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Abstract

This paper concerns the stochastic partial differential equation with multiplicative
noise % = Lu+ uW, where £ is the generator of a symmetric Lévy process X, W is a
Gaussian noise and uI¥ is understood both in the senses of Stratonovich and Skorohod.
The Feynman-Kac type of representations for the solutions and the moments of the
solutions are obtained, and the Holder continuity of the solutions is also studied. As a
byproduct, when ~y(x) is a nonnegative and nonngetive-definite function, a sufficient and
necessary condition for fot fot lr — s|7Poy(X, — X,)drds to be exponentially integrable
is obtained.

1 Introduction

In [39], Walsh developed the theory of stochastic integrals with respect to martingale mea-
sures and used it to study the stochastic partial differential equations (SPDEs) driven by
space-time Gaussian white noise. Dalang in his seminal paper [17] extended the definition
of Wash’s stochastic integral and applied it to solve SPDEs with Gaussian noise white in
time and homogeneously colored in space (white-colored noise). Recently, the theories on
SPDEs with white-colored noise have been extensively developed, and one can refer to, for
instance, [13, 15, 16, 32, 37| and the references therein. For the SPDEs with white-colored
noise, the methods used in the above-mentioned literature relies on the martingale structure
of the noise, and hence cannot be applied to the case when the noise is colored in time. On
the other hand, SPDEs driven by a Gaussian noise which is colored in time and (possibly)
colored in space have attracted more and more attention.

In the present article, we consider the following SPDE in R¢,

%:/JunLuW, t>0,z € RY

u(0,2) = up(z), =z &R

(1.1)

In the above equation, £ is the generator of a Lévy process { Xy, > 0}, uo(w) is a continuous
and bounded function, and the noise W' is a (generalized) Gaussian random field independent
of X with the covariance function given by

E[W (¢, 2)W (s,9)] = |t — s| ™z — y). (1.2)
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where 5y € (0,1) and ~ is a nonnegative and nonnegative-definite (generalized) function. The
product uW in (1.1) is understood either in the Stratonovich sense or in the Skorohod sense.
Throughout the paper, we assume that X is a symmetric Lévy process with characteristic
exponent ¥ (), i.e., Eexp(i£X;) = exp(—tV¥(£)). Note that the symmetry implies that
U(€) is a real-valued nonnegative function. Furthermore, we assume that X has transition
functions denoted by ¢;(x), which also entails that lim¢|_ ¥(§) = oo by Riemann-Lebesgue

lemma.

When L = %A where A is the Laplacian operator, and W is colored in time and white in
space, Hu and Nualart [28| investigated the conditions to obtain a unique mild solution for
(1.1) in the Skorohod sense, and obtained the Feynman-Kac formula for the moments of the
solution. When £ = %A, and W is a fractional white noise with Hurst parameters H, € (%, 1)
in time and (Hy, ..., Hy) € (1,1) in space, i.e., By = 2 — 2Hy and y(z) = [[0, |=:|*2,
Hu et al. [30] obtained a Feynman-Kac formula for a weak solution under the condition
2Hy + Zle H; > d + 1 for the SPDE in the Stratonovich sense. This result was extended
to the case £ = —(—A)%? in Chen et al. [11]. A recent paper [27] by Hu et al. studied
(1.1) in both senses when £ = %A and W is a general Gaussian noise using the techniques of
Malliavin calculus and Fourier analysis, obtained the Feynman-Kac formulas for the solutions
and the moments of the solutions, and investigated Holder continuity of the Feynman-Kac
functional and the intermittency of the solutions.

There has been fruitful literature on (1.1) in the sense of Skorohod, especially when T
is white in time. For instance, when £ = %A, (1.1) is the well-known parabolic Anderson
model ([1]) and has been extensively investigated in, for example, [6, 7, 8, 10, 35]. Foondun
and Khoshnevisan [20, 21] studied the general nonlinear SPDEs. When W is colored both
in time and in space, L is a fractional Laplacian, the intermittency property of (1.1) was
investigated in Balan and Conus [4, 5|.

The main purpose of the current paper is to study (1.1) in both senses of Stratonovich and
Skorohod under the assumptions Hypothesis (I) in Section 3 and Hypothesis (II) in Section
5.1 respectively. Under Hypothesis (I), we will obtain Feynman-Kac type of representations
for a mild solution to (1.1) in the Stratonovich sense and for the moments of the solution
(Theorem 4.6 and Theorem 4.7). Under Hypothesis (II), we will show that the mild solution
to (1.1) in the Skorohod sense exists uniquely, and obtain the Feynman-Kac formula for
the moments of the solution (Theorem 5.3 and Theorem 5.5). Furthermore, under stronger
conditions, we can get Holder continuity of the solutions in both senses (Theorem 4.11 and
Theorem 5.9). As a byproduct, we show that Hypothesis (I) is a sufficient and necessary
condition for the Hamiltonian fot fot |r — 8| 7%~ (X, — X,)drds to be exponentially integrable
(Proposition 3.2 and Theorem 3.3).

There are two key ingredients to prove the main result Theorem 4.6 for the Stratonovich
case. One is to obtain the exponential integrability of fg fot r —s|7Poy(X, — X,)drds. When
X is a Brownian motion, Le Gall’s moment method ([34]) was applied in [30] to get the
exponential integrability, and when X is a symmetric a-stable process, the techniques from
large deviation were employed in [11, 12]. However, in the current paper, we cannot apply
directly either of the two approaches due to the lacks of the self-similarity of the Lévy
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process X and the homogeneity of the spatial kernel function v(z). Instead, to get the desired
exponential integrability, we estimate the moments of fot fot |r — s|Poy(X, — X,)drds directly
using Fourier analysis inspired by [27] and the techniques for the computation of moments
used in [29]. The other key ingredient is to justify that the Feynman-Kac representation
(4.10) is a mild solution to (1.1) in the sense of Definition 4.5. To this goal, we will apply
the Malliavin calculus and follow the “standard” approach used in [28, 30, 11, 27].

We get the existence of the solution to (1.1) in the Stratonovich sense by finding its
Feynman-Kac representation directly, while in this article we do not address its uniqueness
which will be our future work. A possible “probabilistic” treatment that was used in [3]
is to express the Duhamel solution as a sum of multiple Stratonovich integrals, and then
investigate its relationship (the Hu-Meyer formula [31]) with the Wiener chaos expansion.
Another approach is to consider (1.1) pathwisely as a “deterministic” equation. Hu et al.
[27] obtained the existence and uniqueness of (1.1) in the Stratonovich sense when £ = A
and W is a general Gaussian noise, by linking it to a general pathwise equation for which the
authors obtained the existence and uniqueness in the framework of weighted Besov spaces.
For general SPDEs, one can refer to [9, 19, 23, 24| for the rough path treatment. Recently,
Deya [18| applied Hairer’s regularity structures theory ([25]) to investigate a nonlinear heat
equation driven by a space-time fractional noise.

For (1.1) in the Skorohod sense, we obtain the existence and uniqueness result by studying
the chaos expansion of the solution as has been done in |28, 5, 27|. We apply the approxima-
tion method initiated in [28] to get the Feynman-Kac type of representation for the moments
of the solution. One possibly can also obtain the representation by directly computing the
expectations of the products of Wiener chaoses as in [14].

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries on
the Gaussian noise and Malliavin calculus. In Section 3, we provide a sufficient and necessary
condition for the Hamiltonian fot f; |r — 8|70y (X, — X)drds to be exponentially integrable.
In Section 4, the Feynman-Kac formula for a mild solution to (1.1) in the Stratonovich sense
is obtained, the Feynman-Kac formula for the moments of the solution is provided, and the
Holder continuity of the solution is studied. Finally, in Section 5, we obtain the existence
and uniqueness of the mild solution in the Skorohod sense under some condition, find the
Feynman-Kac formula for the moments, and investigate the Holder continuity of the solution.

2 Preliminaries

In this section, we introduce the stochastic integral with respect to the noise W and recall
some material from Malliavin calculus which will be used.

Let C5°(Ry x R?) be the space of smooth functions on Ry x R? with compact supports,
and the Hilbert space H be the completion of C§°(R, x R?) endowed with the inner product

o= [ [ elsaottnle=s| oo - y)dsitdady, 2.)
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where Sy € (0,1) and v is a nonnegative and nonnegative-definite function. In a complete
probability space (2, F, P), we define an isonormal Gaussian process (see, e.g., [36, Definition
1.1.1]) W = {W(h),h € H} with the covariance function given by

EW (@)W ()] = (&, ¥)n- (2.2)

In this paper, we will also use the following stochastic integral to denote W (),

::AMA;M&MW%%AM-

Denote S(RY) the Schwartz space of rapidly decreasing functions and let S’'(R9) denote its
dual space of tempered distributions. Let ® or F be the Fourier transform of ¢ € S'(R%):

o) = Fp(&) = /Rd e %% p(z)dx.

By the Bochner-Schwartz theorem [22, Theorem 3|, the spectral measure p of the process W

defined by

1 ~
| @i =5 [ et voes@?) (2.3

exists and is tempered (meaning that there exists p > 1 such that [,,(1+[£]*)7Pu(d§) < o).
The inner product in (2.1) now can be represented by:

(0, 9)n A%Adsg Ot — s| 7 p(dé)dsdt, Vo, € S(RY), (2.4)

where the Fourier transform is with respect to the space variable only, and Z is the complex
conjugate of z.

Throughout the paper, we assume that the covariance function v(x) possesses the fol-
lowing properties .

(1) ~(x) is locally integrable.

(2) The Fourier transform 7(¢) is a nonnegative measurable function, and hence p(d§) =
~(€)d¢ is absolutely continuous with respect to the Lebesgue measure.

(3) y(x) : RY — [0, 00] is a continuous function, where [0, 00] is the usual one-point com-
pactification of [0, c0).

(4) y(x) < oo if and only if z 20 OR 7 € L®(R?) and ~(x) < oo when z # 0 .

The function 7(z) with the above four properties covers a number of kernels such as the
Riesz kernel |z|~? with 8 € (0,d), the Cauchy Kernel H?Zl(a:? + ¢)~1, the Poisson kernel



(|m|2 +¢)~(@+1/2 " and the Ornstein-Uhlenbeck kernel e=** with o € (0, 2], for some constant
€ (0, 00).

