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Uniruled projective manifolds play an important role in algebraic geometry. By
the seminal work of Mori [Mr79], rational curves always exist on a projective manifold
whenever the canonical line bundle fails to be numerically effective, and by Miyaoka-
Mori [MM86] any Fano manifold is uniruled. While much knowledge is gained from
Mori theory in the case of higher Picard numbers, the structure of uniruled projective
manifolds of Picard number 1 is hard to grasp from a purely algebro-geometric per-
spective. In a series of works on uniruled projective manifolds starting with Hwang-Mok
[HM98], Jun-Muk Hwang and the author have developed the basics of a geometric theory
of uniruled projective manifolds arising from the study of varieties of minimal rational
tangents (VMRTs), i.e., the collection at a general point of the variety of tangents to
minimal rational curves passing through the point. The theory was from its onset a
cross-over between algebraic geometry and differential geometry. While we dealt with
classical problems in algebraic geometry and axiomatics were derived from basics in
the deformation theory of rational curves, the heart of our perspective was differential-
geometric in nature, revolving around tautological foliations, G-structures, differential
systems, etc. and dealing with various issues relating to connections, curvature, inte-
grability, etc., while techniques from several complex variables on analytic continuation
were brought in to allow for a passage from transcendental objects defined on open sets
in the Euclidean topology to algebraic objects in the Zariski topology.

Given any uniruled projective manifold X, fixing a polarization and minimizing
degrees of free rational curves we obtain a minimal rational component K. Basic to
(X,K) is the double fibration ρ : U → K, µ : U → X, where ρ : U → K is the universal
family whose fibers are (unparametrized) minimal rational curves, and µ : U → X is
the evaluation map. At a general point x ∈ X a point on the fiber Ux corresponds to
a minimal rational curve with a marking at x, and the VMRT Cx(X) ⊂ PTx(X) is the
image of Ux under the tangent map. The double fibration and the VMRT structure
π : C(X) → X, C(X) ⊂ PT (X), endowed with a tautological foliation, set the stage on
which the basics of our geometric theory have been developed.

In this article, by a geometric structure we mean a VMRT structure π : C(X) → X
or its restriction to a connected open set U on X, and by a geometric substructure we
mean a sub-VMRT structure ϖ : C(S) → S, C(S) ⊂ PT (S), on a complex submanifold S
of some open subset of X, C(S) := C(X)∩PT (S), which among other things is assumed
to dominate S. For a VMRT structure π : C(X) → X, of principal importance here is
the tautological foliation on C(X) transported from the fibration ρ : U → K by means of
the tangent map, and solutions to various questions concerning the tautological foliation
have strong implications leading to rigidity phenomena or characterization results on
uniruled projective manifolds. As to sub-VMRT structures, a basic question is whether
the tautological foliation on C(X) is tangent to C(S), and an affirmative answer to
the question leads to rational saturation for germs of submanifolds inheriting certain
types of sub-VMRT structures, and characterization of various classes of special uniruled
projective subvarieties.

There is a wide scope of phenomena and problems concerning geometric structures
and substructures in complex geometry, and those on uniruled projective manifolds
arising from the consideration of minimal rational curves in particular, and the current
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article is an exposition on selected aspects of such phenomena and problems arising
from VMRTs. Concerning geometric structures we will be exclusively concerned with
those arising from or directly related to known uniruled projective manifolds, especially
rational homogeneous spaces of Picard number 1, leaving aside the topic of general
VMRT structures, for which the reader is referred to two expository articles of Hwang
[Hw12] [Hw15] (and references therein) on VMRTs from the perspective of Cartanian
geometry. For geometric substructures our focus will be on sub-VMRT structures on
rational homogeneous spaces of Picard number 1 modeled on certain admissible pairs
(X0, X) of such manifolds, while results will also be formulated for sub-VMRT structures
on uniruled projective manifolds in general satisfying various notions of nondegeneracy
related to the second fundamental form (cf. Mok [Mk08a], Hong-Mok [HoM10] [HoM13],
Hong-Park [HoP11], Hwang [Hw14b], Mok-Zhang [MZ15], Zhang [Zh14]). An overview
on the topic of germs of complex submanifolds on uniruled projective manifolds will be
given in the article.

The current article is written with the aim of highlighting certain aspects in an
area of research arising from the study of geometric structures modeled on VMRTs. As
a number of surveys and expository articles are available at different stages on vari-
ous aspects in the development of the subject (Hwang-Mok [HM99a], Hwang [Hw01],
Kebekus-Sola Conde [KS06], Mok [Mk08b], Hwang [Hw12] [Hw15]), for the parts of the
article where adequate exposition already exists, we are contented with recalling fun-
damental elements and results in the theory which are essential for the understanding
of more recent development and with providing examples occasionally for the purpose
of illustration. The presentation will be more systematic in the last section on sub-
VMRT structures since the latter topic is relatively new. At the end of the section, we
will discuss various perspectives concerning sub-VMRT structures, and indicate how the
subject, a priori arising from the study of uniruled projective manifolds and their sub-
varieties, has intimate links with other areas of mathematics including several complex
variables, local differential geometry and Kähler geometry. Already on this topic there
is the prospect of exciting cross-fertilization of ideas and methodology, and the subject
will thrive with further investigation on problems intrinsic to the study of VMRTs and
also with applications to be explored on these and other related areas of mathematics.
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Paolo Cascini, Jorge Pereira and James McKernan. The author would like to thank the
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ripe for an overview, viz., on foliation-theoretic aspects of the geometric theory of VM-
RTs. He would like to thank Jun-Muk Hwang for recent discussions on the topic some
of which have been incorporated into the article, and the referee for helpful suggestions
for the revision of the article.

§1 Minimal rational curves on uniruled projective manifolds
(1.1) Minimal rational components and the universal family For a projective variety
W ⊂ PN we denote by Chow(W ) the Chow space of all cycles C on W , and by [C] ∈
Chow(W ) the member corresponding to the cycle C. Each irreducible component of
Chow(W ) is projective. For two projective varieties Y and Z we denote by Hom(Y, Z)
the set of all morphisms from Y to Z. Through the use of Hilbert schemes, Hom(Y, Z)
is endowed the structure of a complex space such that each of its irreducible components
is projective (cf. Kollár [Ko96, Chapter 1]).

By a rational curve on a projective X manifold we mean a nonconstant holomor-
phic map f : P1 → X, which will be denoted by [f ] when regarded as an element of
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Hom(P1, X). A rational curve [f ] is said to be free if and only if the vector bundle
f∗TX on P1 is semipositive, i.e., isomorphic to a direct sum of holomorphic line bundles
O(ak) of degree ak ≥ 0. The basic objects of our study are the uniruled projective
manifolds, i.e., projective manifolds that are “filled up” by rational curves. Equivalently
a projective manifold X is uniruled if and only if there exists a free rational curve on X.
A smooth hypersurface X ⊂ Pn of degree ≤ n − 1 is uniruled by projective lines, and
those of degree n are uniruled by rational curves of degree 2. By Mori-Miyaoka [MM86]
any Fano manifold is uniruled. For the basics on rational curves in algebraic geometry
we refer the reader to Kollár [Ko96].

Let X be a uniruled projective manifold. Fixing an ample line bundle L on X, let
f0 : P1 → X be a free rational curve realizing the minimum of deg(h∗L) among all free
rational curves [h] ∈ Hom(P1, X). Let Ȟ ⊂ Hom(P1, X) be an irreducible component
containing [f0] and H ⊂ Ȟ be the subset consisting of free rational curves. Ȟ is quasi-
projective and H ⊂ Ȟ is a dense Zariski open subset. Since each member [f ] ∈ H is
a free rational curve, there is no obstruction in deforming f : P1 → X, and, passing
to normalization if necessary, H will be endowed the structure of a quasi-projective
manifold. Any member f : P1 → X of H must be generically injective (i.e., f must
be birational onto its image) by the freeness of f and by the minimality of deg(f∗L)
among free rational curves. Thus, Aut(P1) acts effectively on H by the assignment
(γ, [f ]) 7→ [f ◦ γ] for γ ∈ Aut(P1) and [f ] ∈ H. Since Aut(P1) acts effectively on H,
the quotient K := H/Aut(P1) is a complex manifold. There is a canonical morphism
α : H → Chow(X) defined by α([f ]) = [f(P1)] mapping K onto a Zariski open subset
Q of some irreducible subvariety Z of Chow(X). The mapping α is invariant under the
action of Aut(P1) and it descends to a bijective holomorphic map ν : K → Q. Hence, ν
is a normalization, and K is a quasi-projective manifold. We call K a minimal rational
component on X. There is a smallest subvariety B ⊂ X such that every member of K
passing through any point x ∈ X − B is a free rational curve. We call B ⊂ X the bad
locus of (X,K).

On a uniruled projective manifold (X,K) equipped with a minimal rational com-
ponent we have a universal P1−bundle ρ : U → K called the universal family of
K, where U = H/Aut(P1; 0), and ρ : U → K is the canonical projection which re-
alizes U as the total space of a holomorphic fiber bundle with fibers isomorphic to
Aut(P1)/Aut(P1; 0) ∼= P1. We have canonically the evaluation map µ : U → X, and
we write Ux := µ−1(x). From the Bend-and-Break Lemma of Mori [Mr79] it follows
that a general member κ of a minimal rational component K corresponds to a stan-
dard rational curve, i.e., κ is the equivalence class modulo the action of Aut(P1) of
some [f ] ∈ Hom(P1, X) such that f∗T (X) ∼= O(2) ⊕ O(1)p ⊕ Oq for some p, q ≥ 0,
1 + p+ q = n := dim(X). Note that any standard rational curve f : P1 → X is immer-
sive and generically injective. In the sequel, to avoid clumsy language the term ‘minimal
rational curve’ will sometimes also be used to describe the image of a minimal rational
curve belonging to H under the canonical map β : H → K.

(1.2) Varieties of minimal rational tangents and the tautological foliation Let (X,K) be
a uniruled projective manifold X equipped with a minimal rational component. Denote
by ρ : U → K the universal family over K, and by µ : U → X the accompanying
evaluation map. By definition ρ : U → K, as a holomorphic fiber bundle with fibers
isomorphic to P1, is equipped with a tautological foliation whose leaves are the fibers of
ρ. Let x ∈ X be a general point and u be a point on Ux, corresponding to a minimal
rational curve with a marking at x. Let f : P1 → X be a parametrization of ρ(u) ∈ K,

f̂ : P1 → U its tautological lifting so that f̂(0) = u (hence f(0) = x). If f is an
immersion at 0 we define τx(u) = [df(T0(P1))] ∈ PT0(X). For a general point x ∈ X
this defines the tangent map τx : Ux 99K PTx(X), which is a holomorphic immersion at
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a general point of Ux corresponding to a standard rational curve with a marking at x,
and we denote by Cx(X) ⊂ PTx(X) the strict transform of τx, so that τx : Ux 99K Cx(X)
is a priori a generically finite dominant rational map, and π : C(X) → X is equipped at
general points with a multi-foliation F transported from the tautological foliation on U
by means of the tangent map τ : U 99K PT (X).

Standard rational curves play a special role with regard to the tangent map. For
convenience of notation we will state the following result for embedded standard rational
curves ℓ. The general case, in which standard rational curves are known only to be
immersed, can be stated with a slight modification. For an embedded minimal rational
curve ℓ we have T (X)|ℓ ∼= O(2) ⊕ O(1)p ⊕ Oq, and we denote by Pℓ = O(2) ⊕ O(1)p

the positive part of T (X)|ℓ. For the normal bundle Nℓ|X for ℓ ⊂ X we have Nℓ|X ∼=
O(1)p ⊕Oq. From the deformation theory of rational curves we have (cf. Mok [Mk08b,
(2.4), Lemma 2]).

Lemma 1.2.1. At a general point x ∈ X, and a point u ∈ Ux corresponding to a
standard rational curve ℓ with a marking at x, the tangent map τx is a holomorphic
immersion at u. Assuming that τx(u) := [α] is a smooth point of the VMRT Cx(X),

we have dτx(u) : Tu(Ux)
∼=−→ T[α](Cx(X)) ⊂ T[α](PTx(X)) ∼= Tx(X)/Cα. More precisely,

assuming for convenience that ℓ ⊂ X is embedded, we have Tu(Ux) = Γ(ℓ,Nℓ|X ⊗ mx),
where mx is the maximal ideal sheaf at x on ℓ, and T[α](Cx(X)) = Pα/Cα, where Pα =
Pℓ,x is the fiber at x of the positive part Pℓ ⊂ T (X)|ℓ, and for ν ∈ Tu(Ux) = Γ(ℓ,Nℓ|X ⊗
mx), we have dτx(u)(ν) = ∂αν + Cα ∈ Pα/Cα ∼= T[α](Cx(X)).

We note that since ν(x) = 0, the partial derivative ∂αν is well-defined. Moreover,
while the isomorphism T[α](PTx(X)) ∼= Tx(X)/Cα depends on the choice of α ∈ Tx(X)
representing [Tx(ℓ)] ∈ PTx(X), there is a canonical isomorphism T[α](PTx(X))⊗ L[α]

∼=
Tx(X)/Cα, where L denotes the tautological line bundle over PTx(X), hence the formula
for dτx(u)(ν) ∈ T[α](Cx(X)) ⊂ T[α](PTx(X)) is independent of the choice of α ∈ Tx(ℓ).

By Hwang-Mok [HM99a] [HM01], at a general point τx : Ux 99K Cx(X) is birational
(cf. (2.1)), and it is a morphism by Kebekus [Ke02]. Finally, Hwang-Mok [HM04b]
proved that the tangent map is a birational finite morphism, hence τx : Ux → Cx is the
normalization. There is a smallest subvariety B′ ⊃ B of X such that every member of K
passing through any point x ∈ X − B′ is a free rational curve immersed at the marked
point x and τx : Ux 99K X is a birational morphism. We call B′ ⊂ X the enhanced bad
locus of (X,K). In some cases, e.g., in the case of a projective submanifold X ⊂ Pn
uniruled by projective lines it is easily seen (from the positivity of T (X)|ℓ ⊂ T (Pn)|ℓ ∼=
O(2) ⊕ O(1)n−1 in the latter case) that at a general point x ∈ X every projective line
ℓ passing through x is a standard rational curve, and it has been thought for some
time that this may actually be the case in general. Recently, Casagrande-Druel [CD12]
found examples of uniruled projective manifolds (X,K) equipped with minimal rational
components in a more generalized sense (in the sense that the general VMRT Cx(X) is
projective) on which the VMRT at a general point is actually singular, and Hwang-Kim
[HK13b] has now obtained examples where K is a bona fide minimal rational component
in the sense of (1.1). This means that for general results in the differential-geometric
study of VMRT structures one has to deal with singularities which are smoothed out by
normalization.

By the VMRT structure on (X,K) we will mean the fibered space of VMRTs π :
C(X) → X, C(X) ⊂ PT (X). In the sequel we will speak of the VMRT structure
π : C(X) → X on X, being understood that we are talking about a subvariety C(X) ⊂
PT (X) which projects onto a Zariski open subset of X. By the birationality of the
tangent map we can now speak of the tautological foliation on a VMRT structure π :
C(X) → X, and the extent to which the latter foliation is determined by the fibered
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space of VMRTs will play an important role in the rest of the article.

(1.3) The affine and projective second fundamental forms The second fundamental
form in affine or projective geometry will be essential in the geometric study of VMRTs.
For generalities let V be a finite-dimensional complex vector space and denote by ν :
V − {0} → P(V ) the canonical projection onto the projective space P(V ). For any

subset E ⊂ P(V ) we denote by Ẽ := ν−1(E) the affinization of E. In terms of the
Euclidean flat connection on V , for a complex submanifold S on some open subset of
V we have the second fundamental form σ := σS|V . If A ⊂ P(V ) is a subvariety and

η ∈ Ã is a smooth point we have the second fundamental form ση := σ
Ã|V,η, ση :

S2Tη(Ã) → V/Tη(A) := N
Ã|V,η. We have always ση(η, ξ) = 0 for any ξ ∈ Tα(Ã). Thus,

considered as a vector-valued symmetric bilinear form, the kernel of ση always contains
Cη. Passing to quotients we have the projective second fundamental form, denoted by
σ[η] : S

2T[η](A) → T[η](P(V ))/T[η](A) := NA|P(V ),[η], which is equivalently defined by the
canonical projective connection on P(V ). (We will use the same notation σ for both the

Euclidean and the projective second fundamental forms. The subscript, either η ∈ Ã or

[η] ∈ A will indicate which is meant.) Here T[η](P(V )) ∼= V/Cη, T[η](A) ∼= Tη(Ã)/Cη,
and the two normal spaces N

Ã|V,η
∼= NA|P(V ),[η] are naturally identified. The projective

second fundamental form σ[η] is the differential at η of the Gauss map, hence the Gauss
map is generically injective on A if and only if Kerσ[η] = 0 for a general point [η] of each
irreducible component of A. We note that from projective geometry, the Gauss map on
a nonlinear projective submanifold A ⊂ P(V ) is always generically injective.

§2 Analytic continuation along minimal rational curves

(2.1) Equidimensional Cartan-Fubini extension Let S be an irreducible Hermitian
symmetric space. Denoting by O(1) the positive generator of the Picard group Pic(S) ∼=
Z, S admits an embedding θ : S ↪→ P(Γ(S,O(1))∗) and as such S is uniruled by projective
lines. When S is of rank ≥ 2, it is endowed with a particular type of G-structure. To
explain this we start by recalling the notion of G-structures and flat G-structures. Let
n be a positive integer, V be an n-dimensional complex vector space, and M be any
n-dimensional complex manifold. In what follows all bundles are understood to be
holomorphic. The frame bundle F(M) is a principal GL(V )-bundle with the fiber at x
defined as F(M)x = Isom(V, Tx(M)).

