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Abstract5

Let G = (V,E) be a graph and let AG be the clique-vertex incidence matrix of G. It is6

well known that G is perfect iff the system A
G
x ≤ 1, x ≥ 0 is totally dual integral (TDI). In7

1982, Cameron and Edmonds proposed to call G box-perfect if the system AGx ≤ 1, x ≥ 08

is box-totally dual integral (box-TDI), and posed the problem of characterizing such graphs.9

In this paper we prove the Cameron-Edmonds conjecture on box-perfectness of parity graphs,10

and identify several other classes of box-perfect graphs. We also develop a general and powerful11

method for establishing box-perfectness.12

1 Introduction13

A rational system Ax ≤ b is called totally dual integral (TDI) if the minimum in the LP-duality14

equation15

max{wTx : Ax ≤ b} = min{yTb : yTA = wT ; y ≥ 0} (1.1)

has an integral optimal solution, for every integral vector w for which the minimum is finite.16

Edmonds and Giles [14] proved that total dual integrality implies primal integrality: if Ax ≤ b is17

TDI and b is integral, then both programs in (1.1) have integral optimal solutions whenever they18

have finite optimum. So the model of TDI systems serves as a general framework for establishing19

min-max results in combinatorial optimization (see Schrijver [22] for an comprehensive and in-depth20

account). As summarized by Schrijver [20], the importance of a min-max relation is twofold: first, it21

serves as an optimality criterion and as a good characterization for the corresponding optimization22

problem; second, a min-max relation frequently yields an elegant combinatorial theorem, and allows23

a geometrical representation of the corresponding problem in terms of a polyhedron. Many well-24

known results and difficult conjectures in combinatorial optimization can be rephrased as saying25

that a certain linear system is TDI; in particular, by Lovász’ Replication Lemma [16], a graph G is26
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perfect if and only if the system AGx ≤ 1, x ≥ 0 is TDI, where AG is the clique-vertex incidence27

matrix of G. The reader is referred to Chudnovsky et al. [10, 12] for the proof of the Strong Perfect28

Graph Theorem and to Chudnovsky et al. [8] for recognition of perfect graphs.29

A rational system Ax ≤ b is called box-totally dual integral (box-TDI) if Ax ≤ b, l ≤ x ≤ u is30

TDI for all vectors l and u, where each coordinate of l and u is either a rational number or ±∞.31

By taking l = −∞ and u = ∞ it follows that every box-TDI system must be TDI. Cameron and32

Edmonds [3, 5] proposed to call a graph G box-perfect if the system AGx ≤ 1, x ≥ 0 is box-TDI;33

they also posed the problem of characterizing such graphs.34

We make some preparations before presenting an equivalent definition of box-perfect graphs.35

Let G = (V,E) be a graph (all graphs considered in this paper are simple unless otherwise stated).36

For any X ⊆ V , let G[X] denote the subgraph of G induced by X. For any v ∈ V , let NG(v) denote37

the set of vertices incident with v. Members of NG(v) are called neighbors of v. By duplicating a38

vertex v of G we obtain a new graph G′ constructed as follows: we first add a new vertex v′ to G,39

which may or may not be adjacent to v, and then we join v′ to all vertices in NG(v).40

As usual, let α(G) and χ(G) denote respectively the stable number and chromatic number of41

G. Let χ̄(G) = χ(Ḡ), which is the clique cover number of G. For any integer q ≥ 1, let42

αq(G) = max{|X| : X ⊆ V (G) with χ(G[X]) ≤ q}, and43

χ̄q(G) = min{qχ̄(G−X) + |X| : X ⊆ V (G)}.44

Notice that α1 = α and χ̄1 = χ̄. A graph G is called q-perfect if αq(G[X]) = χ̄q(G[X]) holds for45

all X ⊆ V (G). This concept was introduced by Lovász [17] as an extension of perfect graphs, since46

1-perfect graphs are precisely perfect graphs. Let us call a graph totally perfect if it is q-perfect for47

all integers q ≥ 1. Lovász pointed out that comparability graphs, incomparability graphs, and line48

graphs of bipartite graphs are totally perfect. However, S3 is not 2-perfect, showing that a perfect49

graph does not have to be q-perfect when q > 1.50

Figure 1.1: Graph S3 and its complement S̄3

Theorem 1.1 (Cameron [4]). A graph is box-perfect if and only if every graph obtained from this51

graph by repeatedly duplicating vertices is totally perfect.52

This theorem implies the following immediately.53

Corollary 1.2 (Cameron [4]). (1) Induced subgraphs of a box-perfect graph are box-perfect.54

(2) Duplicating vertices in a box-perfect graph results in a box-perfect graph.55

(3) Comparability and incomparability graphs are box-perfect.56

The next proposition contains a few other important observations made by Cameron [4]. A57

matrix A is totally unimodular if the determinant of every square submatrix of A is 0 or ±1. A58
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{0, 1}-matrix A is balanced if none of its submtrices is the vertex-edge incidence matrix of an odd59

cycle. For each graph G, let BG be the submatrix of AG obtained by keeping only rows that60

correspond to maximal cliques of G. Let us call G totally unimodular or balanced if BG is totally61

unimodular or balanced. It is worth pointing out that bipartite graphs and their line graphs are62

totally unimodular, and every totally unimodular graph is balanced. In addition, as shown by63

Berge [1], all balanced graphs are totally perfect. Let S̄+
3 be obtained from the complement S̄3 of64

S3 by adding a new vertex v and joining v to all six vertices of S̄3.65

Proposition 1.3 (Cameron [4]). (1) S̄+
3 is not box-perfect.66

(2) Totally unimodular graphs are box-perfect.67

(3) Balanced graphs do not have to be box-perfect, shown by S̄+
3 .68

(4) The complement of a box-perfect graph does not have to be box-perfect, shown by S̄3.69

(5) Box-perfectness is not preserved under taking clique sums, shown by S3.70

As we have seen, many nice properties of perfect graphs are not satisfied by box-perfect graphs.71

Another property of this kind is substitution: substituting a vertex of a box-perfect graph by a72

box-perfect graph does not have to yield a box-perfect graph, as shown by S̄+
3 (which is obtained73

by substituting a vertex of K2 with S̄3). To our knowledge, almost none of the known summing74

operations that preserve perfectness can carry over to box-perfectness – this makes it extremely75

hard to obtain a structural characterization of box-perfect graphs!76

At this point, the only known box-perfect graphs are totally unimodular graphs, comparability77

graphs, incomparability graphs, and p-comparability graphs (where p ≥ 1 and 1-comparability78

graphs are precisely comparability graphs) [3, 5]. Cameron and Edmonds [3] conjectured that79

every parity graph is box-perfect. In this paper we confirm this conjecture and identify several80

other classes of box-perfect graphs, including claw-free box-perfect graphs. In the next section we81

construct a class R of non-box-perfect graphs, from which we characterize box-perfect split graphs.82

It turns out that every minimal non-box-perfect graph that we know of is contained in a graph83

from R. This observation raises the question: is it true that a graph G is box-perfect if and only84

if G does not contain any graph in R as an induced subgraph?85

In addition to structural description, the other difficulty with the study of box-perfect graphs86

lies in the lack of a proper tool for establishing box-perfectness. In section 3 we introduce a so-87

called ESP property, which is sufficient for a graph to be box-perfect. Although recognizing box-88

perfectness is an optimization problem, our approach based on the ESP property is of transparent89

combinatorial nature and hence is fairly easy to work with. For convenience, we call a graph ESP if90

it has the aforementioned ESP property. In the remainder of this paper, we shall establish several91

classes of box-perfect graphs by showing that they are actually ESP, including all classes obtained92

by Cameron [3, 4, 5]. We strongly believe that the ESP property is exactly the tool one needs for93

the study of box-perfect graphs.94

Conjecture 1.4. A perfect graph is box-perfect if and only if it is ESP if and only if it contains95

none of the members of R as an induced subgraph.96

We close this section by mentioning a result on the complexity of recognizing box-perfect graphs.97

Theorem 1.5 (Cook [13]). The class of box-perfect graphs is in co-NP.98
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2 A class of non-box-perfect graphs99