Properties (1) and (2) make the spatial kernel ~(z) a function of positive type (|33,
Definition 5.1|). Therefore by [33, Lemma 5.6], for any two Borel probability measures
v1(dzx) and vo(dz), the following identity holds,

/Rd /]Rd Y(x — y)vi(de)s(dy) = #/}Rd N(&) Fr (&) Furo(€)dE, (2.5)

where F;(§ f]Rd ~i%&ey,(dz) is the Fourier transform of v; for i = 1, 2. The above formula,
as in [5, Appendlx] for instance, can be generalized to v;(dz) = f;(x)dz with f; belonging
to the space LL(R?Y) of integrable complex-valued functions for i = 1,2, with 5(dy) on the
left-hand side being replaced by its complex conjugate.

If we let v5(dz) be the Dirac delta measure do(x)dx, then we actually have

1 _ ! y
| ) = o [ S@Fn© = 5o [ Faoua. @0

where v (dz) is any Borel probability measure or the measure of the form v, (dz) = fi(z)dz
with f; € LE(RY). This allows us to have the following lemma.

Lemma 2.1. For a d-dimensional random variable Y, we have

B0 = e |, B L] tde).

Especially, for any a € R, we have

1 ) 1 )

Now we briefly recall some useful knowledge in Malliavin calculus. The reader is referred
o0 [36] for more details. Let D be the Malliavin derivative, which is an operator mapping
from the Sobolev space D*? C L?(Q2) endowed with the norm||F||; 2 = \/E[F?] + E[|| DF|3,]
to L2(2;H). The divergence operator 4 is defined as the the dual operator of D by the
duality E[Fd(u)] = E[(DF,u)y] for all F € D" and u € L*(€;H) in the domain of §. Note
that when u € H,d(u) = W(u), and that the operator ¢ is also called the Skorohod integral
since it coincides with the Skorohod integral in the case of Brownian motion. When F' € D2
and h € H, we have

E[y(X; +a)] =

3(Fh) = F o 8(h), (2.7)

where ¢ means the wick product. For u in the domain of d, we also denote d(u) by
I Jgau(s,y)We(ds,dy) in this article. The following two formulas will be used in the

roofs.
g FW(h) = 6(Fh)+ (DF, h)4, (2.8)
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for all F € DY2 and h € H.
E[FW (h)W (g)] = E [(D*F,h ® g)ys2] + E[F|(h, g)u, (2.9)

for all F € D*2 hecH,gcH.

The Wiener chaos expansion has been used in, e.g., [28, 4], to deal with (1.1) in the
Skorohod sense. Here we recall some basic facts. Let F' be a square integrable random
variable measurable with respect to the o-algebra generated by W. Then F' has the chaos

expansion
o0

F=E[F]+)_F,

n=1

where F), belongs to the n-th Wiener chaos space H,. Moreover, F,, = I,(f,) for some
fn € H®" and the expansion is unique if we require that all f,’s are symmetric in its n
variables. Here I, : H®" — H,, is the multiple Wiener integral. We have the following
isometry

E(| 1 (f)l*] = nlll full3een, (2.10)

where ]?;L is the symmetrization of f,.

3 On the exponential integrability

In this section, we will show that Hypothesis (I) below is a sufficient and necessary condition
such that for all A\,¢ > 0

t ot
E {exp ()\/ / lr — s|7Py(X, — Xs)drds>
0 Jo

Hypothesis (I). The spectral measure p satisfies

< 0Q.

1
/Rd 1+ (\y(g))l_goﬂ(dﬁ) < 00.

Remark 3.1. When £ = —(—A)*/2 for a € (0,2] and () is of one of the forms szl |19,
|z|=# and &o(x), Hypothesis (I) then coincides with the conditions in [29, 11].

First, we prove that Hypothesis (I) is a necessary condition.

Proposition 3.2.
t t
E/ / Ir — S!fﬁofy(XT — X)drds < oo, forallt >0
0o Jo

if and only if p satisfies Hypothesis (I).



Proof. By Lemma 2.6,

t pt B 1 ¢ pt B o
/0 /0 lr — s| PR [y(X, — X,)] drds = —(27r)d/0 /0 r — 5|70 /Rde | |\I’(g)u(df)drds,

and the result follows from Fubini’s theorem and Lemma 3.7. =

The following theorem is the main result in this section.

Theorem 3.3. Let the measure p satisfy Hypothesis (1), then for all t, A > 0,

t t
E [exp ()\/ / Ir — s| 7Py (X, — Xstdr)} < 0.
0 Jo

Remark 3.4. The above theorem, together with Proposition 3.2, actually declares the equiv-
alence between the integrability and the exponential integrability of f(f fg Ir — s| 7Py (X, —
Xs)dsdr. This surprising result is mainly a consequence of the Markovian property of the
Lévy process X . A result in the same flavor for fg f(Bs)ds where B is a standard Brownian
motion and f is a positive measurable function has been discovered by Khas’minskii [26] (see,

e.g., [38, Lemma 2.1]).

Proof. Note that [) ['|r — s|Poy(X, — X,)dsdr = 2 [ [T |r — s|%~y(X, — X,)dsdr, and
equivalently we will study the exponential integrability of fot Jo r = s|7Py (X, — X,)dsdr.
Inspired by the method in the proof of [29, Theorem 1|, we estimate the n-th moments as
follows.

t r n n
E (/ / Ir — s|7y(X, — Xs)dsdr> = / E H Irj — 557"y (X,, — X,,) | dsdr
0 Jo [O<s<r<t]™

j=1

:n!/ E|[]lr— sl (X, — X,,) | dsdr
[0<s<r<t]*N[0<ri <rg:<rp<t] j=1

n

[T1r = nil B (X, = X,,,)] dsdr.

<n! /
[0<s<r<t]"N[0<ry<ry-<rn<t] ;I

The last inequality, where 7; is the point in the set {r;_1,s;,s;+1,...,$,} which is clos-
est to r; from the left, holds since E [’y(er — ij)] =E [”Y(er — X, + X, — ij)] <
E [fy(er — an)} by the independent increment property of X and Lemma 3.9. Note that
dsdr actually means ds; ...ds,dr;y ...dr, in the above last three integrals. Throughout the
article, we will take this kind of abuse of the notation for simpler exposition.

Fix the points m < --- < 1, we can decompose the set [0 < s <7 < t]"N[0 <
1 <7re--- <71, <t]into (2n — 1)!! disjoint subsets depending on which interval the s;’s are
placed in. More precisely, s; must be in (0, ), while s5 could be in (0, s1), (s1,71) or (1, 72).
Similarly, there are (25 — 1) choices to place s;. Over each subset, we denote the integral by



IU = / H |ZU(]) — %o(j | BOE [ (XZG(]') - XZU(]-)_1):| d27
[0<z1 < <22n<t

where o(; - < O are n dlstlnct elements in the set {2,3,...,2n}. Hence

K//Ir—s| Py (X, — X)dsdr)} n‘x[sumofthe (2n—1)!! termsofl/:| (3.1)

Next, for fixed n, we will provide a uniform upper bound for all I} s. Noting that X, . —
d
X =X

Zo)1 Sy ()1 and letting y; = 2; — z;_1, we have

Hly [ TPEN(X,,,))]dy

I, = /
0<y1+y2+-+y2n<t,0<yi1,- y2n<t]

tn
< H I B (X, )ldy

[0<y14y2+-+yn<t,0<y1, ,Yn <t

n

t" B
Tl [0<z1 < <zn <t] H 2 = 2l BOEH(XZJ‘*ZJA)MZ
! 1< <an<t] joy
tn n
= / [ 1z = 2| Poemm2-0¥ @) y(de) . (3.2)
P[0z <<z <t] JRM S
Note that
/ / 1112 = 2zl e G080 u(dg) dz
[0<z1 <+ <zn <] Rnd -1
/n A ) H S sj"ll(ﬁj)u(dg)ds, (3.3)
where

Q?:{(31,...,3n)€[O,oo)":isjgt}. (3.4)

For fixed large N, denote

T /nw W’“df)’ and my = p([J¢] < N). (3.5)

Thus, by (3.1), (3.2), (3.3) and Proposition 3.5, we have

E [()\ /Ot /Ot lr — s| Py (X, — Xs)dsdr) n}

n _ Bt~ k . o
<(2n — 1)!!A”tnkzzo (k> (Fr(<kl(1 _ﬁﬁ); " 1)) mk [Agen]" " . (3.6)




Now, for fixed ¢t and A, we can choose N sufficiently large such that 4Ag\tey < 1. Conse-

quently;,
t ot
E {exp <)\/ / Ir — s|7Py(X, — Xs)dsdr)]
0 Jo

g (20— D! z”: (Z) (T(1 = Boyt' ) T

. nl 2= \k) TR0~ 5) + 1)

(T(1 - 50)t1_50)k k R v (20 =D (1 .
<TGy +1) ™ [Aoen] nZ:kA t T(k) [Aoen]

(T(1 — Byt =)
T(k(1— Bo) + 1)

o = (D(1 — Bo)t' )" ‘
1 —4)Agtey ;; L(k(1 = Bo) +1) (4Xtma )" < oo,

M

n

M)

k

M

mh [Aoen] ™" [N Agten]”
n=~k

b
I

0

where in the second inequality we used the estimate M( ) < 2™ . 2" = 4™ The proof is
concluded. [

The following proposition, which plays a key role in this article, is a generalized version
of Lemma 3.3 in [27].

Proposition 3.5. For 5, € [0,1), assume

1
/Rd 1+ (\1/(5))1_50M(d5) < 00

Then there exists a positive constant Ay depending on By only such that for all N > 0,

T o (1= Bo)t'=5 .
/?/Rndjl;[lrjb’e P (&5) dédr<2(> 1_0ﬁ0) )) ’;V[Aof?N] k)

where ey and my are given by (3.5), and Q4 is given by (3.4).

Proof. The proof essentially follows the approach used in the proof of [27, Lemma 3.3].

First note that the assumption implies that A}im ey = 0, and since p(d§) is a tempered
—00

measure, then my < oo for all N > 0. For a subset S of {1,2,...,n}, we denote its



complement by 5S¢ i.e., S¢:={1,2,...,n}\S.
/ / Hrj_ﬁoe_rjq’(fj)dru(df)
Rnd n ,7

:/Rnd/nnr [Tie 1< + Ljey i) drp(d€)
-2 / /H e igeny [ e g 1o wdrp(de)

Sc{1,2,..., t €S jeSe
< > / / L1 tieneny T ry e Tgy o mdrpn(ds).
Sc{1,2,..., QF 1es jese

Note that QF C QF x QY where Qf = {(r;,i € I) : r; > 0, djerti <t} forany I C

{1,2,...,n}. Therefore,

L. TT s %" dr (i)

t g=1

= Z /R d /QS Qs Hrl RIETEY H e e Ljjg; > mydr pu(dS).