Definition 2.1.1. Let G ⊂ GL(V ) be any complex Lie subgroup. A holomorphic G-
structure is a G-principal subbundle G(M) ⊂ F(M). An element of Gx(M) will be called
a G-frame at x. For G ( GL(V ) we say that G(M) defines a holomorphic reduction of
the tangent bundle to G. We say that a G-structure G(M) on M is flat if and only if
there exists an atlas of charts {φα : Uα → V } such that the restriction G(Uα) of G(M)
to Uα is the product G × Uα ⊂ GL(V ) × Uα in terms of Euclidean coordinates on Uα
given by the chart φα : Uα → V .

As a first example we consider the hyperquadric Qn ⊂ Pn+1 defined as the zero of a
nondegenerate homogeneous quadratic polynomial. The projective second fundamental
form σ of Qn ⊂ Pn+1 defines a section in Γ(Qn, S2T ∗

Qn ⊗O(2)), O(2) being isomorphic

to the normal bundle NQn|Pn+1 of Qn ⊂ Pn+1. The twisted symmetric bilinear form σ is
everywhere nondegenerate, thereby equipping small open sets of Qn with holomorphic
metrics

∑
gαβ(z)dz

α ⊗ dzβ in terms of local coordinates, unique up to multiplication
by nowhere zero holomorphic functions. This gives a holomorphic conformal structure
on Qn. Here we have a reduction of the frame bundle to the complex conformal group
CO(n;C) = C∗·O(n,C), O(n,C) being the complex orthogonal group with respect to a
nondegenerate complex symmetric bilinear form.
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Another example is the Grassmannian G(p, q) of p-planes in a complex vector space
W0

∼= Cp+q, where we have a tautological vector bundle F on G(p, q) given by Fx = E ⊂
W0 for x = [E] ∈ G(p, q). Writing V =W/F , whereW =W0×G(p, q) is a trivial vector
bundle on G(p, q), we have a canonical isomorphism TG(p,q)

∼= U⊗V , U = F ∗, yielding a
Grassmann structure on G(p, q). U and V are called the (semipositive) universal bundles
on G(p, q). Here, for a pq-dimensional manifold M on which the holomorphic tangent
bundle T (M) ∼= A⊗B where A resp. B is a holomorphic vector bundle of rank p resp. q,
representing tangent vectors onX as matrices through the tensor product decomposition,
we have a reduction of the frame bundle from GL(pq,C) to the subgroup H ⊂ GL(pq,C)
which is the image of GL(p,C)× GL(q,C) in GL(pq,C) under the homomorphism Φ
given by Φ(C,D)(X) = CXDt. We refer the reader to Manin [Ma97] for Grassmann
structures appearing in gauge field theory.

For generalities on Hermitian symmetric spaces we refer the reader to Wolf [Wo72].
Any irreducible Hermitian symmetric space S of the compact type and of rank ≥ 2
carries a canonical S-structure, which is a G-structure for some complex reductive linear
subgroup G ( GL(T0(S)), as follows. Write S = G/P as a complex homogeneous
space, where G is a connected complex simple Lie group, and P ⊂ G is a maximal
parabolic subgroup. Let P = L · U be the Levi decomposition of P , where U ⊂ P is
the unipotent radical and L ⊂ P is a Levi factor. Equip S with a canonical Kähler-
Einstein metric g and write S = Gc/K, where Gc is the identity component of the
isometry group of (S, g) and K ⊂ Gc is the isotropy subgroup at a reference point
0 ∈ S. Identifying 0 ∈ S with eP ∈ G/P ∼= S, in the Levi decomposition P = L · U ,
L can be identified with KC ⊂ GL(T0(S)) by means of the Lie group homomorphism

Φ : P → GL(T0(S)) given by Φ(γ) := dγ(0) ∈ GL(T0(S)), Φ|L : L
∼=−→ KC. On the

other hand, U = exp(m−) := M−, where m− is the Lie algebra of holomorphic vector
fields on S vanishing to the order ≥ 2 at 0, thus dγ(0) is the identity map on T0(S)
whenever γ ∈ M−. In other words, U = M− = Ker(Φ). Let η be a nonzero highest
weight vector of the isotropy representation of KC on T0(S). Since M− acts trivially
on T0(S), the G-orbit of [η] ∈ PT0(S) gives a homogeneous holomorphic fiber subbundle
W ⊂ PT (S) whose fiber W0 over 0 is the KC-orbit of [η], i.e., the highest weight
orbit. Writing V = T0(S) and considering at x ∈ S the set of all linear isomorphisms

φ : T0(S)
∼=−→ Tx(S) such that φ(W̃0) = W̃x, where W̃0 consists of all nonzero highest

weight vectors at 0, etc., we have a reduction of the frame bundle on S from F(S) to
some G(S) ( F(S) defining a G-structure with G = KC. This canonical KC-structure
is also called the canonical S-structure.

Flatness of the canonical KC-structure is not obvious. That this is the case is seen
from the Harish-Chandra decomposition. The integrable almost complex structure on S
is defined by ad(j) of a certain element j in the 1-dimensional center z of the Lie algebra
k of K. Writing g for the Lie algebra of G we have a decomposition g = m+ ⊕ kC ⊕m−,
where kC is the Lie algebra of KC ∼= L, and m+ resp. m− is the eigenspace of ad(j)
corresponding to the eigenvalue i resp.−i. Writing M+ := exp(m+), the mapping
M+ ×KC ×M− 7→ G given by (a, b, c) 7→ abc is injective, leading to the identification
of a Zariski open subset W of S with the vector space m+ through the mapping m+ 7→
exp(m+)P , yielding Harish-Chandra coordinates (z1, · · · , zn), n = dim(S). The abelian
Lie subalgebra m+ ⊂ g is the Lie algebra of constant vector fields in the coordinates
(z1, · · · , zn). The invariance of W under the vector group M+ of Euclidean translations
shows that W|W = W0 ×W , i.e., the KC-structure on S is flat.

The Harish-Chandra coordinates link immediately to the structure of minimal ratio-

nal curves on S. A highest weight vector η ∈ W̃x yields readily a copy of sl(2,C) which in
standard notations is of the form Ceρ⊕C[eρ, e−ρ]⊕Ce−ρ in terms of root vectors eρ ∈ m+,
e−ρ ∈ m− with respect to suitably chosen Cartan subalgebras, [eρ, e−ρ] ∈ kC. Exponenti-
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ating one gets a copy of PSL(2,C), and the orbit of x under the latter group exhausts all
the rational curves of degree 1 passing throughW as x runs overW and [η] runs overWx.
Thus, intersections of minimal rational curves with a Harish-Chandra coordinate chart
are given by affine lines ℓ such that PTx(ℓ) ∈ Wx for x ∈ ℓ. Moreover, W is nothing other
than C(S) ⊂ PT (S), the VMRT structure on S (cf. (1.2)). Examples of VMRTs C0(S)
are given in the case of hyperquadrics Qn, n ≥ 3, by C0(Qn) = Qn−2 ⊂ PT0(Qn) ∼= Pn−1,

C̃0(Qn)∪{0} being the null-cone of the holomorphic conformal structure, and in the case
of the Grassmannian G(p, q); p, q ≥ 1; by C0(G(p, q)) = ς(Pp−1 × Pq−1) ⊂ P(Cp ⊗ Cq),
ς being the Segre embedding given by ς([u], [v]) = [u⊗ v], with the image being projec-
tivizations of decomposable tensors.

The use of Harish-Chandra coordinates allows us to give a differential-geometric
and complex-analytic proof (cf. Mok [Mk99]) of the following classical result of Ochiai
on S-structures.

Theorem 2.1.1. (Ochiai [Oc70]) Let S be an irreducible Hermitian symmetric space
of the compact type and of rank ≥ 2 equipped with the canonical S-structure. Let U ⊂ S

be a connected open subset and f : U
∼=−→ V ⊂ S be a biholomorphic map preserving

the canonical S-structure. Then, there exists F ∈ Aut(S) such that F |U ≡ f . As
a consequence, any simply-connected compact complex manifold X admitting a flat S-
structure must necessarily be biholomorphic to S.

We refer the reader to [Mk99] and to Mok [Mk08b, (4.2), especially Lemma 4] for
detailed discussions on Ochiai’s Theorem from a geometric perspective. Denoting by K
the minimal rational component of projective lines on S with the accompanying VMRT
structure C(S) ⊂ PT (S), the key issue is to show that f sends a connected open subset
of a minimal rational curve onto an open subset of a minimal rational curve, i.e., writing
f♯ := [df ], FS for the tautological foliation on S, C(U) := C(S) ∩ PT (U), etc., we have
to show that f♯∗(FS |C(U)) = FS |C(V ). Granting this, taking U to be a Euclidean ball
in Harish-Chandra coordinates so that ℓ ∩ U is either empty or connected for [ℓ] ∈ K,
and by O ⊂ K the subset consisting of all [ℓ] ∈ K such that ℓ ∩ U ̸= ∅, f : U → S
induces a holomorphic map f ♯ : O → K. Then, by the method of Mok-Tsai [MT92],
Hartogs extension holds true for O, and we conclude that f ♯ extends meromorphically
to Φ : K 99K K. We extend f analytically to F beyond U by defining F (x) to be the
intersection of the lines Φ([ℓ]), as ℓ ranges over minimal rational curves passing through
x. Arguing also with f−1 we get a birational extension of f to F : S 99K S which
transforms minimal rational curves to minimal rational curves, and that is enough to
imply that in fact F ∈ Aut(S), cf. [Mk99, (2.4)]. We have

Proof that f♯∗(FS |C(U)) = FS |C(V ). We use Harish-Chandra coordinates. Restricted

to such a Euclidean chart W , C̃(S)|W = C̃x ×W for any x ∈W , where C̃x := C̃x(S). To
prove f♯∗(FS |C(U)) = FS |C(V ) it suffices to show d2f(α, α) ∈ Cdf(α) for α ∈ C̃x, x ∈ U .

We may assume df(x) = idTx(S). For β ∈ C̃x, we have d2f(α, β) = ∂α(df(β̃)), where

β̃ stands for the constant vector field on U such that β̃(x) = β. Since C̃|U = C̃x × U ,

∂α(df(β̃)) is the tangent at β to some curve on C̃x, hence d2f(α, β) ∈ Pβ = Tβ(C̃x), and
by symmetry d2f(α, β) ∈ Pα ∩ Pβ . To show d2f(α, α) ∈ Cα note that for the second

fundamental form σ of C̃x ⊂ Tx(S), Ker(σα) = Cα, and it remains to show d2f(α, α) ∈
Ker(σα). Fix α ∈ C̃x and let β = α(t), α(0) = α, vary holomorphically on C̃x in the
complex parameter t. Writing ξ = d

dt

∣∣
t=0

α(t) ∈ Pα, from d2f(α, α(t)) ∈ Pα it follows

that d2f(α, ξ) = d
dt

∣∣
t=0

d2f(α, α(t)) ∈ Pα. On the other hand, d
dt

∣∣
t=0

d2f(α(t), α(t)) =

2d2f(α, ξ). Interpreting d2f(β, β) ∈ Pβ as a vector field on C̃x, we have ∇ξ(d
2f(β, β)) ∈

Pα for the Euclidean flat connection ∇ on Tx(S), hence σα(ξ, d
2f(α, α)) = 0. Varying
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ξ ∈ Pα, we conclude that d2f(α, α) ∈ Ker(σα) = Cα, as desired. �

A Harish-Chandra coordinate chart flattens the VMRT structure on S on the chart.
Although the existence of such coordinates in the Hermitian symmetric case is a very
special feature among uniruled projective manifolds, in (2.2) we will explain how the
same argument applies in general on a uniruled projective manifold (X,K) endowed
with a minimal rational component. The gist of the matter is that, for the computation
at a general point x ∈ X and at a smooth point [α] ∈ Cx(X), denoting by ℓ the
standard minimal rational curve passing through x such that Tx(ℓ) = Cα, where that ℓ
is assumed embedded for convenience, what one needs is simply a choice of holomorphic
coordinates on a neighborhood U of x such that the positive part Pℓ = O(2)⊕O(1)p ⊂
O(2)⊕O(1)p⊕Oq = T (X)|ℓ is a constant vector subbundle of T (X)|ℓ on U ∩ ℓ in terms
of the standard trivialization of T (X)|ℓ induced by the holomorphic coordinates, and
such choices of holomorphic coordinates exist in abundance.

For a uniruled projective manifold (X,K) equipped with a minimal rational compo-
nent, we introduced in Hwang-Mok [HM99a] differential systems on the VMRT structure
C(X) ⊂ PT (X) and on K, and in [HM01] we gave a proof of a general form of Cartan-
Fubini extension using such differential systems. The machinery introduced was used at
the same time to prove birationality of the tangent map τx : Ux 99K Cx(X) at a general
point x ∈ X under the assumption that the Gauss map is generically injective, a result
which was later on improved to yield that τx is a birational morphism, i.e., τx is the
normalization map (cf. (1.1)). Restricting to Cartan-Fubini extension, we have

Theorem 2.1.2. (Hwang-Mok [HM01]) Let (Z,H) and (X,K) be two Fano manifolds
of Picard number 1 equipped with minimal rational components. Assume that Cz(Z) is
positive-dimensional at a general point z ∈ Z and that furthermore the Gauss map is an
immersion at a general point of each irreducible component of Cz(Z). Let f : U → V be
a biholomorphic map from a connected open subset U ⊂ Z onto an open subset V ⊂ X.
If f♯ = [df ] sends each irreducible component of C(Z)|U to an irreducible component of
C(X)|V biholomorphically, then f extends to a biholomorphic map F : Z → X.

We refer the reader to expositions on the differential systems in [HM99a], [Mk08b]
and [Hw12]. Here we will just describe briefly such distributions and their links to
analytic continuation. Let x ∈ X be a general point, and ℓ ⊂ X be a standard
minimal rational curve passing through x, assumed embedded for convenience. Let
u ∈ Ux be the point corresponding to the minimal rational curve ℓ marked at x. Since
ℓ is standard, there exists a neighborhood O of x in U such that the tangent map
τ is a biholomorphism of O onto a complex submanifold S of some open subset of
PT (X). Holomorphic distributions can now be defined on S, as follows. The canon-
ical projectio ϖ := π|S : S → X is a submersion, and the kernels of dϖ defines an
integrable distribution J ⊂ T (S). In what follows on a coordinate chart U ⊂ X,
0 ∈ U a reference point, we consider the standard trivializations T (U) ∼= U × T0(U),
T (T (U)) ∼= T (U)× T (T0(U)) ∼= (U × T0(U))× (T0(U)× T0(U)), thus at (x, ξ) ∈ Tx(U),
η ∈ T0(U) is simultaneously used to describe two different vectors, viz., as coordinates
for a tangent vector at x and as coordinates for a vector at (x, ξ) ∈ Tx(U) tangent to
Tx(U). To avoid confusion we will write η for the first meaning, and η′ for the second,
thus η′ is a “vertical” tangent vector. Writing Tx(ℓ) = Cα, and denoting the fibers
ϖ−1(x) by Sx, we have T[α](Sx) = P ′

α/Cα′. Define now P ⊂ T (S) by P[α] = dϖ−1(Pα).
Then, P ⊂ T (S) is a holomorphic distribution of rank 2p+1, p := dim(Cx(X)), P ⊃ J .

On the other hand, writing Kst ⊂ K for the Zariski open subset consisting of stan-
dard minimal rational curves, we have on Kst a holomorphic distribution D ⊂ T (Kst),
defined as follows. For [ℓ] ∈ K, T[ℓ](K) = H0(ℓ,Nℓ|X), where Nℓ|X stands for the normal
bundle of ℓ in X. When [ℓ] ∈ Kst, we have Nℓ|X ∼= O(1)p ⊕Oq, noting that Q = O(1)p
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is the (strictly) positive part of the normal bundle Nℓ|X . Q ⊂ Nℓ|X is characterized by

the fact that Q ⊗ O(−1) is spanned by Γ(ℓ,Nℓ|X ⊗ O(−1)) ∼= C2p, hence intrinsically
defined. The assignment [ℓ] 7→ Γ(ℓ,O(1)p) defines a distribution D on Kst of rank 2p.
We have

Proposition 2.1.1. (Hwang-Mok [HM01]) Denoting by γ : S → K the canonical pro-
jection, we have P = dγ−1(D). As a consequence [F ,P] ⊂ P, i.e., F lies on the Cauchy
characteristic of the distribution P. Moreover, assuming that for a general point x ∈ X,
the projective second fundamental form σ on Cx is nondegenerate at a general smooth
point [α] ∈ Cx. Then, F ⊂ P is exactly the Cauchy characteristic of P.

For the proof of the proposition we refer the reader to Hwang-Mok [HM99a, Corol-
lary 3.1.5] and to Mok [Mk08b, (5.1), Proposition 5]. It suffices here to make a cou-
ple of remarks. First, given any holomorphic distribution W ⊂ T (M) on a complex
manifold, there is a holomorphic bundle homomorphism θ : Λ2W → T (M)/W such
that for any ξ, η ∈ Γ(M,W ) and for x ∈ M , we have [ξ, η](x) mod W = θ(ξ, η)(x).
We call θ the Frobenius form of W ⊂ T (M). Denote now by φ the Frobenius form
of P|S ⊂ T (S) and by ψ the Frobenius form of D ⊂ T (Kst). From the fact that
γ : S → Kst is a holomorphic submersion and from P|S = dγ−1(D), for ξ ∈ S and
u, v ∈ Sξ it follows readily that ψ(dγ(u), dγ(v)) = β(φξ(u, v)) where the bundle isomor-

phism β : T (S)
/
P|S

∼=−→ γ∗(T (Kst)/D) is naturally induced by dγ. From F = (dγ)−1(0)
it now follows readily that [F ,P] ⊂ P . The Frobenius form φ and equivalently the Frobe-
nius form ψ can furthermore be computed in terms of the second fundamental forms σ
of Cx(X) ⊂ PTx(X) for a general point x ∈ X, and the last statement of Proposition
2.1.1 follows from the computation.