Let Sn be the graph obtained from cycle v1v2...v2nv1 by adding edges vivj for all distinct even100

i, j. It was proved in [4] that S2n+1 is not box-perfect for all n ≥ 1. In this section we construct101

a class of non-box-perfect graphs, which include S̄+
3 and S2n+1 (n ≥ 1). We will use this result102

to characterize box-perfect split graphs (a graph is split if its vertex set can be partitioned into a103

clique and a stable set).104

Let G = (U, V,E) be a bipartite graph, where U = {u1, ..., um} and V = {v1, ..., vn}. The105

biadjacency matrix of G is the {0, 1}-matrix M of dimension m×n such that Mi,j = 1 if and only if106

uivj ∈ E. Let Q be the set of bipartite graphs G such that its biadjacency matrix M is not totally107

unimodular but all submatrices of M are. The following is a classical result of Camion.108

Lemma 2.1 (Camion [6]). Every graph G = (U, V,E) in Q is Eulerian. In addition, G satisfies109

|U | = |V | and |E| ≡ 2 (mod 4).110

Let R be the class of graphs constructed as follows. Take a bipartite graph G′ = (U, V,E′) ∈ Q111

and a graph G′′ = (V,E′′) such that NG′(u) is a clique of G′′ for all u ∈ U . Let G = (U∪V,E′∪E′′).112

If there exists u ∈ U with NG′(u) = V then G− u belongs to R; otherwise G belongs to R.113

Examples. For each odd n ≥ 3, Sn belongs to R since Sn can be constructed from a cycle114

G′ = C2n ∈ Q and a complete graph G′′ = Kn, where no vertex is deleted in the construction.115

Graph S̄+
3 also belongs to R. In this case a vertex is deleted in the construction, see Figure 2.1.116

Figure 2.1: Graph S̄+
3 is constructed from a bipartite graph in Q and K4

Lemma 2.2. No graph in R is box-perfect.117

Proof. Let G ∈ R be constructed from G′ = (U, V,E′) ∈ Q and G′′ = (V,E′′). Let AG and BG be118

the clique and maximal clique matrices of G. Then AG can be expressed as AG = [BG
C ]. Let M be119

the biadjacency matrix of G′ and let n := |U | (= |V |). Since every u ∈ U belongs to exactly one120

maximal clique of G, the column of BG that corresponds to u has precisely one nonzero entry. If121

no vertex was deleted in the construction of G then BG can be expressed as BG = [M In
N 0 ], where122

the first n columns are indexed by V and the last n columns are indexed by U . If a vertex u0 ∈ U123

was deleted in the construction of G, then G′′ has to be a complete graph. In this case, since U124

does not have a second vertex adjacent to all vertices in V , BG can be expressed as [M,J ], where125

Jn×(n−1) = [
In−1

0 ] and the last row of M , which corresponds to u0, is a vector of all ones. By Lemma126

2.1, all entries of 1TM and M1 are even, and 1TM1 = 4m+ 2, for an integer m > 0. We consider127

the dual programs (with A = AG)128

max{wTx : Ax ≤ 1;x ≥ l} = min{yT1− zT l : yTA− zT = wT ;y, z ≥ 0}. (2.1)
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Suppose no vertex was deleted in the construction of G. Let p > 2m+ 1 be a prime and let

w =

[
1
2M

T1
0

]
, l =

[
0

1− 1
2pM1

]
, x =

[
1
2p1

1− 1
2pM1

]
, y =

1
21
0
0

 , z =

[
0
1
21

]
.

Then it is routine to verify that w is integral, l ≥ 0, and x, (y, z) are feasible solutions to (2.1).
Moreover wTx = 2m+1

2p = yT1− zT l, so x, (y, z) are optimal solutions. Since the optimal value is

not 1
p -integral, while l is, it follows that the dual does not have an integral optimal solution and so

G is not box-perfect. Next, suppose that a vertex was deleted in the construction of G. The proof
for this case is almost identical to the proof for the last case. The only difference is that BG has
2n − 1 columns, instead of 2n columns. Thus we need to truncate the corresponding vectors. To
be precise, let

w =

[
1
2M

T1
0

]
, l =

[
0

JT (1− 1
nM1)

]
, x =

[
1
n1

JT (1− 1
nM1)

]
, y =

[
1
21
0

]
, z =

[
0
1
21

]
.

Using the fact that the last row of M is 1T we deduce that x and (y,z) are feasible solutions, and129

wTx = 2m+1
n = yT1− zT l, which implies that both solutions are optimal. Furthermore, since M1130

is even and its last entry is n, we deduce that n is even and thus l is 1
n/2 -integral. However, the131

optimal value 2m+1
n is not 1

n/2 -integral, so G is not box-perfect, which proves the theorem.132

To identify all minimally non-box-perfect split graphs, we consider the following subsets of Q.133

Let Q1 consist of all bipartite graphs G = (U, V,E) ∈ Q such that U has a vertex adjacent to all134

vertices of V . Let Q2 consist of all bipartite graphs G = (U, V,E) ∈ Q\Q1 such that the graph135

obtained from G by adding a vertex and making it adjacent to all vertices of V does not contain136

any graph in Q1 as an induced subgraph. Let S consist of all graphs in R that are constructed137

from a bipartite graph G′ ∈ Q1 ∪ Q2 and a complete graph G′′. It is clear that all members of S138

are split graphs. Moreover, S̄+
3 and S2n+1 (n ≥ 1) belong to S.139

Theorem 2.3. The following are equivalent for any split graph G.140

(1) G is box-perfect;141

(2) no graph in S is an induced subgraph of G;142

(3) G is totally unimodular.143

Proof. Implication (3) ⇒ (1) follows from Proposition 1.3(2) and implication (1) ⇒ (2) follows144

from Lemma 2.2 and Corollary 1.2(1). To prove (2) ⇒ (3), let G = (U, V,E) be a split graph,145

where U is a stable set and V is a clique. Let G′′ = G[V ] and G′ = G\E(G′′). Let G′′′ be the146

bipartite graph obtained from G′ by adding a vertex w adjacent to all vertices in V . Let M be the147

biadjacency matrix of G′′′.148

We first prove that M is totally unimodular. Suppose otherwise. Then G′′′ has an induced149

subgraph H ′ ∈ Q. Let us choose H ′ so that H ′ contains the new vertex w whenever it is possible.150

Consequently, H ′ ∈ Q1 ∪ Q2. Let H be constructed from H ′ and a complete graph H ′′. Then151

H ∈ S and, by the construction of G, G contains H as an induced subgraph. This contradicts (2)152

and thus M has to be totally unimodular.153

Let N be the biadjacency matrix of G′. Then BG = [N, I] or [N I
1 0], depending on if V is a154

maximal clique of G. Notice that M = [N1 ]. So BG, and thus G, is totally unimodular.155
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This theorem shows that all minimally non-box-perfect split graphs are contained in S. In fact,156

S consists of precisely such graphs.157

Theorem 2.4. A split graph G belongs to S if and only if G is not box-perfect but all its induced158

subgraphs are.159

Proof. The backward implication follows immediately from Theorem 2.3. To prove the forward160

implication, let G ∈ S. By Lemma 2.2, we only need to show that G − w is box-perfect for all161

w ∈ V (G). Suppose G is constructed from a bipartite graph G′ = (U, V,E′) ∈ Q1 ∪ Q2 and a162

complete graph G′′ = (V,E′′). Let M be the biadjacency matrix of G′ and let n := |U | = |V |.163

Observe that if G′ ∈ Q1 then BG = [N, J ], where N = M and J = [
In−1

0 ]; if G′ ∈ Q2 then164

BG = [N, J ], where N = [M1 ] and J = [In0 ].165

Now it is straightforward to verify that, for each u ∈ U , BG−u = [N ′, J ′] is obtained from BG by166

deleting the row and the column indexed by u; for each v ∈ V , BG−v = [N ′, J ′] is obtained from BG167

by deleting the column indexed by v and also possibly the last row. In both cases, N ′ is a proper168

submatrix of N . This implies that N ′ is totally unimodular and thus so is [N ′, J ′]. Consequently,169