Sc{1,2,...n} les jese

By Lemma 3.11, we have

80 (1= fo)tt=)"
/H o |S|(1—60)+1)

On the other hand, there exists Ay > 0 depending on [, only such that

e g < / E) gy
/szsc H [0,4)!5°]

¢ jese jESC
<H/ Y& gr < HAO £))” Ltbo.
JjeSe JES°e

where the last equality holds since f(f r—Poe=ar gy — q~1+bo foat s Poe=sds < g1 1P fooo

10
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Therefore,

/ / Hr]ﬁoe*”\p(@)dru(df)
Rrd SOy S0y

S

1—5 tl 50 S|
< 2 /R"d ((\(SI 1—050 HI“WN] T Ao(w (&) Iyg; oyl dg)

Sc{1,2,...,n} les jese

_ (0= Bo)t" ™) s o1 s
N Z F(|5|(1—Bo)+1)AOS iy

Sc{1,2,...,
(1= Bo)t' BO)
_ Anfk k n—k
Z ( ) 1 . ﬁO) ) 0o ™MNEN
and the proof is concluded. [

Remark 3.6. If we assume the following stronger condition,

1
/Rd 1+ (\I}(g))l—ﬁofgoﬂ(df) < 00

for some g9 € (0,1 — o), we may prove that for all A\;t > 0

E [Aew (

without involving Proposition 3.5.

t ot p
1
/ Ir — s|7y(X, — X,)dsdr )] < oo, whenp < 1 : (3.7)
0 Jo

Now we estimate the integral over R™ in the last term of (3.2) first. By (5.2) and Lemma
3.10, there exists C' > 0 depending only on 1 — By — ¢ and pu(d§), such that

n

13
I, <C"—

n!

H |25 = zj|” o H[ (2 = 2j-1) Tz,

[0<z1 <22 <Z71,<t]] 1

Denote 7 = (11,...,7,) and |T| =>_"_ ;. Then

7=1
ﬁ[l + (Zj _ Zj—l 1+Bo+eo _ Z H TJ( 1+Bo+e0) _ Z J, = Z Z J..
j=1 7€{0,1}" j=1 T€{0,1}" m=0 |r|=m

When |T| =m and t > 1, by Lemma 3.11, we have

n

/ H | |_ﬁ0(] 5 < Cntmso—l-(n—m)(l—ﬁo) - C«ntn(l—ﬁo)
Zj — Zj-1 a2 < < )
[0<z1 <22 <zn <t] j=1 ’ ’ F<m50 + (7’L - m)(l - /60) + 1) F(TLEO + 1)

noting that g < 1 — [y.
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Note that there are (") J.’s for |7| = m, and hence

(2=Bo) ./ 1 $7(2—5o) 1
I, <Cm - < 1) P — 3.8
- n! 220 (m) L(neg+1) — n! (n+1) (neo/3)neo (3:8)

where in the last step we use the properties (") < 2" and T'(z + 1) > (2/3)".
Combining (3.1) and (3.8), we have, for all A >0 and t > 0,

: K/ot /ot = sl (X - Xs>d8‘”) } < (C#R)" (nh) e,

where C' > 0 depends on By,co and u(dE), and then (3.7) follows.

Lemma 3.7. There exist positive constants C7 and Cy depending on [y only such that

1 ! ! 1
- —Bo ,—s —Bo ,—sx 1-8
1+ x1=5o /0 s e ds < /(; s e ds < 1 +—JZ‘1_BU (Cl + Cgt 0), Va>0.

Similarly, there exist positive constants Dy and Dy depending on [y only such that

e ﬁo// —bBo g Tdrds</ / |T S| Bo=Ir— slmdrd5< (D1t+D2t —ﬁo) Vao>0.
x

Proof. An change of variable implies that

t tx
/ s Poesds = xﬂo_l/ r=Boe " dr.
0 0

The first inequality is a consequence of the following observation. When = > 1,

t tx [e'e]
:1:60_1/ r=Boe"dy < xﬁo_l/ r~Boe"dr < xﬁo_l/ T_ﬁoe_rdr,
0 0 0

and when 0 <z < 1,
t t t
/ she3ds < / s P57 s < / s Pods.
0 0 0

The second estimate follows from the first one and the following equality

t t t T t T
/ / r — 5| Poeelr=sldsdr = 2/ / (r — s) e 2= dsdr = 2/ / sTPe " dsdr. m
0 Jo 0 Jo 0 Jo

Remark 3.8. Using similar approach in the above proof, we can show that the two inequal-
ities hold for

t
sup/ sThelstalegs  and Sup/ / |r — 5| e Ir=stalzgrgs
0

a€eR a€eR



as well. It suffices to show that the upper bounds hold. We prove the first one as an illustra-

tion. When 0 <z < 1,
t t
/ g Pog—lstalz g < / S_ﬁods;
0 0

t e’}
/ s Poglstalegs < xﬁo_l/ s Poelstazlgs < Cgpfo—1
0 0

when x > 1,

where

oo 1 00 1 00
C = sup/ s Poglstazlgy < / s_ﬂ0d3+sup/ e~lstarlgs < / s_ﬁoder/ e Iflds < o0,
a€R Jo 0 acR J1 0 -0

and the upper bound is obtained.

Lemma 3.9. E[y(X; + a)] < E[y(X})], for all a € R%.

Proof. By Lemma 2.1,

! e~iagTtYE) —tW (¢
(2m)d /Rd 3 u(de) < ) /Rd Ju(de) = Ely(X;)]. m

Lemma 3.10. Suppose

E[y(X¢+a)] =

1
L. (gt ) < oo

for some o > 0, then there exists a constant C' > 0 depending on u(d€) and « only, such
that

/ e~ ™ u(de) < C(1 4 27%), Yz > 0.
R4

Proof. Since lim¢|_oc ¥(§) = 00, we can choose M > 0 such that W(§) > 1 when [{] > M.

Clearly
—:B\Il(.ﬁ d o —mlII d —m\IJ d
/Rd Hd) = /[§|<M|] ( O /[§|>M] ( ¢

The first integral on the right-hand side is bounded by u([|¢| < M]) which is finite. For the
second integral, note that y®e™¥ is uniformly bounded for all y > 0, and hence there exists
a constant C' depending on « only such that

e Op(de) < 2= (W (E))p(d€) < x° _ ¢ o,
/“€>M1 H = /ns>M1 W) = /[5|>M11+(‘I’(£))“u( o =

Lemma 3.11. Suppose o; € (—1,1),i=1,...,n and let « = oy + - -+ + «,. Then

/ ﬁ(T —riz)* dry .. dry, = I, Do + D)t
[0<r < <rn<t] ;] Na+n+1)

where T'(z) = [[7t"te~dt is the Gamma function.
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Proof. The result follows from a direct computation of the iterated integral with respect to

TnyTn1,--.,r1 orderly. The properties F(:E +1) = 2['(x) and B(z,y) = F((Qigj’)) are used in

the computation, where B(z,y) fo (i t)¥~1dt for x,y > 0 is the beta function. m

4 Stratonovich equation

In the this section, we will use the approximation method (|28, 30, 11, 27]) to study (1.1) in
the Stratonovich sense.

4.1 Definition of f(f Jga 00(X, — y)W (dr, dy)
Denote gs(t) := 51jo4)(t) for ¢ > 0 and p.(x) = &p(2) for € R?, where p(z) € C5°(RY) is

a symmetric probability density function and its Fourier transform p(¢) > 0 for all £ € R
We also have that for all £ € R? lim, ,, p-(€) = 1.

Let .
70 (r,y) = / gs(t — s —1)p (X7 — y)ds - Ij (7). (4.1)
0

Formal computations suggest that

lim//@aéry (dr,dy) = //éonr— W (dr,dy),
£,010 Rd

where d(z) is the Dirac delta function. This formal derivation is validated by the following
theorem.

Theorem 4.1. Let the measure p satisfy Hypothesis (1), then W(@fg) is well-defined a.s.
and forms a Cauchy sequence in L* when (g,0) — 0 with the limit denoted by

WX~ og() = [ [ o6, — o)W ar. ).
Furthermore, W (0o(X{. — ) j04(-)) s Gaussian distributed conditional on X with variance
Var [W (8o(X]. — ) joq(-)|X] = / / Ir — s|7%~y(X, — X,)dsdr. (4.2)
Proof. Let €;,6;,i = 1,2 be positive numbers, then by (2.1)

(BFL0, @522y / / Per (XE = y1)pey (X2, — 1) v (31 — %2)
[Ot]4 R2d

g5, (t — 81— 11)gs,(t — So — 7o) |r1 — 12|~ Bo dyy dysdridradsy dss. (4.3)

14



Hence
(D5, 7274 > 0.

tax

By [30, Lemma A.3|, there exists a positive constant C' depending on f, only, such that

/ 2961<t_31 —7°1)952(t—82—7’2)]1”1 —7’2|7’80d7”1d7”2 SC‘Sl—SQ‘iﬁo. (44)
[0,¢]
Therefore,
<q)§1x§17 (I)EZ 52 H < C/ / p51 )psz (X y2)|51 - 52\’ﬁ°dy1dyzd51d52
[0 t]2 R2d
o o T X5 = ) OF (o (X5, = ) (€l = sal ()i,
0,62 JR
/ / D=1 (§)De, (§) exp ( — i€ (X, — 52))|S1 — 59| & p(d€)dsids,
[0,¢]2 J R4
< Cley,e )/ |s1 — 59| P dsydsy < oc0. (4.5)
[0,¢]?

The second equality above holds because F (¢(- —a))(§) = exp(—ia - f)gg(ﬁ) and that

we can apply the Parseval’s identity since [p, Do, (§)Pey (O)(dE) < [ Dey (&) |Ipell1pp(d€) =
Jga Doy ()y(2)dr < oo. Hence, for €, > 0, <I>‘“S € H as. and W(P; x) is well-defined a.s..

