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Abstract

This paper concerns the stochastic partial differential equation with multiplicative
noise ∂u

∂t = Lu+ uẆ , where L is the generator of a symmetric Lévy process X, Ẇ is a
Gaussian noise and uẆ is understood both in the senses of Stratonovich and Skorohod.
The Feynman-Kac type of representations for the solutions and the moments of the
solutions are obtained, and the Hölder continuity of the solutions is also studied. As a
byproduct, when γ(x) is a nonnegative and nonngetive-definite function, a sufficient and
necessary condition for

∫ t
0

∫ t
0 |r − s|

−β0γ(Xr − Xs)drds to be exponentially integrable
is obtained.

1 Introduction

In [39], Walsh developed the theory of stochastic integrals with respect to martingale mea-
sures and used it to study the stochastic partial differential equations (SPDEs) driven by
space-time Gaussian white noise. Dalang in his seminal paper [17] extended the definition
of Wash’s stochastic integral and applied it to solve SPDEs with Gaussian noise white in
time and homogeneously colored in space (white-colored noise). Recently, the theories on
SPDEs with white-colored noise have been extensively developed, and one can refer to, for
instance, [13, 15, 16, 32, 37] and the references therein. For the SPDEs with white-colored
noise, the methods used in the above-mentioned literature relies on the martingale structure
of the noise, and hence cannot be applied to the case when the noise is colored in time. On
the other hand, SPDEs driven by a Gaussian noise which is colored in time and (possibly)
colored in space have attracted more and more attention.

In the present article, we consider the following SPDE in Rd,
∂u

∂t
= Lu+ uẆ , t ≥ 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd.
(1.1)

In the above equation, L is the generator of a Lévy process {Xt, t ≥ 0}, u0(x) is a continuous
and bounded function, and the noise Ẇ is a (generalized) Gaussian random field independent
of X with the covariance function given by

E[Ẇ (t, x)Ẇ (s, y)] = |t− s|−β0γ(x− y), (1.2)
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where β0 ∈ (0, 1) and γ is a nonnegative and nonnegative-definite (generalized) function. The
product uẆ in (1.1) is understood either in the Stratonovich sense or in the Skorohod sense.
Throughout the paper, we assume that X is a symmetric Lévy process with characteristic
exponent Ψ(ξ), i.e., E exp(iξXt) = exp(−tΨ(ξ)). Note that the symmetry implies that
Ψ(ξ) is a real-valued nonnegative function. Furthermore, we assume that X has transition
functions denoted by qt(x), which also entails that lim|ξ|→∞Ψ(ξ) =∞ by Riemann-Lebesgue
lemma.

When L = 1
2
∆ where ∆ is the Laplacian operator, and Ẇ is colored in time and white in

space, Hu and Nualart [28] investigated the conditions to obtain a unique mild solution for
(1.1) in the Skorohod sense, and obtained the Feynman-Kac formula for the moments of the
solution. When L = 1

2
∆, and Ẇ is a fractional white noise with Hurst parametersH0 ∈ (1

2
, 1)

in time and (H1, . . . , Hd) ∈ (1
2
, 1)d in space, i.e., β0 = 2 − 2H0 and γ(x) =

∏d
i=1 |xi|2Hi−2,

Hu et al. [30] obtained a Feynman-Kac formula for a weak solution under the condition
2H0 +

∑d
i=1 Hi > d + 1 for the SPDE in the Stratonovich sense. This result was extended

to the case L = −(−∆)α/2 in Chen et al. [11]. A recent paper [27] by Hu et al. studied
(1.1) in both senses when L = 1

2
∆ and Ẇ is a general Gaussian noise using the techniques of

Malliavin calculus and Fourier analysis, obtained the Feynman-Kac formulas for the solutions
and the moments of the solutions, and investigated Hölder continuity of the Feynman-Kac
functional and the intermittency of the solutions.

There has been fruitful literature on (1.1) in the sense of Skorohod, especially when Ẇ
is white in time. For instance, when L = 1

2
∆, (1.1) is the well-known parabolic Anderson

model ([1]) and has been extensively investigated in, for example, [6, 7, 8, 10, 35]. Foondun
and Khoshnevisan [20, 21] studied the general nonlinear SPDEs. When Ẇ is colored both
in time and in space, L is a fractional Laplacian, the intermittency property of (1.1) was
investigated in Balan and Conus [4, 5].

The main purpose of the current paper is to study (1.1) in both senses of Stratonovich and
Skorohod under the assumptions Hypothesis (I) in Section 3 and Hypothesis (II) in Section
5.1 respectively. Under Hypothesis (I), we will obtain Feynman-Kac type of representations
for a mild solution to (1.1) in the Stratonovich sense and for the moments of the solution
(Theorem 4.6 and Theorem 4.7). Under Hypothesis (II), we will show that the mild solution
to (1.1) in the Skorohod sense exists uniquely, and obtain the Feynman-Kac formula for
the moments of the solution (Theorem 5.3 and Theorem 5.5). Furthermore, under stronger
conditions, we can get Hölder continuity of the solutions in both senses (Theorem 4.11 and
Theorem 5.9). As a byproduct, we show that Hypothesis (I) is a sufficient and necessary
condition for the Hamiltonian

∫ t
0

∫ t
0
|r− s|−β0γ(Xr −Xs)drds to be exponentially integrable

(Proposition 3.2 and Theorem 3.3).

There are two key ingredients to prove the main result Theorem 4.6 for the Stratonovich
case. One is to obtain the exponential integrability of

∫ t
0

∫ t
0
|r− s|−β0γ(Xr−Xs)drds. When

X is a Brownian motion, Le Gall’s moment method ([34]) was applied in [30] to get the
exponential integrability, and when X is a symmetric α-stable process, the techniques from
large deviation were employed in [11, 12]. However, in the current paper, we cannot apply
directly either of the two approaches due to the lacks of the self-similarity of the Lévy
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processX and the homogeneity of the spatial kernel function γ(x). Instead, to get the desired
exponential integrability, we estimate the moments of

∫ t
0

∫ t
0
|r−s|−β0γ(Xr−Xs)drds directly

using Fourier analysis inspired by [27] and the techniques for the computation of moments
used in [29]. The other key ingredient is to justify that the Feynman-Kac representation
(4.10) is a mild solution to (1.1) in the sense of Definition 4.5. To this goal, we will apply
the Malliavin calculus and follow the “standard” approach used in [28, 30, 11, 27].

We get the existence of the solution to (1.1) in the Stratonovich sense by finding its
Feynman-Kac representation directly, while in this article we do not address its uniqueness
which will be our future work. A possible “probabilistic” treatment that was used in [3]
is to express the Duhamel solution as a sum of multiple Stratonovich integrals, and then
investigate its relationship (the Hu-Meyer formula [31]) with the Wiener chaos expansion.
Another approach is to consider (1.1) pathwisely as a “deterministic” equation. Hu et al.
[27] obtained the existence and uniqueness of (1.1) in the Stratonovich sense when L = 1

2
∆

and Ẇ is a general Gaussian noise, by linking it to a general pathwise equation for which the
authors obtained the existence and uniqueness in the framework of weighted Besov spaces.
For general SPDEs, one can refer to [9, 19, 23, 24] for the rough path treatment. Recently,
Deya [18] applied Hairer’s regularity structures theory ([25]) to investigate a nonlinear heat
equation driven by a space-time fractional noise.

For (1.1) in the Skorohod sense, we obtain the existence and uniqueness result by studying
the chaos expansion of the solution as has been done in [28, 5, 27]. We apply the approxima-
tion method initiated in [28] to get the Feynman-Kac type of representation for the moments
of the solution. One possibly can also obtain the representation by directly computing the
expectations of the products of Wiener chaoses as in [14].

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries on
the Gaussian noise and Malliavin calculus. In Section 3, we provide a sufficient and necessary
condition for the Hamiltonian

∫ t
0

∫ t
0
|r− s|−β0γ(Xr−Xs)drds to be exponentially integrable.

In Section 4, the Feynman-Kac formula for a mild solution to (1.1) in the Stratonovich sense
is obtained, the Feynman-Kac formula for the moments of the solution is provided, and the
Hölder continuity of the solution is studied. Finally, in Section 5, we obtain the existence
and uniqueness of the mild solution in the Skorohod sense under some condition, find the
Feynman-Kac formula for the moments, and investigate the Hölder continuity of the solution.

2 Preliminaries

In this section, we introduce the stochastic integral with respect to the noise Ẇ and recall
some material from Malliavin calculus which will be used.

Let C∞0 (R+ ×Rd) be the space of smooth functions on R+ ×Rd with compact supports,
and the Hilbert space H be the completion of C∞0 (R+×Rd) endowed with the inner product

〈ϕ, ψ〉H =

∫
R2
+

∫
R2d

ϕ(s, x)ψ(t, y)|t− s|−β0γ(x− y)dsdtdxdy, (2.1)
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where β0 ∈ (0, 1) and γ is a nonnegative and nonnegative-definite function. In a complete
probability space (Ω,F , P ), we define an isonormal Gaussian process (see, e.g., [36, Definition
1.1.1]) W = {W (h), h ∈ H} with the covariance function given by

E[W (ϕ)W (ψ)] = 〈ϕ, ψ〉H. (2.2)

In this paper, we will also use the following stochastic integral to denote W (ϕ),

W (ϕ) :=

∫ ∞
0

∫
Rd
ϕ(s, x)W (ds, dx).

Denote S(Rd) the Schwartz space of rapidly decreasing functions and let S ′(Rd) denote its
dual space of tempered distributions. Let ϕ̂ or Fϕ be the Fourier transform of ϕ ∈ S ′(Rd):

ϕ̂(ξ) = Fϕ(ξ) :=

∫
Rd
e−iξ·xϕ(x)dx.

By the Bochner-Schwartz theorem [22, Theorem 3], the spectral measure µ of the process W
defined by ∫

Rd
γ(x)ϕ(x)dx =

1

(2π)d

∫
Rd
ϕ̂(ξ)µ(dξ), ∀ϕ ∈ S(Rd) (2.3)

exists and is tempered (meaning that there exists p ≥ 1 such that
∫
Rd(1+ |ξ|2)−pµ(dξ) <∞).

The inner product in (2.1) now can be represented by:

〈ϕ, ψ〉H =
1

(2π)d

∫
R2
+

∫
Rd
ϕ̂(s, ξ)ψ̂(t, ξ)|t− s|−β0µ(dξ)dsdt, ∀ϕ, ψ ∈ S(Rd), (2.4)

where the Fourier transform is with respect to the space variable only, and z is the complex
conjugate of z.

Throughout the paper, we assume that the covariance function γ(x) possesses the fol-
lowing properties .

(1) γ(x) is locally integrable.

(2) The Fourier transform γ̂(ξ) is a nonnegative measurable function, and hence µ(dξ) =
γ̂(ξ)dξ is absolutely continuous with respect to the Lebesgue measure.

(3) γ(x) : Rd → [0,∞] is a continuous function, where [0,∞] is the usual one-point com-
pactification of [0,∞).

(4) γ(x) <∞ if and only if x 6= 0 OR γ̂ ∈ L∞(Rd) and γ(x) <∞ when x 6= 0 .

The function γ(x) with the above four properties covers a number of kernels such as the
Riesz kernel |x|−β with β ∈ (0, d), the Cauchy Kernel

∏d
j=1(x2

j + c)−1, the Poisson kernel
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(|x|2 +c)−(d+1)/2, and the Ornstein-Uhlenbeck kernel e−c|x|α with α ∈ (0, 2], for some constant
c ∈ (0,∞).

Properties (1) and (2) make the spatial kernel γ(x) a function of positive type ([33,
Definition 5.1]). Therefore by [33, Lemma 5.6], for any two Borel probability measures
ν1(dx) and ν2(dx), the following identity holds,∫

Rd

∫
Rd
γ(x− y)ν1(dx)ν2(dy) =

1

(2π)d

∫
Rd
γ̂(ξ)Fν1(ξ)Fν2(ξ)dξ, (2.5)

where Fνi(ξ) =
∫
Rd e

−iξ·xνi(dx) is the Fourier transform of νi for i = 1, 2. The above formula,
as in [5, Appendix] for instance, can be generalized to νi(dx) = fi(x)dx with fi belonging
to the space L1

C(Rd) of integrable complex-valued functions for i = 1, 2, with ν2(dy) on the
left-hand side being replaced by its complex conjugate.

If we let ν2(dx) be the Dirac delta measure δ0(x)dx, then we actually have∫
Rd
γ(x)ν1(dx) =

1

(2π)d

∫
Rd
γ̂(ξ)Fν1(ξ)dξ =

1

(2π)d

∫
Rd
Fν1(ξ)µ(dξ), (2.6)

where ν1(dx) is any Borel probability measure or the measure of the form ν1(dx) = f1(x)dx
with f1 ∈ L1

C(Rd). This allows us to have the following lemma.

Lemma 2.1. For a d-dimensional random variable Y , we have

E[γ(Y )] =
1

(2π)d

∫
Rd

E
[
e−iξ·Y

]
µ(dξ).

Especially, for any a ∈ Rd, we have

E[γ(Xt + a)] =
1

(2π)d

∫
Rd

E
[
e−iξ·(Xt+a)

]
µ(dξ) =

1

(2π)d

∫
Rd
e−iξ·ae−tΨ(ξ)µ(dξ).