G− w is box-perfect (totally unimodular) for all w ∈ V (G), which proves the theorem.170

As we observed earlier that S̄+
3 and S2n+1 (n ≥ 1) belong to S. Thus these graphs are minimally171

non-box-perfect. We point out that, in addition to graphs in S, other minimally non-box-perfect172

graphs can also be obtained using Lemma 2.2. For instance, the graph illustrated in Figure 2.2173

is constructed from G′ = C10 and G′′ = C5 + e. By Lemma 2.2, this graph G is not box-perfect.174

However, G is not minimally non-box-perfect since H = G − {9, 0} is not box-perfect, which is175

certified by vectors wT = (1, 1, 1, 1, 1, 0, 0, 0), lT = (0, 0, 0, 0, 0, 12 ,
1
2 ,

1
2), x

T = (14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

1
2 ,

1
2 ,

1
2),176

yT = (0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2), and zT = (0, 0, 0, 0, 0, 12 ,

1
2 ,

1
2), where the first row of BH is the triangle 123.177

It can be shown that H is in fact minimally non-box-perfect because H − x is totally unimodular178

for x = 1, 2, 3, 4, 5, 6, 7, and H − 8 has the ESP property defined in the next section which implies179

the box-perfectness.180

1

2

3

4 5

67

8

9

0

Figure 2.2: A new non-box-perfect graph G

3 ESP graphs181

In this section we introduce a so-called ESP property, which is sufficient for a graph to be box-182

perfect. We shall use this combinatorial property to identify several new classes of box-perfect183

graphs. We begin with a few lemmas.184

Lemma 3.1 (Chen, Ding and Zang [7]). Suppose a1 and a2 are rational vectors with a1 ≥ a2,185

and b1 and b2 are rational numbers with b1 ≤ b2. Then the system Ax ≤ b, aT
1 x ≤ b1, a

T
2 x ≤ b2,186

6



x ≥ 0 is box-TDI if and only if the system Ax ≤ b, aT
1 x ≤ b1, x ≥ 0 is box-TDI.187

Lemma 3.2 (Cameron [4]). The system Ax ≤ b is box-TDI if and only if the system Ax ≤ b,188

x ≤ u is TDI, for all vectors u, where each coordinate of u is either a rational number or +∞.189

The next two lemmas are reformulations of Theorem 22.7 and Theorem 22.13 of Schrijver [21].190

Lemma 3.3 (Schrijver [21]). Suppose the system Ax ≤ b, x1 ≤ u is TDI for all rational numbers191

u, where x1 is the first coordinate of x. Then Ax ≤ b is TDI.192

Lemma 3.4 (Schrijver [21]). A rational system Ax ≤ b, x ≥ 0 is TDI if and only if min{yTb :193

yTA ≥ wT, y ≥ 0 is half-integral} is finite and is attained by an integral y, for each integral vector194

w for which min{yTb : yTA ≥ wT, y ≥ 0} is finite.195

The next are two easy corollaries.196

Lemma 3.5. A graph G is box-perfect if and only if the system BGx ≤ 1, 0 ≤ x ≤ u is TDI for197

all rational vectors u ≥ 0.198

Proof. The forward implication follows immediately from the definition of box-TDI and Lemma199

3.1. Conversely, Lemma 3.2 and Lemma 3.3 imply that BGx ≤ 1, x ≥ 0 is box-TDI. Then the200

result follows from Lemma 3.1.201

Lemma 3.6. A graph G is box-perfect if and only if for all rational u ≥ 0 and integral w ≥ 0,202

min{yT1+ zTu| yTBG + zT ≥ 2wT ;y, z ≥ 0 integral}203

≥ 2min{yT1+ zTu| yTBG + zT ≥ wT ;y, z ≥ 0 integral}. (3.1)204

Proof. Observe that, for all vectors u ≥ 0 and w, the three programs205

min{yT1+ zTu| yTBG + zT ≥ wT ;y, z ≥ 0}206

min{yT1+ zTu| yTBG + zT ≥ wT ;y, z ≥ 0 half-integral}207

min{yT1+ zTu| yTBG + zT ≥ wT ;y, z ≥ 0 integral}208

are finite. Moreover, replacing w by w+ does not change the minimum values of these programs,209

where w+ is obtained from w by turning its negative coordinates into zero. Therefore, the result210

follows immediately from Lemma 3.5 and Lemma 3.4.211

Let G = (V,E) be a graph. For any multiset Λ of cliques of G and any v ∈ V , let dΛ(v) denote212

the number of members of Λ that contain v. We call G equitably subpatitionable (ESP) if for every213

set Λ of maximal cliques of G there exist two multisets Λ1 and Λ2 of cliques of G (which are not214

necessarily members of Λ) such that215

(i) |Λ1|+ |Λ2| ≤ |Λ|;216

(ii) dΛ1(v) + dΛ2(v) ≥ dΛ(v), for all v ∈ V ; and217

(iii) min{dΛ1(v), dΛ2(v)} ≥ ⌊dΛ(v)/2⌋, for all v ∈ V .218

We call (Λ1,Λ2) an equitable subpartition of Λ, and refer to the above (i), (ii), and (iii) as ESP219

property. Note that (i) is equivalent to |Λ1|+ |Λ2| = |Λ| since we may include empty cliques in Λ1220

and Λ2. Similarly, (ii) is equivalent to dΛ1(v) + dΛ2(v) = dΛ(v) for all v, since cliques in Λ1,Λ2 can221

be replaced by smaller ones. Finally, it is also easy to see that in an ESP graph every multiset Λ222

of cliques admits an equitable subpartition. We will use these facts without further explanation.223
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Theorem 3.7. Every ESP graph G = (V,E) is box-perfect.224

Proof. By Lemma 3.6 we only need to show that inequality (3.1) holds for all rational u ≥ 0 and225

all integral w ≥ 0. Let (yT , zT ) be an optimal solution of the first minimum in (3.1). Let C be the226

set of maximal cliques of G and let D be the multiset of members of C such that each C ∈ C appears227

in D exactly yC times. Let Λ be the set of C ∈ C such that yC is odd. Since G is ESP, Λ admits a228

equitable subpartition (Λ1,Λ2). Since every clique can be extended into a maximal clique, we may229

assume without loss of generality that members of Λ1 and Λ2 are all in C. Let D0 be the multiset230

of members of C such that each C ∈ C appears ⌊yC/2⌋ times. It follows that D = D0 ⊎ D0 ⊎ Λ,231

where ⊎ stands for multiset sum. For i = 1, 2, let Di = D0 ⊎ Λi. We deduce from (i) that232

(1) |D1|+ |D2| ≤ |D|.233

Let p = yTBG + zT − 2wT and let v ∈ V . Without loss of generality we assume234

(2) dD1(v) ≥ dD2(v) and pvzv = 0.235

Since dD(v) = 2dD0(v) + dΛ(v), we deduce from (ii-iii) that dD1(v) + dD2(v) ≥ dD(v) and236

dDi(v) = dD0(v) + dΛi(v) ≥ ⌊dD(v)/2⌋ (i = 1, 2). Thus we conclude from (2) that237

(3) dD1(v) ≥ ⌈dD(v)/2⌉ and dD2(v) ≥ ⌊dD(v)/2⌋.238

By the definition of D we have dD(v) = yTBv, where Bv is the column of BG indexed by v. So239