Now we show that W (®7 %) forms a Cauchy sequence in L? when (g,8) — 0, for which

it suffices to show that E[(@ilﬁl, D% 202 ] converges as (g1,01) and (g3, 05) tend to zero. By
the formula (2.4) for the inner product using Fourier transforms,

<(I)81 ,01 (I)Ez 52 _

tx >

ps1 - )) <€>~F (p52(X§2 - )) (5)

951 t — 81 — Tl)g(;Q(t — S9 — 7"2)|7”1 — 7“2| Bo (df)d’l“ld’l"gdsldSQ

~ 2 /o,: /desl VD=, (&) exp (— i€ - (X, — X,))

g5, (t — 51— 11)gs, (t — S92 — 19|11 — 12|~ Bo w(d€)dridrads,ds,.

[0,¢]* JRY

By Fubini’s theorem and thanks to (4.4) and Proposition 3.2, we can apply the dominated
convergence theorem and get that

£ € 1 . —
EKCI)tlzél? (I) Y 62> ] —>(27r)d /0 ) /]Rd EeXp (_25 ’ (Xs1 - st)) |81 - 82| Bolu(dg)dsld52
it
= / ) |s1 — 52\’6°E7(X52 — X, )dsyds,y (4.6)
[0,2]

as (e1,601) and (eq,02) go to zero.
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Finally, conditional on X, W(@iz) is Gaussian and hence the limit (in probability)
W(6o(XF.. —-)) is also Gaussian. To show the formula (4.2) for conditional variance, it
suffices to show that

(D50, B70) 3y — |51 — so| 7P~ (X,, — X, )ds1dsy (4.7)

t,x)
(0,42

in L'(Q) as (g,0) — 0. Noting that, by Lemma 4.2, the inside integral in (4.3)

/[]/dea pa(X _y2)7(y1_y2)
0,2 JR2

gs(t —s1 —1r1)gs(t — s — 1o)|ry — 2|~ —Po dyydyodridry

converges to |s; — so| Py (X,, — X,,) a.s. as (g,0) goes to zero, because of (4.6) we can
apply Scheffé’s lemma to get that the convergence is also in L'(2 x [0,¢]%, P x m) where m
is the Lebesgue measure on [0,¢]?. Consequently it follows that the convergence (4.7) holds
in LY(Q). =

Lemma 4.2. When a —b # 0,

lim [ pe(a—y)p(b— y2)7(y1 — y2)dyrdyz = v(a = b).
e—0 R2d
Proof. The change of variables x; = y; —¥s, T2 = yo implies that fRQd pe(a—y1)pe(b—y2)y(y1—

y2)dy1dy2 fde Pa a— T — IQ)pa(b - $2)7(5E1)d$1d$2 = fRd(ps * Pa)(a —b— $1)7(5E1)d$1 =
fRd (p * p)(2=2= =2=%)y(z)dx. Since the convolution p * p is also a smooth probability density
functlon with Compact support, it suffices to prove the following result. [

Lemma 4.3. Let f.(z) = sidf(f), where f € C(RY) is a symmetric probability density

function. Then we have

lim [ fo(a—x)y(z)dz = ~(a), Va #0.

e—0 Rd

Proof. Suppose that the support of the function f is inside [ M, M]. Let the positive number
¢ be sufficiently small such that () is continuous on [a — Me,a + Me|. By the mean value
theorem, we have

fela — x)y(z)de = / fela — x)y(z)dz

R4 [a—Me,a+Me]

=(ae) [ fola - 2)de = 5(a.),
[a—Me,a+Me]

where a. € [a — Me,a + Me]. The result follows if we let € go to zero. -
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4.2 Feynman-Kac formula

For positive numbers € and d, define

Wty [ [ anle=omla = pWids.dy) = Wieid) (1.9

where
G705, y) = gt — s)pe(x — y) - Toz(5).

Then We9(t, z) exists in the classical sense and it is an approximation of W (t,z). Taking

advantage of W*(t, x), we can define the integral fOT Jpav(t, )W (dt,dz) in the Stratonovich
sense as follows.

Definition 4.4. Suppose that v = {v(t,z),t > 0,2 € R%} is a random field satisfying

T
/ |v(t, z)|dzdt < 0o, a.s.,
0o Jre

and that the limit in probability hm fo Jra v(t ,2)WeO(t, z)dxdt exists. The we denote the

limat by
T
/ / v(t, )W (dt,dx) := hm/ / (t, 2)WeS(t, z)dxdt.
0o Jre €040 Rd

and call it Stratonovich integral.
Let F; be the o-algebra generated by {W(s,z),0 < s < t,z € R?}, and we say that a

random field { F(t,z),t > 0,z € R} is adapted if {F'(¢,x),t > 0} is adapted to the filtration
{Fi}i>0 for all x € R%. Denote the convolution between the function ¢; and f by Q.f, i.e

Q@)= [ ale =)y

A mild solution to (1.1) in the Stratonovich sense is defined as follows.

Definition 4.5. An adapted random field u = {u(t,x),t > 0,2 € R} is a mild solution to
(1.1) with initial condition ug € Cy(R?), if for all t > 0 and x € R? the following integral
equation holds

u(t,x) = Quuo(x / /d Gi—s(z — y)u(s,y)W(ds, dy), (4.9)
R
where the stochastic integral is in the Stratonovich sense of Definition 4.4.

The following theorem is the main result in this section.
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Theorem 4.6. Let the measure v satisfy Hypothesis (I). Then

t
u(t,r) = EX [uo(Xf) exp </ do( X[, —y)W(dr, dy))} (4.10)
0 JRd
is well-defined and it is a mild solution to (1.1) in the Stratonovich sense.

Proof. Consider the following approximation of (1.1)

(4.11)

usd(t, x) = LusS(t, x) + ud (t, o)W (t, x),
uf°(0, ) = up(x).

By the classical Feynman-Kac formula,
t
us’é(t,x) =EX [uo(Xf) exp (/ Wg’é(r, Xf_,)dr)} =FEX [uo(Xf) exp (W(@fg))]
0

where CIDZ;S is defined in (4.1) and the last equality follows from the stochastic Fubini’s
theorem, is a mild solution to (4.11), i.e.,

u(t, ) = Quuo(x) + /0 /R (v - y)u (s, y) W (s,y)dsdy. (4.12)

To prove the result, it suffices to show that as (g,0) tends to zero, both sides of (4.12)
converge respectively in probability to those of (4.9) with u(¢,z) given in (4.10). We split
the proof in two steps for easier interpretation.

Step 1. First, we show that u®°(¢,r) — u(t,x) in L for all p > 1. By Theorem 4.1, as
(e,6) — 0, W((I)fg) converges to W (d(X/7_. — -)Ijo4(-)) in probability, and hence it suffices
to show that

sup  sup  E[ju®(t,z)[] < co.
€,6>0tc[0,T],xcR4

Note that W(@fi) is Gaussian conditional on X, and hence
5 p’ 8112
E[exp (pW(070))| = E {exp (5||<1>i:z||ﬂ)} -

By (2.4) and (4.4), in a similar way of proving (4.5), we can show that there exists a positive
constant C' depending on Sy only such that

5
e <c [

[0,£]?

[ 60 explit - (X, = X))l = o Pota)drds

18



Therefore,
Ellozi) <c / [ (7:6))" Eexo zz@ X, — X))
[Ot]Qn Rnd

|TJ — 5" % HN (dg;)dr;ds;

7j=1

/Ot]% /RMEGXP Zga Xoy = X)) [T Iy = s517% T wd&;)drjds;

j=1 j=1

=E KC/O /0 Ir — s| oy (X, — Xs)drds) n} .

The second inequality above holds because supgega pe(§) < 1 and Eexp(—i Y 7 & - (X, —
X,,)) is a positive real number. Thus there is constant C' > 0 depending on 3 only such
that

2 2 t t
sp s B fewp (105205, )] <8 [ (5 [ [l st 00— xaras) .
£,6>0 te[0,T),zeRd 2 ’ 2 .Jo Jo

where the term on the right-hand side is finite by Theorem 3.3.
Step 2. Now by Definition 4.4, it suffices to show that

H E: ||

= /o /]Rd q—s(x — y)(ua,é(syy) — “(37y>)W€’6(8,y)dsdy

converges in L? to zero. Denoting v5) = u™°(s,y) — u(s,y) and noting that Wed(s,y) =
W(¢=?) we have

5y

IEE / /dqt 51 :L’ yl qt— 52($ yQ)E[ S1 Y1 52 y2W( zi(fyl)W( 82, yz)] dyldy2d81d82
0,t]2 JRR2

Use the following notations V,’ f Weo(r, Xp )dr = W(®;2(X)), Vil(X) =
fO fRd 50 Xzér—r - )W(dT7 dy) - W( ( ) ( )) and

2
A ry s ) = [ L wo(XT, +5) [exp (Vi () = oxp (Va0 (X))

j=1
where X! and X? are two independent copies of X. Then

E[vs,é Us,é W( £,0 )W( €,0 )} :EXl,XQ [EW [A€’6(81,y1,82,y2)W< £,0 )W( €,0 )H

S1,Y1 7 S2,Y2 S1,Y1 $2,Y2 S1,Y1 $2,Y2

By the integration by parts formula (2.9),

E" [A *(s1, 1, 52, Y2 )W (03, )W (637 )]

51 y1 52,92
=EY [<D2A55(sl,y1,52,y2) ® §26y2>7'[®2] +EW[A€’6(51vy1>52’y2>]< ?16»1/1’ §§§y2>7"’

31 yY1
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and hence we have

E [05’6 ve? W( €0 )W( &0 )] :E[As’é(Shyh52,y2)B€’6(81,91,82792)]+E[ Vst an §2§y2]< i’ﬁyl, i’jgn)%,

S$1,Y1 7 82,Y2 S$1,Y1 52,42

where

3875(317 Y1, S2, yQ)
2

= (00, O (X)) = (X 4y — Moy (Nael 82y, @50, (XF) = 6(XE 4y — Mo,su ())ne-
Gk=1

Therefore,
E[(I°°)%) = J7° + J5°,

with the notations

JP = / /th o (T = Y1) @ (7 — Y2)E[AT (51, Y1, 52, Y2) B (51, Y1, S92, Y2) | dy1 dyadsi dsy
0,42 Jr2

<[ f et
t

(E[(A%(s1, Y1, S2,¥2)) ])1/2 (E[(B**(s1, 91, 52, 92))2])1/2 dy1dyadsidsy

/[0 . /R e 1 (T = Y1) sy (@ — Y2) B, 02 1050, 020, Y udyrdyadsidss
t

1/2 1> 1/2 £ (3
s N AL Rl e R R R A
0,t

Now the problem is reduced to show that both J&*° and J5 converge to zero as (g,8) — 0
By the result in Step 1, we have

and similar arguments imply that

for all (s,y) € [0, T]xR%. Alsonote that both sup ~ sup ~ E[(v59)*|and sup  sup  E[(AS))?]
€,6>0 (s,y)€[0,T] xR 7 £,0>0 (s,y)€[0,T] x R4 ’

are finite.

