = 2. The rest follows from arguments in the
proof of Theorem 6.5 in [8]. �

If m = 2 and p ≥ 2 is an integer, then (v1, v2) = (p, p) and (b1, b2) = (p− 1, p− 1). Now, suppose
that m = 3 and p ≥ 4 is even, then there are three distinct branch points a1, a2, a3 with branching

order b1, b2, b3 respectively. Moreover vi|π−1(ai)| = p and bi = p
(

1− 1
vi

)
for i = 1, 2, 3. Now, we

determine all possible cases of (v1, v2, v3) as in [10], p. 30-31. Note that 2 ≤ v1, v2, v3 ≤ p. Without
loss of generality, assume that v1 ≥ v2 ≥ v3. From the Riemann-Hurwitz formula, we have

−2 = p

(
1− 1

v1
− 1

v2
− 1

v3

)
.

Then

−2 = p

(
1− 1

v1
− 1

v2
− 1

v3

)
≥ p

(
1− 3

v3

)
.

Hence 1− 3
v3
< 0 and thus v3 < 3, but then v3 ≥ 2 so that v3 = 2. Now,

2 = p

(
1

v1
+

1

v2
− 1

2

)
≤ p

(
2

v2
− 1

2

)
.

Then, 2
v2
− 1

2 > 0 so that v2 < 4, i.e. v2 ≤ 3. If v2 = 2, then p = 2v1. Thus, m = 3, (v1, v2, v3) =(
p
2 , 2, 2

)
. If v2 = 3, then 2 = p

(
1
v1
− 1

6

)
. Thus 1

v1
− 1

6 > 0 =⇒ 6 > v1 =⇒ 5 ≥ v1. Now,

(v1, v2, v3) = (v1, 3, 2) with 5 ≥ v1 ≥ 3. If v1 = 3, then 2 = p
(

1
3 −

1
6

)
= p

6 =⇒ p = 12. If v1 = 4,

then 2 = p
(

1
4 −

1
6

)
= p

12 =⇒ p = 24. If v1 = 5, then 2 = p
(

1
5 −

1
6

)
= p

30 =⇒ p = 60.
Thus, we have determined all possibilities of (v1, v2, v3) in case m = 3 and p is even as follows: In
case m = 3, we have

(v1, v2, v3) (b1, b2, b3) degree of π(
p
2 , 2, 2

)
(p− 2, p2 ,

p
2 ) p

(3, 3, 2) (8, 8, 6) 12
(4, 3, 2) (18, 16, 12) 24
(5, 3, 2) (48, 40, 30) 60

Table 1. All possible cases when m = 3
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Proposition 4.5. (Global Rigidity of the 2q-th Root Embedding)
Suppose that p = 2q for some integer q ≥ 2. Let f = (f1, . . . , f2q) : ∆ → ∆2q be a holomorphic
isometric embedding with isometric constant k = 1, sheeting number n = p = 2q. Let π : V → P1

be the 2q-sheeted branched covering, where V ⊂ P1 × (P1)2q is the irreducible projective-algebraic
subvariety which extends the graph of f . Then the number of distinct branch points of π is exactly
2. In particular, f is precisely the 2q-th root embedding up to reparametrizations.

Lemma 4.6. Under the same assumptions in Proposition 4.5, and suppose that π has 3 distinct

branch points a1, a2, a3 ∈ ∂∆. Then, there is a component function f j of f such that f̃ j(∆) ⊂ ∆,

where f̃ = (f̃1, . . . , f̃2q) : ∆→ ∆2q is the continuous mapping such that f̃ |∆ = f .

Proof. Let the ramification index of π at ai be vi for i = 1, 2, 3, then all possible (v1, v2, v3) are
listed in table 1.
We can write aj = eθj for j = 1, 2, 3 and assume that 0 ≤ θ1 < θ2 < θ3 < 2π without loss of
generality. Let A3,1 = {eiθ ∈ ∂∆ | θ ∈ (θ3, θ1 + 2π)}, A1,2 = {eiθ ∈ ∂∆ | θ ∈ (θ1, θ2)} and
A2,3 = {eiθ ∈ ∂∆ | θ ∈ (θ2, θ3)}. Then, by the properness of the holomorphic isometric embedding

f (from [6]), Lemma 3.1 and Lemma 3.2, we can suppose that f̃1(A3,1) ⊂ ∂∆ and f̃µ(A3,1) 6⊂ ∂∆

for 2 ≤ µ ≤ 2q; f̃2q(A1,2) ⊂ ∂∆ and f̃µ(A1,2) 6⊂ ∂∆ for 1 ≤ µ ≤ 2q − 1; f̃2(A2,3) ⊂ ∂∆ and

f̃µ(A2,3) 6⊂ ∂∆ for µ 6= 2.
For all cases listed in table 1, we have v3 = 2. In order to be consistent to above settings, by the

continuity of the map f̃ , we would have |f̃1(a3)| = |f̃2(a3)| = 1, |f̃µ(a3)| < 1 for 3 ≤ µ ≤ 2q by

Lemma 4.2, |f̃2(a2)| = |f̃2q(a2)| = 1 and |f̃1(a1)| = |f̃2q(a1)| = 1. Now, we assume that contrary
that

(4.5) @ j ∈ {1, . . . , 2q} such that f̃ j(∆) ⊂ ∆.