(4) dD(v) + zv = pv + 2wv ≥ 2wv.240

Since wv is an integer, we deduce that241

(5) wv ≤ ⌊(dD(v) + zv)/2⌋.242

Setting z1v = ⌊zv/2⌋ and z2v = ⌈zv/2⌉, we have243

(6) z1vuv + z2vuv = zvuv.244

We further claim that245

(7) dDi(v) + ziv ≥ wv, for i = 1, 2.246

To see (7), recall pvzv = 0 from (2). If dD(v) is even, we deduce from (4) that zv is even, which247

implies, by (3-4), that dDi(v) + ziv ≥ 1
2(dD(v) + zv) ≥ wv. So we assume that dD(v) is odd. If248

zv = 0 then, by (3) and (5), dDi(v) + ziv = dDi(v) ≥ ⌊dD(v)/2⌋ ≥ wv. Else, by (2) and (4), zv is249

odd. Thus dDi(v) + ziv ≥ 1
2(dDi(v) ± 1) + 1

2(zv ∓ 1) = 1
2(dDi(v) + zv) ≥ wv, because of (3), (5),250

and the definition of ziv. So (7) holds.251

For i = 1, 2, let zi = (ziv : v ∈ V ) and yi ∈ ZC
+ be the multiplicity function of Di. It follows252

from (7) that yT
i BG + zT

i ≥ wT , which means that both (y1, z1) and (y2, z2) are feasible solutions253

of the second program in (3.1). From (1) and (6) we also conclude that yT
i 1+zT

i u ≤ (yT1+zTu)/2254

holds for at least one i ∈ {1, 2}. Hence inequality (3.1) holds, which proves the Theorem.255

For a perfect graph G, being ESP can be characterized as follows. Let Z+ denote the set of256

nonnegative integers. For any d ∈ ZV (G)
+ , let Gd denote the graph obtained from G by substituting257

each vertex v with a stable set of size d(v). Note that v is deleted when d(v) = 0. Let cG = 1TBG.258

In other words, for each v ∈ V (G), cG(v) is the number of maximal cliques of G that contain v.259
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Theorem 3.8. Let G be perfect. Then G is ESP if and only if for every d ∈ ZV (G)
+ with d ≤ cG260

there exists d′ ∈ ZV (G)
+ such that ⌊d/2⌋ ≤ d′ ≤ ⌈d/2⌉ and α(Gd′) + α(Gd−d′) ≤ α(Gd).261

Proof. To prove the forward implication, let G be ESP and let d ∈ ZV (G)
+ . Since Gd is perfect, its262

vertex set can be partitioned into α(Gd) cliques. These cliques naturally correspond to a multiset263

Λ of α(Gd) cliques of G. Note that |Λ| = α(Gd) and dΛ = d. Since G is ESP, Λ admits a equitable264

subpartition (Λ1,Λ2). By deleting vertices from cliques in Λ1 and Λ2 we can obtained multisets Λ∗
1265

and Λ∗
2 of cliques of G such that |Λ∗

1|+ |Λ∗
2| ≤ |Λ1|+ |Λ2|, dΛ∗

1
+dΛ∗

2
= d, and min{dΛ∗

1
, dΛ∗

2
} ≥ ⌊d/2⌋.266

Let d′ = dΛ∗
1
. Then ⌊d/2⌋ ≤ d′ ≤ ⌈d/2⌉ and267

α(Gd′) + α(Gd−d′) ≤ α(GdΛ1 ) + α(GdΛ2 ) ≤ |Λ1|+ |Λ2| ≤ |Λ| = α(Gd),268

which proves the forward implication.269

To prove the backward implication, let Λ be a set of maximal cliques of G. Then d := dΛ ≤ cG270

and thus there exists d′ as stated in the theorem. Let d1 = d′ and d2 = d − d′. For i = 1, 2,271

vertices of Gdi can be partitioned into α(Gdi) cliques, and these cliques correspond to a multiset Λi272

of α(Gdi) cliques of G. Note that dΛi = di. Thus (Λ1,Λ2) is an equitable subpartition of Λ, which273

proves the theorem.274

We first remark that α(Gd) is exactly the maximum of
∑

v∈S d(v) over all stable sets S of275

G. Sometimes this interpretation is more convenient. We also remark that we do not know a276

box-perfect graph that is not ESP. It seems reasonable to conjecture that no such a graph exists.277

4 Known box-perfect graphs278

Cameron [4] identified a few classes of box-perfect graphs. In this section we prove that they are in279

fact ESP graphs. Our results could be stronger than the results of Cameron if ESP and box-perfect280

are not equivalent. But the main reason for establishing our results is for future applications. We281

envision that more ESP graphs (possibly all box-perfect graphs) can be constructed from basic282

ESP graphs. Therefore, it is important to make sure that all known box-perfect graphs are ESP.283

4.1 Totally unimodular graphs284

It is well known (see Theorem 19.3 of [21]) that in a totally unimodular matrix, each set of rows285

can be partitioned so that the sum of one part minus the sum of the other part is a {0,±1}-vector.286

If G is totally unimodular then BG has this partition property, which implies immediately that G287

satisfies the definition of ESP graphs. Thus we have the following.288

Theorem 4.1. Totally unimodular graphs are ESP.289

We point out that totally unimodular graphs include graphs like interval graphs, bipartite290

graphs, and block graphs (every block is a complete graph).291
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4.2 Incomparability graphs292

Theorem 4.2. Every incomparability graph G is ESP.293

Proof. Since G is perfect, we may apply Theorem 3.8. Let d ∈ ZV (G)
+ . Note that Gd is again294

an incomparability graph. In fact, let P be a poset such that G is the incomparability of P and295

let P d be obtained from P by replacing each element v with a chain of size d(v). Then Gd is296

the incomparability graph of poset P d. For each positive integer i, let Ai be the set of maximal297

elements of P d − (A1 ∪ ... ∪ Ai−1). Then (A1, ..., An) is a partition of V (Gd) into cliques, where298

n = α(Gd). Let V1 be the union of Ai for all odd i and let V2 be the union of Ai for all even i. Then299

Gd[V1] and Gd[V2] can be expressed as Gd1 and Gd2 , respectively, for some d1, d2 ∈ ZV (G)
+ . It is300

easy to see that d1 + d2 = d and ⌊d/2⌋ ≤ dj ≤ ⌈d/2⌉ (j = 1, 2). Moreover, each α(Gdj ) is bounded301

by the number of Ais contained in Vj . Therefore, α(Gd1) + α(Gd2) ≤ α(Gd), which implies that302

d′ = d1 satisfies Theorem 3.8 and thus G is ESP.303

4.3 p-Comparability graphs304

p-Comparability graphs were introduced in [3] and were shown [3, 5] to be box-perfect. We show305

that they are ESP. Let D be a digraph with a special set T of vertices such that every arc is in a306

dicycle (directed cycle) and every dicycle meets T exactly once. In particular, D has no arc between307

any two vertices of T . If p is an integer with |T | ≤ p, then a p-comparability graph G is defined308

from D by adding all chords of all dicycles, then deleting T , and finally ignoring all directions on309

edges. Note that 1-comparability graphs are precisely comparability graphs.310

Theorem 4.3. Every p-comparability graph G is ESP.311

To prove this theorem we will need the following Lemma. Let D = (V,A) be a digraph. For312

each dicycle C of D, the incidence vector of C is the vector χC ∈ {0, 1}A such that χC(a) = 1 if313

and only if a is on C. A sum of incidence vectors of (not necessarily distinct) dicycles of D is called314

a circulation of D. The following is a special case of Corollary 11.2b of [22].315

Lemma 4.4. Every circulation f is the sum of two circulations f1, f2 such that ⌊f/2⌋ ≤ fi ≤ ⌈f/2⌉316

holds for both i = 1, 2.317

Proof of Theorem 4.3. Let G be constructed from D and T . Let D∗ be obtained from D by318

splitting each vertex v into v′ and v′′ such that arcs entering v are now entering v′, and arcs leaving319

v are now leaving v′′. We also add an arc from v′ to v′′. Observe that for every dicycle C of D, D∗
320

has a unique dicycle C∗ such that A(C∗) ∩ A(D) = A(C). Moreover, every dicycle of D∗ can be321

expressed as C∗ for a dicycle C of D.322

We will use a fact proved in [5] that for every clique K of G, there exists a dicycle CK of D323

such that K ⊆ V (CK).324

Let Λ be a set of maximal cliques of G. We prove the theorem by showing that Λ admits an325

equitable subpartition. Let f be the sum of incidence vectors of C∗
K over all K ∈ Λ. Since each CK326

meets T exactly once, each C∗
K must meet T ∗ = {t′t′′ : t ∈ T} exactly once. As a result, |Λ| equals327
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the sum of f(a) over all a ∈ T ∗. In addition, since each K ∈ Λ is a maximal clique, we must have328