First we can prove 11513) Jf’5 = 0 by the dominated convergence theorem, noting that
€,

Lemma 4.8 implies

sup sup sup E[(Bs’a(é‘l, Y1, 82, 92))2] < .
£,6>0 (s1,y1)€[0,T)xRY (s2,y2)€[0,T] x R4
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Now we show h(;rﬁ) Ji° = 0. By (2.4) and (4.4), we have

(650,650 Yy < Clsy — sl / exp (i€ - (31 — ) (o(€))? (de),

Rd

therefore,

J§5 < 0/ / / qi— 51 y1 qi— 52( —y2)K5’5(81,yl>827y2)|81 —82|_Bodyldy2d81d32
R2d

where
K (su ) = (B30, BI05))™ [ exp(—ie- (= 10) (:(0)° ()
<C | exp(=i€ - (v = y2)) (B(6)” p(d).
Denote
L= [ (i€ — 1) () ula).
Hence

K&d(sla Y1, S2, 92) < CL&

51,82°

For the integral of L we have

51,527

/// Qs (T = Y1) Q—sy (T — ) L s1 32|81—52| 5°dy1dy2d81d82
R2d

///de /qut 51 (T = Y1) Gi—s, (T — y2) exp(—i€ - (Y1 — ¥2))

(D-(6))* Is1 = sa| P pu(d)dyr dysdsds

:/0 /0 /Rd exp (—(t — 51)T(€)) exp (—(t — 52)T(E)) (P=(£))? |51 — sa| P p(d€)dsdss
i%/ / /Rdexp(_(t—sl)ﬁf(f))exp(—(t—32)\11(5))|31 oo pu(de) dsyds,
/ / /R Gt (T = Y1)Gi-5 (@ = 12)7(01 = w251 = ol Pdyrdypdsidsow,  (4.13)

where the convergence follows from the dominated convergence theorem, the last equality
follows from the formula (2.5), and the last term is finite by Lemma 3.7.

We have shown that K®°(si,yi,s2,%2) which converges to zero almost everywhere, is
bounded by the sequence L , which converges to 7(y1 — ¥2), and thanks to (4.13), we can

apply the generalized dominated convergence theorem to get that liérﬁ) J5 0 = . [
87
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Using Theorem 4.6, by direct computation we can get the following Feynman-Kac type
of representation for the moments of the solution to (1.1).

Theorem 4.7. Let u satisfy Hypothesis (I), then the solution given by (4.10) has finite
moments of all orders. Furthermore, for any positive integer p,

H o(X] + exp( Z/ / |r — s| 7Py Xf)drds)], (4.14)

7,k=1
where X, ..., X, are p independent copies of X.

Elu(t,z)?] = E

Lemma 4.8. Let the measure p satisfy Hypothesis (I). Then, for any n € N,

sup sup sup sup E [((gbig,qf 5/(X)>H> } < 00,
€,0>0¢’,6'>0 (s,9)€[0,T]|xR% (r,2)€[0,T] x R4

and

sup sup sup E [(((ﬁig,d(){z — -)I[Om](-))y)n} < 00.
€,6>0 (s,y)€[0,T]xR4 (r,2)€[0,T] x R4

Proof. First of all, (¢ <I>€ (X)) is a nonnegative real number by (2.1), and by (2.4)

s,y

i 0 = [ [ [ 50 expl—ie- (7 = gl = =)

95(s — V)l — v~ p(€)drdudy.

Therefore, denoting D = [0,7] x [0, s] x [0,7], as in the first step of the proof for Theorem
4.6, we have

B {102 O S X))’
/n /Rnd 95’ — My ')96(3 - I/j)|luj — yj|—5o

exp (—22@ ;- )u(df)dnmdu

H = (&5)D= (§5)E

/ H|T—S—Tj|_ﬂoeXp (—625 Z|§j|2) E |exp (—izgj.(ij—y)>]
[0, JRR 5y j=1 j=1
/ H lr — s — ;| 7E |exp (—i Z§J : XTJ) p(d)dr

22
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Thus, we have, denoting n; = & + &1 + - + &,

E [ (035, 25 (X)) |

gC”n!/ / H]r—s—Tj\’ﬁo]E exp —ZZEJ ~ | | m(d§)dr

0<m < <Tp<r] J RN j=1

:C"n!/ / H Ir—s— Tj‘_ﬁO]E exp | —i Zn] Xoo = Xo ) || m(d€)dr (let 79 = 0)
[0<Ti < <Tp<r] JRNE j=1

:C’"n!/[o /R ) [IIr—s—m"%exp (- > (7 - Tj—l)‘I’(ﬁj)) p(d€)dr
<T1<“'<Tn<7‘ n j=1 .

7=1

SC”n!/[ / H 175 4 (s — )| 7™ exp ( Z( —7j21)U (§J)> p(d€)dr (by Lemma 4.9)
0<T1 < < T <7 R”d

7=1

=:C"nlU,(r, s)

When s —r >0, forall0 <r <s<T,

Up(r, s) S/0< e ]/]RMH‘TJ’ 0 eXp( Z( — 7))V (@-)) p(d§)dr
S/0<n< <7 <T) /R"dH|T] el - eXp( Z( T (€j>> wlde)dr

J=1

By Proposition 3.5, U, (7, s) is uniformly bounded by a finite number depending on (T, n, )
and the measure p only.

When r — s > 0, the set [0 < 7y <--- <7, <r]is the union of A}s for k =0,1,2,...,n
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where Ay =[0=79 < < <Tp <7r—8<Tp1 <+ <7y, <r]. On each Ay, we have

n

/Ak /Rnd ljl lr—s— Tj|7f30 exp (— ;(Tj — Ql)\ll(@)) p(d€)dr
— /Ak /Rnd ﬁ(r —s—1;) Pexp ( 1(Tj — le)\y(gj)>

(Tipr = (r = )™ exp (=(Thga — (r = 8) + (r = 5) = 7) V(&)

k

S Y W | (SRRt (— S0 - rj_1>w<sj>) (d€)dr

=1

=:Mi(s,r) X My(s,7).

By Lemma 3.10, we have

k

sup  Mi(s,r) < C* sup / [[or=s=m) "0+ (5 = 7m0) " P)dr
0<m << <r—35]

0<s<r<T 0<s<r<T j=1

< oQ.

For Ms(s,r), let 8; = 17, — (r —s),j = k+1,...,n, and assume 6, = 0, then for all
O<s<r<T,

My(s, r) = /[O e /R . IT 6% exp (— > (ej—ej_o%)) p(dg)do

j=k+1 j=k+1
< / / IT =0, exp (— > (6 93»_1)%@)) p(dg)do,
[0<Op41< <O <T] JRO=RIE S T30 =kt
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and the last integral is bounded by a finite number depending on (n — k, T, 5y) and p by
Proposition 3.5.

Thus we have shown that when r — s > 0,supyc,c,op Un(r,s) < 00, and the first in-
equality is obtained. Finally, since (¢5° <I>€ 5/(X)>H converges to (¢S° 5(XZ — o)) n

S y) S y?
in probability as (¢/, ") — 0, the second the inequality follows from the first one and Fatou’s

lemma. [

Lemma 4.9. For anyt > 0 and a € R,
[ exp(-tw(e + anutae) < [ exp(-ew(e)uas)
Rd Rd

Proof. By the formula (2.6), we have

o [ (-t a)ulae) = [ alole (@)
< /Rd () (z)de = # /Rd exp(—t0(€))pu(de). -

4.3 Holder continuity

Hypothesis (S1). The spectral measure pu satisfies that for all z € R?, there exist oy € (0, 1]
and C' > 0 such that

/ / | — 5| e IrsIY @ (1 — e782) yy(d€)drds < C|z*.
R4

Hypothesis (T1). The spectral measure p satisfies that for all a in a bounded subset of R,
there ezist ay € (0,1] and C > 0 such that

T pT
0 0 R4

Remark 4.10. A sufficient condition for Hypothesis (S1) to hold is the following

due to Lemma 3.7 and the fact that 1 — cosx < |z|***. Note that ay < 1 — By is a necessary
condition for (4.15) to hold. This is because u(A) < oo for any bounded set A C RY,

exp < —|r— s|\Ii(f)> — exp < —|r—s+ a|\If(§)> 'u(df)drds < Cla|*.

1(R?) = ~(0) = o0, limg_,oo ¥(§) = 00 and limsupye| ”5(”2) < 0.
Similarly, a sufficient condition for Hypothesis (T1) to be true is that
(W ()™
dg) < 4.16
| 15 o) < o0 (1.16)

because of Remark 3.8 and the fact that |e* —e Y| < (e7® + e Y)|x — y|* for x,y > 0 and
€ (0,1]. Indeed for a > 0,e* —1 < (e + 1)(a A 1), and hence e — 1 < (e* + 1)a® for
€ (0,1]. One necessary condition for (4.16) to hold is as < 1 — By.
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Theorem 4.11. Let ug(x) = 1. If the measure pu satisfies Hypothesis (S1), then the solution
u(t,x) given by the Feynman-Kac formula (4.10) has a version that is 01-Hélder continuous
in x on any compact set of [0,00) x R, with 0, < «y; Similarly, if p satisfies Hypothesis
(T1), the solution u(t,x) has a version that is 03-Hélder continuous in t on any compact set
of [0,00) x RY, with 0y < ap/2.