Proposition 2.1.1 yields immediately that the tangent map τx : Ux 99K Cx is a
birational map for a general point. Moreover, the Cartan-Fubini Extension Principle

holds true. In fact, given f : U
∼=−→ V such that f♯(C(X)|U ) = C(Z)|V as in the

hypothesis of Theorem 2.1.2, denoting P by P(X) and the analogous distribution on
C(Z) by P(Z), obviously f♯∗(FX) lies on the Cauchy characteristic of P(Z), and from the
characterization of the Cauchy characteristic as in Proposition 2.1.1 it follows that the

local VMRT-preserving map f : U
∼=−→ V actually preserves the tautological foliation.

That the foliation-preserving property implies the extendibility of f to a biholomorphism

F : X
∼=−→ Z was established in [HM01] by a combination of techniques of analytic

continuation in several complex variables and the deformation theory of rational curves.

On top of being intrinsic, the approach in [HM01] introduced into the subject differ-
ential systems on VMRT structures C(X) ⊂ PT (X) and on minimal rational components
K. So far the distributions D ⊂ T (Kst) have not been much studied. Especially, when
a uniruled projective manifold X carries some extra geometric structure, e.g., a contact
structure, the distribution D ⊂ T (Kst) can be further enriched leading to an enhanced
differential system on Kst, and it is tempting to believe that in certain cases this could
lead to uniqueness or rigidity results concerning K. The case where X carries a contact
structure is especially interesting in view of the long-standing conjecture that a Fano
contact manifold of Picard number 1 is homogeneous.

For applications of Cartan-Fubini extension in the equidimensional case we refer
the reader to [HM01] and [HM04b]. Here we only note that in [HM04b] we obtained
a new solution to the Lazarsfeld Problem, viz., proving that for S := G/P a rational
homogeneous space of Picard number 1 other than the projective space, any finite sur-
jective holomorphic map f : S → X onto a projective manifold X must necessarily be
a biholomorphism. The proof there was based on Cartan-Fubini extension applied to
VMRTs of the uniruled projective manifold X. The original proof in [HM99b] was an
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application of our geometric theory of VMRTs at an early stage of its development rely-
ing heavily on Lie theory, especially on results concerning G-structures of Ochiai [Oc70]
(Theorem 2.1.1 here) in the symmetric cases and those concerning differential systems
on G/P of Yamaguchi [Ya93] in the non-symmetric cases. In [HM04b] the geometric
theory on VMRTs was more self-contained, and we succeeded in entirely removing the
detailed knowledge about G/P from the solution of Lazarsfeld’s Problem.

(2.2) Cartan-Fubini extension in the non-equidimensional case Generalizing the ar-
guments for the differential-geometric proof of Ochiai’s Theorem, Hong-Mok [HoM10]
established the following non-equidimensional Cartan-Fubini extension theorem.

Theorem 2.2.1. (Hong-Mok [HoM10], Theorem 1.1) Let (Z,H) and (X,K) be two
uniruled projective manifolds equipped with minimal rational components. Assume that
Z is of Picard number 1 and that Cz(Z) is positive-dimensional at a general point z ∈ Z.
Let f : U → X be a holomorphic embedding defined on a connected open subset U ⊂ Z.
If f respects varieties of minimal rational tangents and is nondegenerate with respect to
(H,K), then f extends to a rational map F : Z 99K X.

Here we say that f respects VMRTs if and only if df(C̃z(Z)) = C̃f(z)(X)∩df(Tz(Z)),
i.e., f♯(Cz(Z)) = Cf(z)(X) ∩ f♯(PTz(Z)), where f♯ is the projectivization of df . The
holomorphic embedding f : U → X is said to be nondegenerate with respect to (K,H)
if (a) its image f(U) is not contained in the bad locus of (X,K), and (b) at a general

point z ∈ U and a general smooth point α ∈ C̃z(Z), df(α) is a smooth point of C̃f(z)(X)

such that the second fundamental form σ(η, ξ) of C̃f(z)(X) ⊂ Tf(z)(X) at df(α), when

restricted in ξ to the vector subspace Tdf(α)(df(C̃z(Z))) ⊂ Tdf(α)(C̃f(z)(X)) and regarded

as a family of linear maps on Tdf(α)(C̃f(z)(X)) in η, has common kernel Cdf(α). Thus,

(†)
{
η ∈ Tdf(α)(C̃f(z)(X)) : σ(η, ξ) = 0 for any ξ ∈ Tdf(α)(df(C̃z(Z)))

}
= Cdf(α) .

Alternatively (†) means that on Cf(z)(X), considering the projective second fundamental
form σf♯([α]) of f♯(Cz(Z)) ⊂ Cf♯([α])(X) at f♯([α]), the common kernel of σ( · , ξ), ξ ∈
Tf♯([α])(Cf(z)(X)) reduces to 0. Using the arguments of analytical continuation along
minimal rational curves as developed in Hwang-Mok [HM01], the key issue that we
settled in Hong-Mok [HoM10] was to prove that f maps a germ of minimal rational
curve on (Z,H) into a germ of minimal rational curve on (X,K). Equivalently we
showed that the image f♯∗(FZ) on f♯(C(Z)|U ) ⊂ C(X) agrees with the restriction of FX
to f♯(C(Z)|U ) as holomorphic line subbundles of T (C(X))|f♯(C(Z)|U ) . We prove Theorem
2.2.1 along the line of a proof of Ochiai’s Theorem (Theorem 2.1.1) using the Euclidean
flat connection and Harish-Chandra coordinates as explained, showing that, in the case
where Z and X are Hermitian symmetric and using Harish-Chandra coordinates, for the
Hessian d2f(ξ, η) we have d2f(α, α) ∈ Cdf(α) when evaluated at a point z ∈ Z and at

a vector α ∈ C̃z(Z) under the nondegeneracy condition as stated.

When Z and X are irreducible Hermitian symmetric spaces of the compact type and
of rank ≥ 2 the proof is the same as in Mok [Mk99]. In general, one makes use of special

coordinate systems, as follows. Let z ∈ Z be a general point and α ∈ C̃z(Z) be a smooth

point such that df(α) is a smooth point of C̃f(z)(X). Let ℓ ⊂ Z be the minimal rational
curve with a marking at z, and assume that z is a smooth point of ℓ for convenience.
Let z′ ∈ ℓ be a smooth point close to z. Write Tz′(ℓ) = Cα′. Let D ⊂ Cz′(Z) be a
smooth neighborhood of [α′] on Cz′(Z), and O be a neighborhood of 0 in Cp such that
the assignment t = (t1, · · · , tp) 7→ [α′

t] ∈ D, α′
0 = α′, defines a biholomorphism from O

onto D. Consider now the family of minimal rational curves parametrized by O given
by a holomorphic map Φ : P1×O → Z such that Φ(0, t) = z′ for t ∈ O, Φ(s, 0) ∈ ℓ′0 := ℓ
and such that, for t ∈ O, φt(s) := Φ(s, t) parametrizes the minimal rational curve ℓ′t
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passing through z′ such that Tz′(ℓ
′
t) = Cα′

t, α
′
t ∈ D. We may assume that z = φ0(s0)

for some s0 ∈ ∆, Φ|∆∗×O is an embedding and that φt|∆ is an embedding for t ∈ O.

Consider a holomorphic coordinate chart on a neighborhood U of z′ in Z, z ∈ U ,
in which the minimal rational curves near ℓ′0 = ℓ passing through z′ are represented on
the chart as open subsets of lines through the origin. For each general point w ∈ Z,
let Vw be the union of minimal rational curves passing through w. Thus, Σ := Φ(∆ ×
O) ⊂ Vz′ . Writing the parametrization as Φ(s, t) = s(ψ1(t), · · · , ψn(t)) = sψ(t) in
terms of the chosen Euclidean coordinates, observe that Σ is smooth along φ0(∆

∗)

and that for w ∈ φ0(∆
∗) we have Tw(Σ) = Span

{
(ψ(0), ∂ψ∂t1 (0), · · · ,

∂ψ
∂tp

(0)
}
, which is

independent of s. We call this the tangential constancy of Σ along the minimal rational
curve ℓ. From the basics in the deformation theory of rational curves this implies that
VMRTs are tangentially constant (in an obvious sense) along ℓ. The latter applies to all
minimal rational curves at the same time when there is a coordinate system in which all
minimal rational curves are represented by affine lines, which is in particular the case for
Harish-Chandra coordinates in the Hermitian symmetric case, and that was the reason
underlying the differential-geometric proof of Ochiai’s Theorem.

In general for the computation at z ∈ ℓ ⊂ Z, we have to resort to the special
coordinates arising from some nearby point z′ lying on ℓ, as described in the above.
Compared to Riemannian geometry, the latter may be taken as an analogue of normal
geodesic coordinates at z′ in which minimal rational curves passing through z′ appear as
radial lines. Since other minimal rational curves intersecting with the chart need not be
represented as affine lines, an elementary approximation argument was needed to carry
through the proof, as was done in Hong-Mok [HoM10, Lemma 2.7].

Recently Hwang [Hw14b] has a generalized formulation of non-equidimensional
Cartan-Fubini extension, as follows.

Theorem 2.2.2. (Hwang [Hw14b], Theorem 1.3) Let (Z,H) and (X,K) be two unir-
uled projective manifolds with minimal rational components. Assume that Z is of Pi-
card number 1 and that Cz(Z) is positive-dimensional at a general point z ∈ Z. Let
f : U → X be a holomorphic embedding defined on a connected open subset U ⊂ Z.
Suppose f♯(C(X)|U ) ⊂ C(Z) and{

η ∈ Tf♯([α])(Cf(z)(X)) : σ(η, ξ) = 0 for any ξ ∈ Tf♯([α])(f♯(Cz(Z)))
}
= 0 ,

then f extends to a rational map F : Z → X.

Hwang [Hw14b] made use of differential systems and Lie brackets of holomorphic
vector fields more in the spirit of the proof in Hwang-Mok [Hw01] and does not require
the use of adapted coordinates, and the proof is therefore more intrinsic, although the
original proof in Hong-Mok [HoM10] also applies to give the same statement. One
motivation for the more generalized formulation is that even when dim(Z) = dim(X),
Theorem 2.2.2 exceeds Cartan-Fubini extension in Theorem 2.1.2. The context applies,
by the method of Hwang-Kim [HK13a] to equidimensional maps given by suitable double
covers branched over Fano manifolds of Picard number 1 of large index.

§3 Characterization and recognition of homogeneous VMRT structures

(3.1) Uniruled projective manifolds equipped with reductive holomorphic G-structures
Just as the flat Euclidean space (as a germ) is characterized among Riemannian mani-
folds by the vanishing of the curvature tensor, flat G-structures are characterized by the
vanishing of certain structure functions (Guillemin [Gu65]). For k ≥ 1, a G-structure
G(X) ⊂ F(X) is k-flat at x if and only if there exists a germ of biholomorphism
f : (X;x) → (V ; 0) such that f∗G is tangent to the flat G-structure G′ = G × V
along G′

0 to the order ≥ k. When a given G-structure on X is k-flat at every point, there
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is a naturally defined structure function ck which measures the obstruction to (k + 1)-
flatness, which is a holomorphic 2-form taking values in some quotient bundles of tensor
bundles of the form T (X) ⊗ SkT ∗(X). G acts on these quotient bundles. In the event
that G ( GL(V ) is reductive, by identifying the latter quotient bundles with G-invariant
vector subbundles of T (X) ⊗ SkT ∗(X), the structure functions concerned correspond
to holomorphic sections θk of Hom

(
Λ2T (X), T (X) ⊗ SkT ∗(X)

)
. In this case, to prove

flatness it suffices to check the vanishing of a finite number of θk. Concerning uniruled
projective manifolds endowed with reductive G-structures we have the following result
of Hwang-Mok [HM97].

Theorem 3.1.1. (Hwang-Mok [HM97]) Let X be a uniruled projective manifold ad-
mitting an irreducible reductive G-structure, G ( GL(V ). Then, X is biholomorphic to
an irreducible Hermitian symmetric space of the compact type and of rank ≥ 2.

We refer the reader to Hwang-Mok [HM99a] and Mok [Mk08b, (4.3)] for discussions
on G-structures on uniruled projective manifolds surrounding the above theorem, and
will be contented here with some remarks on the proof of the theorem. When a G-
structure G ⊂ F(X) is defined we have an associated homogeneous holomorphic fiber
subbundle W ⊂ PT (X), where the fibers Wx ⊂ PTx(X) are highest weight orbits. The
first step of the proof consists of showing that W agrees with the VMRT structure
C(X) ⊂ PT (X), and the proof is based on Grothendieck’s classification of G-principal
bundles on P1 (Grothendieck [Gro57]). The identification C(X) = W implies that ev-
ery minimal rational curve is standard, and that Cx(X) agrees with the VMRT of an
irreducible Hermitian symmetric space S of the compact type of rank r ≥ 2, i.e., the
G-structure is an S-structure. After that it remains to check the vanishing of structure
functions interpreted as elements θk ∈ Γ

(
X,Hom(Λ2T (X), T (X)⊗SkT ∗(X)

)
. When θk

is restricted to elements of the form α∧ξ, where α ∈ C̃x(X) and ξ ∈ Pα, then θk(α, ξ) = 0
follows by restricting to standard minimal rational curves ℓ and checking degrees of sum-
mands in Grothendieck decomposition basing on T (X)|ℓ ∼= O(2)⊕O(1)p ⊕Oq, Tx(ℓ) =
Cα (assuming ℓ to be embedded), noting that for ξ ∈ Pα, α∧ ξ ∈ Λ2T (X)|ℓ belongs to a
direct summand of degree 3, while all direct summands of (T (X)⊗SkT ∗(X))|ℓ are of de-
gree ≤ 2. The flatness of the G-structure results from the fact that {α∧Pα : α ∈ C̃x(X)}
spans Λ2Tx(X), cf. Hwang-Mok [HM98, (5.1), Proposition 14].

(3.2) Recognizing rational homogeneous spaces of Picard number 1 from the VMRT at
a general point For a rational homogeneous space S = G/P of Picard number 1, de-
noting by O(1) the positive generator of Pic(S) ∼= Z we identify S ⊂ P(Γ(S,O(1))∗)
as a projective submanifold via the minimal embedding by O(1), and equip S with the
minimal rational component on S consisting of projective lines on S. We are interested
in characterizing a given uniruled projective manifold in terms of its VMRTs as projec-
tive submanifolds. Especially we have the following Recognition Problem for rational
homogeneous spaces of Picard number 1 formulated in Mok [Mk08c].

Definition 3.2.1. Let S = G/P be a rational homogeneous space of Picard number
1, and C0(S) ⊂ PT0(S) be the VMRT of S at 0 = eP ∈ S. For any uniruled projec-
tive manifold X of Picard number 1 equipped with a minimal rational component K, we
denote by Cx(X) ⊂ PTx(X) the VMRT of (X,K) at a general point x ∈ X. We say
that the Recognition Problem for S is solved in the affirmative if any uniruled projec-
tive manifold X of Picard number 1 must necessarily be biholomorphic to S whenever(
Cx(X) ⊂ PTx(X)

)
is projectively equivalent to

(
C0(S) ⊂ PT0(S)

)
.

Cho, Miyaoka and Shepherd-Barron [CMS02] proved the characterization of the
projective space Pn among uniruled projective manifolds by the fact that for a minimal
rational curve ℓ we have K−1

X · ℓ = n+ 1, i.e., equipping X with some minimal rational
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component, the assumption Cx(X) = PTx(X) at a general point x ∈ X implies that
X is biholomorphic to Pn. The purpose of the Recognition Problem was to deal with
the characterization of S = G/P different from a projective space, i.e., where C0(S) (
PT0(S) at 0 = eP . The following theorem gives our current state of knowledge on the
Recognition Problem for rational homogeneous spaces of Picard number 1.

Theorem 3.2.1. (Mok [Mk08c], Hong-Hwang [HH08]) Let G be a simple complex Lie
group, P ⊂ G be a maximal parabolic subgroup corresponding to a long simple root, and
S := G/P be the corresponding rational homogeneous space of Picard number 1. Then,
the Recognition Problem for S is solved in the affirmative.

We refer the reader to Mok [Mk08b, (6.3)] for an exposition revolving around the
Recognition Problem and the proof of Theorem 3.2.1. Here in its place we will explain
the principle underlying our approach and give some highlights on how the principle
applies in the proof of the theorem. The first geometric link between VMRT structures
and differential geometry was the author’s proof of the Generalized Frankel Conjecture
(Mok [Mk88]) in Kähler geometry which characterizes compact Kähler manifolds of
semipositive holomorphic bisectional curvature. In particular, if X is a Fano manifold
of Picard number 1 admitting a Kähler metric g of semipositive holomorphic bisectional
curvature, then it must be biholomorphic to an irreducible Hermitian symmetric space
S of the compact type. Regarding X as a uniruled projective manifold, it was proven
that the VMRT structure C(X) ⊂ PT (X) on X is invariant under holonomy of a metric
gt, t > 0, obtained from g by the Kähler-Ricci flow. (This was the core result of [Mk88]
even though the term VMRT had not been introduced at that point.) In the absence
of a Kähler metric with special properties, it was a challenge to introduce some notion
of parallel transport that makes sense in the general setting of a uniruled projective
manifold equipped with a minimal rational component K and hence with the associated
VMRT structure π : C(X) → X, C(X) ⊂ PT (X).