V (CK)− T = K. This implies that dΛ(v) = f(v′v′′) holds for all v ∈ V (D).329

Let f1 and f2 be the two circulations of D∗ determined by Lemma 4.4. For i = 1, 2, let C∗
i be330

the multiset of dicycles of D∗ such that fi is the sum of χC∗ over all C∗ ∈ C∗
i . Then let Ci be the331

multiset {C : C∗ ∈ C∗
i } and Λi = {V (C) − T : C ∈ Ci}. By the construction of G, each member332

of Λi is a clique of G. Moreover, dΛi(v) = fi(v
′v′) holds for all v ∈ V (G), and |Λi| =

∑
a∈T ∗ fi(a).333

Therefore, (Λ1,Λ2) is an equitable subpartition of Λ, which proves that G is ESP.334

Remark. Let us call a graph strong ESP if every set Λ of maximal cliques admits an equitable335

subpartition (Λ1,Λ2) with max{|Λ1|, |Λ2|} ≤ ⌈|Λ|/2⌉. This proof also proves that (1-)comparability336

graphs are in fact strong ESP.337

5 Parity graphs338

A graph is called a parity graph if any two induced paths between the same pair of vertices have the339

same parity. These are natural extensions of bipartite graphs and they are perfect [19]. Cameron340

and Edmonds [3] conjectured that every parity graph is box-perfect. The objective of this section341

is to present a proof of this conjecture.342

To establish our result we need a structural characterization of parity graphs. Let H be a graph343

with a stable set S such that all vertices of S have the same set of neighbors. Let B be a bipartite344

graph and let T be a subset of a color class of B with |T | = |S|. Let G be obtained from the disjoint345

union of H and B by identifying S with T . We call G a bipartite extension of H by B, and we also346

call the construction of G from H bipartite extension.347

Lemma 5.1 (Burlet and Uhry [2]). Every connected parity graph can be constructed from a single348

vertex by repeatedly duplicating vertices and bipartite extensions.349

Lemma 5.2. Duplicating a vertex in an ESP graph results in an ESP graph.350

Proof. Let ESP graph G have a vertex v. Let G′ be obtained by duplicating v and let v′ be the351

new vertex. For any set Λ′ of maximal cliques of G′, we prove that Λ′ has an equitable subpartition.352

We define Λ as follows. If vv′ is an edge then Λ = {K − v′ : K ∈ Λ′}; if vv′ is not an edge then353

Λ = {K : v′ ̸∈ K ∈ Λ}⊎{K− v′+ v : v′ ∈ K ∈ Λ′}. Note that Λ is a multiset of maximal cliques of354

G. Since G is ESP, Λ admits an equitable subpartition (Λ1,Λ2). By deleting vertices from cliques355

in Λ1 and Λ2 we may assume that dΛ1 + dΛ2 = dΛ and ⌊dΛ/2⌋ ≤ dΛi ≤ ⌈dΛ/2⌉ (i = 1, 2).356

If vv′ is an edge, let Λ′
i = {K : v ̸∈ K ∈ Λi} ⊎ {K + v′ : v ∈ K ∈ Λi} (i = 1, 2). Then (Λ′

1,Λ
′
2)357

is an equitable subpartition of Λ′ because dX(v′) = dX(v) holds for X ∈ {Λ,Λ′
1,Λ

′
2}.358

Now suppose vv′ is not an edge. Note that dΛ(v) = dΛ′(v) + dΛ′(v′). Also we may assume that
dΛ1(v) = ⌊dΛ(v)/2⌋ and dΛ2(v) = ⌈dΛ(v)/2⌉. Let

m1 = ⌊dΛ′(v)/2⌋, m2 = ⌈dΛ′(v)/2⌉, m′
1 = dΛ1(v)−m1, m′

2 = dΛ2(v)−m2.

Then
m1 +m2 = dΛ′(v), m′

1 +m′
2 = dΛ′(v′), min{m′

1,m
′
2} ≥ ⌊dΛ′(v′)/2⌋.
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For i = 1, 2, let Λ′
i be obtained from Λi by turning m′

i cliques K that contain v into K − v + v′.359

Then the above equalities and inequalities imply that (Λ′
1,Λ

′
2) is an equitable subpartition of Λ′.360

Remark. Clearly, this proof also proves that duplicating a vertex in a strong ESP graph results361

in a strong ESP graph.362

Theorem 5.3. Parity graphs are ESP.363

Proof. By Lemma 5.2, we only need to show that if G is a bipartite extension of an ESP graph H364

by a bipartite graph B = (X,Y,E), then G is ESP. Let X0 ⊆ X be the intersection of H and B.365

Let Λ be a set of maximal cliques of G. Naturally, Λ can be partitioned into ΛH and ΛB, which are366

maximal cliques of H and edges of B, respectively. Now we find an equitable subpartition (Λ′
B,Λ

′′
B)367

of ΛB and an equitable subpartition (Λ′
H ,Λ′′

H) of ΛH such that (Λ′
B ∪Λ′

H ,Λ′′
B ∪Λ′′

H) is an equitable368

subpartition of Λ. Let X0 be partitioned into (X1, X2) such that X1 consists of x ∈ X0 with both369

dΛB
(x) and dΛH

(x) odd. Since (Λ′
B,Λ

′′
B) and (Λ′

H ,Λ′′
H) are always compatible on vertices in X2,370

we only need to focus on vertices in X1.371

Without loss of generality, let ΛB = E. Suppose B has 2t vertices of odd degree. Then E can be372

partitioned into cycles and t paths P1, ..., Pt. Let (Λ
′
B,Λ

′′
B) be defined by assigning edges to the two373

parts alternatively along the cycles and paths. Then (Λ′
B,Λ

′′
B) is an equitable partition. Note that374

we have the following freedom in the assignment. Let x ∈ X1 and let Pi be the path with x as an375

end. If the other end of Pi is not in X1, then we may choose dΛ′
B
(x) to be ⌊dΛB

(x)/2⌋ or ⌈dΛB
(x)/2⌉,376

as we wish (without changing dΛ′
B
(z) and dΛ′′

B
(z) for any other z ∈ X1). If the other end of Pi is a377

vertex x′ in X1, then we may assume that dΛ′
B
(x) = ⌊dΛB

(x)/2⌋ and dΛ′
B
(x′) = ⌈dΛB

(x′)/2⌉. Let378

(x1, x
′
1), ..., (xk, x

′
k) be these pairs in X1.379

Let H1 be obtained from H by deleting x′1, ..., x
′
k and let Λ1 be obtained from ΛH by replacing380

each x′i with xi. Note that dΛ1(xi) = dΛH
(xi) + dΛH

(x′i) for all i, while dΛ1(v) = dΛH
(v) for all381

other vertices v of H1. Since H is ESP, so is H1. Let (Λ′
1,Λ

′′
1) be an equitable subpartition of Λ1.382

Without loss of generality, we assume dΛ′
1
(xi) = dΛ′′

1
(xi) = dΛ1(xi)/2 for all i. Let Λ′

H be obtained383

from Λ′
1 by turning ⌊dΛH

(x′i)/2⌋ of its cliques K that contain xi into K−xi+x′i (for every i). Then384

dΛ′
H
(xi) = ⌈dΛH

(xi)/2⌉ and dΛ′
H
(x′i) = ⌊dΛH

(x′i)/2⌋. Let Λ′′
H be obtained analogously. Now it is385

straightforward to verify that, the freedom on partition (Λ′
B,Λ

′′
B) allows us to make adjustments386

so that (Λ′
B ∪ Λ′

H ,Λ′′
B ∪ Λ′′

H) is an equitable subpartition of Λ.387

6 Complements of line graphs388

In the rest of this paper we allow some graphs to have loops and parallel edges. We call these389

multigraphs and we reserve the word graph for simple graphs. If a multigraph H is obtained from a390

graph H0 by adding loops and parallel edges, then H0 is called a simplification of H and is denoted391

by si(H).392

Let L(H) denote the line graph of a multigraph H. Under this circumstance, we always make393

the following implicit assumptions:394

(i) H has no isolated vertices (deleting an isolated vertex does not affect L(H));395