Proof. Recall that Vi, = [} [r. 0(X7, —y)W (ds, dy). Noting that | —e’| < (e%+e")|a— b,
we have for any p > 0

2 2
WHEX [eXp(V;zx) - eXp(Vs,y)Hp] < CEY [(EX [eXp(QVt,x) + eXp(ZV&y)Dp/ (EX [|V2,x - s,ym)p/ ]
1/2
< CE [exp(pVi.) + exp(pVa,)] (B [(EX (Vi — Vio[!])"]) "
By Theorem 3.3, E [exp(pV4) + exp(pVi,)] < co. On the other hand,
1/2 1/p\ /2 /2
(BY [(BX Ve = Voo P1)'D)"” < (BY (B Ve = VauP)7)" < G (BXEY Vi — Vi)
where the first inequality follows from Minkowski’s inequality and the second one holds

because of the equivalence between the LP-norm and L?-norm of Gaussian random variables.
For the spatial estimate, by Hypothesis (S1),

t t
EXEY (Vi — Vi, = 2 / / I — s PEX [y(X, — X.) = 9(X, — Xo+ 2 — y))] drds
0 0

t t
= 2/ / \7" _ S‘fﬁoeflr*SI‘I’(ﬁ) (1 _ efié(xfy)) u(df)drds < C]x _ y[2°‘1.
0o Jo Jrd
Therefore
WIEY fexp(Via) — exp(Viy)]|'] < Cplar —y|*?,
and the Holder continuity of u(t, z) in space follows from Komogorov’s continuity criterion.

Now assume that 0 < s <t < T, then

E[(Vir = Vaa)?]
= (/(4d50Xfr_z>_5dX1¢_ ywianae)s [ [ ae, ~owisan) |
2(A+ B),
where
([ ], otz — 2 - hixz., - o) wan, dz)ﬂ ,
and

([ [ woxe - wianan) |
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For the first term A, by Hypothesis (T1), we have

A=E |:/ / |51 - 52|750 [V(thm - Xz%sz) + V(Xsfsl - Xsfsz) - 27(ths1 - Xsfszﬂ d81d82]
0 Jo

s ]
0 JO JR6d

< C|t — s|™.

exp ( —|s1 — 52|\11(§)) — exp ( —t—s—s1+ 82]\11(5)> ‘,u(dé“)dsldsz

For the term B, we have
t t t—s t—s
B = / / |s1 — 52|’6°E7(X31 — X, )ds1dsy = / / |s1 — 52|’6°E7(X31 — X, )dsyds;y
s s 0 0

:/Rd/o_ /0_ |51 — So| P exp (—[s1 — 52| V() dsydsapu(dE).

By Lemma 3.7, we have that for (¢ — s) in a bounded domain, there exists a constant C' such
that

t—s t—s 1
_ o |7Po ey — < _
/0 /0 31 = saf P exp (o1 = 52l V(E)) sl < O = ) g
Hence B < C(t — s), and
EV[|EX [exp(Vi) — exp(Vau)]['] < C (E[(Viw — Voa)?)”? < C(A+ B2 < C(t — s)7/2.

The Holder continuity in time is obtained by Kolmogorov’s criterion. [

5 Skorohod equation

In this section, we consider (1.1) in the Skorohod sense, i.e., we consider the following SPDE,

ou .
5 Lu+uoW, t>0,xz€eR (5.1)
u(0,z) = up(x), r € RY,

where the symbol ¢ means the wick product.

5.1 Existence and uniqueness of the mild solution

In this subsection, we will obtain the existence and uniqueness of the mild solution to (5.1)
under the following assumption.
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Hypothesis (IT). The spectral measure p satisfies

/Rd 1 +111(5)“(d5> =%

Remark 5.1. When £ = —(—A)*/% for a € (0,2] and y(z) is of one of the forms H?Zl |15,
\z|=# and 8o(z), Hypothesis (II) is equivalent to 3 < a, where 3 = Z?Zl Bj for the first case
and B =1 for the third one. It is also a necessary condition for (5.1) to have a unique mild
solution ([5]).

Definition 5.2. An adapted random field u = {u(t,z),t > 0,2 € R4} is a mild solution to
(5.1) with initial condition ug € Cy(R?), if for allt > 0 and x € R, E[u?(t,z)] < oo, and
the following integral equation holds

ult,) = Quu(x) + / / sl )l )W (s, dy), (5.2)

where the stochastic integral is in the Skorohod sense.

Suppose that u = {u(t,z),t > 0,z € R?} is a solution to (5.2), then for fixed (¢, z), the
square integrable random variable u(t,x) can be expressed uniquely as the Wiener chaos
expansion,

= ZIn(fn('vt’x))v (53)

where f,(-,t,x) is symmetric in H®". On the other hand, if we apply (5.2) repeatedly, as in
[28, 29|, we can find an explicit representations for f,, with n > 1

1
fn(slv L1y s Sny Tnyty SE) = EQt*Sa(n) (:C - xﬂ(n)) s, (0)— So‘(l)( - )ng(l) ( ))

Here o denotes the permutation of {1,2,...,n} such that 0 < s,(1) < -+ < 5, < t. Note
that fo(t, z) = Qruo().

Therefore, to obtain the existence and uniqueness of the solution to (5.2), it suffices to
prove

in!ufn(-,t,xny;@n < o0, Y(t,z)€[0,T] x RY. (5.4)

n=0

Theorem 5.3. Let the measure p satisfy Hypothesis (I11). Then (5.4) holds, and consequently,
u(t, x) given by (5.3) is the unique mild solution to (5.1).

Proof. Without loss of generality, we assume that ug(z) = 1. Now we have

| fu( 8 2) [3gen

—n'/ / n(s,y,t,x)hy(r, 2, t, ) H|s]—r]| BOH')/ y; — 2;)dydzdsdr,
[0 t]Qn R2nd j=1
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where
1
hn(sla <oy Spy L1y ey Ty ta il') = EQt—sg(n) (lL’ - xa(n)) T qsa(z)fsg(l)(xo@) - xo(l))- (55)
Then by (2.1) and (2.5),
n!”fn('utv x)”%—@"

Sn!/[ | Fhu(s, -, t,2)(§)Fhy(r, - t,2)(&)pu(df) H |s; — rj|Pdsdr,
0,27 JRnd

j=1

Sn!/ At 1 (8)As (7 H|s] —rj|” o dsdr
[U,t]2"

7j=1

Sn!/ A7 (s) H |s; — ;| P°dsdr, (using 2ab < a® + b? and the symmetry of the integral)
[0 t]2"

j=1
where 12
Auals) = ([ 170t @Pula)) (56)
with
1 B
Fhn (s, t,x)(§) = me_w(mmﬁ") [Texp [— [So(i+1) = So()] W&oy + -+ - + fam)], (5.7)

Jj=1
where we use the convention sy(,,41) = .

Note that fo fo s)|s — r|Podsdr < 2f r‘ﬁodrf |f(s)|ds and let D, = Qf(]t’r_fgod’r"
Therefore,

Al fuest,2) 2o < Dl / A2, (s)ds
[

[0,¢]"

—Dnl / | Fha(s, . 2)(€)2u(d€)ds
0,¢]n JRnd

/[0] /R HeXp 2501 — (j)]‘l’(é“am+---+§U(j))}u(dg)ds
fr JRnd S
J.

<op /[O N 1:[ 2soi1) — 50| W (i) | 1(d€)ds  (by Lemma 4.9)

o ] Hp [~ 251 — 1 0(E) ] n(de)ds

Similar as in the proof of Theorem 3.3, we can apply Proposition 3.5 with §y = 0 for the
last integral and then get the following estimate

n "L /n\ tF -
Wt < D8 S () gy sl

k=0
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where ey and my are given in (3.5) with Sy = 0. Hence, if we choose N sufficiently large
such that 2D;Ageny < 1, then we have

00 00 . n n tk .
>t ) fen <D DFY @ i (o]
n=0 n=0 0 )

k=
x© 4k

~

1

non n—k
iy D D2 e = T gp

n=~k

k=0

k!
0

k=
Remark 5.4. Let n(x) be a locally integrable function, then as in [27], the result of the above
theorem still holds if the temporal kernel |r — s|=% is replaced by n(r — s).

The following theorem provides the Feynman-Kac type of representations for the solution
and the moments of the solution when the spectral measure pu satisfies the stronger condition
Hypothesis (I). The proof is similar to the one in [30] and we omit it here.

Theorem 5.5. If we assume that v satisfy Hypothesis (1), then

atte) =B [uxpes ([ [ aoxe, —uwiandn =3 [ [ir—sincx, - )is);d)]

is the unique mild solution to (5.1) in the Skorohod sense. Consequently, for any positive
integer p, we have

Elu(t,z)?] = E

H up(X] + ) exp (

j=1

Z /Ot /Ot Ir— s| 7Py (X] - Xf)drds)] . (5.9)

1<j<k<p

where X, ..., X, are p independent copies of X.

5.2 Feynman-Kac formula for the moments of the solution

When the measure u satisfies Hypothesis (II) but not Hypothesis (I), the representation (5.8)
may be invalid since fot f(f |r — s|7Py(X, — X,)drds might be infinite a.s. (see [30] for the
case that X is a d-dimensional Brownian motion and ~(z) = szl lz;| 7%, 8, € (0,1),j =
1,...,d). However, the Feynman-Kac formula (5.9) for the moments still holds as stated in
the following theorem.

Theorem 5.6. Let the measure p satisfy Hypothesis (II), then the Feynman-Kac formula
(5.9) for the moments of the mild solution to (5.1) holds.

Proof. We will adopt the approximation method used in |28, Section 5| to prove the result.
The proof is split into three steps for easier reading.
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Step 1. Consider the approximation of (5.1),

(5.10)

usd(t, x) = Lus(t, x) + u(t,x) o WO(t, 2),
u°(0, ) = up(x).

Recall that W=0(t, z) is defined in (4.8). If u=9(t, ) € D2, then by (2.7)

u(t,x) o WOt 2) = /0 /IR st = $)pe(x =y (£, 2)W*(ds, dy).

Therefore, the mild solution to (5.10) is, as defined in [28], an adapted random field {u®°(¢, z),t >
0,z € R4} which is square integrable for all fixed (¢,7) and satisfies the following integral
equation,

t
W (t2) = Quuo(o) + [ [ e~ ) s.9) 0 WS s, )y
0 JR

=Quoe)+ [ [ ([ [ st sdants = oty = 2 sy ) w2,

Denote

t
Z:2(r, z) = / / ) Gi—s(x — y)gs(s — r)pe(y — 2)u™ (s, y)dsdy.
0 R

Thus to show that an adapted and square integrable process {us°(t,z),t > 0,z € R%} is a
mild solution to (5.10), it is equivalent to show u° (¢, x) = Quo(z) + 5(Zf£). Therefore by
the definition of the divergence operator 4, it is equivalent to show that for any F' € D2
with mean zero,

E[Fu’(t,z)] = E[(Z;, DF)y]. (5.11)
Let .
w0(t,) = B [ua(x) exp (Wi@E2) - 10805 )| (5.12)

where <I>;’£ is given by (4.1). Using a similar argument based on the technique of S-transform

as in the proof of [28, Proposition 5.2|, we can show that u°(¢,r) given by (5.12) satisfies
(5.11), and hence it is a mild solution to (5.10).