Our study of the Recognition Problem actually went back to the work Mok [Mk02]
concerning the conjecture of Campana-Peternell [CP91] on compact complex manifolds
with nef tangent bundle (cf. (3.3)), where we devised a method for reconstructing a Fano
manifoldX of Picard number 1 with nef tangent bundle from its VMRT Cx(X) ⊂ PTx(X)
in the very special case where dim(Cx(X)) = 1. In the general case where the VMRT of
(X,K) at a general point x ∈ X is congruent to that of the model, i.e., C0(S) ⊂ PT0(S),
S = G/P , a priori there is a subvariety E ⊂ X over which Cy(X) is not known to be
congruent to the model. The key of the affirmative solution in the Hermitian symmetric
case is a removable singularity theorem in codimension 1, viz., the assertion that for each
irreducible component H of E which is a hypersurface of X, a general point y on H is a
removable singularity for the VMRT structure. Note that in the Hermitian symmetric
case the orbit of C0(S) ⊂ PT0(S) is parametrized by an affine-algebraic variety M ⊂ CN .
In a neighborhood U of y in X, the VMRT structure can be described by a holomorphic
map φ : U−E → M ⊂ CN , and saying that the S-structure has a removable singularity
at y is the same as saying that the vector-valued holomorphic map has a removable
singularity. Once we have proven such a result in codimension 1, it follows by Hartogs
extension that the S-structure extends holomorphically to X, and we conclude that
X ∼= S by Theorem 3.1.1, as desired.

To prove the removable singularity theorem for VMRT structures in the Hermitian
symmetric case we introduce a method of parallel transport of VMRTs. Note that every
curve on X must intersect a hypersurface since X is of Picard number 1. Starting with
a standard rational curve ℓ ̸⊂ E which is assumed embedded and considering the lifting

ℓ̂ ⊂ PT (X)|ℓ, we transport the second fundamental form σ[α] of Cx(X) ⊂ PTx(X) at
[Tx(ℓ] := [α] over x ∈ ℓ∩(X−E) to the second fundamental form σ[β] of Cy(X) ⊂ PTy(X)
at [Ty(ℓ)] := [β] over y ∈ ℓ ∩ H. Observing that the second fundamental form σ
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along ℓ̂ gives a holomorphic section of a holomorphic vector bundle V (of rank := r)
which is holomorphically trivial ([Mk08c, (6.1), Proposition 6]), which results from the
fact that ℓ is a standard rational curve, we have a parallel transport in the sense that

V |
ℓ̂
∼= Cr × ℓ̂, and that an element ξ ∈ V[α] is transported to γ([β]) ∈ V[α] for the

unique holomorphic section γ ∈ Γ(ℓ̂, V ) such that γ([α]) = ξ. This already yields a
removable singularity theorem for VMRT structures in the case of the hyperquadric,
since the smooth hyperquadric Qn−2 ∼= C0(Qn) ⊂ PT0(Qn) ∼= Pn−1 cannot be deformed
to a singular hyperquadric unless its second fundamental form at a general point also
degenerates. In the general case of S-structures more work is required, e.g., in the case
where the VMRT C0(S) is itself an irreducible Hermitian symmetric space of rank ≥ 2,

parallel transport of the second fundamental form along ℓ̂ implies a parallel transport
of the VMRT structure of Cx(X), in a neighborhood of [α] to a neighborhood of [β] on
Cy(X). Here Cx(X) is regarded itself as a uniruled projective manifold equipped with the
minimal rational component H consisting of projective lines in PTx(X) lying on Cx(X),
and the parallel transport of the VMRT structure of (Cx(X),H) is shown to be enough
to force a removable singularity theorem of S-structures in codimension 1.

In [Mk08c] the argument was carried through also in the contact case, where on
top of parallel transport of the second fundamental form we also introduced parallel
transport of the third fundamental form, and resort to the work of Hong [Ho00] on the
characterization of contact homogeneous spaces which replaces Theorem 3.1.1. When the
VMRT of X at a general point is congruent to C0(S) ⊂ PT0(S) for a Fano homogeneous
contact manifold S of Picard number 1 other than an odd-dimensional projective space,
the linear span of VMRTs on X defines a meromorphic distribution D of co-rank 1
on X, and parallel transport of the third fundamental form by the same principle as
explained in the last paragraph is made possible by the splitting type D|ℓ ∼= O(2) ⊕
O(1)r ⊕ Or ⊕ O(−1). The argument was generalized in the other long-root cases by
Hwang-Hong [HH08], in which analogues of the results of [Ho00] were obtained to solve
the Recognition Problem in the affirmative for the remaining long-root cases.

Remarks

(a) In [Mk88], in the event that Cx(X) = PTx(X) and the tangent map τx : Ux 99K Cx is
not a biholomorphism at a general point, we proved that there exists a hypersurface
H ⊂ PT (X) which is invariant under holonomy of (X, gt), t > 0 sufficiently small.

(b) In Mok [Mk08b, (6.3), Conjecture 6], S = G/P should have been “a Fano homoge-
neous space of Picard number 1” (instead of “a Fano homogeneous contact manifold
of Picard number 1”). The Recognition Problem was expected to be always solved
in the affirmative for S = G/P of Picard number 1.

(3.3) Rationale, applications and generalizations of the Recognition Problem The orig-
inal motivation of the Recognition Problem was an attempt to tackle the Campana-
Peternell Conjecture in [CP91], which may be regarded as a generalization of the Hart-
shorne Conjecture, or as an algebro-geometric analogue of the Generalized Frankel Con-
jecture in Kähler geometry. It concerns projective manifolds X with nef tangent bundle.
Especially, assuming that X is Fano and of Picard number 1, according to the Campana-
Peternell Conjecture X is expected to be biregular to a rational homogeneous space, i.e.,
X ∼= G/P where G is a simple complex Lie group, and P ⊂ G is a maximal parabolic
subgroup. In Mok [Mk02] we took the perspective of reconstructing X from its VMRTs,
and solved the problem in the very special case where X admits a minimal rational
component K for which VMRTs are 1-dimensional, and where in addition b4(X) = 1.
The latter topological condition was removed by Hwang [Hw07], leading to

Theorem 3.3.1. (Mok [Mk02], Hwang [Hw07]) Let X be a Fano manifold of Picard
number 1 with nef tangent bundle. Suppose X is equipped with a minimal rational
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component for which the variety of minimal rational tangents at a general point x ∈ X
is 1-dimensional. Then, X is biholomorphic to the projective plane P2, the 3-dimensional
hyperquadric Q3, or the 5-dimensional Fano contact homogeneous space K(G2) of type
G2. In particular, X is a rational homogeneous space.

Here we note that a weaker condition than the nefness of the tangent bundle was
used in the proof of the theorem, viz., only the nefness of the restriction of the tan-
gent bundle T (X) to rational curves was used. The latter implies that deformation
of rational curves is unobstructed, and hence the minimal rational component K is a
projective manifold, and we have the universal family ρ : U → K accompanied by the
evaluation map µ : U → X which is also a holomorphic submersion. When VMRTs
are 1-dimensional, under the nefness assumption one shows easily that the fibers Ux of
µ : U → X are smooth rational curves. It was proven in [Mk02] that for the P1-bundle
ρ : U → K the direct image of the relative tangent bundle Tρ gives a rank-3 bundle which
is stable, yielding by an application of the Bogomolov inequality that τx : Ux → PTx(X)
is of degree d ≤ 4 under the additional assumption b4(X) = 1, and for the equality
case we resorted to the existence result of Uhlenbeck-Yau [UY86] on Hermitian-Einstein
metrics on stable holomorphic vector bundles over projective manifolds to arrive at a
contradiction, leaving behind the options d = 1, 2, 3. These options do exist as is given
in the statement of Theorem 3.3.1. The Recognition Theorem now enters, allowing us
to recover the hyperquadric Q3 from the VMRT in case d = 2, and to recover the 5-
dimensional Fano contact homogeneous space K(G2) in case d = 3. They served as
prototypes for the Recognition Problem for the Hermitian symmetric case and the Fano
contact case as solved in the affirmative in Mok [Mk08c].

While Theorem 3.3.1 concerns a very special case of the Campana-Peternell Con-
jecture, it is worth noting that there is no assumption on the dimension of X itself. It
is tempting to think that for VMRTs which are of dimension 2 one could identify the
possible VMRTs for X of Picard number 1 and of nef tangent bundle, and recover X
through the Recognition Problem. It appears for the time being conceptually difficult to
devise a strategy for a solution of the Campana-Peternell Conjecture for Fano manifolds
of Picard number 1 along the lines of thought in Theorem 3.3.1 since in the short-root
case VMRTs are only almost homogeneous. Since a key element in the proof of Theorem
3.3.1 was a bound on the degree of the tangent map it would be meaningful to try to
get an a priori bound of dim(X) in terms of dimensions of VMRTs under the nefness
assumption on the tangent bundle.

Another reason for introducing the Recognition Problem was to give a conceptually
unified proof of rigidity under Kähler deformation of rational homogeneous spaces S =
G/P of Picard number 1. The rigidity problem was taken up in Hwang-Mok [HM98],
Hwang [Hw97], and Hwang-Mok [HM02] [HM04a] [HM05], according to an underlying
classification scheme for X = G/P in terms of complexity into the Hermitian symmetric
case [HM98], the Fano contact case [Hw97], the remaining long-root cases [HM02], and
the short-root cases [HM04a] [HM05]. As it turned out, the case of the 7-dimensional
Fano homogeneous contact manifold F5, i.e., the Chow component of minimal rational
curves on the hyperquadric Q5, was missed in Hwang [Hw97] and again in Hwang-Mok
[HM02], and it was later found by Pasquier-Perrin [PP10] that F5 admits a deformation
to a G2-horospherical variety X

5. The corrected statement about the rigidity problem
under Kähler deformation of rational homogeneous spaces S = G/P of Picard number
1 is given by

Theorem 3.3.2. Let S = G/P be a rational homogeneous space of Picard number
1 other than the 7-dimensional Fano homogeneous contact manifold F5. Let π : X →
∆ := {t ∈ C, |t| < 1} be a regular family of projective manifolds such that the fiber
Xt := π−1(t) is biholomorphic to S for t ̸= 0. Then, X0 is also biholomorphic to S.
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There was a general scheme of proof adopted in the series of articles mentioned
on the rigidity of S = G/P under Kähler deformation. Note that X0 is a uniruled
projective manifold equipped with the minimal rational component K0 whose general
point corresponds a free rational curve of degree 1 with respect to the positive generator
O(1) of Pic(X0) ∼= Z. The general scheme consists first of all of a proof that at a
general point x0 of the central fiber X0, the VMRT Cx0(X0) ⊂ PTx0(X0) is projectively
equivalent to the VMRT Cxt(Xt) ⊂ PTxt(Xt) at any point xt ∈ Xt for t ̸= 0, i.e.,
projectively equivalent to the VMRT C0(S) ⊂ PT0(S) of the model manifold S = G/P
at the reference point 0 = eP . We may call this the invariance of VMRTs (at a general
point) under Kähler deformation. Shrinking ∆ around 0 and rescaling the variable t if
necessary, the comparison of VMRTs on different fibers was done by choosing xt = σ(t)
for a holomorphic section σ : ∆ → X where σ(0) avoids the bad set B of (X0,K0). The
VMRTs Cσ(t)(Xt), t ∈ ∆, are images of the tangent map τσ(t) : Uσ(t)(Xt) 99K Cσ(t)(Xt),
where the set {Uσ(t)(Xt) : t ∈ ∆} constitutes a regular family of projective manifolds.
With some oversimplification, in most long-root cases the latter fact allows us to deduce
Uσ(0) ∼= U0(S) by an inductive argument. For the inductive argument we recall that the

tangent map τ0 : U0(S)
∼=−→ C0(S) is a biholomorphism and note that in the long-root

case U0(S) ∼= C0(S) ⊂ PT0(S) is a Hermitian symmetric space of the compact type of
rank ≤ 3. An inductive argument applies in the long-root case when C0(S) is irreducible
but there are cases where C0(S) is reducible, as for example the Grassmannian G(p, q)
of rank ≥ 2 where the VMRT is given by the Segre embedding ς : Pp−1×Pq−1 → Ppq−1.
In the latter case invariance of VMRTs under Kähler deformation was established in
[HM98] by cohomological considerations in the deformation of projective subspaces of Xt

associated to factors of C0(G(p, q)) ∼= Pp−1×Pq−1. After the invariance of VMRTs under
deformation has been established, properly speaking the geometric theory of VMRTs
enters in the study of the tangent map. In [HM98] it was proven in a general setting for
a uniruled projective manifold X of Picard number 1 that the distribution W spanned
by VMRTs is not integrable unless W = T (X), while sufficient projective-geometric
conditions were given for the integrability of W forcing the tangent map τx0 to be an
isomorphism at a general point x0 ∈ X0 in [HM98]. In the other long root cases the
VMRTs of the model manifold are linearly degenerate, and we made use of the more
general result that W must be bracket generating for a uniruled projective manifold
X of Picard number 1 to reach the same conclusion in [HM02]. Here we say that a
distribution W on X is bracket generating to mean that the tangent subsheaf generated
by W from taking successive Lie brackets is the tangent sheaf. The same reasoning was
applied to the short-root cases in [HM04a] and [HM05]. In the cases of [HM05], the
VMRTs of the model spaces are linearly nondegenerate.

For the long-root case to conclude X0
∼= S one makes use of results from differential

systems, viz., Ochiai’s theorem [Oc70] in the Hermitian symmetric case and Yamaguchi’s
result on differential systems [Ya93] for long-root cases other than the symmetric and
contact cases. (In the contact case [Hw97] uses a simpler argument.) There is one short-
root case of type F4 in which the VMRT is linearly degenerate which was treated in
[HM04a] along the line of [HM02], while the most difficult case of the rigidity problem was
the short-root cases of the symplectic Grassmannian Sk,ℓ (cf. below) and the remaining
F4 short-root case, where the VMRTs are linearly nondegenerate. In the latter cases
it was after establishing invariance of VMRTs that the real difficulty emerges, viz., the
key issue was how one can recover S from its VMRTs. It was tempting to give a unified
argument on rigidity under Kähler deformation as a consequence of (a) invariance of
VMRTs under deformation and (b) an affirmative solution of the Recognition Problem.
Such a unified scheme of proof would apply to the central fiber X0 as a separate uniruled
projective manifold equipped with the minimal rational component K without using the
fact that it is the central fiber of a family such that the other fibers are biholomorphic
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to the model manifold S = G/P .

While the affirmative solutions of the Recognition Problem in the long-root cases
give a unified explanation of the phenomenon of deformation rigidity (with one excep-
tion) in those cases, the same problem for the short-root cases remains unresolved. An
important feature for the primary examples of symplectic GrassmanniansX = Sk,ℓ is the
existence of local differential-geometric invariants which cannot possibly be captured by
the VMRT at a general point. To explain this we describe the symplectic Grassmannian.
Consider a complex vector space W of dimension 2ℓ equipped with a symplectic form
ω. Let k be an integer, 1 < k < ℓ, and consider the subset Sk,ℓ ⊂ Gr(k,W ) of k-planes
in W isotropic with respect to ω. Let x = [E] ∈ Sk,ℓ be an arbitrary point. Suppose

A(k−1) resp. B(k+1) are vector subspaces of W of dimension k − 1 resp. k + 1 such that
A(k−1) ⊂ E ⊂ B(k+1). Suppose furthermore that B(k+1) is isotropic with respect to ω.
Let Γ ⊂ Gr(k,W ) be the rational curve consisting of all k-planes F such that A(k−1) ⊂
F ⊂ B(k+1). Then, ω|F ≡ 0 for every [F ] ∈ Γ, hence Γ ⊂ Sk,ℓ. For a minimal rational
curve Γ as described we have Tx(Γ) = Cλ, where λ ∈ Hom(E,W/E) = Tx(Sk,ℓ) such that

λ|A(k−1) ≡ 0 and Im(λ) = B(k+1)/E. The set of all [Tx(Γ)] ∈ PTx(Sk,ℓ) thus described is
given by Sx :=

{
[a⊗b] : 0 ̸= a ∈ E∗, 0 ̸= b := β+E ∈W/E,ω|E+Cβ

}
≡ 0. Thus, writing

Qx = E⊥/E we have Sx = ζ(P(E∗)×P(Qx)), where ζ : P(E∗)×P(Qx) → P(E∗⊗Qx) is
the Segre embedding. The assignment E → E∗ ⊗Qx defines a holomorphic distribution
D on Sk,ℓ which is invariant under the symplectic group Sp(W,ω) = Aut(Sk,ℓ).

The minimal rational curves Γ ⊂ Sk,ℓ described in the above are special. In the
definition of a minimal rational curve containing the k-plane [E], in place of requiring
ω to be isotropic on B(k+1) it suffices to have B(k+1) = E + Cβ, where 0 ̸= β ∈
A⊥ − E, A = A(k−1). In fact, writing E = A(k−1) + Ce and assuming β ∈ W − E, the
condition that E := A(k−1) + Cγ is isotropic with respect to ω for any γ ∈ Ce + Cβ is
equivalent to the requirement that β ∈ A⊥. Thus, the VMRT Cx(Sk,ℓ) at x is given by
Cx(Sk,ℓ) =

{
[a ⊗ b] : 0 ̸= a ∈ E∗, 0 ̸= b := β + E ∈ W/E, ω(β, α) = 0 for any α such

that a(α) = 0
}
, and the locus of tangents of the ‘special’ minimal rational curves at x

is given by Sx(Sk,ℓ) = Cx(Sk,ℓ) ∩ PDx. The distribution D ( T (Sk,ℓ) is not integrable.
Observing that (W,ω) induces a symplectic formϖx onQx = E⊥/E, dim(Qx) = 2(ℓ−k),
the Frobenius form φx : Λ2Dx → Tx(Sk,ℓ)/D is determined in a precise way by ϖx

(cf. Hwang-Mok [HM05, Proposition 5.3.1]), so that for 0 ̸= a, a′ ∈ E∗; b, b′ ∈ Qx,
φx(a⊗ b, a′ ⊗ b′) ̸= 0 if and only if ϖx(b, b

′) ̸= 0. The symplectic form ϖ on Qx cannot
be recovered from the VMRTs alone, in fact there exists a uniruled projective manifold
Z of Picard number ̸= 1 with isotrivial VMRTs Cz(Z) ⊂ PTz(Z) projectively equivalent
to Cx(Sk,ℓ) ⊂ PTx(Sk,ℓ) such that the analogous distribution D, is integrable (cf. Hwang
[Hw12]). Here Dz ⊂ PTz(Z) is retrieved from Cz(Z) ⊂ PTz(Z) as a projective subvariety,
e.g., as the locus where the second fundamental form is degenerate.