Now we briefly recall some useful knowledge in Malliavin calculus. The reader is referred
to [36] for more details. Let D be the Malliavin derivative, which is an operator mapping
from the Sobolev space D1,2 ⊂ L2(Ω) endowed with the norm‖F‖1,2 =

√
E[F 2] + E[‖DF‖2

H]
to L2(Ω;H). The divergence operator δ is defined as the the dual operator of D by the
duality E[Fδ(u)] = E[〈DF, u〉H] for all F ∈ D1,2 and u ∈ L2(Ω;H) in the domain of δ. Note
that when u ∈ H, δ(u) = W (u), and that the operator δ is also called the Skorohod integral
since it coincides with the Skorohod integral in the case of Brownian motion. When F ∈ D1,2

and h ∈ H, we have
δ(Fh) = F � δ(h), (2.7)

where � means the wick product. For u in the domain of δ, we also denote δ(u) by∫∞
0

∫
Rd u(s, y)W �(ds, dy) in this article. The following two formulas will be used in the

proofs.
FW (h) = δ(Fh) + 〈DF, h〉H, (2.8)
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for all F ∈ D1,2 and h ∈ H.

E [FW (h)W (g)] = E
[
〈D2F, h⊗ g〉H⊗2

]
+ E[F ]〈h, g〉H, (2.9)

for all F ∈ D2,2, h ∈ H, g ∈ H.
The Wiener chaos expansion has been used in, e.g., [28, 4], to deal with (1.1) in the

Skorohod sense. Here we recall some basic facts. Let F be a square integrable random
variable measurable with respect to the σ-algebra generated by W . Then F has the chaos
expansion

F = E[F ] +
∞∑
n=1

Fn,

where Fn belongs to the n-th Wiener chaos space Hn. Moreover, Fn = In(fn) for some
fn ∈ H⊗n, and the expansion is unique if we require that all fn’s are symmetric in its n
variables. Here In : H⊗n → Hn is the multiple Wiener integral. We have the following
isometry

E[|In(fn)|2] = n!‖f̃n‖2
H⊗n , (2.10)

where f̃n is the symmetrization of fn.

3 On the exponential integrability

In this section, we will show that Hypothesis (I) below is a sufficient and necessary condition
such that for all λ, t > 0

E
[
exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]
<∞.

Hypothesis (I). The spectral measure µ satisfies∫
Rd

1

1 + (Ψ(ξ))1−β0
µ(dξ) <∞.

Remark 3.1. When L = −(−∆)α/2 for α ∈ (0, 2] and γ(x) is of one of the forms
∏d

j=1 |xj|βj ,
|x|−β and δ0(x), Hypothesis (I) then coincides with the conditions in [29, 11].

First, we prove that Hypothesis (I) is a necessary condition.

Proposition 3.2.

E
∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds <∞, for all t > 0

if and only if µ satisfies Hypothesis (I).
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Proof. By Lemma 2.6,∫ t

0

∫ t

0

|r − s|−β0E [γ(Xr −Xs)] drds =
1

(2π)d

∫ t

0

∫ t

0

|r − s|−β0
∫
Rd
e−|r−s|Ψ(ξ)µ(dξ)drds,

and the result follows from Fubini’s theorem and Lemma 3.7.

The following theorem is the main result in this section.

Theorem 3.3. Let the measure µ satisfy Hypothesis (I), then for all t, λ > 0,

E
[
exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

)]
<∞.

Remark 3.4. The above theorem, together with Proposition 3.2, actually declares the equiv-
alence between the integrability and the exponential integrability of

∫ t
0

∫ t
0
|r − s|−β0γ(Xr −

Xs)dsdr. This surprising result is mainly a consequence of the Markovian property of the
Lévy process X. A result in the same flavor for

∫ t
0
f(Bs)ds where B is a standard Brownian

motion and f is a positive measurable function has been discovered by Khas’minskii [26] (see,
e.g., [38, Lemma 2.1]).

Proof. Note that
∫ t

0

∫ t
0
|r − s|−β0γ(Xr − Xs)dsdr = 2

∫ t
0

∫ r
0
|r − s|−β0γ(Xr − Xs)dsdr, and

equivalently we will study the exponential integrability of
∫ t

0

∫ r
0
|r − s|−β0γ(Xr − Xs)dsdr.

Inspired by the method in the proof of [29, Theorem 1], we estimate the n-th moments as
follows.

E
(∫ t

0

∫ r

0

|r − s|−β0γ(Xr −Xs)dsdr

)n
=

∫
[0<s<r<t]n

E

(
n∏
j=1

|rj − sj|−β0γ(Xrj −Xsj)

)
dsdr

=n!

∫
[0<s<r<t]n∩[0<r1<r2···<rn<t]

E

(
n∏
j=1

|rj − sj|−β0γ(Xrj −Xsj)

)
dsdr

≤n!

∫
[0<s<r<t]n∩[0<r1<r2···<rn<t]

n∏
j=1

|rj − ηj|−β0E
[
γ(Xrj −Xηj)

]
dsdr.

The last inequality, where ηj is the point in the set {rj−1, sj, sj+1, . . . , sn} which is clos-
est to rj from the left, holds since E

[
γ(Xrj −Xsj)

]
= E

[
γ(Xrj −Xηj +Xηj −Xsj)

]
≤

E
[
γ(Xrj −Xηj)

]
by the independent increment property of X and Lemma 3.9. Note that

dsdr actually means ds1 . . . dsndr1 . . . drn in the above last three integrals. Throughout the
article, we will take this kind of abuse of the notation for simpler exposition.

Fix the points r1 < · · · < rn, we can decompose the set [0 < s < r < t]n ∩ [0 <
r1 < r2 · · · < rn < t] into (2n− 1)!! disjoint subsets depending on which interval the si’s are
placed in. More precisely, s1 must be in (0, r1), while s2 could be in (0, s1), (s1, r1) or (r1, r2).
Similarly, there are (2j − 1) choices to place sj. Over each subset, we denote the integral by
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Iσ :=

∫
[0<z1<···<z2n<t]

n∏
j=1

|zσ(j) − zσ(j)−1|−β0E
[
γ(Xzσ(j) −Xzσ(j)−1

)
]
dz,

where σ(1) < · · · < σ(n) are n distinct elements in the set {2, 3, . . . , 2n}. Hence

E
[(∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

)n]
≤ n!×

[
sum of the (2n−1)!! terms of I ′σs

]
. (3.1)

Next, for fixed n, we will provide a uniform upper bound for all I ′σs. Noting that Xzσ(j)−
Xzσ(j)−1

d
= Xzσ(j)−zσ(j)−1

and letting yj = zj − zj−1, we have

Iσ =

∫
[0<y1+y2+···+y2n<t, 0<y1,··· ,y2n<t]

n∏
j=1

|yσ(j)|−β0E[γ(Xyσ(j))]dy

≤ t
n

n!

∫
[0<y1+y2+···+yn<t, 0<y1,··· ,yn<t]

n∏
j=1

|yi|−β0E[γ(Xyj)]dy

=
tn

n!

∫
[0<z1<···<zn<t]

n∏
j=1

|zj − zj−1|−β0E[γ(Xzj−zj−1
)]dz

=
tn

n!

∫
[0<z1<···<zn<t]

∫
Rnd

n∏
j=1

|zj − zj−1|−β0e−(zj−zj−1)Ψ(ξj)µ(dξ)dz. (3.2)

Note that ∫
[0<z1<···<zn<t]

∫
Rnd

n∏
j=1

|zj − zj−1|−β0e−(zj−zj−1)Ψ(ξj)µ(dξ)dz

=

∫
Ωnt

∫
Rnd

n∏
j=1

s−β0j e−sjΨ(ξj)µ(dξ)ds, (3.3)

where

Ωn
t =

{
(s1, . . . , sn) ∈ [0,∞)n :

n∑
j=1

sj ≤ t

}
. (3.4)

For fixed large N , denote

εN =

∫
[|ξ|≥N ]

1

(Ψ(ξ))1−β0
µ(dξ), and mN = µ([|ξ| ≤ N ]). (3.5)

Thus, by (3.1), (3.2), (3.3) and Proposition 3.5, we have

E
[(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

)n]
≤(2n− 1)!!λntn

n∑
k=0

(
n

k

)(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

mk
N [A0εN ]n−k . (3.6)
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Now, for fixed t and λ, we can choose N sufficiently large such that 4A0λtεN < 1. Conse-
quently,

E
[
exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

)]
≤
∞∑
n=0

λntn
(2n− 1)!!

n!

n∑
k=0

(
n

k

)(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

mk
N [A0εN ]n−k

=
∞∑
k=0

(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

mk
N [A0εN ]−k

∞∑
n=k

λntn
(2n− 1)!!

n!

(
n

k

)
[A0εN ]n

≤
∞∑
k=0

(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

mk
N [A0εN ]−k

∞∑
n=k

[4λA0tεN ]n

=
1

1− 4λA0tεN

∞∑
k=0

(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

(4λtmN)k <∞,

where in the second inequality we used the estimate (2n−1)!!
n!

(
n
k

)
≤ 2n · 2n = 4n. The proof is

concluded.

The following proposition, which plays a key role in this article, is a generalized version
of Lemma 3.3 in [27].

Proposition 3.5. For β0 ∈ [0, 1), assume∫
Rd

1

1 + (Ψ(ξ))1−β0
µ(dξ) <∞.

Then there exists a positive constant A0 depending on β0 only such that for all N > 0,∫
Ωnt

∫
Rnd

n∏
j=1

r−β0j e−rjΨ(ξj)µ(dξ)dr ≤
n∑
k=0

(
n

k

)(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

mk
N [A0εN ]n−k ,

where εN and mN are given by (3.5), and Ωn
t is given by (3.4).

Proof. The proof essentially follows the approach used in the proof of [27, Lemma 3.3].

First note that the assumption implies that lim
N→∞

εN = 0, and since µ(dξ) is a tempered
measure, then mN < ∞ for all N > 0. For a subset S of {1, 2, . . . , n}, we denote its
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complement by Sc, i.e., Sc := {1, 2, . . . , n}\S.∫
Rnd

∫
Ωnt

n∏
j=1

r−β0j e−rjΨ(ξj)drµ(dξ)

=

∫
Rnd

∫
Ωnt

n∏
j=1

r−β0j e−rjΨ(ξj)
[
I[|ξj |≤N ] + I[|ξj |>N ]

]
drµ(dξ)

=
∑

S⊂{1,2,...,n}

∫
Rd

∫
Ωnt

∏
l∈S

r−β0l e−rlΨ(ξl)I[|ξl|≤N ]

∏
j∈Sc

r−β0j e−rjΨ(ξj)I[|ξj |>N ]drµ(dξ)

≤
∑

S⊂{1,2,...,n}

∫
Rd

∫
Ωnt

∏
l∈S

r−β0l I[|ξl|≤N ]

∏
j∈Sc

r−β0j e−rjΨ(ξj)I[|ξj |>N ]drµ(dξ).

Note that Ωn
t ⊂ ΩS

t × ΩSc

t , where ΩI
t = {(ri, i ∈ I) : ri ≥ 0,

∑
j∈I ri ≤ t} for any I ⊂

{1, 2, . . . , n}. Therefore,∫
Rnd

∫
Ωnt

n∏
j=1

r−β0j e−rjΨ(ξj)drµ(dξ)

≤
∑

S⊂{1,2,...,n}

∫
Rnd

∫
ΩSt ×ΩS

c
t

∏
l∈S

r−β0l I[|ξl|≤N ]

∏
j∈Sc

r−β0j e−rjΨ(ξj)I[|ξj |>N ]drµ(dξ).

By Lemma 3.11, we have ∫
ΩSt

∏
l∈S

r−β0l dr =

(
Γ(1− β0)t1−β0

)|S|
Γ(|S|(1− β0) + 1)

.

On the other hand, there exists A0 > 0 depending on β0 only such that∫
ΩS

c
t

∏
j∈Sc

r−β0j e−rjΨ(ξj)dr ≤
∫

[0,t]|Sc|

∏
j∈Sc

r−β0j e−rjΨ(ξj)dr

≤
∏
j∈Sc

∫ t

0

r−β0e−rΨ(ξj)dr ≤
∏
j∈Sc

A0(Ψ(ξj))
−1+β0 ,

where the last equality holds since
∫ t

0
r−β0e−ardr = a−1+β0

∫ at
0
s−β0e−sds ≤ a−1+β0

∫∞
0
s−β0e−sds.
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Therefore,∫
Rnd

∫
Ωnt

n∏
j=1

r−β0j e−rjΨ(ξj)drµ(dξ)

≤
∑

S⊂{1,2,...,n}

∫
Rnd

(
Γ(1− β0)t1−β0

)|S|
Γ(|S|(1− β0) + 1)

∏
l∈S

I[|ξl|≤N ]

∏
j∈Sc

A0(Ψ(ξj))
−1+β0I[|ξj |>N ]µ(dξ)

=
∑

S⊂{1,2,...,n}

(
Γ(1− β0)t1−β0

)|S|
Γ(|S|(1− β0) + 1)

A
|Sc|
0 m

|S|
N ε
|Sc|
N

=
n∑
k=0

(
n

k

)(
Γ(1− β0)t1−β0

)k
Γ(k(1− β0) + 1)

An−k0 mk
Nε

n−k
N ,

and the proof is concluded.