Then, for 3 ≤ µ ≤ 2q − 1, we should have |f̃µ(a2)| = 1 or |f̃µ(a1)| = 1.
In any cases listed in table 1, the number of elements in the set

I1 := {µ ∈ Z | 3 ≤ µ ≤ 2q − 1, |f̃µ(a2)| = 1 or |f̃µ(a1)| = 1}

is at most 2q − 4 because we already have |f̃2(a2)| = |f̃2q(a2)| = 1, |f̃1(a1)| = |f̃2q(a1)| = 1 and
v1, v2 ≤ q = p

2 . In case q = 2 (i.e. p = 2q = 4), the above statements would imply I1 = ∅.

Note that |f̃µ(a3)| < 1 for 3 ≤ µ ≤ 2q − 1, by the assumption 4.5, the set I1 must have precisely
2q − 3 elements. This leads to a contradiction. Hence, we conclude that ∃ j ∈ {1, . . . , 2q} such

that f̃ j(∆) ⊂ ∆. �

Proof of Proposition 4.5. Suppose that π has m distinct branch points. By proposition 4.3, we have
2 ≤ m ≤ 3. Suppose that m = 3, then π has precisely three distinct branch points a1, a2, a3 ∈ ∂∆.
Let the ramification index of π at ai be vi for i = 1, 2, 3, then (v1, v2, v3) is determined by table 1.

By Lemma 4.6, there is a component function f j of f such that f̃ j(∆) ⊂ ∆. Choose any continuous
path γ : [0, 1] → P1 joining 0 ∈ C ⊂ P1 to a point z0 ∈ P1 r {a1, a2, a3, 0}, then γ(0) = 0 and
γ(1) = z0. If z0 = ∞ ∈ P1, we assume that γ(t) ∈ C ∀ t ∈ [0, 1). If z0 6= ∞, we assume that
γ(t) ∈ C ∀ t ∈ [0, 1]. If |f j(z0)| ≥ 1, then since γ is continuous, and f j is continuous along the
path γ by doing analytic continuation along γ, ∃ t0 ∈ (0, 1) such that |f j(γ(t0))| = 1, but then
from the functional equation

2q∏
µ=1

(
1− |fµ(z)|2

)
= 1− |z|2,

we have |γ(t0)| = 1 because γ(t0) ∈ C. But this contradicts to the assumption thatf j(∆) ⊂ ∆. If

z0 = ∞ and |f j(γ(t))| → 1 as t → 1, then ∃ l ∈ {1, . . . , p} such that f jl (∞) = limt→∞ f j(γ(t)).

But then ∃ a rational function Rj : P1 → P1 such that z = Rj(f jl (z)) for 1 ≤ l ≤ p. This implies
that Rj would map some element in ∂∆ to∞ ∈ P1, this contradicts to the fact that Rj(∂∆) ⊂ ∂∆
in [8].
Hence, whenever f j is extended complex-analytically along a continuous path γ : [0, 1] → P1 r
{a1, a2, a3} joining 0 to a point in P1 r {a1, a2, a3, 0}, we have |f j(γ(t))| < 1 ∀ t ∈ [0, 1].
Now, we can construct a branched holomorphic covering map S → P1 which branches over a1, a2, a3

for some Riemann surface S, which is indeed the graph of the multivalued holomorphic function
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extending the graph of f j . But then from the above arguments, the image of any branch of
f j lies completely inside the unit disk ∆. The multivalued holomorphic function on C, which

extends f j , can be realized as a non-constant holomorphic function f̂ j : S → C defined on the

Riemann surface S (since f j is non-constant), but then image of f̂ j would lie inside the union of all

images of different branches of f j , which is known to be lying completely inside ∆, i.e. f̂ j(S) ⊂ ∆.
However, by Maximum Principle (Corollary 2.6 in [2]), there does not exist a non-constant bounded
holomorphic function S → C on S, this leads to a contradiction. Hence the number of distinct
branch points of π cannot be 3, i.e. m 6= 3. Thus m = 2 and the rest follows from arguments in
the proof of Theorem 6.5 in [8]. �

Proof of Theorem 1.1. The case p = 2 follows from [8] already. If p ≥ 3 is odd, the theorem follows
from the corollary 4.4 (also follows from [8]). If p ≥ 4 is even, the theorem follows from Proposition
4.5. �

Remark. We have proven that for any integer p ≥ 2,

HI1(∆,∆p; p) = {ϕ ◦ Fp ◦ ψ | ϕ ∈ Aut(∆p), ψ ∈ Aut(∆)},
where Fp : ∆→ ∆p is the p-th root embedding.
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