It remains to recognize X ∼= Sk,ℓ for a uniruled projective manifold X of Picard
number 1 such that the VMRT Cx(X) ⊂ PTx(X) is projectively equivalent to Cx(Sk,ℓ) ⊂
PTx(Sk,ℓ). While one of the original motivations of the Recognition Problem is to prove
rigidity under Kähler deformation in a conceptually uniform manner this has so far not
been possible for the short-root cases. Reasoning in the opposite direction, the method
of proof of rigidity under Kähler deformation in Hwang-Mok [HM05] may give a hint
to the solution of the Recognition Problem for Sk,ℓ, which is conceptually an important
problem in its own right. In Hwang-Mok [HM05] we obtained a foliation on the central
fiber in the deformation problem by means of the Frobenius form φ : Λ2D → T (X)/D
associated to the specific VMRT structure. Recall that in [HM05] we considered a
regular family π : X → ∆ of Kähler manifolds with Xt := π−1(t) ∼= Sk,ℓ for t ̸= 0, and,
using estimates of vanishing orders and dimensions of linear spaces of vector fields we
studied also the possibility that the Frobenius form is a priori degenerate on D ⊂ X. In
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this case we showed that X0 is the image of some Grassmann bundle over a symplectic
Grassmannian under a birational morphism, and the existence of such a model was
finally shown to contradict the smoothness of X0 unless the rank of ϖx is maximal at a
general point, in which case we showedX0

∼= Sk,ℓ, In the case of the Recognition Problem
for the symplectic Grassmannian one has to first get local models for isotrivial VMRTs
modeled on Cx(Sk,ℓ) ⊂ PTx(Sk,ℓ) depending on the rank of some skew-symmetric bilinear
form ϖx on a 2(ℓ − k)-dimensional vector space Qx at a general point x ∈ X, where
Qx can be retrieved from the VMRT and ϖx is determined by the Frobenius form φx.
The construction and parametrization of local models are by themselves a challenging
problem requiring new ideas on the local study of differential systems arising from these
specific VMRTs.

Regarding the exceptional case of S = F5 for deformation rigidity of rational ho-
mogeneous spaces of Picard number 1 as stated in Theorem 3.3.1, Hwang [Hw14a] has
established the following result giving two alternatives for the central fiber.

Theorem 3.3.3. (Hwang [Hw14a]) Let π : X → ∆ be a regular family of projective
manifolds over the unit disk ∆, and denote by Xt := π−1(t) the fiber over t ∈ ∆. Suppose
Xt is biholomorphic to F5 for each t ∈ ∆ − {0}, then the central fiber is biholomorphic
to either F5 or to the G2-horospherical variety X

5 in Pasquier-Perrin [PP10].

Paradoxically, the failure of rigidity under Kähler deformation in the exceptional
case of S ∼= F5, coupled with Hwang’s result above, lends credence to an important
general principle in the geometric theory of VMRTs, viz., that in the case of a uniruled
projective manifold X of Picard number 1, the underlying complex structure should be
recognized by its VMRT at a general point. For the question on Kähler deformation
considered, this means that rigidity fails if and only if invariance of VMRTs under
deformation breaks down. In [Hw14], Theorem 3.3.3 was proven precisely by identifying
two alternatives for a general VMRT on the central fiber and by recovering the complex
structure of X0 via an affirmative solution to the associated Recognition Problem.

For S = F5 = G/P with a reference point 0 = eP ∈ S, denoting by D ( T (S)
the unique G-invariant proper holomorphic distribution on S, to be called the minimal
distribution, the VMRT C0(S) ⊂ PD0(S) is projectively equivalent to the image of
η : P1 × P1 → P5, where, writing πi; i = 1, 2; for the canonical projection of P1 × P1

onto its i-th factor, η is the embedding given by π∗
1O(1) ⊗ π∗

2O(2). Moreover, it can
be proven that for the regular family π : X → ∆, letting D♭ be the distribution on
X|∆∗ such that D♭|Xt ⊂ T (Xt) agrees with the minimal distribution on Xt for t ̸= 0,
D♭ extends across the central fiber to give a meromorphic distribution D on X . In the
proof of Theorem 3.3.3, taking a holomorphic section σ : ∆(ϵ) → X for some ϵ > 0
such that σ(0) is a general point of X0, and considering the regular family τ : E →
∆(ϵ) of projective submanifolds of Et := σ∗Cσ(t)(Xt) ⊂ σ∗PDσ(t)

∼= P5,
(
E0 ⊂ P5

)
is

proven to be projectively equivalent to either
(
η(P1 × P1) ⊂ P5

)
or to

(
Σ ⊂ P5

)
, where

Σ := P(O(−1) ⊕O(−3)) is a Hirzebruch surface embedded into P5 by some ample line
bundle. In the latter case the VMRT as a projective submanifold at a general point ofX0

is projectively equivalent to the VMRT of the 7-dimensional G2-horospherical variety X
5

in the notation of Pasquier-Perrin [PP10]. Hwang then solved the Recognition Problem
for X5 by resorting to the obstruction theory for the construction of an appropriate
connection on the central fiberX0. This involves G-structures for a certain non-reductive
linear group and the proof in Hwang [Hw14a] is a tour de force.

§4 Germs of complex submanifolds of uniruled projective manifolds

(4.1) An overview Let (X,K) be a uniruled projective manifold equipped with a min-
imal rational component, and π : C(X) → X, C(X) ⊂ PTX , be the associated VMRT
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structure. We are interested in studying germs of complex submanifolds of X in re-
lation to the VMRT structure. Since very little on the topic has been discussed in
earlier surveys, we will be more systematic here with the exposition. In Mok [Mk08a]
we examined the question of characterizing Grassmannians G(p′, q′) ⊂ G(p, q) of rank
r = min(p′, q′) ≥ 2 realized as complex submanifolds by means of standard embeddings.
The fundamental analytic tool was the non-equidimensional Cartan-Fubini extension
developed in full generality in Hong-Mok [HoM10] as stated in Theorem 2.2.1, which
was applied in [HoM10] to yield characterization theorems on standard embeddings for
pairs of rational homogeneous spaces (X0, X) of Picard number 1, X0 ⊂ X, where X
is defined by a Dynkin diagram marked at a long simple root, and X0 is nonlinear and
obtained from a marked sub-diagram. This result, and generalizations by Hong-Park
[HoP11] to the short-root case and to the case of maximal linear subspaces, will be the
focus in (4.2), where the geometric idea of parallel transport of VMRTs along mini-
mal rational curves will be explained. In (4.3) we explain an application in Hong-Mok
[HoM13] of the methods of (4.2) to homological rigidity of smooth Schubert cycles with
a few identifiable exceptions, where the rigidity statement was reduced to the question
whether local deformations of a smooth Schubert cycle Z ⊂ X must be translates γ(Z)
of Z, γ ∈ Aut(X). The latter question was answered in the affirmative in Hong-Mok
[HoM13] in most cases by using the rigidity of VMRTs as projective submanifolds un-
der local deformation of Z coupled with the argument of parallel transport of VMRTs.
We explain the complex-analytic argument of [HoM13] which deduces parallel transport
of VMRTs along minimal rational curves in the case of homogeneous Schubert cycles
from the compactness of the moduli of the homogeneous submanifold C0(Z) ⊂ C0(X).
In (4.4) we introduce the notion of sub-VMRT structures given by ϖ : C(S) → S,
C(S) := C(X) ∩ PT (S), for complex submanifolds S and discuss the rigidity result of
Mok-Zhang [MZ15] for sub-VMRT structures which strengthens those in (4.2) from
[HoM10] and [HoP11]. In (4.5) we formulate a rigidity result for sub-VMRT structures
on general uniruled projective manifolds (X,K), and formulate the Recognition Problem
for the characterization of classes of uniruled projective subvarieties on (X,K) in terms
of sub-VMRT structures. We consider in (4.6) examples of sub-VMRT structures re-
lated to Hermitian symmetric spaces, and discusses analytic continuation of sub-VMRT
structures for special classes of uniruled projective subvarieties.

It is worth noting that [Mk08a] originated from a method of proof of Tsai’s Theorem
[Ts93] concerning proper holomorphic maps between bounded symmetric domains of
rank ≥ 2 in the equal rank case, and as such the study of sub-VMRT structures is at
the same time a topic in local differential geometry in a purely transcendental setting.
In (4.7) we explore various links of VMRT sub-structures to algebraic geometry, several
complex variables, Kähler geometry and the geometry of submanifolds in Riemannian
geometry, and describe some sources of examples, including those from holomorphic
isometries of Mok [Mk15] and from the classification of sub-VMRT structures in the
Hermitian symmetric case of Zhang [Zh14].

(4.2) Germs of VMRT-respecting holomorphic embeddings modeled on certain pairs of
rational homogeneous spaces of sub-diagram type and a rigidity phenomenon Let
(Z,H) and (X,K) be uniruled projective manifolds equipped with minimal rational
components with positive-dimensional VMRTs. When Z is of Picard number 1, given
a VMRT-respecting holomorphic embedding f of a connected open subset U ⊂ Z
into X satisfying some genericity condition and a nondegeneracy condition for the
pair

(
f♯(Cz(Z)) ⊂ Cf(z)(X)

)
expressed in terms of second fundamental forms, non-

equidimensional Cartan-Fubini extension (Theorem 2.2.1) gives an extension of f(U) to
a projective subvariety Y ⊂ X such that dim(Y ) = dim(U). In the case of irreducible
Hermitian symmetric spaces S of rank ≥ 2, for which Ochiai’s Theorem on S-structures
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serves as a prototype for equidimensional Cartan-Fubini extension, and more generally
in the case of rational homogeneous spaces X = G/P of Picard number 1, one ex-
pects to be able to say more about the projective subvariety Y ⊂ X. This was first
undertaken in Mok [Mk08a] in the special case of Grassmannians of rank ≥ 2. For a
pair (X0, X) of rational homogeneous spaces of Picard number 1 obtained from marked
Dynkin diagrams, the works of Hong-Mok [HoM10] and Hong-Park [HoP11] yielded the
following characterization theorem. Here we have a holomorphic equivariant embedding
Φ : X0 = G0/P0 ↪→ G/P = X and a mapping F : X0 → X is said to be a standard
embedding if and only if F = γ ◦ Φ for some γ ∈ Aut(X). We have the following result
due to [HoM10] in the long-root case and [HoP11] in the short-root case.

Theorem 4.2.1. (Hong-Mok [HoM10, Theorem 1.2], Hong-Park [HoP11, Theorem
1.2]) Let X0 = G0/P0 and X = G/P be rational homogeneous spaces associated to
simple roots determined by marked Dynkin diagrams (D(G0), γ0), (D(G), γ) respectively.
Suppose D(G0) is obtained from a sub-diagram of D(G) with γ0 being identified with γ.
If X0 is nonlinear and f : U → X is a holomorphic embedding from a connected open
subset U ⊂ X0 into X which respects VMRTs at a general point x ∈ U , then f is the
restriction to U of a standard embedding of X0 into X.

For finite-dimensional complex vector spaces E ∼= E′ and subvarieties A ⊂ PE,
A′ ⊂ PE′, we say that

(
A ⊂ PE

)
is projectively equivalent to

(
A′ ⊂ PE′) if and

only if there exists a projective linear isomorphism Ψ : PE
∼=−→ PE′ such that Ψ(A) =

A′. To compare to Theorem 2.2.1, in what follows we will write Z for X0. Write
S := f(U), which is a complex submanifold of some open subset of X. Obviously for
z ∈ U ,

(
Cz(Z) ⊂ PTz(Z)

)
is projectively equivalent to

(
f♯(Cz(Z)) ⊂ f♯(PTz(Z))

)
, i.e.,(

Cf(z)(S) ⊂ PTf(z)(S)
)
. Here and henceforth we write Cf(z)(S) for Cf(z)(X)∩PTf(z)(S),

which is the same as f♯(Cz(Z)) by the hypothesis that f respects VMRTs. (We will

also write C(S) := C(X) ∩ PT (S).) Write Λz = [df(z)] : PTz(Z)
∼=−→ PTf(z)(S) for

the projective linear isomorphism inducing the projective equivalence. In the long-root
case, by the proof of Hong-Mok [HoM10, Proposition 3.4], denoting by D(Z) ⊂ T (Z)
the holomorphic distribution spanned by VMRTs, Λz|PDz(Z) can be extended to Φz =

[dγ(z)] : PTz(X)
∼=−→ PTf(z)(X) for some γ ∈ Aut(X) such that γ(z) = f(z). Thus,

given the germ of VMRT-respecting holomorphic map f : U → X, Z ′ := γ(Z) gives
a rational homogeneous submanifold Z ′ ⊂ X such that Cf(0)(Z ′) = Cf(0)(S) and the
proof of Theorem 4.2.1 consists of fitting S into the model Z ′. (We remark that in the
statement of [HoM10, Proposition 3.4], in place of V = Tx(X) and W := Tx(Z) one

could have replaced V by the linear span Dx(X) of C̃x(X) and W by the linear span

Dx(Z) of C̃x(Z). The arguments for the proof of [HoM10, Proposition 3.4] actually yield
the following stronger statement, which we will use in what follows. If B′ = C ∩ PW ′

is another linear section such that
(
B′ ⊂ PW ′) is projectively equivalent to

(
B ⊂ PW

)
,

then there is h ∈ P such that B′ = hB. In other words, in place of h ∈ Aut(Cx(X)) the
proof actually gives h ∈ P . The latter fact was used in [HoM10] in the process of fitting
S into a model Z ′ = γ(Z).)

For the proof of Theorem 4.2.1 the strategy was to compare the germ of manifold S
at some base point with the model complex submanifold Z ′ = γ(Z) ⊂ X. In the ensuing
discussion, replacing f by γ−1 ◦f we will assume without loss of generality that Z ′ = Z,
so that C0(S) = C0(Z). Starting with the base point 0 = f(0) ∈ S and considering
the union V1 of minimal rational curves on Z passing through 0, preservation of the
tautological foliation, i.e., f♯∗(FZ) = FX |C(S), as in the proof of non-equidimensional
Cartan-Fubini extension (Theorem 2.2.1) implies that the germ (S; 0) contains (V1; 0).
By the repeated adjunction of minimal rational curves, we have 0 ⊂ V1 ⊂ · · · ⊂ Vm = Z.
In order to prove that S is an open subset of Z it suffices to prove inductively that
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the germ (S; 0) contains (Vk; 0) for each k ≥ 1, V0 = {0}. For k ≥ 1 the statement
(S; 0) ⊃ (Vk; 0) is the same as saying that Cxk−1

(S) = Cxk−1
(Z) for any xk−1 ∈ Vk−1 ∩S

sufficiently close to 0. The inductive argument was done in [Mk08a] and [HoM10] by
means of parallel transport of VMRTs along minimal rational curves, as follows. Assume
(S; 0) ⊃ (Vk; 0). If for a general point x ∈ S∩Vk, x = f(z), we have f♯(Cz(Z)) = Cf(z)(Z),
then (S;x) contains the germ (V1(x); 0), where V1(x) is the union of all rational curves
on Z passing through x = f(z) ∈ S ∩ Vk. At a point x = xk ∈ S ∩ (Vk − Vk−1) we have
a line ℓ joining some point x′ = xk−1 ∈ S ∩ Vk−1 to x, and we know that S = f(U)
and Z share a nonempty connected open subset of the rational curve ℓ, which contains
both x′ and x. From Cx′(S) = Cx′(Z) it follows that Cx(S) and Cx(Z) are tangent to
each other at x. The argument of parallel transport of VMRTs along minimal rational
curves consists of the following statement established in the long-root case by Hong-Mok
[HoM10, Proposition 3.6] using the theory of Lie groups and representation theory.

Proposition 4.2.1. Let (Z,X) be a pair of rational homogeneous spaces of Picard num-
ber 1 marked at a simple root, X = G/P, 0 = eP . Suppose γ ∈ P and C0(γ(Z)) and
C0(Z) are tangent to each other at a common smooth point [α] ∈ C0(γ(Z))∩C0(Z), then
C0(γ(Z)) = C0(Z).

For a proof of Proposition 4.2.1 which works in both the long-root and the short root
cases we defer to (4.3). Returning to Theorem 4.2.1 for the short-root case, by Hong-
Park [HoP11, Proposition 2.2] the existence of φ ∈ P such that Z ′ := φ(Z) is tangent to
S := f(U) at f(0) = 0 holds true in the short-root case excepting in the case of certain
pairs (Z,X) where X is a symplectic Grassmannian and Z is a Grassmannian. For the
short-root case other than the exceptional pairs (Z,X) Hong-Park proceeded along the
line of Hong-Mok [HoM10], but for the verification of the nondegeneracy condition they
resorted to the explicit description of VMRTs as projective submanifolds as given in
Hwang-Mok [HM04] and [HM05].