Remark 3.6. If we assume the following stronger condition,∫
Rd

1

1 + (Ψ(ξ))1−β0−ε0
µ(dξ) <∞

for some ε0 ∈ (0, 1− β0), we may prove that for all λ, t > 0

E
[
λ exp

(∣∣∣∣∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

∣∣∣∣p)] <∞, when p <
1

1− ε0

, (3.7)

without involving Proposition 3.5.

Now we estimate the integral over Rnd in the last term of (3.2) first. By (3.2) and Lemma
3.10, there exists C > 0 depending only on 1− β0 − ε0 and µ(dξ), such that

Iσ ≤ Cn t
n

n!

∫
[0<z1<z2···<zn<t]

n∏
j=1

|zj − zj−1|−β0
n∏
j=1

[1 + (zj − zj−1)−1+β0+ε]dz.

Denote τ = (τ1, . . . , τn) and |τ | =
∑n

j=1 τj. Then

n∏
j=1

[1 + (zj − zj−1)−1+β0+ε0 ] =
∑

τ∈{0,1}n

n∏
j=1

(zj − zj−1)τj(−1+β0+ε0) =
∑

τ∈{0,1}n
Jτ =

n∑
m=0

∑
|τ |=m

Jτ .

When |τ | = m and t ≥ 1, by Lemma 3.11, we have∫
[0<z1<z2···<zn<t]

n∏
j=1

|zj − zj−1|−β0Jτdz ≤
Cntmε0+(n−m)(1−β0)

Γ(mε0 + (n−m)(1− β0) + 1)
≤ Cntn(1−β0)

Γ(nε0 + 1)
,

noting that ε0 < 1− β0.
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Note that there are
(
n
m

)
Jτ ’s for |τ | = m, and hence

Iσ ≤ Cn t
n(2−β0)

n!

n∑
m=0

(
n

m

)
1

Γ(nε0 + 1)
≤ Cn t

n(2−β0)

n!
(n+ 1)2n

1

(nε0/3)nε0
, (3.8)

where in the last step we use the properties
(
n
m

)
≤ 2n and Γ(x+ 1) ≥ (x/3)x.

Combining (3.1) and (3.8), we have, for all λ > 0 and t > 0,

E
[(∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr

)n]
≤
(
Ct2−β0

)n
(n!)1−ε0 ,

where C > 0 depends on β0, ε0 and µ(dξ), and then (3.7) follows.

Lemma 3.7. There exist positive constants C1 and C2 depending on β0 only such that

1

1 + x1−β0

∫ t

0

s−β0e−sds ≤
∫ t

0

s−β0e−sxds ≤ 1

1 + x1−β0
(C1 + C2t

1−β0), ∀x > 0.

Similarly, there exist positive constants D1 and D2 depending on β0 only such that

2

1 + x1−β0

∫ t

0

∫ s

0

r−β0e−rdrds ≤
∫ t

0

∫ t

0

|r−s|−β0e−|r−s|xdrds ≤ 2

1 + x1−β0
(D1t+D2t

2−β0), ∀x > 0.

Proof. An change of variable implies that∫ t

0

s−β0e−sxds = xβ0−1

∫ tx

0

r−β0e−rdr.

The first inequality is a consequence of the following observation. When x ≥ 1,

xβ0−1

∫ t

0

r−β0e−rdr ≤ xβ0−1

∫ tx

0

r−β0e−rdr ≤ xβ0−1

∫ ∞
0

r−β0e−rdr,

and when 0 < x < 1, ∫ t

0

s−β0e−sds ≤
∫ t

0

s−β0e−sxds ≤
∫ t

0

s−β0ds.

The second estimate follows from the first one and the following equality∫ t

0

∫ t

0

|r − s|−β0e−x|r−s|dsdr = 2

∫ t

0

∫ r

0

(r − s)−β0e−x(r−s)dsdr = 2

∫ t

0

∫ r

0

s−β0e−xsdsdr.

Remark 3.8. Using similar approach in the above proof, we can show that the two inequal-
ities hold for

sup
a∈R

∫ t

0

s−β0e−|s+a|xds and sup
a∈R

∫ t

0

∫ t

0

|r − s|−β0e−|r−s+a|xdrds

12



as well. It suffices to show that the upper bounds hold. We prove the first one as an illustra-
tion. When 0 < x < 1, ∫ t

0

s−β0e−|s+a|xds ≤
∫ t

0

s−β0ds;

when x ≥ 1, ∫ t

0

s−β0e−|s+a|xds ≤ xβ0−1

∫ ∞
0

s−β0e−|s+ax|ds ≤ Cxβ0−1

where

C = sup
a∈R

∫ ∞
0

s−β0e−|s+ax|ds ≤
∫ 1

0

s−β0ds+sup
a∈R

∫ ∞
1

e−|s+ax|ds ≤
∫ 1

0

s−β0ds+

∫ ∞
−∞

e−|s|ds <∞,

and the upper bound is obtained.

Lemma 3.9. E[γ(Xt + a)] ≤ E[γ(Xt)], for all a ∈ Rd.

Proof. By Lemma 2.1,

E[γ(Xt + a)] =
1

(2π)d

∫
Rd
e−iξ·ae−tΨ(ξ)µ(dξ) ≤ 1

(2π)d

∫
Rd
e−tΨ(ξ)µ(dξ) = E[γ(Xt)].

Lemma 3.10. Suppose ∫
Rd

1

1 + (Ψ(ξ))α
µ(dξ) <∞,

for some α > 0, then there exists a constant C > 0 depending on µ(dξ) and α only, such
that ∫

Rd
e−xΨ(ξ)µ(dξ) ≤ C(1 + x−α), ∀x > 0.

Proof. Since lim|ξ|→∞Ψ(ξ) = ∞, we can choose M > 0 such that Ψ(ξ) > 1 when |ξ| > M .
Clearly ∫

Rd
e−xΨ(ξ)µ(dξ) =

∫
[|ξ|≤M |]

e−xΨ(ξ)µ(dξ) +

∫
[|ξ|>M ]

e−xΨ(ξ)µ(dξ).

The first integral on the right-hand side is bounded by µ([|ξ| ≤M ]) which is finite. For the
second integral, note that yαe−y is uniformly bounded for all y ≥ 0, and hence there exists
a constant C depending on α only such that∫

[|ξ|>M ]

e−xΨ(ξ)µ(dξ) ≤ C

∫
[|ξ|>M ]

x−α(Ψ(ξ))−αµ(dξ) ≤ x−α
∫

[|ξ|>M ]

2C

1 + (Ψ(ξ))α
µ(dξ).

Lemma 3.11. Suppose αi ∈ (−1, 1), i = 1, . . . , n and let α = α1 + · · ·+ αn. Then∫
[0<r1<···<rn<t]

n∏
i=1

(ri − ri−1)αi dr1 . . . drn =

∏n
i=1 Γ(αi + 1)tα+n

Γ(α + n+ 1)
,

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function.
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Proof. The result follows from a direct computation of the iterated integral with respect to
rn, rn−1, . . . , r1 orderly. The properties Γ(x + 1) = xΓ(x) and B(x, y) = Γ(x)Γ(y)

Γ(x+y)
are used in

the computation, where B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt for x, y > 0 is the beta function.

4 Stratonovich equation

In the this section, we will use the approximation method ([28, 30, 11, 27]) to study (1.1) in
the Stratonovich sense.

4.1 Definition of
∫ t
0

∫
Rd δ0(X

x
t−r − y)W (dr, dy)

Denote gδ(t) := 1
δ
I[0,δ](t) for t ≥ 0 and pε(x) = 1

εd
p(x

ε
) for x ∈ Rd, where p(x) ∈ C∞0 (Rd) is

a symmetric probability density function and its Fourier transform p̂(ξ) ≥ 0 for all ξ ∈ Rd.
We also have that for all ξ ∈ Rd, limε→0+ p̂ε(ξ) = 1.

Let

Φε,δ
t,x(r, y) :=

∫ t

0

gδ(t− s− r)pε(Xx
s − y)ds · I[0,t](r). (4.1)

Formal computations suggest that

lim
ε,δ↓0

∫ t

0

∫
Rd

Φε,δ
t,x(r, y)W (dr, dy) =

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy),

where δ0(x) is the Dirac delta function. This formal derivation is validated by the following
theorem.

Theorem 4.1. Let the measure µ satisfy Hypothesis (I), then W (Φε,δ
t,x) is well-defined a.s.

and forms a Cauchy sequence in L2 when (ε, δ)→ 0 with the limit denoted by

W (δ0(Xx
t−· − ·)I[0,t](·)) =

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy).

Furthermore, W (δ0(Xx
t−· − ·)I[0,t](·)) is Gaussian distributed conditional on X with variance

Var
[
W (δ0(Xx

t−· − ·)I[0,t](·))|X
]

=

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)dsdr. (4.2)

Proof. Let εi, δi, i = 1, 2 be positive numbers, then by (2.1)

〈Φε1,δ1
t,x ,Φε2,δ2

t,x 〉H =

∫
[0,t]4

∫
R2d

pε1(X
x
s1
− y1)pε2(X

x
s2
− y2)γ(y1 − y2)

gδ1(t− s1 − r1)gδ2(t− s2 − r2)|r1 − r2|−β0dy1dy2dr1dr2ds1ds2. (4.3)
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Hence
〈Φε1,δ1

t,x ,Φε2,δ2
t,x 〉H ≥ 0.

By [30, Lemma A.3], there exists a positive constant C depending on β0 only, such that∫
[0,t]2

gδ1(t− s1 − r1)gδ2(t− s2 − r2)|r1 − r2|−β0dr1dr2 ≤ C|s1 − s2|−β0 . (4.4)

Therefore,

〈Φε1,δ1
t,x ,Φε2,δ2

t,x 〉H ≤ C

∫
[0,t]2

∫
R2d

pε1(X
x
s1
− y1)pε2(X

x
s2
− y2)|s1 − s2|−β0dy1dy2ds1ds2

=
C

(2π)d

∫
[0,t]2

∫
Rd
F
(
pε1(X

x
s1
− ·)

)
(ξ)F

(
pε2(X

x
s2
− ·)

)
(ξ)|s1 − s2|−β0µ(dξ)ds1ds2

=
C

(2π)d

∫
[0,t]2

∫
Rd
p̂ε1(ξ)p̂ε2(ξ) exp

(
− iξ · (Xs1 −Xs2)

)
|s1 − s2|−β0µ(dξ)ds1ds2

≤ C(ε1, ε2)

∫
[0,t]2
|s1 − s2|−β0ds1ds2 <∞. (4.5)

The second equality above holds because F (φ(· − a)) (ξ) = exp(−ia · ξ)φ̂(ξ) and that
we can apply the Parseval’s identity since

∫
Rd p̂ε1(ξ)p̂ε2(ξ)µ(dξ) ≤

∫
Rd p̂ε1(ξ)‖pε‖1µ(dξ) =∫

Rd pε1(x)γ(x)dx <∞. Hence, for ε, δ > 0, Φε,δ
t,x ∈ H a.s. and W (Φε,δ

t,x) is well-defined a.s..

Now we show that W (Φε,δ
t,x) forms a Cauchy sequence in L2 when (ε, δ) → 0, for which

it suffices to show that E[〈Φε1,δ1
t,x ,Φε2,δ2

t,x 〉H] converges as (ε1, δ1) and (ε2, δ2) tend to zero. By
the formula (2.4) for the inner product using Fourier transforms,

〈Φε1,δ1
t,x ,Φε2,δ2

t,x 〉H =
1

(2π)d

∫
[0,t]4

∫
Rd
F
(
pε1(X

x
s1
− ·)

)
(ξ)F

(
pε2(X

x
s2
− ·)

)
(ξ)

gδ1(t− s1 − r1)gδ2(t− s2 − r2)|r1 − r2|−β0µ(dξ)dr1dr2ds1ds2

=
1

(2π)d

∫
[0,t]4

∫
Rd
p̂ε1(ξ)p̂ε2(ξ) exp

(
− iξ · (Xs1 −Xs2)

)
gδ1(t− s1 − r1)gδ2(t− s2 − r2)|r1 − r2|−β0µ(dξ)dr1dr2ds1ds2.

By Fubini’s theorem and thanks to (4.4) and Proposition 3.2, we can apply the dominated
convergence theorem and get that

E[〈Φε1,δ1
t,x ,Φε2,δ2

t,x 〉H] −→ 1

(2π)d

∫
[0,t]2

∫
Rd

E exp (−iξ · (Xs1 −Xs2)) |s1 − s2|−β0µ(dξ)ds1ds2

=

∫
[0,t]2
|s1 − s2|−β0Eγ(Xs2 −Xs1)ds1ds2 (4.6)

as (ε1, δ1) and (ε2, δ2) go to zero.
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Finally, conditional on X, W (Φε,δ
t,x) is Gaussian and hence the limit (in probability)

W (δ0(Xx
t−· − ·)) is also Gaussian. To show the formula (4.2) for conditional variance, it

suffices to show that

〈Φε,δ
t,x,Φ

ε,δ
t,x〉H −→

∫
[0,t]2
|s1 − s2|−β0γ(Xs2 −Xs1)ds1ds2 (4.7)

in L1(Ω) as (ε, δ)→ 0. Noting that, by Lemma 4.2, the inside integral in (4.3)∫
[0,t]2

∫
R2d

pε(X
x
s1
− y1)pε(X

x
s2
− y2)γ(y1 − y2)

gδ(t− s1 − r1)gδ(t− s2 − r2)|r1 − r2|−β0dy1dy2dr1dr2

converges to |s1 − s2|−β0γ(Xs1 − Xs2) a.s. as (ε, δ) goes to zero, because of (4.6) we can
apply Scheffé’s lemma to get that the convergence is also in L1(Ω× [0, t]2, P ×m) where m
is the Lebesgue measure on [0, t]2. Consequently it follows that the convergence (4.7) holds
in L1(Ω).