(ii) H has no loops (replacing a loop with a pendent edge does not affect L(H));396
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(iii) H has no distinct vertices x, y, z such that z is the only neighbor of x and the only neighbor397

of y (replacing edges between y and z by edges between x and z does not affect L(H)).398

The complement of L(H) will be denoted by L̄(H). Our results in the next two sections imply399

a characterization of box-perfect line graphs. The goal of this section is to characterize box-perfect400

graphs that are complements of line graphs.401

Theorem 6.1. Let G = L̄(H) be perfect. Then G is box-perfect if and only if G is {S3, S̄
+
3 }-free.402

Our proof of this theorem is divided into a sequence of lemmas. We first determine the structure403

of {S3, S̄
+
3 }-free perfect graphs of the form L̄(H), and then we confirm that all such graphs are404

ESP. We will see that some of these graphs are in fact strong ESP.405

We need a result of Gallai [15] which identifies eight classes and ten individual graphs such that406

a graph is a comparability graph if and only if it does not contain any of these identified graphs as407

an induced subgraph. We will use the following immediate consequence of Gallai’s theorem. Let Γ408

be the graph obtained from a 6-cycle v1v2v3v4v5v6v1 by adding two edges v1v3 and v1v5.409

Lemma 6.2. Let G be claw-free and perfect. Then G is an incomparability graph if and only if G410

does not contain any of S3, S̄3, Γ, and C2n (n ≥ 3) as an induced subgraph.411

Let K+
4 denote the graph obtained from K4 by adding two pendent edges to two of its distinct412

vertices. Let K+
2,n denote the graph obtained from K2,n (n ≥ 3) by adding a pendent edge to a413

degree-2 vertex and an edge between the two degree-n vertices.414

Lemma 6.3. Let L̄(H) be {C5, S3, S̄
+
3 }-free. If H contains S̄3 as a subgraph then si(H) is either415

K+
4 or a subgraph of K+

2,n for some n ≥ 3.416

Proof. Since S̄3 is a subgraph of H, we assume V (H) = {x1, x2, x3, y1, y2, y3, z1, ..., zm} such that417

x1x2x3 is a triangle and xiyi ∈ E(H) (i = 1, 2, 3). If m = 0 then it is straightforward to verify the418

conclusion of the lemma, using the fact that H does not contain C5 as a subgraph. So we assume419

m > 0. Let K∗
1,3 denote the graph obtained from K1,3 by subdividing each edge exactly once. Note420

that K∗
1,3 is not a subgraph of H since L̄(K∗

1,3) = S3. As a result, each zi is adjacent to none of421

y1, y2, y3, and at most two of x1, x2, x3. Furthermore, since L̄(H) is S̄+
3 -free, the entire neighborhood422

of each zi must be a subset of {x1, x2, x3} of size one or two (here we also use assumption (i) above).423

By assumption (iii) above we may assume that each zi is adjacent to exactly two of x1, x2, x3. Since424

C5 is not a subgraph of H, all zi’s must have the same set of neighborhood. Now, since m > 0, it425

is straightforward to verify that si(H) is a subgraph of K+
2,m+3.426

Let C be an even cycle of length ≥ 4. Let X be a stable set of C and let Y = V (C)−X−NC(X),427

where X is allowed to be empty. We construct a bipartite graph from C by adding a pendent edge428

to each vertex in Y and by repeatedly duplicating vertices in X. Let C consist of all graphs that429

can be constructed in this way.430

Lemma 6.4. Let L(H) be perfect and S̄3-free. Suppose H is connected and H does not contain S̄3431

as a subgraph. If L(H) contains an induced Γ or C2n (n ≥ 3), then si(H) is a subgraph of a graph432

in C ∪ {K3,3}.433

Proof. Suppose Γ is an induced subgraph of L(H). ThenH has a subgraph with a 4-cycle x1x2x3x4434

and two pendent edges x1y1, x2y2. Note that x1x3 and x2x4 are not edges of H since S̄3 is not435
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a subgraph of H. Let z1, ..., zm be the remaining vertices of H. If m = 0, then either si(H) is a436

subgraph of K3,3 or H contains a 5-cycle. So we assume m > 0. Like in the proof of the last lemma,437

since C5 and K∗
1,3 are not subgraphs of H, for each i we must have NH(zi) = {x1, x3} or {x2, x4},438

or {xj} for some j. In addition, NH(yi) ⊆ {xi, xi+2} (i = 1, 2) and |NH(y1) ∪NH(y2)| ≤ 3. Now,439

since H does not contain K∗
1,3, it is routine to check that si(H) is a subgraph of a graph in C.440

Next, suppose L(H) is Γ-free. Then H contains a 2n-cycle x1x2...x2n (n ≥ 3). Note that this441

cycle has no chord (otherwise L(H) contains an induced Γ, S̄3, or C2k+1 with k ≥ 2). Let z1, ..., zm442

be the remaining vertices of H. Using the same argument we used in the last paragraph it is443

straightforward to show that each NH(zi) is {xj} or {xj , xj+2} for some j (where x2n+t is xt). In444

addition, if NH(zi) = {xj , xj+2} then NH(xj+1) = NH(zi). Therefore, si(H) is a subgraph of a445

graph in C.446

Lemma 6.5. Suppose G has a vertex u such that G − u is bipartite and G − N(u) is edge-less.447

Then G is totally unimodular.448

Proof. By Theorem 19.3 of [21], we only need to show that each set Λ of maximal cliques admits449

an equitable partition (Λ1,Λ2), meaning that min{dΛ1(v), dΛ2(v)} ≥ ⌊dΛ(v)⌋, for all v ∈ V (G).450

Suppose to the contrary that some Λ does not admit such a partition. We choose Λ with |Λ| as451

small as possible.452

Let A,B,C,D be a partition of V (G)−u such that A∪C, B∪D are stable and N(u) = B∪C.453

Let G′ be the subgraph of G formed by edges in K − u, over all K ∈ Λ. We claim that G′ is a454

forest. Suppose G′ has a cycle x1x2...xn. Note that for each i, exactly one of xixi+1 and uxixi+1455

is a clique in Λ. Let Λ′ be the rest cliques in Λ. By the minimality of |Λ|, Λ′ admits an equitable456

partition (Λ′
1,Λ

′
2). Let us extend Λ′

j (j = 1, 2) to Λj by including xixi+1 or uxixi+1 (whichever457

belongs to Λ) for all i with i− j even. Then it is easy to see that (Λ1,Λ2) is an equitable partition458

of Λ. This contradicts the choice of Λ and thus the claim is proved. The same argument also shows459

that G′ has no maximal path with two ends both in A∪B or both in C ∪D. Thus all components460

of G′ are paths with one end in A ∪ B and one end in C ∪ D. If G′ has only one path then the461

same argument still works. If G′ has two or more paths then we can take any two of them and462

treat their union as a cycle and again apply the same argument.463

Recall that a graph G is strong ESP if every set Λ of maximal cliques of G admits an equitable464

subpartition (Λ1,Λ2) with max{|Λ1|, |Λ2|} ≤ ⌈|Λ|/2⌉. The next lemma follows immediately from465

this definition.466

Lemma 6.6. (1) If G is strong ESP then so are all its induced subgraphs.467

(2) Let G1, G2 be strong ESP and let G be obtained from the disjoint union of G1, G2 by adding468

all edges between them. Then G is also strong ESP.469

In a (loopless) multigraph G, the degree of a vertex v, denoted dG(v), is the number of edges470

incident with v. The next is the key step for proving Theorem 6.1.471

Lemma 6.7. For every H ∈ C ∪ {K3,3}, L̄(H) is strong ESP.472

Proof. For each µ ∈ ZE(H)
+ , let µH denote the multigraph with vertex set V (H) such that the473

number of edges between any two vertices x, y is zero (if xy ̸∈ E(H)) or µ(xy) (if xy ∈ E(H)). Note474

that µH is bipartite since H is bipartite. Let ∆(µ) denote the maximum degree of µH. By Konig’s475
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edge-coloring theorem, E(µH) is the union of k matchings if and only if k ≥ ∆(µ). Because of this476

theorem and the one-to-one correspondence between cliques of L̄(H) and matchings of H, to prove477

the lemma it is enough for us to show that478

(∗) for any µ ∈ ZE(H)
+ there exist µ1, µ2 ∈ ZE(H)