To describe the exceptional pairs (Z,X) recall that for X = Sk,ℓ ⊂ Gr(k,W ),
there is an invariant distribution D ⊂ T (X) given by D = U ⊗ Q, where U and Q are
homogeneous vector bundles over X with fibers Ux = E∗ and Qx = E⊥/E at x = [E] ∈
X. Recall that Cx(Sk,ℓ) ∩ PDx(Sk,ℓ) = Cx(Sk,ℓ) ∩ P(Ux ⊗ Qx) = ς(PUx × PQx), where
ς : PUx × PQx → P(Ux ⊗Qx) denotes the Segre embedding given by ς([u], [q]) = [u⊗ q].
Fix now isotropic subspaces 0 ̸= F1 ⊂ F2 and consider Z ⊂ X consisting of all (isotropic)
k-planes E such that F1 ⊂ E ⊂ F2. Then, Z ⊂ X = Sk,ℓ ⊂ Gr(k,W ) is a Grassmannian,
and T (Z) = U ′ ⊗ Q′, where U ′

x = (E/F1)
∗ ⊂ Ux, and Q′

x = F2/E ⊂ E⊥/E = Qx.
We have rank(U ′) = k − dimF1 := a, rank(Q′) = dimF2 − k := b. Then, writing
x = [E] ∈ X, for any a-plane Ax ⊂ Ux and any b-plane Bx ⊂ Qx,

(
ς(PAx × PBx) ⊂

P(Ax ⊗ Bx)
)
is projectively equivalent to

(
ς(PU ′

x × PQ′
x) ⊂ P(Ux ⊗ Qx)

)
. Recall that

(W,ω) induces a symplectic form ϖx on Qx = E⊥/E (cf. (3.3)). By definition ϖx

vanishes on Q′
x = F2/E. If we choose now Bx ⊂ Qx to be such that ϖx|Bx ̸≡ 0,

then any projective linear isomorphism Λx : P(Ax ⊗ Bx)
∼=−→ P(U ′

x ⊗ Q′
x) such that

Λ(ς(PAx×PBx)) = ς(PU ′
x×PQ′

x) cannot possibly extend to an element of the parabolic
subgroup Px of G at x since ϖx is invariant under Px.

For the solution of the special case (Z,X) above for the symplectic Grassmannian
X = Sk,ℓ it is sufficient to embed X into the Grassmannian Gr(k, 2ℓ) and solve the
problem for (Z,Gr(k, 2ℓ)). The end result is that S = F (U) is still an open subset of a
sub-Grassmannian Z ′ in Gr(k, 2ℓ) which lies on X = Sk,ℓ. We observe that the proof
yields the following. If we start with f : (Z; 0) → (Sk,ℓ; 0) such that f respects VMRTs,
and suppose f♯(C0(Z)) = ζ(PAx × PBx), then we have necessarily ϖx|Bx

≡ 0.

Hong-Park [HoP11] considered in addition the cases involving maximal linear sub-
spaces Z = X0, as follows.
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Theorem 4.2.2. (Hong-Park [HoP11, Theorem 1.3]) Let X = G/P be a rational ho-
mogeneous space associated to a simple root and let Z ⊂ X be a maximal linear sub-
space. Let f : U → X be a holomorphic embedding from a connected open subset U ⊂ Z
into X such that P(df(Tz(U))) ⊂ Cf(z)(X) for any z ∈ U . If there is a maximal lin-
ear space Zmax of X of dimension dim(U) which is tangent to f(U) at some point
x0 = f(z0), z0 ∈ U , then f(U) is contained in Zmax, excepting when (Zmax;X) is given
by (a) X is associated to (Bℓ, αi), 1 ≤ i ≤ ℓ − 1, and Zmax is Pℓ−i; (b) X is associated
to (Cℓ, αℓ) and Zmax is P1; or (c) X is associated to (F4, α1) and Zmax is P2.

The maximal linear subspaces Π ⊂ C0(X) divide into a finite number of isomorphism
types under the action of the parabolic subgroup P on C0(X) (cf. Landsberg-Manivel
[LM03]). The assumption that there is a maximal linear space Zmax of X of dimension
dim(U) which is tangent to S := f(U) at some point x0 := f(z0) ∈ S implies that
PTx0(S) = PTx0(Zmax), which forces PTx(S) ⊂ Cx(X) to be a maximal linear subspace
of the same type for any x = f(z) ∈ S. Here the question is whether the tautological
foliation FX on PT (X), regarded as a holomorphic line subbundle, is tangent to PT (S)
and hence restricts to C(X)∩PT (S) = C(S). An affirmative answer to the latter question
implies that S is an open set on a projective linear subspace obtained by adjoining
projective lines at a single base point. Obviously f♯∗(FZ) need not agree with FX |S . In
fact, trivially any immersion between projective spaces respects VMRTs.

Suppose α ∈ df(Tz0(U)). To show that FX |S defines a foliation on S, in place of
requiring the nondegeneracy condition Kerσα( · , df(Tz0(Z))) = Cα it suffices to have
Kerσα( · , df(Tz0(Z))) ⊂ df(Tz0(Z)), which was checked to be the case for Z = X0 being
a maximal linear subspace, in which case Kerσα( · , df(Tz0(Z))) = df(Tz0(Z)) with the
exceptions as stated in the theorem. For the exceptional cases (a)-(c), counter-examples
had been constructed by Choe-Hong [CH04].

We note that Theorem 4.2.2, while formulated in terms of a holomorphic embedding
f : U → X, concerns only the germ of complex submanifold (S;x0), where S = f(U).
Here f plays only an auxiliary role. In fact, any germ of biholomorphism h : (U ; z0) →
(S;x0) satisfies the condition P(dh(Tz(U))) ⊂ Ch(z)(X) whenever h is defined at z ∈ U .
As such Theorem 4.2.2 may be regarded as a result on geometric substructures.

In the long-root and nonlinear case of admissible pairs (Z,X), in which case C0(Z) ⊂
PT0(Z) is homogeneous and nonlinear, given a germ of VMRT-respecting holomor-

phic immersion f : (Z; z0) → (X;x0), the condition Kerσα
(
· , Tα(C̃x0(Z))

)
⊂ Pα ∩

df(Tz0(Z)), where Pα = Tα(C̃x0(X)), forces Kerσα
(
· , Tα(C̃0(Z))

)
= Cα since the pro-

jective second fundamental form on the nonlinear homogeneous projective submanifold
Cz0(Z) ⊂ PTz0(Z) itself is everywhere nondegenerate. The same implication holds true
in the short-root case provided that [α] ∈ Cx0(X) ∩ P(df(Tz0(Z)) is a general point of
both Cx0

(X) and f♯(Cz0(Z)). Thus, in the nonlinear case of admissible pairs (Z,X) one
can examine the question of rational saturation for a germ of complex submanifold en-
dowed with a certain type of geometric substructure (e.g. a sub-Grassmann structure)
without the assumption of the existence of an underlying holomorphic map. We will
show that this is indeed possible, and we will introduce a variation of the notion of
nondegeneracy for that purpose. This will be taken up in (4.4) and (4.5).

(4.3) Characterization of smooth Schubert varieties in rational homogeneous spaces of
Picard number 1 Characterization of standard embeddings between certain pairs of
rational homogeneous spaces (X0, X) of Picard number 1 was achieved by means of
non-equidimensional Cartan-Fubini extension and parallel transport of VMRTs along
minimal rational curves. In Hong-Mok [HoM13] this approach was further adopted
to deal with a problem of homological rigidity of smooth Schubert cycles on rational
homogeneous spaces. Recall that a Schubert cycle Z ⊂ X on a rational homogeneous
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space X = G/P is one for which the G-orbit of G·[Z] in Chow(X) is projective. Suppose
S ⊂ X is a cycle homologous to the Schubert cycle Z, the homological rigidity problem
is to ask whether S is necessarily equivalent to Z under the action of Aut(X). We
note that by the extremality of the homology class of a Schubert cycle among homology
classes of effective cycles, S is reduced and irreducible.

We reformulate the homological rigidity problem so as to relate it to the geometric
theory of uniruled projective manifolds modeled on VMRTs, as follows. To start with,
considering the irreducible component Q of Chow(X) containing the point [S], there
always exists a closed G-orbit in Q, and as such it contains a point corresponding to
some Schubert cycle, and thus Q must contain [Z] itself by the uniqueness modulo G-
action of Schubert cycles representing the same homology class. The homological rigidity
problem would be solved in the affirmative if we established the local rigidity of Z. In
Hong-Mok [HoM13] we dealt with the case of smooth Schubert cycles. When X = G/P
is a rational homogeneous space defined by a Dynkin diagram D(G) marked at a simple
root, and Z ⊂ X is defined by a marked sub-diagram, then Z ⊂ X is a Schubert cycle
(cf. [HoM13, §2, Example 1]). In [HoM13] we proved

Theorem 4.3.1. (Hong-Mok [HoM13, Theorem 1.1]) Let X = G/P be a rational ho-
mogeneous space associated to a simple root and let X0 = G0/P0 be a homogeneous
submanifold associated to a sub-diagram D(G0) of the marked Dynkin diagram D(G) of
X. Then, any subvariety of X having the same homology class as X0 is induced by the
action of Aut0(X), excepting when (X0, X) is given by
(a) X = (Cn, {αk}), Λ = {αk−1, αb}, 2 ≤ k < b ≤ n;
(b) X = (F4, {α3}), Λ = {α1, α4} or {α2, α4};
(c) X = (F4, {α4}), Λ = {α2} or {α3},
where Λ denotes the set of simple roots in D(G)\D(G0) which are adjacent to the sub-
diagram D(G0).

When X = G/P is defined by the marked Dynkin diagram (D(G), γ), where γ
is a long simple root, it was established in [HoM13, Proposition 3.7] that any smooth
Schubert cycle Z onX is a rational homogeneous submanifold corresponding to a marked
sub-diagram of (D(G), γ), hence Theorem 4.3.1 in the long-root case exhausts all smooth
Schubert cycles up to G-action. When γ is a short root, this need not be the case, and we
refer the reader to [HoM13, Theorem 1.2] for results on the homological rigidity problem
for the symplectic Grassmannian pertaining to smooth Schubert cycles which are not
rational homogeneous submanifolds.

Parallel transport of VMRTs along a minimal rational curve was used in an essential
way in [HoM13] for the proof of Theorem 4.3.1. Using a complex-analytic argument,
we established in [HoM13, Proposition 3.3] a proof of Proposition 4.2.1 applicable to
the case of Schubert cycles Z ⊂ X = G/P corresponding to marked sub-diagrams as in
Theorem 4.3.1, as follows. (We say that (Z,X) is of sub-diagram type.)

Proof of Proposition 4.2.1. Consider the point [Z] in Chow(X) corresponding to the
reduced cycle Z. Since Z ⊂ X is a Schubert cycle, the G-orbit of [Z] in Chow(X) is
projective. From this and the fact that Z ⊂ X is a rational homogeneous submanifold
one deduces that the P -orbit of [Z] in Chow(X) is also projective. Given this, the failure
of Proposition 4.2.1 would imply the existence of a holomorphic family ϖ : Q → Γ of
projective submanifolds Qt ⊂ C0(X), [Qt] ∈ Q, parametrized by a projective curve Γ,
such that all members Qt contain [α] and such that they all share the same tangent space
V = T[α](C0(Z)). Consider the holomorphic section σ of ϖ : M → Γ corresponding to
the common base point [α] ∈ Qt for all t ∈ Γ. The assumption that T[α](Qt) = V for
all t ∈ Γ would imply that the normal bundle N of σ(Γ) in Q is holomorphically trivial,
which would contradict the negativity of the normal bundle resulting from the existence
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of a canonical map χ : Q → C0(X) collapsing σ(Γ) to the single point [α] (cf. Grauert
[Gra62]). This proves Proposition 4.2.1 by argument by contradiction. �

(4.4) Sub-VMRT structures arising from admissible pairs of rational homogeneous spaces
of Picard number 1 and a rigidity phenomenon Consider the Grassmann manifold
G(p, q) of rank r = min(p, q) ≥ 2. We have T (G(p, q)) = U ⊗ V where U (resp.V )
is a semipositive universal bundle of rank p (resp. q). Let W ⊂ G(p, q) be an open
subset and S ⊂W be a complex submanifold such that T (S) = A⊗B, where A ⊂ U |S
(resp.B ⊂ V |S) is a holomorphic vector subbundle of rank p′ (resp. q′) such that r′ =
min(p′, q′) ≥ 2. Thus, by assumption S inherits a G(p′, q′)-structure, and the question
we posed was whether S is an open subset of a projective submanifold Z ⊂ G(p, q)
such that Z is the image of G(p′, q′) under a standard embedding. When the natural
Grassmann structure (of rank r′ ≥ 2) on S is flat, then, given any x0 ∈ S, there
exists an open neighborhood O of x0 on S, an open neighborhood U of 0 ∈ G(p′, q′),

and a biholomorphic mapping f : U
∼=−→ O such that f preserves G(p′, q′)-structures,

equivalently f♯(C(G(p′, q′))|U ) = C(S) where C(S) := C(G(p, q)) ∩ PT (S). This is the
situation dealt with in Mok [Mk08a] where it was proven that S is indeed an open subset
of a sub-Grassmannian Z ⊂ G(p, q) which is the image of G(p′, q′) under a standard
embedding. The question here is whether the flatness assumption is superfluous.

One can contrast Grassmann structures with holomorphic conformal structures.
Let n ≥ 4 and (S; 0) be an m-dimensional germ of complex submanifold on the hyper-
quadric Qn, 3 ≤ m < n. We say that (S; 0) inherits a holomorphic conformal structure
if and only if the restriction of the standard holomorphic conformal structure on Qn

to (S; 0) is nondegenerate. Here examples abound, indeed a generic germ of complex
submanifold (S; 0) inherits such a structure. On a small coordinate neighborhood W
of 0 the holomorphic conformal structure is given by the equivalence class (up to con-
formal factors) of a holomorphic metric g, i.e., a nondegenerate holomorphic covariant
symmetric 2-tensor g =

∑
gαβ(z)dz

α ⊗ dzβ in local coordinates, and the latter restricts
to a holomorphic conformal structure on (S; 0) if and only if g is nondegenerate on
T0(S). The case of the pair (G(p′, q′);G(p, q)) is very different. In the latter case,
denoting by W a coordinate neighborhood of 0 ∈ G(p, q), it is a priori very special
that (S; 0) ⊂ (W ; 0) inherits a G(p′, q′)-structure. Indeed, for a general p′q′-dimensional
linear subspace Π ⊂ T0(G(p, q)), the intersection C0(G(p, q)) ∩ P(Π), if nonempty, is
of codimension pq − p′q′ in C0(G(p, q)) ∼= Pp−1 × Pq−1, of dimension p + q − 2. Thus
the expected dimension of intersection is strictly less than that of a G(p′, q′)-structure,
i.e., p′ + q′ − 2, as soon as (p′, q′) ̸= (p, q). (For an example of low dimension, con-
sider a generic 4-dimensional complex submanifold S ⊂ W ⊂ G(2, 3). The intersection
C0(G(p, q)) ∩ PT0(S) is expected to be of codimension 2 in C0(G(2, 3)) ∼= P1 × P2, i.e.,
a curve, while it is a surface C0(S) ∼= C0(G(2, 2)) ∼= P1 × P1 when S inherits a G(2, 2)-
structure.) In view of the excessive intersection of VMRTs with projectivized tangent
spaces it is perceivable that rigidity already follows from excessive intersection of VM-
RTs with projectivized tangent spaces and from the specific forms of the intersections,
and that the flatness assumption is unnecessary.

In the case of Grassmann structures or other G-structures modeled on irreducible
Hermitian symmetric spaces of rank ≥ 2, by Guillemin [Gu65] we could resort to proving
the vanishing of a finite number of obstruction tensors to demonstrate flatness, but the
method of G-structures is ill-adapted even for rational homogeneous spaces. In its place
we examined the tautological foliation on VMRT structures and raised the question
whether the restriction to PT (S) already defines a foliation. In the special and simpler
case of linear model submanifolds such a question was formulated and solved by Hong-
Park [HoP11] (Theorem 4.2.2 in the above). For the general formulation of rigidity
phenomena on complex submanifolds we introduce the notion of admissible pairs of

24



rational homogeneous spaces of Picard number 1 (cf. Mok-Zhang [MZ15, Definition
1.1] and the ensuing discussion). Recall that for a holomorphic immersion ν : M → N
between complex manifolds we write ν♯ for the projectivization of the differential dν :
T (M) → T (N) of the map.

Definition 4.4.1. Let X0 and X be rational homogeneous spaces of Picard number 1,
and i : X0 ↪→ X be a holomorphic embedding equivariant with respect to a homomor-
phism of complex Lie groups Φ : Aut0(X0) → Aut0(X). We say that (X0, X; i) is an
admissible pair (of rational homogeneous spaces of Picard number 1) if and only if (a) i

induces an isomorphism i∗ : H2(X0,Z)
∼=−→ H2(X,Z), and (b) denoting by O(1) the

positive generator of Pic(X) and by ρ : X ↪→ P(Γ(X,O(1))∗) := PN the first canonical
projective embedding of X, ρ ◦ i : X0 ↪→ PN embeds X0 as a linear section of ρ(X).

It follows immediately from (b) that i : X0 → X respects VMRTs, i.e. i♯(Cx(X0)) =
Ci(x)(X) ∩ i♯(PTx(X0)) for every point x ∈ Xi. Next we introduce the notion of a sub-
VMRT structure modeled on an admissible pair (X0, X) of rational homogeneous spaces
(cf. Mok-Zhang [MZ15, Definition 1.2]).

Definition 4.4.2. Let (X0, X) be an admissible pair of rational homogeneous spaces
of Picard number 1, W ⊂ X be an open subset, and S ⊂ W be a complex submanifold.
Consider the fibered space π : C(X) → X of varieties of minimal rational tangents on
X. For every point x ∈ S define Cx(S) := Cx(X) ∩ PTx(S) and write ϖ : C(S) → S
for ϖ = π

∣∣
C(S) , ϖ

−1(x) := Cx(S) for x ∈ S. We say that S ⊂ W inherits a sub-

VMRT structure modeled on (X0, X) if and only if for every point x ∈ S there exists
a neighborhood U of x on S and a trivialization of the holomorphic projective bundle

PT (X)|U given by Φ : PT (X)|U
∼=−→ PT0(X)×U such that (1) Φ(C(X)|U ) = C0(X)×U

and (2) Φ(C(S)|U ) = C0(X0)× U .