Lemma 4.2. When a− b 6= 0,

lim
ε→0

∫
R2d

pε(a− y1)pε(b− y2)γ(y1 − y2)dy1dy2 = γ(a− b).

Proof. The change of variables x1 = y1−y2, x2 = y2 implies that
∫
R2d pε(a−y1)pε(b−y2)γ(y1−

y2)dy1dy2 =
∫
R2d pε(a− x1 − x2)pε(b− x2)γ(x1)dx1dx2 =

∫
Rd(pε ∗ pε)(a− b− x1)γ(x1)dx1 =∫

Rd
1
ε
(p ∗ p)(a−b−x

ε
)γ(x)dx. Since the convolution p ∗ p is also a smooth probability density

function with compact support, it suffices to prove the following result.

Lemma 4.3. Let fε(x) = 1
εd
f(x

ε
), where f ∈ C∞0 (Rd) is a symmetric probability density

function. Then we have

lim
ε→0

∫
Rd
fε(a− x)γ(x)dx = γ(a), ∀a 6= 0.

Proof. Suppose that the support of the function f is inside [−M,M ]. Let the positive number
ε be sufficiently small such that γ(x) is continuous on [a−Mε, a+Mε]. By the mean value
theorem, we have ∫

Rd
fε(a− x)γ(x)dx =

∫
[a−Mε,a+Mε]

fε(a− x)γ(x)dx

= γ(aε)

∫
[a−Mε,a+Mε]

fε(a− x)dx = γ(aε),

where aε ∈ [a−Mε, a+Mε]. The result follows if we let ε go to zero.
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4.2 Feynman-Kac formula

For positive numbers ε and δ, define

Ẇ ε,δ(t, x) :=

∫ t

0

∫
Rd
gδ(t− s)pε(x− y)W (ds, dy) = W (φε,δt,x), (4.8)

where
φε,δt,x(s, y) = gδ(t− s)pε(x− y) · I[0,t](s).

Then Ẇ ε,δ(t, x) exists in the classical sense and it is an approximation of Ẇ (t, x). Taking
advantage of Ẇ ε,δ(t, x), we can define the integral

∫ T
0

∫
Rd v(t, x)W (dt, dx) in the Stratonovich

sense as follows.

Definition 4.4. Suppose that v = {v(t, x), t ≥ 0, x ∈ Rd} is a random field satisfying∫ T

0

∫
Rd
|v(t, x)|dxdt <∞, a.s.,

and that the limit in probability lim
ε,δ↓0

∫ T
0

∫
Rd v(t, x)Ẇ ε,δ(t, x)dxdt exists. The we denote the

limit by ∫ T

0

∫
Rd
v(t, x)W (dt, dx) := lim

ε,δ↓0

∫ T

0

∫
Rd
v(t, x)Ẇ ε,δ(t, x)dxdt.

and call it Stratonovich integral.

Let Ft be the σ-algebra generated by {W (s, x), 0 ≤ s ≤ t, x ∈ Rd}, and we say that a
random field {F (t, x), t ≥ 0, x ∈ Rd} is adapted if {F (t, x), t ≥ 0} is adapted to the filtration
{Ft}t≥0 for all x ∈ Rd. Denote the convolution between the function qt and f by Qtf , i.e.,

Qtf(x) :=

∫
Rd
qt(x− y)f(y)dy.

A mild solution to (1.1) in the Stratonovich sense is defined as follows.

Definition 4.5. An adapted random field u = {u(t, x), t ≥ 0, x ∈ Rd} is a mild solution to
(1.1) with initial condition u0 ∈ Cb(Rd), if for all t ≥ 0 and x ∈ Rd the following integral
equation holds

u(t, x) = Qtu0(x) +

∫ t

0

∫
Rd
qt−s(x− y)u(s, y)W (ds, dy), (4.9)

where the stochastic integral is in the Stratonovich sense of Definition 4.4.

The following theorem is the main result in this section.

17



Theorem 4.6. Let the measure µ satisfy Hypothesis (I). Then

u(t, x) = EX
[
u0(Xx

t ) exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)

)]
(4.10)

is well-defined and it is a mild solution to (1.1) in the Stratonovich sense.

Proof. Consider the following approximation of (1.1){
uε,δ(t, x) = Luε,δ(t, x) + uε,δ(t, x)Ẇ ε,δ(t, x),

uε,δ(0, x) = u0(x).
(4.11)

By the classical Feynman-Kac formula,

uε,δ(t, x) = EX
[
u0(Xx

t ) exp

(∫ t

0

Ẇ ε,δ(r,Xx
t−r)dr

)]
= EX

[
u0(Xx

t ) exp
(
W (Φε,δ

t,x)
)]

where Φε,δ
t,x is defined in (4.1) and the last equality follows from the stochastic Fubini’s

theorem, is a mild solution to (4.11), i.e.,

uε,δ(t, x) = Qtu0(x) +

∫ t

0

∫
Rd
qt−s(x− y)uε,δ(s, y)Ẇ ε,δ(s, y)dsdy. (4.12)

To prove the result, it suffices to show that as (ε, δ) tends to zero, both sides of (4.12)
converge respectively in probability to those of (4.9) with u(t, x) given in (4.10). We split
the proof in two steps for easier interpretation.

Step 1. First, we show that uε,δ(t, x) → u(t, x) in Lp for all p > 1. By Theorem 4.1, as
(ε, δ) → 0, W (Φε,δ

t,x) converges to W (δ0(Xx
t−· − ·)I[0,t](·)) in probability, and hence it suffices

to show that
sup
ε,δ>0

sup
t∈[0,T ],x∈Rd

E[|uε,δ(t, x)|p] <∞.

Note that W (Φε,δ
t,x) is Gaussian conditional on X, and hence

E
[
exp

(
pW (Φε,δ

t,x)
)]

= E
[
exp

(
p2

2
‖Φε,δ

t,x‖2
H

)]
.

By (2.4) and (4.4), in a similar way of proving (4.5), we can show that there exists a positive
constant C depending on β0 only such that

‖Φε,δ
t,x‖2
H ≤ C

∫
[0,t]2

∫
Rd

(p̂ε(ξ))
2 exp(−iξ · (Xr −Xs))|r − s|−β0µ(dξ)drds.
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Therefore,

E[‖Φε,δ
t,x‖2n
H ] ≤Cn

∫
[0,t]2n

∫
Rnd

n∏
j=1

(p̂ε(ξj))
2 E exp(−i

n∑
j=1

ξj · (Xrj −Xsj))

n∏
j=1

|rj − sj|−β0
n∏
j=1

µ(dξj)drjdsj

≤Cn

∫
[0,t]2n

∫
Rnd

E exp(−i
n∑
j=1

ξj · (Xrj −Xsj))
n∏
j=1

|rj − sj|−β0
n∏
j=1

µ(dξj)drjdsj

=E
[(
C

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)n]
.

The second inequality above holds because supξ∈Rd p̂ε(ξ) ≤ 1 and E exp(−i
∑n

j=1 ξj · (Xrj −
Xsj)) is a positive real number. Thus there is constant C > 0 depending on β0 only such
that

sup
ε,δ>0

sup
t∈[0,T ],x∈Rd

E
[
exp

(
p2

2
‖Φε,δ

t,x‖2
H

)]
≤ E

[
exp

(
C
p2

2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]
,

where the term on the right-hand side is finite by Theorem 3.3.

Step 2. Now by Definition 4.4, it suffices to show that

Iε,δ :=

∫ t

0

∫
Rd
qt−s(x− y)(uε,δ(s, y)− u(s, y))Ẇ ε,δ(s, y)dsdy

converges in L2 to zero. Denoting vε,δs,y = uε,δ(s, y) − u(s, y) and noting that Ẇ ε,δ(s, y) =
W (φε,δs,y) we have

E[(Iε,δ)2] =

∫
[0,t]2

∫
R2d

qt−s1(x−y1)qt−s2(x−y2)E
[
vε,δs1,y1v

ε,δ
s2,y2

W (φε,δs1,y1)W (φε,δs2,y2)
]
dy1dy2ds1ds2.

Use the following notations V ε,δ
t,x (X) =

∫ t
0
Ẇ ε,δ(r,Xx

t−r)dr = W (Φε,δ
t,x(X)), Vt,x(X) =∫ t

0

∫
Rd δ0(Xx

t−r − y)W (dr, dy) = W (δ0(Xx
t−· − ·)I[0,t](·)), and

Aε,δ(s1, y1, s2, y2) =
2∏
j=1

u0(Xj
sj

+ yj)
[
exp

(
V ε,δ
sj ,yj

(Xj)
)
− exp

(
Vsj ,yj(X

j)
)]
,

where X1 and X2 are two independent copies of X. Then

E
[
vε,δs1,y1v

ε,δ
s2,y2

W (φε,δs1,y1)W (φε,δs2,y2)
]

= EX1,X2 [EW [Aε,δ(s1, y1, s2, y2)W (φε,δs1,y1)W (φε,δs2,y2)
]]
.

By the integration by parts formula (2.9),

EW
[
Aε,δ(s1, y1, s2, y2)W (φε,δs1,y1)W (φε,δs2,y2)

]
=EW

[
〈D2Aε,δ(s1, y1, s2, y2), φε,δs1,y1 ⊗ φ

ε,δ
s2,y2
〉H⊗2

]
+ EW [Aε,δ(s1, y1, s2, y2)]〈φε,δs1,y1 , φ

ε,δ
s2,y2
〉H,
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and hence we have

E
[
vε,δs1,y1v

ε,δ
s2,y2

W (φε,δs1,y1)W (φε,δs2,y2)
]

= E[Aε,δ(s1, y1, s2, y2)Bε,δ(s1, y1, s2, y2)]+E[vε,δs1,y1v
ε,δ
s2,y2

]〈φε,δs1,y1 , φ
ε,δ
s2,y2
〉H,

where

Bε,δ(s1, y1, s2, y2)

=
2∑

j,k=1

〈φε,δs1,y1 ,Φ
ε,δ
sj ,yj

(Xj)− δ(Xj
sj−· + yj − ·)I[0,sj ](·)〉H〈φε,δs2,y2 ,Φ

ε,δ
sk,yk

(Xk)− δ(Xk
sk−· + yk − ·)I[0,sk](·)〉H.

Therefore,
E[(Iε,δ)2] = Jε,δ1 + Jε,δ2 ,

with the notations

Jε,δ1 =

∫
[0,t]2

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)E[Aε,δ(s1, y1, s2, y2)Bε,δ(s1, y1, s2, y2)]dy1dy2ds1ds2

≤
∫

[0,t]2

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)(
E[(Aε,δ(s1, y1, s2, y2))2]

)1/2 (E[(Bε,δ(s1, y1, s2, y2))2]
)1/2

dy1dy2ds1ds2

and

Jε,δ2 =

∫
[0,t]2

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)E[vε,δs1,y1v
ε,δ
s2,y2

]〈φε,δs1,y1 , φ
ε,δ
s2,y2
〉Hdy1dy2ds1ds2

≤
∫

[0,t]2

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)
(
E[(vε,δs1,y1)

2]
)1/2 (E[(vε,δs2,y2)

2]
)1/2 〈φε,δs1,y1 , φ

ε,δ
s2,y2
〉Hdy1dy2ds1ds2.

Now the problem is reduced to show that both Jε,δ1 and Jε,δ2 converge to zero as (ε, δ)→ 0.
By the result in Step 1, we have

lim
ε,δ↓0

E[(vε,δs,y)
2] = 0,

and similar arguments imply that

lim
ε,δ↓0

E[(Aε,δs,y)
2] = 0,

for all (s, y) ∈ [0, T ]×Rd.Also note that both sup
ε,δ>0

sup
(s,y)∈[0,T ]×Rd

E[(vε,δs,y)
2] and sup

ε,δ>0
sup

(s,y)∈[0,T ]×Rd
E[(Aε,δs,y)

2]

are finite.

First we can prove lim
ε,δ↓0

Jε,δ1 = 0 by the dominated convergence theorem, noting that

Lemma 4.8 implies

sup
ε,δ>0

sup
(s1,y1)∈[0,T ]×Rd

sup
(s2,y2)∈[0,T ]×Rd

E[(Bε,δ(s1, y1, s2, y2))2] <∞.

20



Now we show lim
ε,δ↓0

Jε,δ2 = 0. By (2.4) and (4.4), we have

〈φε,δs1,y1 , φ
ε,δ
s2,y2
〉H ≤ C|s1 − s2|−β0

∫
Rd

exp (−iξ · (y1 − y2)) (p̂ε(ξ))
2 µ(dξ),

therefore,

Jε,δ2 ≤ C

∫ t

0

∫ t

0

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)Kε,δ(s1, y1, s2, y2)|s1 − s2|−β0dy1dy2ds1ds2

where

Kε,δ(s1, y1, s2, y2) :=
(
E[(vε,δs1,y1)

2]
)1/2 (E[(vε,δs2,y2)

2]
)1/2

∫
Rdpε(ξ)

exp(−iξ · (y1 − y2)) (p̂ε(ξ))
2 µ(dξ)

≤C
∫
Rd

exp(−iξ · (y1 − y2)) (p̂ε(ξ))
2 µ(dξ).