Step 2. In this step, we will show that

p Lo
Huo(Xt] + z) exp ( Z / / |r — s| POy (X7 — Xf)drds)] :
1<j<k<p O 0

- (5.13)

gérﬁjE [(v’(t,2))"] =E

Without loss of the generality, we assume ug(z) = 1 from now on. Denote
6 . t .
o1 (ry) = / 95t —s = r)pe(X{ +a —y)ds - Loy(r), j=1,....p.
0
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The p-moment of u®’(¢, ) is

E [(u(t,2))"] = EVE* [ [exp (W(@i,’i’j) - _||CI)€6J||H>

j=1
P
s, 8, s, 5k
Fexp ( I Z o707 |3, — Z H‘EJH%) =E" exp ( DG T ARy > :
j=1 1<i<j<p
As in the proof of Theorem 4.1, we can show that
(D507, BFFY, = (P-(8))exp (—i& - (XL, — XL))
[0,t]* JRY

gs(t —s1 —1r1)gs(t — sg — ro)|ry — 1| Bo p(d€)dridradsidss,

t,r

and that (®}’ il DLy 0Ky, converges to f[o g2 |51 — 59| Poy(XI — XE )dsidsy in L' as (g, 6) tends
to zero. Now to prove the equality (5.13), it suffices to show that for any A > 0,

sup E [exp (A(@fi”, CIDE‘Sk}H)} < 0. (5.14)

£,0>0

By (2.4) and (4.4), there exists a positive constant C' depending on [, only such that
@i 6= [ [ e (it (52— XDl s| Pulderds
[0,¢]2 JRd
Hence to obtain (5.14), it is sufficient to prove that for any A > 0,

supe [exp (3 /[ ) [ AP expl-ig (X, = Kl = sl Futae)irds )| < oo, (515

e>0

where X is an independent copy of X. For the n-th moment of the exponent, similar to the
proof of Theorem 4.6, we have that for any € > 0,

E[(/{ | exp(cie- (5= Rl = uagyiras ) |

:/[Oﬂ2 /R dH Pe g] EeXp ij r] _)’ZSJ))H““J — S]|_ﬂoﬂ<d§)d7’d8
e m j=1

7j=1

</ /dEexp Zgj X, —Xs;) H|7“]—sj| Bo p(d€)drds
0t2n n

—EK//|7~—3| Poy(X, — X)drds)]

Now to prove (5.14), it is sufficient to prove that for any A > 0,

t ot
E {exp ()\/ / Ir — s|7Py(X, — Xs)drds>
0 Jo
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Note that

t t n n n
E KA/ / |T—S|B°7(Xr—Xs)drds> ] :/\”/ [l = sl B | ] v(X,, —ij)] drds
0 0 [0,t]27 j=1 =1
"(n!) / / n(8,y,t,0)h, (1, 2,t,0) H|s]—rj| *BOH'y y; — zj)dydzdrds,
[Ot]Qn R2nd

where h,, is given by (5.5), and the last equality is obtained by using the independent
increment property of X. Then (5.16) can be obtained as in the proof of Theorem 5.3.

Step 3. As in the proof of Theorem 4.6, we can show that sup, 5= SUp;c(o 1 cera E[[u™ (¢, ) [P] <

o0, u=d(t, z) converges to a limit denoted by u(t,x) in LP for any p > 0 as (g, d) goes to zero,

and moreover, u(t,z) satisfies the formula (5.9). Therefore, by the uniqueness of the mild

solution to (5.1), to conclude the proof, we only need to show that u(t, x) is a mild solution
o (5.1), i.e

B[Fu(t, )] = E[(Zew, DF)2), (5.17)

for any F' € D'? with E[F] = 0, where Z; .(r,2) = ¢;_.(x — 2)u(r, 2).

In a way similar to the proof of Theorem 4.1, we can prove that lim, 5,0 E[|| Zif —Z2|13) =
0. Then we can show the equality (5.17) by letting (£,d) in (5.11) go to zero, noting that
F € D*? and lim, g0 v’ (¢, 2) = u(t, =) in L. -

Remark 5.7. In the second step of the proof, actually we proved that under Hypothesis (I1I),
(5.16) holds, i.e., for any A >0

t ot
E {exp ()\/ / Ir — s|7Py(X, — Xs)drds>
0 Jo

5.3 Holder continuity

< Q.

Hypothesis (52). The spectral measure pi satisfies that for all a € R?, there exist oy € (0, 1]
and C' > 0 such that

T
sup/ / esV(E+) (1- e~HE+2) ) p(d€)ds < Clal*.
z€R JO R4
Hypothesis (T2). The spectral measure u satisfies, for some as € (0,1),
(¥(g))
———pu(df) <
/Rd 3 wgHld) <o

Remark 5.8. Similar to the Stratonovich case, we have the following sufficient condition

for Hypothesis (S2) to hold:

€ + =
Zseuﬂg /Rd T \Il(f—i—z)“(df) < 00. (5.18)
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Furthermore, if n(¢) = W(£)/|€]** is a Lévy characteristic exponent (which is equivalent
to say that —n(&) is continuous, conditionally positive definite and n(0) = 0, see, e.g., [2,
Theorem 1.2.17]; a special case in which n(&) is the characteristic exponent of a symmetric
stable process is that V(&) = |£|* with a > 20y ), and the condition (5.20) below holds, then

condition (5.18) is equivalent to
/ &u(dg) < 0. (5.19)
ra 1+ V()

Clearly (5.18) implies (5.19). Now we show that the inverse is true, if we assume that n(§)
is the characteristic exponent of a certain Lévy process {Yi,t > 0} and that the following

condition holds
sup pu([[§ + 2| < M]) < oo, (5.20)

2€R4
where M is a positive number such that n(§) > 1 for all |£] > M.

€ 4 2] €+ 2 6+ 2
e ey Bl STEL
L ) /“HZKM] el §>+/{§+Z|>M] BTl

201 —1
<M iﬁMM6%4§MD+%LA+n@+@M%)

=C +2 / / e 'E [T Y] dtp(dE) = C + 2E { / / e—te“f“mdm(dg)]
Re JO Re JO

=C+2E [/ / et (dg) e_teiz'ytdt] =C+2E [/ 'y(}/})e_teiz'ndt]
0 R4 0

€[>

<C+2E [/Ooofy(Yt)e_tdt] :O+2/Rd 1+177(5)“<d5) §D+2/Rd 1+ 0(6)

where D is another constant that may be different from C.

On the other hand, Hypothesis (T2) actually implies and hence is equivalent to the con-

dition
/Rd %p(df) < . (5.21)

p(d§),

sup
2€R4

Note that for all z € R?,

/R ) %u(df) < /R ) (m)laz 11(de)

1 [e¢]
_ 2o [IHYERDE 3y i (d
/Rd r(1—a2)/0 )
1 & .
:/ —/ t=2e MR [ EFD Y4t i (de)
re I( ) Jo

1—0[2

1 > —ao  —t _1z-Y: €Y
:mEUO t2e eV /Rdeéyu(df)dtl

1 > —ag  —t Zf}ft o 1 frae
SruﬂmEu:te L Mﬁ”ﬂi@(uww) wlde),
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where the first equality follows from the formula ¢ = ﬁfooo to~te=etdt for ¢ > 0 and
a € (0,1). Finally Hypothesis (T2) implies (5.21) because of the following equivalence

(W(£))* 1 e
/Rd T\IJ(@M(CZQ oo [ (T\D(f)) pu(d€) < oo

which is due to the facts limg oo U(£) = 00 and p(A) < co for bounded A € B(R?),

Theorem 5.9. Let ug(x) =1 and u(t, x) be the unique mild solution to (5.1). If p satisfies
Hypothesis (S2), then u(t, z) has a version that is 6,-Holder continuous in x with ; < ay on
any compact set of [0,00) x RY; Similarly, if i satisfies Hypothesis (T2), the solution u(t,z)
has a version that is 0o-Holder continuous in t with 0y < [ag A (1 — 5y)]/2 on any compact
set of [0,00) x RY.

Proof. Let u(t,x) =1+ 07 I,(hy(-,t,z)) and u(s,y) =1+ > 7 L,(hs(-, s,y)), where h,,
is given by (5.5). Then for p > 2,

lu(t, ) = ul(s, y)lle < Y (b 8, 2)) = La(la(, 5,9)) 2o

(p = 12| Lu(ha (1, 2)) = Ln(ha (-, 5,9)) 122

WE

<

i
I

(p = "2Vl bt 2) = ha(-, 5,9) e, (5.22)

NE

3
Il
—

where the last inequality holds due to the equivalence of LP norms for p > 1 on any Wiener
chaos space H,, ([36, Theorem 1.4.1]), and the last equality follows from (2.10).

Step 1. First, we study the spatial continuity. Suppose that s = t, similar as in the
proof of Theorem 5.3, we have

n‘||hn(,t,x) - hn(7t7y>||§{®"
=n/! (th(?t?x)Hg—L@m + “hn(vt’y)H%-[@” - 2<hn(',t7l’), hn(.78’y)>H®n)

n

2 —i(x—y)-
Za/mt]% /Rnd [1 = e @] Tlexp | = o = o) ¥ (6ot + -+ + o(i)]

j=1
exp | = [Spii1) — Sq(i)| Wy + -+ + &) | (dE) | | |7y — 55| drds
P n(+1) — Sn(5) n(1) n(G)) | H i S
j=1 J=1
where o and 1 are permutations of the set {1,2,...,n} such that To(l) < To@) < < Ton)
and Spa) < Sp2) < v < Sy(n)- Denote

n

A2(r) = /R d [1 = emfle@rten] T exp [_ Aroion) — Ton)| ¥ (&) + - + Eny) | 1(dE).