The definition that S ⊂ W inherits a sub-VMRT structure modeled on the admis-
sible pair (X0, X) can be reformulated as requiring

(†) For any x ∈ X there exists a projective linear isomorphism Λx : PTx(X)
∼=−→ PT0(X)

such that Λx(Cx(X)) = C0(X) and Λx(Cx(S)) = C0(X0).

With an aim to generalize the characterization theorems of Hong-Mok [HoM10] and
Hong-Park [HoP11] on standard embeddings between rational homogeneous spaces of
Picard number 1 we introduced in Mok-Zhang [MZ15, Definition 5.1] the notion of rigid
pairs (X0, X), as follows.

Definition 4.4.3. For an admissible pair (X0, X) of rational homogeneous spaces of
Picard number 1, we say that (X0, X) is rigid if and only if, for every complex subman-
ifold S of some open subset of X inheriting a sub-VMRT structure modeled on (X0, X),
there exists some γ ∈ Aut(X) such that S is an open subset of γ(X0).

We are now ready to state one of the main results of Mok-Zhang [MZ15].

Theorem 4.4.1. (Mok-Zhang [MZ15, Main Theorem 1]) Let (X0, X) be an admissible
pair of sub-diagram type of rational homogeneous spaces of Picard number 1 of sub-
diagram type marked at a simple root. Suppose X0 ⊂ X is nonlinear. Then, (X0, X) is
rigid.

Combining with Hong-Park [HoP11] on the maximal linear case, the question on
rigidity of sub-VMRT structures modeled on admissible pairs (X0, X) of rational homo-
geneous spaces of Picard number 1 of sub-diagram type is completely settled (cf. [MZ15,
Corollary 1.1]).
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Corollary 4.4.1. An admissible pair (X0, X) of rational homogeneous spaces of Picard
number 1 of sub-diagram type is a rigid pair excepting when X0 ⊂ X is a non-maximal
linear subspace, or when X0 ⊂ X is a maximal linear subspace Zmax given by (a) X is
associated to (Bℓ, αi), 1 ≤ i ≤ ℓ − 1, and Zmax is Pℓ−i; (b) X is associated to (Cℓ, αℓ)
and Zmax is P1; or (c) X is associated to (F4, α1) and X0 is P2.

For the study of rigidity of admissible pairs (X0, X) of rational homogeneous spaces
of Picard number 1, Zhang [Zh14, Main Theorem 2] classified all such pairs in the case
where X is an irreducible Hermitian symmetric space of the compact type and X0 ⊂ X
is nonlinear. (The linear cases for all rational homogeneous spaces X of Picard number 1
have been enumerated in Hong-Park [HoP11].) From the classification Zhang established

Theorem 4.4.2. (Zhang [Zh14, Main Theorem 2]) An admissible pair (X0, X) of
irreducible Hermitian symmetric space of the compact type is non-rigid whenever (X0, X)
is degenerate for substructures.

The key issue in the proof of Theorem 4.4.1 is to show that the tautological folia-
tion FX on C(X) is tangent to the total space C(S) of the sub-VMRT structure. Pick
any x ∈ S and any [α] ∈ Cx(S), and denote by ℓ the minimal rational curve passing
through x such that Tx(ℓ) = Cα. From the sub-VMRT structure ϖ : C(S) → S re-
garded as a holomorphic fiber bundle over S, there exists a holomorphic vector field θ

on some neighborhood U of x on S such that θ(x) = α and such that θ(y) ∈ C̃y(S)
whenever y ∈ U . The integral curve of θ passing through x gives a smooth holo-
morphic curve γ on S tangent to ℓ at x such that the lifting γ̌ of γ to PT (S) lies
on C(S). At the point [α] ∈ Cx(S) the difference between T[α](γ̌) and T[α](ℓ̌), where

ℓ̌ denotes the tautological lifting ℓ̌ ⊂ C(X) of ℓ, gives a vector η ∈ T[α](Cx(X)). In
view of the flexibility in the choice of γ, the vector η is only well-defined modulo
T[α](Cx(S)) ∼= (Pα ∩ Tx(S))

/
Cα. Let D(X) ⊂ T (X) be the G-invariant distribution

spanned at each point x ∈ X by C̃x(X). There is a vector-valued symmetric bilin-
ear form τ[α] : S

2T[α](Cx(X)) → T[α](PTx(X))
/
(T[α](Cx(X)) + T[α](P(Tx(S) ∩ Dx(X)),

given by τ[α] = ν ◦ σ[α], ν : T[α](PTx(X))
/
T[α](Cx(X)) → T[α](PTx(X))

/
(T[α](Cx(X)) +

T[α](P(Tx(S)∩Dx(X))) being the canonical projection. Here T[α](PTx(X))
/
T[α](Cx(X))

is the normal space of the inclusion Cx(X) ⊂ PTx(X) at [α] ∈ Cx(S) ⊂ Cx(X) and
σ denotes the projective second fundamental form of the said inclusion. For both the
second fundamental form σ and the variant τ , we use the same notation when passing

to affinizations C̃x(X) ⊂ Tx(X). The context will make it clear which is meant.

Obviously τ[α](ξ1, ξ2) = 0 whenever ξ1, ξ2 ∈ T[α](Cx(S)). For the proof that FX
is tangent to C(S) it suffices to show that for η ∈ T[α](Cx(X)) as defined in the last
paragraph we have actually η ∈ T[α](Cx(S)). In [MZ15] we show that τ[α](η, ξ) = 0
whenever ξ ∈ T[α](Cx(S)) and derive the rigidity of the pairs (X0, X) in Theorem 4.4.1
by checking that τ[α](η, ξ) = 0 for all ξ ∈ T[α](Cx(S)) implies that η ∈ T[α](Cx(S)). We
say in this case that (Cx(S), Cx(X)) is nondegenerate for substructures (cf. Definition

4.5.2 in the next subsection), noting that Tx(S)∩Dx(X) is the linear span of C̃x(S). The
checking is derived from statements about the second fundamental form σ concerning
nondegeneracy of Hong-Mok [HoM10] and the proof of Theorem 4.4.1 is completed by
means of parallel transport of VMRTs along minimal rational curves and the standard
argument of adjunction of minimal rational curves (cf. (4.2) and (4.3)). In the Hermitian
symmetric case the proof that τ[α](η, ξ) = 0 for ξ ∈ T[α](Cx(S)) results from a differential-
geometric calculation with respect to the flat connection in Harish-Chandra coordinates,
and the general case is derived from adapted coordinates in the same setting as in
[HoM10] explained in (4.2).

Our arguments apply to uniruled projective manifolds to give a sufficient condition
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for a germ of complex submanifold to be rationally saturated, making it applicable to
study sub-VMRT structures in general. This will be explained in (4.5).

For the formulation of sub-VMRT structures and nondegeneracy for substructures,
one has to make use of the distribution on X spanned by VMRTs. In the event that the
distribution D(X) ⊂ T (X) spanned by VMRTs is linearly degenerate, the proof that FX
is tangent to C(S) relies on the fact that the kernel of the Frobenius form φ : Λ2D(X) →
T (X)/D(X) contains the linear span of

{
α ∧ Pα : α ∈ C̃x(X)

}
, where Pα = Tα(C̃x(X)),

a basic fact about distributions spanned by VMRTs that was established in Hwang-Mok
[HM98, (4.2), Proposition 10].

(4.5) Criteria for rational saturation and algebraicity of germs of complex submani-
folds Let now (X,K) be a uniruled projective manifold equipped with a minimal
rational component K. Using a generalization of the argument of Theorem 4.4.1 and the
method of analytic continuation by the adjunction of (open subsets of) minimal ratio-
nal curves of Hwang-Mok [HM01], Mok [Mk08a] and Hong-Mok [HoM11], Mok-Zhang
[Mk14, Theorem 1.4] also obtained a general result on the analytic continuation of a
germ of complex submanifold S on X when S inherits a certain geometric substructure.
For its formulation, we consider a locally closed complex submanifold S ⊂ X. Writing
C(S) := C(X)|S ∩ PT (S) and ϖ := π|C(S) : C(S) → S we defined in [MZ15, Definition
5.1] the notion of a sub-VMRT structure, as follows.

Definition 4.5.1. We say that ϖ := π|C(S) : C(S) → S is a sub-VMRT structure on
(X,K) if and only if (a) at every point x ∈ S every minimal rational curve ℓ on (X,K)
passing through x is a free rational curve immersed at x and furthermore the tangent
map τx : Ux 99K Cx(X) at x of (X,K) is a birational morphism; (b) the restriction of
ϖ to each irreducible component of C(S) is surjective, and; (c) at a general point x ∈ S
and for any irreducible component Γx of Cx(S), we have Γx ̸⊂ Sing( Cx(X)).

Given a sub-VMRT structure ϖ : C(S) → S of π : C(X) → X, there is some integer
m ≥ 1 such that over a general point x ∈ S, Cx(S) has exactly m irreducible components
and such that ϖ is a submersion at a general point χk of each irreducible component
Γk,x of Cx(S). We introduce now the notions of proper pairs of projective subvarieties
and nondegeneracy for substructures for such pairs (cf [MZ15, Definitions 5.2 & 5.3]).

Definition 4.5.2. Let V be a Euclidean space and A ⊂ P(V ) be an irreducible subva-
riety. We say that (B,A) is a proper pair if and only if B is a linear section of A, and
for each irreducible component Γ of B, Γ ̸⊂ Sing(A).

For a uniruled projective manifold X and a locally closed complex submanifold
S ⊂ X inheriting a sub-VMRT structure ϖ : C(S) → S as in Definition 4.5.1, at a
general point x ∈ S, (Cx(S), Cx(X)) is a proper pair of projective subvarieties. We
introduce now the notion of nondegeneracy for substructures for (B,A;E). Here for
convenience we assume that A is irreducible. When applied to sub-VMRT structures
this means that the VMRT Cx(X) at a general point on the ambient manifold X is
assumed irreducible.

Definition 4.5.3. Let V be a finite-dimensional vector space, E ⊂ V be a vector
subspace and (B,A) be a proper pair of projective subvarieties in P(V ), B := A∩P(E) ⊂
A ⊂ P(V ) . Assume that A is irreducible. Let ξ ∈ B̃ be a smooth point of both Ã and

B̃ , and let σ : S2Tξ(Ã) → V/Tξ(Ã) be the second fundamental form of Ã in V with

respect to the Euclidean flat connection on V . Write V ′ ⊂ V for the linear span of Ã
and define E′ := E ∩V ′. Let ν : V/Tξ(Ã) → V/(Tξ(Ã)+E′) be the canonical projection

and define τ : S2Tξ(Ã) → V/(Tξ(Ã) + E′) by τ := ν ◦ σ . For the proper pair (B,A),
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B = A ∩ P(E), we say that (B,A;E) is nondegenerate for substructures if and only if
for each irreducible component Γ of B and for a general point χ ∈ Γ, we have{

η ∈ Tχ(Ã) : τ(η, ξ) = 0 for any ξ ∈ Tχ(B̃)
}
= Tχ(B̃).

In case E′ = E ∩ V ′ is the same as the linear span of B̃ we drop the reference to
E, with the understanding that the projection map ν is defined by using the linear span

of B̃ as E′. In the case of an admissible pair (X0, X) of rational homogeneous spaces
of Picard number 1, writing D(X) ⊂ T (X) for the G-invariant distribution spanned by
VMRTs at each point x ∈ X, D(X)∩T (X0) is the same as the G0-invariant distribution
on X0 spanned by VMRTs. (When the Dynkin diagram is marked at a long simple root,
D(X) and D(X0) are the minimal nonzero invariant distributions, but the analogue
fails for the short-root case.) In order to adapt the arguments for rational saturation
to the general situation of sub-VMRT structures, we need to introduce an auxiliary
condition on the intersection C(S) = C(X) ∩ PT (S), to be called Condition (T), which
is automatically satisfied in the case of admissible pairs (X0, X). We have

Definition 4.5.4. Let ϖ : C(S) → S, C(S) := C(X)∩PT (S), be a sub-VMRT structure
on S ⊂ X as in Definition 5.1. For a point x ∈ S, and [α] ∈ Reg(Cx(S)) ∩Reg(Cx(X)),

we say that (Cx(S), [α]), or equivalently (C̃x(S), α), satisfies Condition (T) if and only

if Tα(C̃x(S)) = Tα(C̃x(X)) ∩ Tx(S). We say that ϖ : C(S) → S satisfies Condition (T)

at x if and only if (C̃x(S), [α]) satisfies Condition (T) for a general point [α] of each
irreducible component of Reg(Cx(S))∩Reg(Cx(X)). We say that ϖ : C(S) → S satisfies
Condition (T) if and only if it satisfies the condition at a general point x ∈ S.

The argument for proving that FX is tangent to C(S) remains valid for the general
set-up of sub-VMRT structures on uniruled projective manifolds (X,K), and the method
of analytic continuation by adjoining minimal rational curves remains applicable.We have

Theorem 4.5.1. (Mok-Zhang [MZ15, Theorem 1.4]) Let (X,K) be a uniruled projec-
tive manifold X equipped with a minimal rational component K with associated VMRT
structure given by π : C(X) → X. Assume that at a general point x ∈ X, the
VMRT Cx(X) is irreducible. Write B′ ⊂ X for the enhanced bad locus of (X,K).
Let W ⊂ X−B′ be an open set, and S ⊂W be a complex submanifold such that, writing
C(S) := C(X)|S ∩ PT (S) and ϖ := π

∣∣
C(S), ϖ : C(S) → S is a sub-VMRT structure sat-

isfying Condition (T). Suppose furthermore that for a general point x on S and for each
of the irreducible components Γk,x of Cx(S), 1 ≤ k ≤ m, the inclusion Γk,x ⊂ Cx(X)
at a general smooth point χk of Γk,x is nondegenerate for substructures. Then, S is
rationally saturated with respect to (X,K). In other words, S is uniruled by open subsets
of minimal rational curves belonging to K.

When X is of Picard number 1, by a line ℓ on X we mean a rational curve ℓ of degree
1 with respect to the positive generator of Pic(X). We say that (X,K) is a uniruling
by lines to mean that members of K are lines. We prove for these uniruled projective
manifolds a sufficient condition for the algebraicity of germs of sub-VMRT structures
on them. Recall that a holomorphic distribution D on a complex manifold M is said to
be bracket generating if and only if, defining inductively D1 = D, Dk+1 = Dk + [D,Dk],
we have Dm|U = T (U) on a neighborhood U of a general point x ∈M for m sufficiently
large. By a distribution we will mean a coherent subsheaf of the tangent sheaf.

Theorem 4.5.2. (Mok-Zhang [MZ15, Main Theorem 2]) In the statement of Theorem
4.5.1 suppose furthermore that (X,K) is a projective manifold of Picard number 1 unir-
uled by lines and that the distribution D on S defined at a general point x ∈ X by

Dx := Span(C̃x(S)) is bracket generating. Then, there exists an irreducible subvariety
Z ⊂ X such that S ⊂ Z and such that dim(Z) = dim(S).
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Thus, the subvariety Z ⊂ X, which is rationally saturated with respect to K, is
in particular uniruled by minimal rational curves belonging to K. Z ⊂ X is thus a
uniruled projective subvariety. We say that S admits a projective-algebraic extension.
Note that the hypothesis that D is bracket generating is trivially satisfied when D is
linearly nondegenerate at a general point.

Modulo Theorem 4.5.1, which yields rational saturation for sub-VMRT structures
under a condition of nondegeneracy for substructures, for the proof of Theorem 4.5.2 we
reconstruct a projective-algebraic extension of S by a process of adjunction of minimal
rational curves as in Hwang-Mok [HM98], Mok [Mk08a] and Hong-Mok [HM10]. As op-
posed to the situation of these articles where the adjunction process is a priori algebraic,
the major difficulty in the proof of Theorem 4.5.2 lies in showing that, starting from a
transcendental germ of complex manifold (S;x0) on X−B′ equipped with a sub-VMRT
structure ϖ : C(S) → S obtained from taking intersections with tangent subspaces, the
process of adjoining minimal rational curves starting with those emanating from x0 and
tangent to S is actually algebraic . For this purpose we introduce a method of propaga-
tion of sub-VMRT structures along chains of special minimal rational curves and apply
methods of extension of holomorphic objects in several complex variables coming from
the Hartogs phenomenon (cf. Siu [Si74]), viz., we show that for the inductive process
of propagation of the germ (S;x0) along chains of rational curves, the obstruction in
essence lies on subvarieties of codimension ≥ 2 on certain universal families of chains
of rational curves. Crucial to this process is a proof of the “Thickening Lemma” which
allows us to show that the sub-VMRT structure ϖ : C(S) → S can be propagated along
a general member of certain algebraic families of standard rational curves which are
defined inductively.

Proposition 4.5.1. (Mok-Zhang [MZ, Proposition 6.1]) Let (X,K) be a uniruled pro-
jective manifold equipped with a minimal rational component, dim(X) := n, and ϖ :
C(S) → S be a sub-VMRT structure as in Theorem 1.4, dim(S) := s. Let [α] ∈ C(S) be
a smooth point of both C(S) and C(X), ϖ([α]) := x, and [ℓ] ∈ K be the minimal rational
curve (which is smooth at x) such that Tx(ℓ) = Cα, and f : Pℓ → ℓ be the normalization
of ℓ, Pℓ

∼= P1. Suppose (Cx(S), [α]) satisfies Condition (T) in Definition 4.5.4. Then,
there exists an s-dimensional complex manifold E, Pℓ ⊂ E, and a holomorphic immer-
sion F : E → X such that F |Pℓ

≡ f , and such that F (E) contains an open neighborhood
of x in S.