Denote
Lεs1,s2 :=

∫
Rd

exp(−iξ · (y1 − y2)) (p̂ε(ξ))
2 µ(dξ).

Hence

Kε,δ(s1, y1, s2, y2) ≤ CLεs1,s2 .

For the integral of Lεs1,s2 , we have∫ t

0

∫ t

0

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)Lεs1,s2|s1 − s2|−β0dy1dy2ds1ds2

=

∫ t

0

∫ t

0

∫
R2d

∫
Rd
qt−s1(x− y1)qt−s2(x− y2) exp(−iξ · (y1 − y2))

(p̂ε(ξ))
2 |s1 − s2|−β0µ(dξ)dy1dy2ds1ds2

=

∫ t

0

∫ t

0

∫
Rd

exp (−(t− s1)Ψ(ξ)) exp (−(t− s2)Ψ(ξ)) (p̂ε(ξ))
2 |s1 − s2|−β0µ(dξ)ds1ds2

ε→0−→
∫ t

0

∫ t

0

∫
Rd

exp (−(t− s1)Ψ(ξ)) exp (−(t− s2)Ψ(ξ)) |s1 − s2|−β0µ(dξ)ds1ds2

=

∫ t

0

∫ t

0

∫
R2d

qt−s1(x− y1)qt−s2(x− y2)γ(y1 − y2)|s1 − s2|−β0dy1dy2ds1ds2w, (4.13)

where the convergence follows from the dominated convergence theorem, the last equality
follows from the formula (2.5), and the last term is finite by Lemma 3.7.

We have shown that Kε,δ(s1, y1, s2, y2) which converges to zero almost everywhere, is
bounded by the sequence Lεs1,s2 which converges to γ(y1 − y2), and thanks to (4.13), we can
apply the generalized dominated convergence theorem to get that lim

ε,δ↓0
Jε,δ2 = 0.
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Using Theorem 4.6, by direct computation we can get the following Feynman-Kac type
of representation for the moments of the solution to (1.1).

Theorem 4.7. Let µ satisfy Hypothesis (I), then the solution given by (4.10) has finite
moments of all orders. Furthermore, for any positive integer p,

E[u(t, x)p] = E

[
p∏
j=1

u0(Xj
t + x) exp

(
1

2

p∑
j,k=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

)]
, (4.14)

where X1, . . . , Xp are p independent copies of X.

Lemma 4.8. Let the measure µ satisfy Hypothesis (I). Then, for any n ∈ N,

sup
ε,δ>0

sup
ε′,δ′>0

sup
(s,y)∈[0,T ]×Rd

sup
(r,z)∈[0,T ]×Rd

E
[(
〈φε,δs,y,Φε′,δ′

r,z (X)〉H
)n]

<∞,

and
sup
ε,δ>0

sup
(s,y)∈[0,T ]×Rd

sup
(r,z)∈[0,T ]×Rd

E
[(
〈φε,δs,y, δ(Xz

r−· − ·)I[0,r](·)〉H
)n]

<∞.

Proof. First of all, 〈φε,δs,y,Φε′,δ′
r,z (X)〉H is a nonnegative real number by (2.1), and by (2.4)

〈φε,δs,y,Φε′,δ′

r,z (X)〉H =

∫ r

0

∫ s

0

∫ r

0

∫
Rd
p̂ε(ξ)p̂ε′(ξ) exp(−iξ · (Xz

τ − y))gδ′(r − µ− τ)

gδ(s− ν)|µ− ν|−β0µ(ξ)dτdµdν.

Therefore, denoting D = [0, r] × [0, s] × [0, r], as in the first step of the proof for Theorem
4.6, we have

E
[(
〈φε,δs,y,Φε′,δ′

r,z (X)〉H
)n]

=

∫
Dn

∫
Rnd

n∏
j=1

gδ′(r − µj − τj)gδ(s− νj)|µj − νj|−β0

n∏
j=1

p̂ε(ξj)p̂ε′(ξj)E

[
exp

(
−i

n∑
j=1

ξj · (Xz
τj
− y)

)]
µ(dξ)dτdµdν

≤Cn

∫
[0,r]n

∫
Rnd

n∏
j=1

|r − s− τj|−β0 exp

(
−ε+ ε′

2

n∑
j=1

|ξj|2
)∣∣∣∣∣E

[
exp

(
−i

n∑
j=1

ξj · (Xz
τj
− y)

)]∣∣∣∣∣µ(dξ)dτ

≤Cn

∫
[0,r]n

∫
Rnd

n∏
j=1

|r − s− τj|−β0E

[
exp

(
−i

n∑
j=1

ξj ·Xτj

)]
µ(dξ)dτ.
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Thus, we have, denoting ηj = ξj + ξj+1 + · · ·+ ξn,

E
[(
〈φε,δs,y,Φε′,δ′

r,z (X)〉H
)n]

≤Cnn!

∫
[0<τ1<···<τn<r]

∫
Rnd

n∏
j=1

|r − s− τj|−β0E

[
exp

(
−i

n∑
j=1

ξj ·Xτj

)]
µ(dξ)dτ

=Cnn!

∫
[0<τ1<···<τn<r]

∫
Rnd

n∏
j=1

|r − s− τj|−β0E

[
exp

(
−i

n∑
j=1

ηj · (Xτj −Xτj−1
)

)]
µ(dξ)dτ (let τ0 = 0)

=Cnn!

∫
[0<τ1<···<τn<r]

∫
Rnd

n∏
j=1

|r − s− τj|−β0 exp

(
−

n∑
j=1

(τj − τj−1)Ψ(ηj)

)
µ(dξ)dτ

≤Cnn!

∫
[0<τ1<···<τn<r]

∫
Rnd

n∏
j=1

|τj + (s− r)|−β0 exp

(
−

n∑
j=1

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ (by Lemma 4.9)

=:Cnn!Un(r, s)

When s− r ≥ 0, for all 0 < r ≤ s < T,

Un(r, s) ≤
∫

[0<τ1<···<τn<r]

∫
Rnd

n∏
j=1

|τj|−β0 exp

(
−

n∑
j=1

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

≤
∫

[0<τ1<···<τn<T ]

∫
Rnd

n∏
j=1

|τj − τj−1|−β0 exp

(
−

n∑
j=1

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ.

By Proposition 3.5, Un(r, s) is uniformly bounded by a finite number depending on (T, n, β0)
and the measure µ only.

When r − s > 0, the set [0 < τ1 < · · · < τn < r] is the union of A′ks for k = 0, 1, 2, . . . , n
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where Ak = [0 = τ0 < τ1 < · · · < τk < r − s < τk+1 < · · · < τn < r]. On each Ak, we have∫
Ak

∫
Rnd

n∏
j=1

|r − s− τj|−β0 exp

(
−

n∑
j=1

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

=

∫
Ak

∫
Rnd

k∏
j=1

(r − s− τj)−β0 exp

(
−

k∑
j=1

(τj − τj−1)Ψ(ξj)

)
(τk+1 − (r − s))−β0 exp (−(τk+1 − (r − s) + (r − s)− τk)Ψ(ξj))

n∏
j=k+2

(τj − (r − s))−β0 exp

(
−

n∑
j=k+2

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

≤
∫
Ak

∫
Rnd

k∏
j=1

(r − s− τj)−β0 exp

(
−

k∑
j=1

(τj − τj−1)Ψ(ξj)

)
(τk+1 − (r − s))−β0 exp (−(τk+1 − (r − s))Ψ(ξk+1))

n∏
j=k+2

(τj − (r − s))−β0 exp

(
−

n∑
j=k+2

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

=

∫
[0<τ1<···<τk<r−s]

∫
Rkd

k∏
j=1

(r − s− τj)−β0 exp

(
−

k∑
j=1

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

×
∫

[r−s<τk+1<···<τn<r]

∫
R(n−k)d

n∏
j=k+1

(τj − (r − s))−β0 exp (−(τk+1 − (r − s))Ψ(ξk+1))

exp

(
−

n∑
j=k+2

(τj − τj−1)Ψ(ξj)

)
µ(dξ)dτ

=:M1(s, r)×M2(s, r).

By Lemma 3.10, we have

sup
0<s<r<T

M1(s, r) ≤ Ck sup
0<s<r<T

∫
[0<τ1<···<τk<r−s]

k∏
j=1

(r − s− τj)−β0(1 + (τj − τj−1)−1+β0)dτ

<∞.

For M2(s, r), let θj = τj − (r − s), j = k + 1, . . . , n, and assume θk = 0, then for all
0 < s < r < T ,

M2(s, r) =

∫
[0<θk+1<···<θn<s]

∫
R(n−k)d

n∏
j=k+1

θ−β0j exp

(
−

n∑
j=k+1

(θj − θj−1)Ψ(ξj)

)
µ(dξ)dθ

≤
∫

[0<θk+1<···<θn<T ]

∫
R(n−k)d

n∏
j=k+1

(θj − θj−1)−β0 exp

(
−

n∑
j=k+1

(θj − θj−1)Ψ(ξj)

)
µ(dξ)dθ,
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and the last integral is bounded by a finite number depending on (n − k, T, β0) and µ by
Proposition 3.5.

Thus we have shown that when r − s > 0, sup0<s<r<T Un(r, s) < ∞, and the first in-
equality is obtained. Finally, since 〈φε,δs,y,Φε′,δ′

r,z (X)〉H converges to 〈φε,δs,y, δ(Xz
r−· − ·)I[0,r](·)〉H

in probability as (ε′, δ′)→ 0, the second the inequality follows from the first one and Fatou’s
lemma.

Lemma 4.9. For any t > 0 and a ∈ Rd,∫
Rd

exp(−tΨ(ξ + a))µ(dξ) ≤
∫
Rd

exp(−tΨ(ξ))µ(dξ).

Proof. By the formula (2.6), we have
1

(2π)d

∫
Rd

exp(−tΨ(ξ + a))µ(dξ) =

∫
Rd
qt(x)e−ia·xγ(x)dx

≤
∫
Rd
qt(x)γ(x)dx =

1

(2π)d

∫
Rd

exp(−tΨ(ξ))µ(dξ).

4.3 Hölder continuity

Hypothesis (S1). The spectral measure µ satisfies that for all z ∈ Rd, there exist α1 ∈ (0, 1]
and C > 0 such that∫ T

0

∫ T

0

∫
Rd
|r − s|−β0e−|r−s|Ψ(ξ)

(
1− e−iξ·z

)
µ(dξ)drds ≤ C|z|2α1 .

Hypothesis (T1). The spectral measure µ satisfies that for all a in a bounded subset of R,
there exist α2 ∈ (0, 1] and C > 0 such that∫ T

0

∫ T

0

∫
Rd
|r − s|−β0

∣∣∣∣ exp
(
− |r − s|Ψ(ξ)

)
− exp

(
− |r − s+ a|Ψ(ξ)

)∣∣∣∣µ(dξ)drds ≤ C|a|α2 .

Remark 4.10. A sufficient condition for Hypothesis (S1) to hold is the following∫
Rd

|ξ|2α1

1 + (Ψ(ξ))1−β0
µ(dξ) <∞ (4.15)

due to Lemma 3.7 and the fact that 1− cosx ≤ |x|2α1. Note that α1 < 1− β0 is a necessary
condition for (4.15) to hold. This is because µ(A) < ∞ for any bounded set A ⊂ Rd,
µ(Rd) = γ(0) =∞, limξ→∞Ψ(ξ) =∞ and lim sup‖ξ‖→∞

Ψ(ξ)
‖ξ‖2 <∞.

Similarly, a sufficient condition for Hypothesis (T1) to be true is that∫
Rd

(Ψ(ξ))α2

1 + (Ψ(ξ))1−β0
µ(dξ) <∞ (4.16)

because of Remark 3.8 and the fact that |e−x − e−y| ≤ (e−x + e−y)|x − y|α for x, y ≥ 0 and
α ∈ (0, 1]. Indeed for a > 0, ea − 1 ≤ (ea + 1)(a ∧ 1), and hence ea − 1 ≤ (ea + 1)aα for
α ∈ (0, 1]. One necessary condition for (4.16) to hold is α2 < 1− β0.
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Theorem 4.11. Let u0(x) ≡ 1. If the measure µ satisfies Hypothesis (S1), then the solution
u(t, x) given by the Feynman-Kac formula (4.10) has a version that is θ1-Hölder continuous
in x on any compact set of [0,∞) × Rd, with θ1 < α1; Similarly, if µ satisfies Hypothesis
(T1), the solution u(t, x) has a version that is θ2-Hölder continuous in t on any compact set
of [0,∞)× Rd, with θ2 < α2/2.

Proof. Recall that Vt,x =
∫ t

0

∫
Rd δ(X

x
t−s−y)W (ds, dy). Noting that |ea−eb| ≤ (ea+eb)|a− b|,

we have for any p > 0

EW [
∣∣EX [exp(Vt,x)− exp(Vs,y)]

∣∣p] ≤ CEW
[(
EX [exp(2Vt,x) + exp(2Vs,y)]

)p/2 (EX [|Vt,x − Vs,y|2])p/2]
≤ CE [exp(pVt,x) + exp(pVs,y)]

(
EW

[(
EX
[
|Vt,x − Vs,y|2

])p])1/2
.