+ such that µ1 + µ2 = µ, µi ≥ ⌊µ/2⌋ (i = 1, 2),479

∆(µ1) ≤ ⌈∆(µ)/2⌉, and ∆(µ2) ≤ ⌊∆(µ)/2⌋.480

In the following we construct a partition (E1, E2) of E(µH) such that the multiplicity functions481

µi of Ei (i = 1, 2) satisfies (∗). This partition will be constructed in several steps. In the process482

we determine a partition (E1, E2, E3) of E(µH), where we begin with (E1, E2, E3) = (∅, ∅, E(µ(H))483

and we keep moving edges from E3 to E1, E2 until E3 becomes empty. For i = 1, 2, 3, let Hi denote484

the subgraph of µH formed by edges in Ei.485

First, for each edge e = xy of H, among all µ(e) edges of E3 that are between x and y, we486

move ⌊µ(e)/2⌋ of them to E1 and ⌊µ(e)/2⌋ of them to E2. At the end of this process, H3 becomes487

a simple graph. It follows that µi ≥ ⌊µ/2⌋ (i = 1, 2) and this inequality will be satisfied no matter488

how edges of H3 are moved to E1 and E2 in later steps.489

If H3 has a cycle C, since H is bipartite, E(C) can be partitioned into two matchings M1,M2.490

We move Mi from E3 to Ei (i = 1, 2). We repeat this process until H3 become a forest. At this491

point, H1 and H2 have the same degree on every vertex.492

Let S = {v : dµH(v) = ∆(µ)}. SupposeH3 has a leaf v that is not in S. Let P be a maximal path493

of H3 starting from v. Let E(P ) be partitioned into two matchings M1,M2, where we assume the494

edge of P that is incident with the other end u of P belongs to M1. Then we move Mi from E3 to Ei495

(i = 1, 2). After this change, dH1(u) = ⌈dµH(u)/2⌉ ≤ ⌈∆(µ)/2⌉, dH2(u) = ⌊dµH(u)/2⌋ ≤ ⌊∆(µ)/2⌋,496

and dHi(v) ≤ ⌈dµH(v)/2⌉ ≤ ⌊∆(µ)/2⌋ (i = 1, 2). In addition, dH1(w) = dH2(w) for all w ̸= u, v,497

and dHi(u), dHi(v) will remain unchanged in the remaining process. By repeating this process we498

may assume that all leaves of H3 are in S. As a consequence, ∆(µ) is odd. Note that the same499

argument works if H3 has a maximal path with an odd number of edges. Thus we further assume500

that in every component of H3, all leaves are in the same color class (of any 2-coloring of H3).501

We first consider the case H = K3,3. We claim that each component of H3 is a path. Suppose502

a component H ′
3 of H3 is not a path. Then H ′

3 has at least three leaves. Since all these leaves are503

in the same color class, H ′
3 must have exactly three leaves z1, z2, z3 and they form a color class of504

H. Consequently, H ′
3 = H3 = K1,3. Moreover, in the previous steps of reducing H3, no path was505

ever deleted because otherwise H3 would be a subgraph of K2,2. It follows that dµH(v∗) is even,506

where v∗ ∈ V (H) − V (H3). However, the fact z1, z2, z3 ∈ S implies that µH is ∆(µ)-regular, and507

thus dµH(v∗) = ∆(µ) is odd. This contradiction proves our claim. Now, since each non-leaf v of508

H3 has degree two, its degree in µH is even and thus v ̸∈ S. It follows that moving all edges of E3509

to E1 results in the required partition.510

Next suppose H ∈ C. Let H ′
3 be a component of H3. Then H ′

3 is a caterpillar since K∗
1,3 is not511

a subgraph of H. Therefore, H ′
3 has a path x1x2...x2k+1 such that every leaf of H ′

3 is adjacent to512

some x2i+1. We assume that H ′
3 is not a path because otherwise we may move the entire path from513

E3 to E1. We make two observations before we continue. First, dH(v) > 1 holds for every leaf v514

of H ′
3, because otherwise the only edge of H that is incident with v would be the only edge of H ′

3515

(as v ∈ S). Second, if u, v ∈ V (H ′
3) are of degree-2 in H and are contained in a 4-cycle uxvy of516

H, then at most one of u, v is in S. This is because otherwise µ(ux) = µ(vy), µ(uy) = µ(vx), and517

15



both x, y ∈ S, which implies that H ′
3 is a subgraph of the 4-cycle uxvy. It follows from these two518

observations and the construction of graphs in C that each x2i+1 is adjacent to at most two leaves519

of H ′
3. For the same reasons, there must exist i0 ∈ {0, 1, ..., k} such that dH′

3
(x2i0+1) = 2.520

For i = 1, 2, 3, 4, let Vi = {v : dH′
3
(v) = i}. Note that V2 ∪ V3 ∪ V4 = {x1, ..., x2k+1}. Let521

M be the matching {x2i−1x2i : i = 1, ..., i0} ∪ {x2ix2i+1 : i0 + 1, ..., k}. From H ′
3 we move M522

to E2 and the rest of E(H ′
3) to E1. Now we verify that, after this change, dH1(v) ≤ ⌈∆(µ)/2⌉523

and dH2(v) ≤ ⌊∆(µ)/2⌋ hold for all v ∈ V1 ∪ V2 ∪ V3 ∪ V4. For each v ∈ V1 it is easy to see524

that in fact dH1(v) = ⌈∆(µ)/2⌉ and dH2(v) = ⌊∆(µ)/2⌋. For each even i, we have xi ∈ V2 and525

dH1(xi) = dH2(xi) = dµH(xi)/2 ≤ ⌊∆(µ)/2⌋. For each odd i we consider two cases. If xi ∈ V3 then526

dH1(xi) = (dµH(xi) + 1)/2 ≤ ⌈∆(µ)/2⌉ and dH2(xi) = (dµH(xi)− 1)/2 ≤ ⌊∆(µ)/2⌋. If xi ∈ V2 ∪ V4527

then dH1(xi) ≤ (dµH(xi) + 2)/2 ≤ ⌈∆(µ)/2⌉ and dH2(xi) ≤ dµH(xi)/2 ≤ ⌊∆(µ)/2⌋. Therefore, we528

may apply this split to all components of H3 and create the required partition E1, E2.529

Proof of Theorem 6.1. The forward implication is obvious so we only show that G = L̄(H) is530

ESP when G is perfect and {S3, S̄
+
3 }-free.531

Suppose L(H) contains an induced S3. Then H contains S̄3 as a subgraph. By Lemma 6.3,532

si(H) is either K+
4 or a subgraph of K+

2,n for some n ≥ 3. In both cases, it is straightforward to533

verify that L̄(si(H)) satisfies the assumptions in Lemma 6.5. So L̄(si(H)) is totally unimodular534

and thus is also ESP. By Lemma 5.2, L̄(H) is ESP.535

Now suppose L(H) is S3-free. We claim that L̄(H ′) is strong ESP for every component H ′ of536

H. If L̄(H ′) is a comparability graph, then the claim follows immediately from the Remark at the537

end of Section 4. So we assume that L̄(H ′) is not a comparability graph. By Lemma 6.2, L(H)538

contains an induced Γ or C2n (n ≥ 3). This implies, by Lemma 6.4, that si(H ′) is a subgraph of a539

graph in C ∪ {K3,3}. Then the claim follows from Lemma 6.7, Lemma 6.6(1), and the Remark of540

Lemma 5.2. Finally, this claim and Lemma 6.6(2) imply that L̄(H) is ESP.541

7 Trigraphs542

Our next objective is to characterize claw-free box-perfect graphs. To accomplish this goal, we will543

need a result of Chudnovsky and Plumettaz [9] on the structure of claw-free perfect graphs. The544

purpose of this section is to explain their result, which requires many definitions.545

A trigraph G consists of a finite set V of vertices and an adjacency function θ :
(
V
2