J=1
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Recall the notations D, = 2f(;t s~Pds and QF = {(31, coy8n) €[0,00)" 1 D70 85 < t}. We
have

2 - _ 2 .
(-t 2) — b (-, 6, ) [[Fen < ] A%(r) H |sj — rj| Pdsdr < D / A% (r)dr

[0 t]2" J=1 . [O,t}"

n

_QD”/ / [1— emiemwr@rte)] TTexp [ 7‘]+1—Tj]‘l’(51+"'+fj)}ﬂ(d5>dr
[0<ri<ra<--<rp<t] JR?4

J=1

—opr /n /Rnd i )] HeXp [_ 25, (€ + -+ fj)}u(df)ds

j=1
<2D} sup/ / —i(z—y)- (Z+§”)} exp|—2s8, Y (z + &,)|u(dEy)dsy,
z€ER4 R4
< / . <25, U(E) + -+ &A1) .. i 1)dy sy
QTL 1 JR(n— 1d

SCDﬂx—wmﬂA%a/mlmflxp 25, (&) ju(d€)ds.  (By Hypothesis (S2))

Applying Lemma (3.5), we have

n—1

n n— 1)tk el

Val|h (-t @) = ho(- ) len < |2 — y|* C D} g ( i )k|mN [Agen]" 7%
k=0

As in the proof of Theorem 5.3, we can choose N large enough, such that

ZU“Z (1) et Losa™™ < o,

and hence there exists a constant C such that

[u(t, z) = u(t,y)llr < Cle—y|™,

which implies the spatial Holder continuity of u(¢,x).
Step 2. Now we consider the Holder continuity in time, assuming that 0 < s <t < T
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and z = y. Then for the estimation on the n-th chaos space, we have

2o (,t, ) = B, 8, 2) || 2
=nl (||hn(7t7$)||g—t®n + ||hn<787$)||3{®” o 2<hn(.’t’ I)’ hn(-,S,Zlf)>H®n)

n

=n) [/ Fhy(u, - t,x)(E)Fhn(v, -, t,2)(€)p(dE) H lu; — v;| P dvdu
0,427 J Rnd

J=1

+/[0 o Rndfh"(u"’s’x)(g)}-h”(v">s’$)(§)u(d€)H’uj_Uj‘_ﬁodvdu

J=1

_2/[ o] d]:hn(u,-,tgﬁ)(g)‘/—'.hn(v,-’S,.’L')(g)u(df)]i[|uj_Uj|—ﬁodvdu .
0,t]" x[0,s]™ JR™

j=1
Therefore
[ (-, t, ) — ho(ey 8, 2) |30 < (D, + D), (5.23)

where

n

o :/mzn [ Fhala ) € F (o, 1) @) [Tty — vy~

J=1

- / Fhy(u, - t,2)(E) Fhn(v, -, s,2)(&)u(df) H lu; — v;| P dvdu,
0,47 x[0,5]" J Rnd

J=1

and

D;=/H o d]:hn(u,-,t,$)<§>fhn<?},-)t,[L’)(f)u(df)H‘uj_Uj’—ﬁodvdu
0,t]™ x[0,s]™ JR™

j=1

_4) j2n JR Fho(t, -, t,2)(§) Fh (v, -, 5,2) (€ u(dé) [ | lwy — v;|* dvdu.
,8/°" nd o

We will just estimate D,,, and D] will share the same upper bound of D,,.

Clearly, D,, = A,, + B,, where

A, = / Fho(u, -, t,x)(E)Fhn(v, -, t,z)(&)u(dE) H lu; — v dvdu
[0,¢]7 % ([0,£]7\[0,s]™) JRnd

j=1
(5.24)
and

B”:/[Ot]nx[os]n /R (]—"hn(v,~,t,x)(£) —f-hn(v,-,s,x)(g))

Fhn(u, -t 2)()u(dE) | | luy — v P dvdu. (5.25)

j=1
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To get an estimation for the right-hand side of (5.23), we will separate the rest of the proof
into three parts for easier reading.

Step 2(a). In this part, we will estimate A, given in (5.24). Note that [0,¢]" =
Uk;efo,3 ey X Ty X --- X Iy, with I = [0,s] and I, = [s,t]. Hence [0,¢]"\[0,s]" is the
union of 2" — 1 disjoint interval products, each of which contains at least one [s,]. Denote
E, ; the product of n intervals, all of which are [0,¢] except that the j-th interval is [s,?].
Therefore, for the term A,,, we have

A, <2" sup / Fhy(u, - t,2) () Fhn(v, -, t, 2)(&)u(df) H lu; — v;| P dvdu
0,t]"xE, ; JR"d

j=1

<2" sup / (A7 (u) + A7 (v)) H lu; — vj| P dvdu (5.26)
[0 t]nXEn j

J=1

with A; . (u) given in (5.6). Denoting D; = 2 fot |s|7Pods, for positive function f, we have the

following estimates
/t /tf(u)|u - v|_50dvdu < D /tf(u)du
//f Mu —v|” 50dvdu< t—s /f
/t /tf(v)|u — o] P dvdu < D, /tf(v)dv
0 Js s

Applying those estimates, we get

/ (A7 (u H luj — v;| P dvdu
[0,t]" X Enp ; j=1

and

260
S (=) ey / A2 (u)du + DI / A2, (v)dv. (5.27)
0 [0,¢]™ En
Note that Hypothesis (T2) implies
1
/R T < o (5.28)

and hence there exists C' > 0 depending on the measure p and ay such that for all z > 0

et < €
by Lemma 3.10. On the other hand, by Lemma 3.11, we have

n

/ [ IO+ G = ety
[0<v1 <va<--<vp<t] JRn j=1

<cn Z H]il [(rj(a2 —1) +1) t2j=1j(az=1)+n (5.29)
PO = milae =1) +n+1)

7€{0,1}"
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Combining (5.28) and (5.29) and using the approach in Remark 3.6, we have for ¢ € [0, T
with 7" > 1,

n " tm(az 1)+ 20" Tn
/ A2 (u)du < C—‘ (") <! C‘> . (5.30)
o4n nl £~ \m/)(m(a; — 1) +n+1) n! T'(nay+1)

Similarly, for all j € {1,2,...,n} and 0 < s <t < T with T > 1, we have

1 n
/En,j Aiw(v)dv = W /otn—lx[s 1] /Rnd H o (_Q(UU(j+l) B Ua(j))¢(50(1))) ,u(df)dv

cn n -
(n!)z/o H 1+ (Vo(j+1) = Vo(s)) 1) dv

[0,t]"—1 x[s,t] ]:1

CAIR) r—

j=1

= — 1+ (vjp1 —0)* ) dv
nl </[0<v1<--~<vn<t] /[0<v1<~--<vn<s]n) H( ’ ’ )

7j=1
& [T}, T(rj(as — 1) +1)
" re{0,1}» F(ZL Tj(Oéz - 1) +n+ 1)
1 cn
n! T(nay + 1)

IN

(tZ?:1 Tj(aa—1)+n _ SZ?:I Tj(agfl)Jr’rL)

< nI"(t — s)*2. (5.31)

The last inequality holds because t2=i=17i(@2=D+n _ Gy mi(ee=bin < ppng — g)o2 for all n
and 7. Combining the above (5.30) and (5.31) with (5.26) and (5.27), we have

ey (=81 (= 5)). (532

Ap <
where C' depends on the measure p, T, 5y and as.
Step 2(b). The term B,, given in (5.25) will be estimated in this part.

B, S( 1')2 / / ‘e—(t—va(n))‘ll(&—&-...—&-&n) _ 6_(S_Ua(n))\lj(£l+"'+§n)‘
n: n n nd
[O’t} X[O,S] R

n—1

—

e~ =) e+ 0) T (u, .t )€ d€) [ ] g — vyl dvd

7=1
1 n
<2(t — 5)* / / (U(E + -+ &)™ e~ (Vo (i+1) Vo)) ¥ (Eo 1)+ FEo(5)
(n!)? [0,4)7x[0,s]" JRnd jl_Il
H e~ (UnG+0) ~Uun() ¥ & +-FEn() 1y () H lu; — v;| P dvdu,
j=1 j=1
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where v,,11 = 5, u,41 =t and o and 7 are permutations such that 0 < vy) < -+ < V) <1
and 0 < w1y < -+ < Uy < t, and in the last step we used the inequality |e™® —e™¥| <
le™® + e Y||lz — y|* < 2|z — y|* for 2,y > 0 and « € (0, 1].

Let
Aitu) = /]Rnd (U6 + -+ &)™ f[162(“n<j+1>“n(jﬂ‘l’(ﬁn(l)+"'+€n<j>)u(d§)
—
and
A(v) = /Rnd (U(& +-+&)™7 ﬁ e~ 20o 340 Vo)V Eo) o) 1y (dE).
=1
we have ’

/ AZ(u)du
[0,¢]"

=n/! / / (D& + -+ &)™ H 6—2(Uj+1—ug')‘l’(€1+~--+6j)u(d€)du
[O<ui<-<up<t] JRNd

J=1

t
<nlsup [ [ ({6 +2) eI (dg, ) du,
R

z€R JO
n—1
x/ / H6_2(Uj+1_uj)‘II(fl'i‘"-'i‘fj)M(dg)du
[0<ui < <up—1<t] JR(r=1)d J=1
n—1
<nlC / e 2(uj+1—ug) (&) (d€)du
[0<ut <+ <up—1<t] JR(=1)d =1
Cn+1Tn
nle—
— T'(nay+1)’

where the last second step follows from Lemma 3.7, Hypothesis (T2), Remark 5.8 and Lemma
4.9, and the last step follows by a similar argument for (5.30). Now we have the estimation
for B,,

1
B, < (t—s)”—/{ot] o (AZ(u) + A%(v) H|u3 — ;| dvdu
7% [0,s]™

(n!)2 ]1

1 2
(n')g t /[Ot]nAt(U)du

1 Cn—HTn
<2t —s)? =D ———. 5.33
SAt-s) n!"" T(nag + 1) (5:33)

< 2(t — 5)*?

Step 2(c). Therefore, combining (5.32) and (5.33), we have that there exists a constant
C depending on the measure u, T, ay and [y such that

Z _ n/2\/_\/_ Z n/2\/_ /A + B, < C 042/\ (1- 60)}/ (534)

n=
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the

Note that we can get estimation for D/ analogous to (5.34), by an argument similar as
above for D,,. Finally, by (5.22), (5.23) and (5.34), we have

lut, 2) = u(s, 2)[lr <D (p = 1)"*Valllhn(-, 1, 2) = Bnl-, 5,9) || 3en
n=1

<> (p—1)"*Vnly/D, + D}, < C(t — s)le2r0=50/2,
n=1

The Holder continuity in time now is concluded by the Kolmogorov’s criterion. [
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