By Theorem 3.3, E [exp(pVt,x) + exp(pVt,y)] <∞. On the other hand,

(
EW

[(
EX
[
|Vt,x − Vs,y|2

])p])1/2 ≤
(
EX
(
EW [|Vt,x − Vs,y|2p]

)1/p
)p/2
≤ Cp

(
EXEW [|Vt,x − Vs,y|2]

)p/2
,

where the first inequality follows from Minkowski’s inequality and the second one holds
because of the equivalence between the Lp-norm and L2-norm of Gaussian random variables.
For the spatial estimate, by Hypothesis (S1),

EXEW [|Vt,x − Vt,y|2] = 2

∫ t

0

∫ t

0

|r − s|−β0EX [γ(Xr −Xs)− γ(Xr −Xs + x− y))] drds

= 2

∫ t

0

∫ t

0

∫
Rd
|r − s|−β0e−|r−s|Ψ(ξ)

(
1− e−iξ·(x−y)

)
µ(dξ)drds ≤ C|x− y|2α1 .

Therefore
EW [

∣∣EX [exp(Vt,x)− exp(Vt,y)]
∣∣p] ≤ Cp|x− y|α1p,

and the Hölder continuity of u(t, x) in space follows from Komogorov’s continuity criterion.

Now assume that 0 ≤ s < t ≤ T, then

E[(Vt,x − Vs,x)2]

=E

[(∫ s

0

∫
Rd

(
δ0(Xx

t−r − z)− δ0(Xx
s−r − z)

)
W (dr, dz) +

∫ t

s

∫
Rd
δ0(Xx

t−r − z)W (dr, dx)

)2
]

≤2(A+B),

where

A = E

[(∫ s

0

∫
Rd

(
δ0(Xx

t−r − z)− δ0(Xx
s−r − z)

)
W (dr, dz)

)2
]
,

and

B = E

[(∫ t

s

∫
Rd
δ0(Xx

t−r − z)W (dr, dx)

)2
]
.
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For the first term A, by Hypothesis (T1), we have

A = E
[∫ s

0

∫ s

0

|s1 − s2|−β0
[
γ(Xt−s1 −Xt−s2) + γ(Xs−s1 −Xs−s2)− 2γ(Xt−s1 −Xs−s2)

]
ds1ds2

]
≤ 2

∫ s

0

∫ s

0

∫
R6d

|s1 − s2|−β0
∣∣∣∣ exp

(
− |s1 − s2|Ψ(ξ)

)
− exp

(
− |t− s− s1 + s2|Ψ(ξ)

)∣∣∣∣µ(dξ)ds1ds2

≤ C|t− s|α2 .

For the term B, we have

B =

∫ t

s

∫ t

s

|s1 − s2|−β0Eγ(Xs1 −Xs1)ds1ds2 =

∫ t−s

0

∫ t−s

0

|s1 − s2|−β0Eγ(Xs1 −Xs1)ds1ds2

=

∫
Rd

∫ t−s

0

∫ t−s

0

|s1 − s2|−β0 exp (−|s1 − s2|Ψ(ξ)) ds1ds2µ(dξ).

By Lemma 3.7, we have that for (t− s) in a bounded domain, there exists a constant C such
that ∫ t−s

0

∫ t−s

0

|s1 − s2|−β0 exp (−|s1 − s2|Ψ(ξ)) ds1ds2 ≤ C(t− s) 1

1 + (Ψ(ξ))1−β0
.

Hence B ≤ C(t− s), and

EW [
∣∣EX [exp(Vt,x)− exp(Vs,x)]

∣∣p] ≤ C
(
E[(Vt,x − Vs,x)2]

)p/2 ≤ C(A+B)p/2 ≤ C(t− s)pα2/2.

The Hölder continuity in time is obtained by Kolmogorov’s criterion.

5 Skorohod equation

In this section, we consider (1.1) in the Skorohod sense, i.e., we consider the following SPDE,
∂u

∂t
= Lu+ u � Ẇ , t ≥ 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd,
(5.1)

where the symbol � means the wick product.

5.1 Existence and uniqueness of the mild solution

In this subsection, we will obtain the existence and uniqueness of the mild solution to (5.1)
under the following assumption.
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Hypothesis (II). The spectral measure µ satisfies∫
Rd

1

1 + Ψ(ξ)
µ(dξ) <∞.

Remark 5.1. When L = −(−∆)α/2 for α ∈ (0, 2] and γ(x) is of one of the forms
∏d

j=1 |xj|βj ,
|x|−β and δ0(x), Hypothesis (II) is equivalent to β < α, where β =

∑d
j=1 βj for the first case

and β = 1 for the third one. It is also a necessary condition for (5.1) to have a unique mild
solution ([5]).

Definition 5.2. An adapted random field u = {u(t, x), t ≥ 0, x ∈ Rd} is a mild solution to
(5.1) with initial condition u0 ∈ Cb(Rd), if for all t ≥ 0 and x ∈ Rd, E[u2(t, x)] < ∞, and
the following integral equation holds

u(t, x) = Qtu0(x) +

∫ t

0

∫
Rd
qt−s(x− y)u(s, y)W �(ds, dy), (5.2)

where the stochastic integral is in the Skorohod sense.

Suppose that u = {u(t, x), t ≥ 0, x ∈ Rd} is a solution to (5.2), then for fixed (t, x), the
square integrable random variable u(t, x) can be expressed uniquely as the Wiener chaos
expansion,

u(t, x) =
∞∑
n=0

In(fn(·, t, x)), (5.3)

where fn(·, t, x) is symmetric in H⊗n. On the other hand, if we apply (5.2) repeatedly, as in
[28, 29], we can find an explicit representations for fn with n ≥ 1

fn(s1, x1, . . . , sn, xn, t, x) =
1

n!
qt−sσ(n)(x− xσ(n)) · · · qsσ(2)−sσ(1)(xσ(2) − xσ(1))Qsσ(1)u0(xσ(1)).

Here σ denotes the permutation of {1, 2, . . . , n} such that 0 < sσ(1) < · · · < sσ(n) < t. Note
that f0(t, x) = Qtu0(x).

Therefore, to obtain the existence and uniqueness of the solution to (5.2), it suffices to
prove

∞∑
n=0

n!‖fn(·, t, x)‖2
H⊗n <∞, ∀ (t, x) ∈ [0, T ]× Rd. (5.4)

Theorem 5.3. Let the measure µ satisfy Hypothesis (II). Then (5.4) holds, and consequently,
u(t, x) given by (5.3) is the unique mild solution to (5.1).

Proof. Without loss of generality, we assume that u0(x) ≡ 1. Now we have

n!‖fn(·, t, x)‖2
H⊗n

=n!

∫
[0,t]2n

∫
R2nd

hn(s, y, t, x)hn(r, z, t, x)
n∏
j=1

|sj − rj|−β0
n∏
j=1

γ(yj − zj)dydzdsdr,
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where

hn(s1, . . . , sn, x1, . . . , xn, t, x) =
1

n!
qt−sσ(n)(x− xσ(n)) · · · qsσ(2)−sσ(1)(xσ(2) − xσ(1)). (5.5)

Then by (2.1) and (2.5),

n!‖fn(·, t, x)‖2
H⊗n

≤n!

∫
[0,t]2n

∫
Rnd
Fhn(s, ·, t, x)(ξ)Fhn(r, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|sj − rj|−β0dsdr,

≤n!

∫
[0,t]2n

At,x(s)At,x(r)
n∏
j=1

|sj − rj|−β0dsdr

≤n!

∫
[0,t]2n

A2
t,x(s)

n∏
j=1

|sj − rj|−β0dsdr, (using 2ab ≤ a2 + b2 and the symmetry of the integral)

where

At,x(s) =

(∫
Rnd
|Fhn(s, ·, t, x)(ξ)|2µ(dξ)

)1/2

, (5.6)

with

Fhn(s, ·, t, x)(ξ) =
1

n!
e−ix·(ξ1+···+ξn)

n∏
j=1

exp
[
− [sσ(j+1) − sσ(j)]Ψ(ξσ(1) + · · ·+ ξσ(j))

]
, (5.7)

where we use the convention sσ(n+1) = t.

Note that
∫ t

0

∫ t
0
f(s)|s − r|−β0dsdr ≤ 2

∫ t
0
r−β0dr

∫ t
0
|f(s)|ds and let Dt = 2

∫ t
0
r−β0dr.

Therefore,

n!‖fn(·, t, x)‖2
H⊗n ≤ Dn

t n!

∫
[0,t]n

A2
t,x(s)ds

=Dn
t n!

∫
[0,t]n

∫
Rnd
|Fhn(s, ·, t, x)(ξ)|2µ(dξ)ds

=Dn
t

1

n!

∫
[0,t]n

∫
Rnd

n∏
j=1

exp
[
− 2[sσ(j+1) − sσ(j)]Ψ(ξσ(1) + · · ·+ ξσ(j))

]
µ(dξ)ds

≤Dn
t

1

n!

∫
[0,t]n

∫
Rnd

n∏
j=1

exp
[
− 2[sσ(j+1) − sσ(j)]Ψ(ξσ(j))

]
µ(dξ)ds (by Lemma 4.9)

=Dn
t

∫
[0<s1<···<sn<t]

∫
Rnd

n∏
j=1

exp
[
− 2[sj+1 − sj]Ψ(ξj)

]
µ(dξ)ds.

Similar as in the proof of Theorem 3.3, we can apply Proposition 3.5 with β0 = 0 for the
last integral and then get the following estimate

n!‖fn(·, t, x)‖2
H⊗n ≤ Dn

t

n∑
k=0

(
n

k

)
tk

k!
mk
N [A0εN ]n−k ,
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where εN and mN are given in (3.5) with β0 = 0. Hence, if we choose N sufficiently large
such that 2DtA0εN < 1, then we have

∞∑
n=0

n!‖fn(·, t, x)‖2
H⊗n ≤

∞∑
n=0

Dn
t

n∑
k=0

(
n

k

)
tk

k!
mk
N [A0εN ]n−k

≤
∞∑
k=0

tk

k!
mk
N

∞∑
n=k

Dn
t 2n [A0εN ]n−k =

1

1− 2DtA0εN

∞∑
k=0

tk

k!
mk
ND

k
t 2

k <∞.

Remark 5.4. Let η(x) be a locally integrable function, then as in [27], the result of the above
theorem still holds if the temporal kernel |r − s|−β0 is replaced by η(r − s).

The following theorem provides the Feynman-Kac type of representations for the solution
and the moments of the solution when the spectral measure µ satisfies the stronger condition
Hypothesis (I). The proof is similar to the one in [30] and we omit it here.

Theorem 5.5. If we assume that µ satisfy Hypothesis (I), then

u(t, x) = EX
[
u0(Xx

t ) exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)− 1

2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]
(5.8)

is the unique mild solution to (5.1) in the Skorohod sense. Consequently, for any positive
integer p, we have

E[u(t, x)p] = E

[
p∏
j=1

u0(Xj
t + x) exp

( ∑
1≤j<k≤p

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

)]
, (5.9)

where X1, . . . , Xp are p independent copies of X.

5.2 Feynman-Kac formula for the moments of the solution

When the measure µ satisfies Hypothesis (II) but not Hypothesis (I), the representation (5.8)
may be invalid since

∫ t
0

∫ t
0
|r − s|−β0γ(Xr − Xs)drds might be infinite a.s. (see [30] for the

case that X is a d-dimensional Brownian motion and γ(x) =
∏d

j=1 |xj|−βj , βj ∈ (0, 1), j =
1, . . . , d). However, the Feynman-Kac formula (5.9) for the moments still holds as stated in
the following theorem.

Theorem 5.6. Let the measure µ satisfy Hypothesis (II), then the Feynman-Kac formula
(5.9) for the moments of the mild solution to (5.1) holds.

Proof. We will adopt the approximation method used in [28, Section 5] to prove the result.
The proof is split into three steps for easier reading.
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Step 1. Consider the approximation of (5.1),{
uε,δ(t, x) = Luε,δ(t, x) + uε,δ(t, x) � Ẇ ε,δ(t, x),

uε,δ(0, x) = u0(x).
(5.10)

Recall that Ẇ ε,δ(t, x) is defined in (4.8). If uε,δ(t, x) ∈ D1,2, then by (2.7)

uε,δ(t, x) � Ẇ ε,δ(t, x) =

∫ t

0

∫
Rd
gδ(t− s)pε(x− y)uε,δ(t, x)W �(ds, dy).

Therefore, the mild solution to (5.10) is, as defined in [28], an adapted random field {uε,δ(t, x), t ≥
0, x ∈ Rd} which is square integrable for all fixed (t, x) and satisfies the following integral
equation,

uε,δ(t, x) = Qtu0(x) +

∫ t

0

∫
Rd
qt−s(x− y)uε,δ(s, y) � Ẇ ε,δ(s, y)dsdy

= Qtu0(x) +

∫ t

0

∫
Rd

(∫ t

0

∫
Rd
qt−s(x− y)gδ(s− r)pε(y − z)uε,δ(s, y)dsdy

)
W �(dr, dz).

Denote

Zε,δ
t,x (r, z) =

∫ t

0

∫
Rd
qt−s(x− y)gδ(s− r)pε(y − z)uε,δ(s, y)dsdy.