In relation to Theorem 4.5.2 there is the problem of recognizing special classes of
uniruled projective subvarieties, which we formulate as

Problem 4.5.1. (The Recognition Problem for sub-VMRT structures) Let X be a
uniruled projective manifold endowed with a minimal rational component K, and Φ be
a class of projective subvarieties Z ⊂ X which are rationally saturated with respect to
(X,K). Denote by B′ the enhanced bad locus of (X,K). We say that the Recognition
Problem for the class Φ ⊂ Chow(X) is solved in the affirmative if one can assign to
each x ∈ X−B′ a variety of linear sections Ψx ⊂ Chow(Cx(X)) in such a way that
a sub-VMRT structure ϖ : C(S) → S of π : C(X) → X admits a projective-algebraic
extension to a member Z of Φ if and only if [Cs(S)] ∈ Ψs for a general point s ∈ S.

As an example, let X be the Grassmannian G(p, q); p, q ≥ 2; identified as a subman-
ifold of some PN by means of the Plücker embedding. Suppose 2 ≤ p′ ≤ p, 2 ≤ q′ ≤ q
and let Φ to be the class of linear sections Z = G(p, q) ∩ Π, Π ⊂ PN a projective linear
subspace, such that Z is the image of a standard embedding of G(p′, q′) into G(p, q).
Then, by Theorem 4.5.1, the Recognition Problem is solved for Φ by taking Ψx at x ∈ X
to consist of linear sections ς(P(Ux) × P(Vx)) ∩ P(U ′

x ⊗ V ′
x) where T (G(p, q))

∼= U ⊗ V ,
where ς denotes the Segre embedding, and U ′

x ⊂ Ux (resp.V ′
x ⊂ Vx) runs over the set of
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p′-dimensional (resp. q′-dimensional) vector subspaces of Ux (resp.Vx). Another exam-
ple is the Recognition of maximal linear subspaces. The result of Hong-Park [HoP11]
(Theorem 4.2.1 here) says that maximal linear subspaces on X = G/P can be recognized
only with a few exceptions. By making use of a quantitative version of nondegeneracy
for substructures the Recognition Problem for maximal linear subspaces can be solved in
the affirmative on certain linear sections of rational homogeneous spaces. As an example
we have the following result in the case of linear sections of Grassmannians taken from
Mok-Zhang [MZ15, Corollary 9.1].

Proposition 4.5.2. Consider the Grassmannian G(p, q), 3 ≤ p ≤ q, of rank p ≥ 3.
Let Z ⊂ G(p, q) be a smooth linear section of codimension ≤ p − 2, H be the space of
projective lines on Z, and E ⊂ Z be the bad locus of (Z,H). Let (S;x0) be a germ of
complex submanifold on Z−E such that PT (S) ⊂ C(Z)|S and PT (S) contains a smooth
point of C(Z)|S. Suppose PTx(S) ⊂ Cx(Z) is a maximal linear subspace for a general
point x ∈ S. Then, S ⊂ Z is a maximal linear subspace.

Note that for a projective submanifold Z equipped with a uniruling H by projective
lines, the bad locus E and the emhanced bad locus E′ of (Z,H) are the same. By
the very nature of the notion of sub-VMRT structures, viz., by taking linear sections
with tangent subspaces, the Recognition Problem concerns primarily the recognition
of a global linear section Z of a projective manifold X uniruled by projective lines
from the fact that VMRTs of Z at a general point is a linear section of the VMRT
of X with special properties. We may say that this amounts to recognizing certain
global linear sections from sub-VMRTs which are special linear sections of VMRTs. In a
direction beyond the current article, one could define higher order sub-VMRT structures
by considering minimal rational curves which are tangent to the submanifold S to higher
orders. There for instance one could raise the problem of recognizing the intersection of
a sub-Grassmannians with a number of quadric hypersurfaces in terms of second order
sub-VMRT structures.

In (4.6) we will discuss some concrete examples to which Theorem 4.5.1 and Theo-
rem 4.5.2 apply.

(4.6) Examples of sub-VMRT structures related to irreducible Hermitian symmetric spaces
of the compact type Theorem 4.5.1 gives sufficient conditions for proving that certain
sub-VMRT structures are rationally saturated. In the event that the sub-VMRT struc-
ture ϖ : C(S) → S satisfies Condition (T) and it is furthermore linearly nondegenerate
for substructures at a general point, it shows that the sub-VMRT structure arises from
some uniruled projective subvariety. Here are some examples of sub-VMRT structures
to which Theorem 4.5.1 and Theorem 4.5.2 apply.

(a) Let X be an irreducible Hermitian symmetric space of the compact type and of
rank ≥ 2 other than a Lagrangian Grassmannian equipped with the minimal rational
component K of projective lines. Let [α] ∈ Cx(X) and consider S[α] := Cx(X) ∩ P(Pα),
where Pα = Tα(C̃x(X)). Then S[α] ⊂ P(Pα) is linearly nondegenerate. Note here that

a Lagrangian Grassmannian is equivalently an irreducible symmetric space GIII(n, n),
n ≥ 2, of type III for which the VMRTs are Veronese embeddings ν : P(V ) → P(S2V )
for V ∼= Cn for some n ≥ 2, given by ν([v]) = [v ⊗ v], in which case the analogue of S[α]

is the single point [α] since the image of the Veronese embedding contains no lines. S[α]

is the cone over a copy of the VMRT of C[α](X). It can be proven that the proper pair
(S[α], Cx(X)) is nondegenerate for substructures excepting in the cases where X = Qn,
n ≥ 3, or when X = G(2, q), q ≥ 2. Thus, by Theorem 4.5.1, any complex submanifold
S ⊂ W on an open subset W ⊂ X carrying a sub-VMRT structure ϖ : Cx(S) → S
with fibers

(
Cx(S) ⊂ Cx(X)

)
projectively equivalent to

(
S[α] ⊂ P(Pα)

)
is rationally

saturated and in particular uniruled by projective lines. By the linear nondegeneracy of
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S[α] in P(Pα), Theorem 4.5.2 applies to show that S ⊂W admits a projective-algebraic
extension. As a model let x ∈ X and consider the union V of all projective lines on
X passing through x. Then V ⊂ X is a projective subvariety inheriting a sub-VMRT
structure modeled on

(
S[α] ⊂ P(Pα)

)
.

We note that in the case whereX is the GrassmannianG(p, q) of rank r = min(p, q) ≥
2, TG(p,q)

∼= U ⊗ V , where U resp.V is a universal bundle of rank p resp. q, and

Cx(X) = ς
(
P(Ux) × P(Vx)

)
for the Segre embedding ς, so that, writing α = u ⊗ v we

have S[α] = P(Cu ⊗ Vx) ∪ P(Ux ⊗ Cv) is the union of two projective subspaces of di-
mension p − 1 resp. q − 1 intersecting at a single point. This gives an example of a
sub-VMRT structure ϖ : C(S) → S with 2 irreducible components in each fiber Cx(S).
Both components have to be taken into account at the same time in order to have linear
nondegeneracy in PTx(S) so that one can apply the last statement in Theorem 4.5.2.

(b) The following are particular cases of examples discussed in Mok-Zhang [MZ15, §9]
Embed the Grassmann manifoldG(p, q); p, q ≥ 2; into the projective space by the Plücker
embedding φ : G(p, q) → P(ΛpCp+q) := PN and thus identify G(p, q) as a projective
submanifold. Consider a smooth complete intersection X = G(p, q) ∩ (H1 ∩ · · · ∩ Hm)
of codimension k, where for 1 ≤ i ≤ m, Hi ⊂ PN is a smooth hypersurface of degree
ki, k := k1 + · · · + km. Let δ be the restriction to X of the positive generator of
H2(G(p, q),Z) ∼= Z. If k ≤ p + q − 1 then c1(X) = (p + q − k)δ ≥ δ and X is Fano.
If k ≤ p + q − 2 then c1(X) ≥ 2δ. For the latter range X is uniruled by the minimal
rational component K of projective lines on X and the associated VMRT Cx(X) of X at
a general point of X is the intersection of Cx(G(p, q)) = ς(Pp−1 ×Pq−1), where ς stands
for the Segre embedding, of codimension k, with k hypersurfaces in PTx(X) of degrees
(1, · · · , k1; · · · ; 1, · · · , km), and dim(Cx(X)) = (p− 1)+ (q− 1)− k = (p+ q− 2)− k ≥ 0.
Suppose now 2 ≤ p′ < p, 2 ≤ q′ < q, and suppose X0 := G(p′, q′) ∩ (H1 ∩ · · · ∩ Hm)
is also smooth. We have c1(X0) = (p′ + q′ − k)δ ≥ 2δ if and only if k ≤ p′ + q′ − 2,
in which case the pair

(
Cx(X0) ⊂ Cx(X)

)
consists of projective submanifolds of PT (X)

of the form
(
C0(G(p′, q′)) ∩ J ⊂ C0(G(p, q)) ∩ J

)
for some subvariety J ⊂ PT0(X) of

codimension k at a reference point 0 ∈ G(p′, q′) ⊂ G(p, q). Consider now a germ of
complex submanifold (S;x0) on X, and assume that by intersecting with projectivized
tangent spaces we have a sub-VMRT structure ϖ : C(S) → S satisfying Condition (T),
where over a general point x ∈ S, the pair

(
Cx(S) ⊂ Cx(X)

)
is projectively equivalent

to
(
C0(G(p′, q′)) ∩ Jx ⊂ C0(G(p, q)) ∩ Jx

)
for some projective subvariety Jx ⊂ PT0(X)

of codimension k, and where Cx(S) ⊂ PTx(S) is linearly nondegenerate. We show that
if k ≤ min(p′ − 2, q′ − 2), then the sub-VMRT structure ϖ : C(S) → S satisfies the
hypotheses of Theorem 4.5.2 and must hence extend to a projective subvariety Z ⊂ X,
dim(Z) = dim(S) = p′q′−k which is uniruled by projective lines. This gives examples of
germs of complex submanifolds on a uniruled projective manifold with variable VMRTs
for which the arguments for proving algebraicity of Theorem 4.5.2 are applicable to prove
analytic continuation of S to a projective subvariety. We note also that nondegeneracy
for substructures fails in general if we consider S as a germ of complex submanifold on
G(p, q) instead ofX. In fact, it already fails in general for S ⊂ G(p′, q′), S := G(p′, q′)∩H
(hence a fortiori for S ⊂ G(p, q)) when H is a smooth hypersurface of G(p, q)).

Complete intersections give examples of complex submanifolds Y ⊂ G(p, q) uniruled
by projective lines for which the isomorphism type of Cy(Y ) ⊂ Cy(G(p, q)) at a general
point can be described, but this precise information is not necessary for the application
of Theorem 4.5.2. The same argument in fact applies to any projective submanifold Y ⊂
G(p, q) uniruled by projective lines under the assumption that c1(Y ) = (p+q−k)δ ≥ 2δ.

(4.7) Perspectives on geometric substructures While a first motivation on the study of
the geometric theory on uniruled projective manifolds was to tackle problems in algebraic
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geometry on such manifolds, as the theory was developing, it was clear that our theory
carries a strong differential-geometric flavor. It was at least in part developed in a self-
contained manner basing on the study of the double fibration arising from the universal
family, the tautological foliation and associated differential systems, and the axiomatics
of the theory were derived from the deformation theory of rational curves. Varieties of
minimal rational tangents appear naturally as the focus of our study, in the context of
the VMRT structure π : C(X) → X. While basic results in the early part of the theory,
such as those on integrability issues concerning distributions spanned by VMRTs and
on Cartan-Fubini extension, have led to solutions of a number of guiding problems,
the theory also takes form on its own. It is legitimate to raise questions regarding the
VMRTs themselves, such as the Recognition Problem and problems on the classification
of isotrivial VMRT structures on uniruled projective manifolds.

One may develop the theory of sub-VMRT structures in analogy to the study of
Riemannian submanifolds in Riemannian manifolds, where rationally saturated subva-
rieties may be taken as weak analogues to geodesic subspaces and, at least in cases of
rational homogeneous spaces of Picard number 1, certain cycles such as (possibly singu-
lar) Schubert cycles can be taken as strong analogues. Concerning problems in algebraic
geometry that may be treated by the study of sub-VMRT substructures, first of all it
is natural to extend the characterization of smooth Schubert varieties in rational ho-
mogeneous spaces of Picard number 1 to the case of singular Schubert varieties, where
one has to examine sub-VMRT structures ϖ : C(S) → S with singular sub-VMRTs
and to study parallel transport in such a broader context. In view of the application
of equidimensional Cartan-Fubini to prove rigidity of finite surjective holomorphic maps
(Hwang-Mok [HM01] [HM04]) it is tempting to believe that non-equidimensional Cartan-
Fubini can have implications for rigidity of certain non-equidimensional maps between
uniruled projective varieties.

Cartan-Fubini extension can be taken as a generalization of Ochiai’s Theorem in
the context of S-structures (i.e., G-structures arising from irreducible Hermitian sym-
metric spaces S of the compact type and of rank ≥ 2) from an entirely different angle,
viz., from the perspectives of local differential geometry and several complex variables.
The proof itself reveals the interaction of these aspects with algebraic geometry, no-
tably with Mori’s theory on rational curves. The study of sub-VMRT structures on a
uniruled projective manifold in Mok [Mk08a] was first of all motivated by the desire to
understand the heart of a rigidity phenomenon in several complex variables, viz., the
rigidity of proper holomorphic maps between irreducible bounded symmetric domains
of the same rank r ≥ 2, established by Tsai [Ts93] by considering boundary values on
certain product submanifolds, as was done in Mok-Tsai [MT92], and applying methods
of Kähler geometry. Regarding a bounded symmetric domain Ω of rank ≥ 2 as an open
subset of its dual Hermitian symmetric space S of the compact type by means of the
Borel embedding, Ω carries a VMRT structure by restriction. The gist of the arguments
of [Mk08a] consists of exploiting boundary values of the map, from which one shows that
the mapping respects VMRTs because of properness and because of the decomposition of
∂Ω [Wo72] into the disjoint union of boundary faces of different ranks, and rigidity of the
map results from a non-equidimensional Cartan-Fubini extension as was later developed
in full generality by Hong-Mok [HoM10]. For a proper holomorphic map f : Ω → Ω′

where r′ = rank(Ω′) > rank(Ω) = r the theory has yet to be further developed. In some
very special cases they have led to VMRT-respecting holomorphic maps (Tu [Tu02]), but
in general to a different form of geometric structures where VMRTs are mapped into
vectors tangent to rational curves of degree ≤ r′ − r + 1 < r′, a context which was first
discussed by Neretin [Ne99] in the case of classical domains of type I (which are dual
to Grassmannians). The study of proper holomorphic mappings will remain a source of
motivation for the further study of VMRTs or more general geometric substructures.
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Another source of examples with sub-VMRT structures, somewhat surprisingly, is
the study of holomorphic isometries of the complex unit ball into an irreducible bounded
symmetric domain Ω of rank ≥ 2. Denote by Ω ⊂ S the Borel embedding of Ω as an
open subset of its dual Hermitian symmetric space S of the compact type. There, the
construction in Mok [Mk14] shows that, given a regular boundary point q ∈ Reg(∂Ω),
and denoting by Vq the union of minimal rational curves passing through q, the in-
tersection Σ := Vq ∩ Ω is the image of a holomorphic isometric embedding of Bp+1,
p = dim(C0(S)). These were the examples which inherit, excepting in the case of La-
grangian Grassmannians, singular sub-VMRT structures ϖ : C(Z) → Z which are non-
degenerate for substructures as explained in (4.5). The dimension p+ 1 is the maximal
possible dimension n for a holomorphic isometry f : (Bn, g) → (Ω, h), where g resp. h
are canonical Kähler-Einstein metrics normalized so that minimal disks are of Gaussian
curvature −2, and, questions on uniqueness and rigidity in the case of n = p have led
to the study of normal forms of tangent spaces of Tx(Z) and interesting questions on
the reconstruction of complex submanifolds from their sub-VMRT structures. Another
exciting area where sub-VMRT structures enter is the study of geometric substructures
on a quotient XΓ = Ω/Γ of a bounded symmetric domains Ω by a torsion-free discrete
subgroup Γ ⊂ Aut(Ω), where XΓ is a quasi-projective manifold inheriting by descent an
S-structure, which is equivalently a VMRT structure.

Taking VMRT structures as an area of research in its own right, it is necessary to
examine more examples of interesting sub-VMRT structures. In the Hermitian symmet-
ric case Zhang [Zh14] has now completely classified such pairs (X0, X) and determined
those which are nondegenerate for substructures. In addition, beyond the standard ex-
ample of the holomorphic conformal structure on Qn, n ≥ 3, where germs of complex
submanifolds with variable Bochner-Weyl curvature tensors abound, for the other ad-
missible pairs in the Hermitian symmetric case where nondegeneracy for substructures
fails, Zhang [Zh14] constructed examples of nonstandard complex submanifolds modeled
on (X0, X) (cf. Theorem 4.4.2 in the current article). At the same time, new cases (not
of sub-diagram type) of admissible pairs (X0, X) which are nondegenerate for substruc-
tures have been identified. These admissible pairs in the Hermitian symmetric case, said
to be of special type, are not Schubert cycles and the argument of parallel transport fails
(cf. Proposition 4.2.1 used in the sub-diagram cases). It will be interesting to classify
in general admissible pairs (X0, X) of rational homogeneous spaces of Picard number 1.
Moreover, there are many interesting uniruled projective subvarieties such as Schubert
cycles on X = G/P , for which the theory of sub-VMRT structures apply, and they may
provide new sources for the study of the Recognition Problem for sub-VMRT structures
and for formulating other geometric problems in the theory.
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