Thus to show that an adapted and square integrable process {uε,δ(t, x), t ≥ 0, x ∈ Rd} is a
mild solution to (5.10), it is equivalent to show uε,δ(t, x) = Qtu0(x) + δ(Zε,δ

t,x ). Therefore by
the definition of the divergence operator δ, it is equivalent to show that for any F ∈ D1,2

with mean zero,
E[Fuε,δ(t, x)] = E[〈Zε,δ

t,x , DF 〉H]. (5.11)

Let
uε,δ(t, x) = EX

[
u0(Xx

t ) exp

(
W (Φε,δ

t,x)−
1

2
‖Φε,δ

t,x‖2
H

)]
, (5.12)

where Φε,δ
t,x is given by (4.1). Using a similar argument based on the technique of S-transform

as in the proof of [28, Proposition 5.2], we can show that uε,δ(t, x) given by (5.12) satisfies
(5.11), and hence it is a mild solution to (5.10).

Step 2. In this step, we will show that

lim
ε,δ↓0

E
[(
uε,δ(t, x)

)p]
= E

[
p∏
j=1

u0(Xj
t + x) exp

( ∑
1≤j<k≤p

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

)]
.

(5.13)

Without loss of the generality, we assume u0(x) ≡ 1 from now on. Denote

Φε,δ,j
t,x (r, y) :=

∫ t

0

gδ(t− s− r)pε(Xj
s + x− y)ds · I[0,t](r), j = 1, . . . , p.
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The p-moment of uε,δ(t, x) is

E
[(
uε,δ(t, x)

)p]
= EWEX

p∏
j=1

exp

(
W (Φε,δ,j

t,x )− 1

2
‖Φε,δ,j

t,x ‖2
H

)

= EX exp

(
1

2
‖

p∑
j=1

Φε,δ,j
t,x ‖2

H −
1

2

p∑
j=1

‖Φε,δ,j
t,x ‖2

H

)
= EX exp

( ∑
1≤i<j≤p

〈Φε,δ,j
t,x ,Φε,δ,k

t,x 〉H

)
.

As in the proof of Theorem 4.1, we can show that

〈Φε,δ,j
t,x ,Φε,δ,k

t,x 〉H =
1

(2π)d

∫
[0,t]4

∫
Rd

(p̂ε(ξ))
2 exp

(
− iξ · (Xj

s1
−Xk

s2
)
)

gδ(t− s1 − r1)gδ(t− s2 − r2)|r1 − r2|−β0µ(dξ)dr1dr2ds1ds2,

and that 〈Φε,δ,j
t,x ,Φε,δ,k

t,x 〉H converges to
∫

[0,t]2
|s1−s2|−β0γ(Xj

s1
−Xk

s2
)ds1ds2 in L1 as (ε, δ) tends

to zero. Now to prove the equality (5.13), it suffices to show that for any λ > 0,

sup
ε,δ>0

E
[
exp

(
λ〈Φε,δ,j

t,x ,Φε,δ,k
t,x 〉H

)]
<∞. (5.14)

By (2.4) and (4.4), there exists a positive constant C depending on β0 only such that

〈Φε,δ,j
t,x ,Φε,δ,k

t,x 〉H ≤ C

∫
[0,t]2

∫
Rd

(p̂ε(ξ))
2 exp(−iξ · (Xj

r −Xk
s ))|r − s|−β0µ(dξ)drds.

Hence to obtain (5.14), it is sufficient to prove that for any λ > 0,

sup
ε>0

E
[
exp

(
λ

∫
[0,t]2

∫
Rd

(p̂ε(ξ))
2 exp(−iξ · (Xr − X̃s))|r − s|−β0µ(dξ)drds

)]
<∞, (5.15)

where X̃ is an independent copy of X. For the n-th moment of the exponent, similar to the
proof of Theorem 4.6, we have that for any ε > 0,

E
[(∫

[0,t]2

∫
Rd

(p̂ε(ξ))
2 exp(−iξ · (Xr − X̃s))|r − s|−β0µ(dξ)drds

)n]
=

∫
[0,t]2n

∫
Rnd

n∏
j=1

(p̂ε(ξj))
2E exp(−i

n∑
j=1

ξj · (Xrj − X̃sj))
n∏
j=1

|rj − sj|−β0µ(dξ)drds

≤
∫

[0,t]2n

∫
Rnd

E exp(−i
n∑
j=1

ξj · (Xrj − X̃sj))
n∏
j=1

|rj − sj|−β0µ(dξ)drds

=E
[(∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)n]
.

Now to prove (5.14), it is sufficient to prove that for any λ > 0,

E
[
exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)]
<∞. (5.16)
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Note that

E
[(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)n]
= λn

∫
[0,t]2n

n∏
j=1

|rj − sj|−β0E

[
n∏
j=1

γ(Xrj − X̃sj)

]
drds

= λn(n!)2

∫
[0,t]2n

∫
R2nd

hn(s, y, t, 0)hn(r, z, t, 0)
n∏
j=1

|sj − rj|−β0
n∏
j=1

γ(yj − zj)dydzdrds,

where hn is given by (5.5), and the last equality is obtained by using the independent
increment property of X. Then (5.16) can be obtained as in the proof of Theorem 5.3.

Step 3. As in the proof of Theorem 4.6, we can show that supε,δ>0 supt∈[0,T ],x∈Rd E[|uε,δ(t, x)|p] <
∞, uε,δ(t, x) converges to a limit denoted by u(t, x) in Lp for any p > 0 as (ε, δ) goes to zero,
and moreover, u(t, x) satisfies the formula (5.9). Therefore, by the uniqueness of the mild
solution to (5.1), to conclude the proof, we only need to show that u(t, x) is a mild solution
to (5.1), i.e.,

E[Fu(t, x)] = E[〈Zt,x, DF 〉H], (5.17)

for any F ∈ D1,2 with E[F ] = 0, where Zt,x(r, z) = qt−r(x− z)u(r, z).

In a way similar to the proof of Theorem 4.1, we can prove that limε,δ↓0 E[‖Zε,δ
t,x−Zt,x‖2

H] =
0. Then we can show the equality (5.17) by letting (ε, δ) in (5.11) go to zero, noting that
F ∈ D1,2 and limε,δ↓0 u

ε,δ(t, x) = u(t, x) in L2.

Remark 5.7. In the second step of the proof, actually we proved that under Hypothesis (II),
(5.16) holds, i.e., for any λ > 0

E
[
exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)]
<∞.

5.3 Hölder continuity

Hypothesis (S2). The spectral measure µ satisfies that for all a ∈ Rd, there exist α1 ∈ (0, 1]
and C > 0 such that

sup
z∈Rd

∫ T

0

∫
Rd
e−sΨ(ξ+z)

(
1− e−i(ξ+z)·a

)
µ(dξ)ds ≤ C|a|2α1 .

Hypothesis (T2). The spectral measure µ satisfies, for some α2 ∈ (0, 1),∫
Rd

(Ψ(ξ))α2

1 + Ψ(ξ)
µ(dξ) <∞.

Remark 5.8. Similar to the Stratonovich case, we have the following sufficient condition
for Hypothesis (S2) to hold:

sup
z∈Rd

∫
Rd

|ξ + z|2α1

1 + Ψ(ξ + z)
µ(dξ) <∞. (5.18)
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Furthermore, if η(ξ) := Ψ(ξ)/|ξ|2α1 is a Lévy characteristic exponent (which is equivalent
to say that −η(ξ) is continuous, conditionally positive definite and η(0) = 0, see, e.g., [2,
Theorem 1.2.17]; a special case in which η(ξ) is the characteristic exponent of a symmetric
stable process is that Ψ(ξ) = |ξ|α with α > 2α1), and the condition (5.20) below holds, then
condition (5.18) is equivalent to ∫

Rd

|ξ|2α1

1 + Ψ(ξ)
µ(dξ) <∞. (5.19)

Clearly (5.18) implies (5.19). Now we show that the inverse is true, if we assume that η(ξ)
is the characteristic exponent of a certain Lévy process {Yt, t ≥ 0} and that the following
condition holds

sup
z∈Rd

µ([|ξ + z| ≤M ]) <∞, (5.20)

where M is a positive number such that η(ξ) ≥ 1 for all |ξ| ≥M .∫
Rd

|ξ + z|2α1

1 + Ψ(ξ + z)
µ(dξ) =

∫
[|ξ+z|≤M ]

|ξ + z|2α1

1 + Ψ(ξ + z)
µ(dξ) +

∫
[|ξ+z|>M ]

|ξ + z|2α1

1 + Ψ(ξ + z)
µ(dξ)

≤M2α1 sup
z∈Rd

µ([|ξ + z| ≤M ]) + 2

∫
Rd

1

1 + η(ξ + z)
µ(dξ)

=C + 2

∫
Rd

∫ ∞
0

e−tE
[
ei(ξ+z)·Yt

]
dtµ(dξ) = C + 2E

[∫
Rd

∫ ∞
0

e−tei(ξ+z)·Ytdtµ(dξ)

]
=C + 2E

[∫ ∞
0

∫
Rd
eiξ·Ytµ(dξ) e−teiz·Ytdt

]
= C + 2E

[∫ ∞
0

γ(Yt)e
−teiz·Ytdt

]
≤C + 2E

[∫ ∞
0

γ(Yt)e
−tdt

]
= C + 2

∫
Rd

1

1 + η(ξ)
µ(dξ) ≤ D + 2

∫
Rd

|ξ|2α1

1 + Ψ(ξ)
µ(dξ),

where D is another constant that may be different from C.
On the other hand, Hypothesis (T2) actually implies and hence is equivalent to the con-

dition
sup
z∈Rd

∫
Rd

(Ψ(ξ + z))α2

1 + Ψ(ξ + z)
µ(dξ) <∞. (5.21)

Note that for all z ∈ Rd,∫
Rd

(Ψ(ξ + z))α2

1 + Ψ(ξ + z)
µ(dξ) ≤

∫
Rd

(
1

1 + Ψ(ξ + z)

)1−α2

µ(dξ)

=

∫
Rd

1

Γ(1− α2)

∫ ∞
0

t−α2e−[1+Ψ(ξ+z)]tdt µ(dξ)

=

∫
Rd

1

Γ(1− α2)

∫ ∞
0

t−α2e−tE[ei(ξ+z)·Yt)]dt µ(dξ)

=
1

Γ(1− α2)
E
[∫ ∞

0

t−α2e−teiz·Yt
∫
Rd
eiξ·Ytµ(dξ) dt

]
≤ 1

Γ(1− α2)
E
[∫ ∞

0

t−α2e−t
∫
Rd
eiξ·Ytµ(dξ) dt

]
=

∫
Rd

(
1

1 + Ψ(ξ)

)1−α2

µ(dξ),
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where the first equality follows from the formula c−α = 1
Γ(α)

∫∞
0
tα−1e−ctdt for c > 0 and

α ∈ (0, 1). Finally Hypothesis (T2) implies (5.21) because of the following equivalence∫
Rd

(Ψ(ξ))α2

1 + Ψ(ξ)
µ(dξ) <∞⇐⇒

∫
Rd

(
1

1 + Ψ(ξ)

)1−α2

µ(dξ) <∞

which is due to the facts lim|ξ|→∞Ψ(ξ) =∞ and µ(A) <∞ for bounded A ∈ B(Rd),

Theorem 5.9. Let u0(x) ≡ 1 and u(t, x) be the unique mild solution to (5.1). If µ satisfies
Hypothesis (S2), then u(t, x) has a version that is θ1-Hölder continuous in x with θ1 < α1 on
any compact set of [0,∞)×Rd; Similarly, if µ satisfies Hypothesis (T2), the solution u(t, x)
has a version that is θ2-Hölder continuous in t with θ2 < [α2 ∧ (1 − β0)]/2 on any compact
set of [0,∞)× Rd.

Proof. Let u(t, x) = 1 +
∑∞

n=1 In(hn(·, t, x)) and u(s, y) = 1 +
∑∞

n=1 In(hn(·, s, y)), where hn
is given by (5.5). Then for p > 2,

‖u(t, x)− u(s, y)‖Lp ≤
∞∑
n=1

‖In(hn(·, t, x))− In(hn(·, s, y))‖Lp

≤
∞∑
n=1

(p− 1)n/2‖In(hn(·, t, x))− In(hn(·, s, y))‖L2

=
∞∑
n=1

(p− 1)n/2
√
n!‖hn(·, t, x)− hn(·, s, y)‖H⊗n , (5.22)

where the last inequality holds due to the equivalence of Lp norms for p > 1 on any Wiener
chaos space Hn ([36, Theorem 1.4.1]), and the last equality follows from (2.10).

Step 1. First, we study the spatial continuity. Suppose that s = t, similar as in the
proof of Theorem 5.3, we have

n!‖hn(·, t, x)− hn(·, t, y)‖2
H⊗n

=n!
(
‖hn(·, t, x)‖2

H⊗n + ‖hn(·, t, y)‖2
H⊗n − 2〈hn(·, t, x), hn(·, s, y)〉H⊗n

)
=

2

n!

∫
[0,t]2n

∫
Rnd

[
1− e−i(x−y)·(ξ1+···+ξn)

] n∏
j=1

exp
[
− [rσ(j+1) − rσ(j)]Ψ(ξσ(1) + · · ·+ ξσ(j))

]
n∏
j=1

exp
[
− [sη(j+1) − sη(j)]Ψ(ξη(1) + · · ·+ ξη(j))

]
µ(dξ)

n∏
j=1

|rj − sj|−β0drds

where σ and η are permutations of the set {1, 2, . . . , n} such that rσ(1) < rσ(2) < · · · < rσ(n)

and sη(1) < sη(2) < · · · < sη(n). Denote

A2(r) =

∫
Rnd

[
1− e−i(x−y)·(ξ1+···+ξn)

] n∏
j=1

exp
[
− 2[rσ(j+1) − rσ(j)]Ψ(ξσ(1) + · · ·+ ξσ(j))

]
µ(dξ).
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Recall the notations Dt = 2
∫ t

0
s−β0ds and Ωn

t =
{

(s1, . . . , sn) ∈ [0,∞)n :
∑n

j=1 sj ≤ t
}
. We

have

n!‖hn(·, t, x)− hn(·, t, y)‖2
H⊗n ≤

2

n!

∫
[0,t]2n

A2(r)
n∏
j=1

|sj − rj|−β0dsdr ≤
2

n!
Dn
t

∫
[0,t]n

A2(r)dr

=2Dn
t

∫
[0<r1<r2<···<rn<t]

∫
Rnd

[
1− e−i(x−y)·(ξ1+···+ξn)

] n∏
j=1

exp
[
− 2[rj+1 − rj]Ψ(ξ1 + · · ·+ ξj)

]
µ(dξ)dr

=2Dn
t

∫
Ωnt

∫
Rnd

[
1− e−i(x−y)·(ξ1+···+ξn)

] n∏
j=1

exp
[
− 2sjΨ(ξ1 + · · ·+ ξj)

]
µ(dξ)ds

≤2Dn
t sup
z∈Rd

∫ t

0

∫
Rd

[
1− e−i(x−y)·(z+ξn)

]
exp[−2snΨ(z + ξn)]µ(dξn)dsn

×
∫

Ωn−1
t

∫
R(n−1)d

n−1∏
j=1

exp [−2sjΨ(ξ1 + · · ·+ ξj)]µ(dξ1) . . . µ(dξn−1)ds1 . . . dsn−1

≤CDn
t |x− y|2α1

∫
Ωn−1
t

∫
R(n−1)d

n−1∏
j=1

exp [−2sjΨ(ξj)]µ(dξ)ds. (By Hypothesis (S2))

Applying Lemma (3.5), we have

√
n!‖hn(·, t, x)− hn(·, t, y)‖H⊗n ≤ |x− y|α1CD

n/2
t

n−1∑
k=0

√(
n− 1

k

)
tk

k!
mk
N [A0εN ]n−1−k.

As in the proof of Theorem 5.3, we can choose N large enough, such that

∞∑
n=1

D
n/2
t

n∑
k=0

√(
n

k

)
tk

k!
mk
N [A0εN ]n−k <∞,

and hence there exists a constant C such that

‖u(t, x)− u(t, y)‖Lp ≤ C|x− y|α1 ,

which implies the spatial Hölder continuity of u(t, x).

Step 2. Now we consider the Hölder continuity in time, assuming that 0 ≤ s < t ≤ T
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and x = y. Then for the estimation on the n-th chaos space, we have

n!‖hn(·, t, x)− hn(·, s, x)‖2
H⊗n

=n!
(
‖hn(·, t, x)‖2

H⊗n + ‖hn(·, s, x)‖2
H⊗n − 2〈hn(·, t, x), hn(·, s, x)〉H⊗n

)
=n!

[∫
[0,t]2n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

+

∫
[0,s]2n

∫
Rnd
Fhn(u, ·, s, x)(ξ)Fhn(v, ·, s, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

− 2

∫
[0,t]n×[0,s]n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, s, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

]
.

Therefore
n!‖hn(·, t, x)− hn(·, s, x)‖2

H⊗n ≤ n!(Dn +D′n), (5.23)

where

Dn =

∫
[0,t]2n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

−
∫

[0,t]n×[0,s]n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, s, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu,

and

D′n =

∫
[0,t]n×[0,s]n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

−
∫

[0,s]2n

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, s, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu.

We will just estimate Dn, and D′n will share the same upper bound of Dn.

Clearly, Dn = An +Bn where

An =

∫
[0,t]n×([0,t]n\[0,s]n)

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

(5.24)
and

Bn =

∫
[0,t]n×[0,s]n

∫
Rnd

(
Fhn(v, ·, t, x)(ξ)−Fhn(v, ·, s, x)(ξ)

)
Fhn(u, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu. (5.25)
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To get an estimation for the right-hand side of (5.23), we will separate the rest of the proof
into three parts for easier reading.

Step 2(a). In this part, we will estimate An given in (5.24). Note that [0, t]n =
∪kj∈{0,1}Ik1 × Ik2 × · · · × Ikn with I1 = [0, s] and I2 = [s, t]. Hence [0, t]n\[0, s]n is the
union of 2n − 1 disjoint interval products, each of which contains at least one [s, t]. Denote
En,j the product of n intervals, all of which are [0, t] except that the j-th interval is [s, t].
Therefore, for the term An, we have

An ≤2n sup
j=1,...,n

∫
[0,t]n×En,j

∫
Rnd
Fhn(u, ·, t, x)(ξ)Fhn(v, ·, t, x)(ξ)µ(dξ)

n∏
j=1

|uj − vj|−β0dvdu

≤2n sup
j=1,...,n

∫
[0,t]n×En,j

(
A2
t,x(u) + A2

t,x(v)
) n∏
j=1

|uj − vj|−β0dvdu (5.26)

with At,x(u) given in (5.6). Denoting Dt = 2
∫ t

0
|s|−β0ds, for positive function f , we have the

following estimates ∫ t

0

∫ t

0

f(u)|u− v|−β0dvdu ≤ Dt

∫ t

0

f(u)du,∫ t

0

∫ t

s

f(u)|u− v|−β0dvdu ≤ 2β0

1− β0

(t− s)1−β0
∫ t

0

f(u)du,

and ∫ t

0

∫ t

s

f(v)|u− v|−β0dvdu ≤ Dt

∫ t

s

f(v)dv.

Applying those estimates, we get∫
[0,t]n×En,j

(
A2
t,x(u) + A2

t,x(v)
) n∏
j=1

|uj − vj|−β0dvdu

≤ 2β0

1− β0

(t− s)1−β0Dn−1
t

∫
[0,t]n

A2
t,x(u)du+Dn

t

∫
En,j

A2
t,x(v)dv. (5.27)

Note that Hypothesis (T2) implies∫
Rd

1

1 + (Ψ(ξ))1−α2
µ(dξ) <∞, (5.28)

and hence there exists C > 0 depending on the measure µ and α2 such that for all x > 0∫
Rd
e−xΨ(ξ)µ(dξ) ≤ C(1 + xα2−1)

by Lemma 3.10. On the other hand, by Lemma 3.11, we have∫
[0<v1<v2<···<vn<t]

∫
Rnd

n∏
j=1

(1 + (vj+1 − vj)α2−1)µ(dξ)dv

≤ Cn
∑

τ∈{0,1}n

∏n
j=1 Γ(τj(α2 − 1) + 1)

Γ(
∑n

j=1 τj(α2 − 1) + n+ 1)
t
∑n
j=1 τj(α2−1)+n. (5.29)
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Combining (5.28) and (5.29) and using the approach in Remark 3.6, we have for t ∈ [0, T ]
with T ≥ 1,∫

[0,t]n
A2
t,x(u)du ≤ Cn

n!

n∑
m=0

(
n

m

)
tm(α2−1)+n

Γ(m(α2 − 1) + n+ 1)
≤ (2C)n

n!

T n

Γ(nα2 + 1)
. (5.30)

Similarly, for all j ∈ {1, 2, . . . , n} and 0 ≤ s < t ≤ T with T ≥ 1, we have∫
En,j

A2
t,x(v)dv ≤ 1

(n!)2

∫
[0,t]n−1×[s,t]

∫
Rnd

n∏
j=1

exp
(
−2(vσ(j+1) − vσ(j))ψ(ξσ(j))

)
µ(dξ)dv

≤ Cn

(n!)2

∫
[0,t]n−1×[s,t]

n∏
j=1

(
1 + (vσ(j+1) − vσ(j))

α2−1
)
dv

≤ Cn

(n!)2

(∫
[0,t]n
−
∫

[0,s]n

) n∏
j=1

(
1 + (vσ(j+1) − vσ(j))

α2−1
)
dv

=
Cn

n!

(∫
[0<v1<···<vn<t]

−
∫

[0<v1<···<vn<s]n

) n∏
j=1

(
1 + (vj+1 − vj)α2−1

)
dv

=
Cn

n!

∑
τ∈{0,1}n

∏n
j=1 Γ(τj(α2 − 1) + 1)

Γ(
∑n

j=1 τj(α2 − 1) + n+ 1)
(t

∑n
j=1 τj(α2−1)+n − s

∑n
j=1 τj(α2−1)+n)

≤ 1

n!

Cn

Γ(nα2 + 1)
nT n(t− s)α2 . (5.31)

The last inequality holds because t
∑n
j=1 τj(α2−1)+n − s

∑n
j=1 τj(α2−1)+n ≤ nT n(t − s)α2 for all n

and τ. Combining the above (5.30) and (5.31) with (5.26) and (5.27), we have

An ≤
1

n!

Cn

Γ(nα2 + 1)

(
(t− s)1−β0 + (t− s)α2

)
, (5.32)

where C depends on the measure µ, T, β0 and α2.

Step 2(b). The term Bn given in (5.25) will be estimated in this part.

Bn ≤
1

(n!)2

∫
[0,t]n×[0,s]n

∫
Rnd

∣∣e−(t−vσ(n))Ψ(ξ1+···+ξn) − e−(s−vσ(n))Ψ(ξ1+···+ξn)
∣∣

n−1∏
j=1

e−(vσ(j+1)−vσ(j))Ψ(ξσ(1)+···+ξσ(j))Fhn(u, . . . , t, x)(ξ)µ(dξ)
n∏
j=1

|uj − vj|−β0dvdu

≤2(t− s)α2
1

(n!)2

∫
[0,t]n×[0,s]n

∫
Rnd

(Ψ(ξ1 + · · ·+ ξn))α2

n∏
j=1

e−(vσ(j+1)−vσ(j))Ψ(ξσ(1)+···+ξσ(j))

n∏
j=1

e−(uη(j+1)−uη(j))Ψ(ξη(1)+···+ξη(j))µ(dξ)
n∏
j=1

|uj − vj|−β0dvdu,
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where vn+1 = s, un+1 = t and σ and η are permutations such that 0 < vσ(1) < · · · < vσ(n) < t
and 0 < uη(1) < · · · < uη(n) < t, and in the last step we used the inequality |e−x − e−y| ≤
|e−x + e−y||x− y|α ≤ 2|x− y|α for x, y > 0 and α ∈ (0, 1].

Let

A2
t (u) =

∫
Rnd

(Ψ(ξ1 + · · ·+ ξn))α2

n∏
j=1

e−2(uη(j+1)−uη(j))Ψ(ξη(1)+···+ξη(j))µ(dξ)

and

A2
s(v) =

∫
Rnd

(Ψ(ξ1 + · · ·+ ξn))α2

n∏
j=1

e−2(vσ(j+1)−vσ(j))Ψ(ξσ(1)+···+ξσ(j))µ(dξ).

we have ∫
[0,t]n

A2
t (u)du

=n!

∫
[0<u1<···<un<t]

∫
Rnd

(Ψ(ξ1 + · · ·+ ξn))α2

n∏
j=1

e−2(uj+1−uj)Ψ(ξ1+···+ξj)µ(dξ)du

≤n! sup
z∈Rd

∫ t

0

∫
Rd

(Ψ(ξn + z))α2 e−2(t−un)Ψ(ξn+z)µ(dξn)dun

×
∫

[0<u1<···<un−1<t]

∫
R(n−1)d

n−1∏
j=1

e−2(uj+1−uj)Ψ(ξ1+···+ξj)µ(dξ)du

≤n!C

∫
[0<u1<···<un−1<t]

∫
R(n−1)d

n−1∏
j=1

e−2(uj+1−uj)Ψ(ξj)µ(dξ)du

≤n!
Cn+1T n

Γ(nα2 + 1)
,

where the last second step follows from Lemma 3.7, Hypothesis (T2), Remark 5.8 and Lemma
4.9, and the last step follows by a similar argument for (5.30). Now we have the estimation
for Bn,

Bn ≤ (t− s)α2
1

(n!)2

∫
[0,t]n×[0,s]n

(A2
t (u) + A2

s(v))
n∏
j=1

|uj − vj|−β0dvdu

≤ 2(t− s)α2
1

(n!)2
Dn
t

∫
[0,t]n

A2
t (u)du

≤ 2(t− s)α2
1

n!
Dn
t

Cn+1T n

Γ(nα2 + 1)
. (5.33)

Step 2(c). Therefore, combining (5.32) and (5.33), we have that there exists a constant
C depending on the measure µ, T, α2 and β0 such that

∞∑
n=1

(p− 1)n/2
√
n!
√
Dn =

∞∑
n=1

(p− 1)n/2
√
n!
√
An +Bn ≤ C(t− s)[α2∧(1−β0)]/2. (5.34)
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Note that we can get estimation for D′n analogous to (5.34), by an argument similar as
the above for Dn. Finally, by (5.22), (5.23) and (5.34), we have

‖u(t, x)− u(s, x)‖Lp ≤
∞∑
n=1

(p− 1)n/2
√
n!‖hn(·, t, x)− hn(·, s, y)‖H⊗n

≤
∞∑
n=1

(p− 1)n/2
√
n!
√
Dn +D′n ≤ C(t− s)[α2∧(1−β0)]/2.

The Hölder continuity in time now is concluded by the Kolmogorov’s criterion.
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