)
→ {1, 0,−1}546

such that {uv : θ(uv) = 0} is a matching. Two distinct vertices u and v of G are strongly adjacent547

if θ(uv) = 1, strongly antiadjacent if θ(uv) = −1, and semiadjacent if θ(uv) = 0. We call u, v548

adjacent if θ(uv) ≥ 0, and antiadjacent if θ(uv) ≤ 0. Note that every graph can be considered549

as a trigraph with {uv : θ(uv) = 0} = ∅. In other words, graphs are exactly trigraphs with no550

semiadjacent pairs. The result of Chudnovsky and Plumettaz is in fact about trigraphs.551

For any trigraph G = (V, θ), let G≥0 denote the graph (V, {uv : θ(uv) ≥ 0}). Conversely, for552

any graph G = (V,E), let tri(G) denote the set of all trigraphs (V, θ) such that for any distinct553

u, v ∈ V , θ(uv) ≥ 0 if uv ∈ E and θ(uv) ≤ 0 if uv ̸∈ E.554

Let G = (V, θ) be a trigraph. We call G connected if G≥0 is connected. For each v ∈ V , let555
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NG(v) = NG≥0(v). We often write N(v) for NG(v) if the dependency on G is clear. For any X ⊆ V ,556

let G|X be the trigraph such that its vertex set is X and its adjacency function is the restriction557

of θ to
(
X
2

)
. If a trigraph H is isomorphic to G|X for some X ⊆ V , then we call H a subtrigraph558

of G and we say that G contains H.559

A trigraph is a hole if it belongs to tri(Cn) for some n ≥ 4. A trigraph (V, θ) is an antihole if560

(V,−θ) is a hole. A hole or antihole is odd if its number of vertices is odd. A trigraph is Berge if561

it contains neither odd hole nor odd antihole. A trigraph is a claw if it belongs to tri(K1,3). A562

trigraph is claw-free if it does not contain any claw. In general, if H is a set of trigraphs, then a563

trigraph is H-free if it does not contain any trigraph in H. The result of Chudnovsky and Plumettaz564

characterizes {claw, holes, antiholes}-free trigraphs, that is, claw-free Berge trigraphs. To describe565

the resulting structure we need more definitions.566

Let G = (V, θ) be a trigraph. For any two disjoint X,Y ⊆ V , we say that X is complete567

(resp. strongly complete, anticomplete, strongly anticomplete) to Y if every x ∈ X and every y ∈ Y568

are adjacent (resp. strongly adjacent, antiadjacent, strongly antiadjacent). A clique (resp. strong569

clique) of G is a set C ⊆ V such that any two distinct vertices of C are adjacent (resp. strongly570

adjacent). A stable set (resp. strong stable set) of G is a set S ⊆ V such that any two distinct571

vertices of S are antiadjacent (resp. strongly antiadjacent).572

A trigraph H is a thickening of a trigraph G if V (H) admits a partition (Xv : v ∈ V (G)) such573

that574

• if v ∈ V (G) then Xv ̸= ∅ is a strong clique of H;575

• if u, v ∈ V (G) are strongly adjacent in G then Xu is strongly complete to Xv in H;576

• if u, v ∈ V (G) are strongly antiadjacent, then Xu is strongly anticomplete to Xv in H;577

• if u, v ∈ V (G) are semiadjacent, then Xu is neither strongly complete nor strongly578

anticomplete to Xv in H.579

Let C be the class of all trigraphs illustrated in Figure 7.1, where580

• |Bj
i | ≤ 1 for all i, j ∈ {1, 2, 3}581

• |B1
2 ∪B1

3 |, |B2
1 ∪B2

3 |, |B3
1 ∪B3

2 | ∈ {0, 2}582

• if θ(a1a3) = 0 then B1
2 ∪B1

3 = ∅583

• there exists xi ∈ B1
i ∪B2

i ∪B3
i for i = 1, 2, 3, such that {x1, x2, x3} is a clique.584

It turns out that there are two kinds of claw-free Berge trigraphs. The first are thickenings of585

trigraphs in C. The second are constructed (in a way like constructing line graphs) from certain basic586

trigraphs. In the following, we first define the building blocks and then describe the construction.587

Let G have three vertices v, z1, z2 such that θ(vz1) = θ(vz2) = 1 and θ(z1z2) = −1. Then the588

pair (G, {z1, z2}) is a spot. Let G have four vertices v1, v2, z1, z2 such that θ(v1z1) = θ(v2z2) = 1,589

θ(v1v2) = 0, θ(z1z2) = θ(z1v2) = θ(z2v1) = −1. Then the pair (G, {z1, z2}) is a spring.590

A trigraph is a linear interval if its vertices can be ordered as v1, ..., vn such that if i < j < k and591

θ(vivk) ≥ 0 then θ(vivj) = θ(vjvk) = 1. Let G be such a trigraph with n ≥ 4. We call (G, {v1, vn})592

a linear interval stripe if: v1 and vn are strongly antiadjacent, vi and vi+1 are adjacent for every593

i ∈ {1, ..., n− 1}, no vertex is complete to {v1, vn}, and no vertex is semiadjacent to v1 or vn.594

Let (G, {p, q}) be a spring or a linear interval strip. Let H be a thickening of G and let Xv595

(v ∈ V (G)) be the corresponding sets. If |Xp| = |Xq| = 1, then (H,Xp ∪Xq) is called a thickening596
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Figure 7.1: Trigraphs in C

of (G, {p, q}).597

Let C′ be the class of all pairs (H, {z}) such that H is a thickening of a trigraph G ∈ C and598

z ∈ Xai for some i ∈ {1, 2, 3} for which Bi+2
i+1 ∪Bi+2

i = ∅ and N(z) ∩ (Xai+1 ∪Xai+2) = ∅ (here we599

use the notation from the definitions of C and thickening).600

A signed graph (G, s) consists of a multigraph G = (V,E) and a function s : E → {0, 1}. If601 ∑
e∈E(C) s(e) is even for all cycles C of G, then (G, s) is an evenly signed graph. In the following602

we define another three classes of signed graphs. For any F ⊆ E, let G[F ] = (V, F ).603

Let F1 be the class of loopless signed graphs (G, s) such that si(G) = K4 and s ≡ 1. Let F2 be604

the class of loopless signed graphs (G, s) such that si(G) is obtained from K2,n (n ≥ 1) by adding605

an edge e∗ between its two degree-n vertices, and edges in {e : s(e) = 0} are all parallel to e∗ (while606

s(e∗) = 1). We remark that our F1 is F2 of [9] and our F2 is F1 ∪ F3 of [9]607

In a connected multigraph G with E(G) ̸= ∅, a subgraph B is a block of G if B is a loop or608

B is maximal with the property that B is loopless and si(B) is a block of si(G). A signed graph609

(G, s) is called an even structure if E(G) ̸= ∅ and for all blocks B of G, (B, s|E(B)) is a member of610

F1 ∪ F2 or an evenly signed graph or a loop.611

Now we describe how the pieces defined above can be put together. A trigraph G = (V, θ) is612

called an evenly structured linear interval join if it can be constructed in the following manner:613

• Let (H, s) be an even structure.614

• For each edge e ∈ E(H), let Ze ⊆ V (H) be the set of ends of e (so |Ze| = 1 or 2).615

Let Se = (Ge, Ze) such that Ge is a trigraph with V (Ge) ∩ V (H) = Ze and616

∗ if e is not on any cycle then Se is a spot or a thickening of a linear interval stripe,617

∗ if e is on a cycle of length > 1 and s(e) = 0 then Se is a thickening of a spring,618

∗ if e is on a cycle of length > 1 and s(e) = 1 then Se is a spot,619

∗ if e is a loop then Se ∈ C′.620

• For all distinct e, f ∈ E(H), V (Ge) ∩ V (Gf ) ⊆ Ze ∩ Zf .621

• Let V = ∪e∈E(H)V (Ge)\Ze and let θ be given by: for any u, v ∈ V622

∗ if u, v ∈ V (Ge)\Ze for some e ∈ E(H) then θ(uv) = θGe(uv)623
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∗ if u ∈NGe(x) and v ∈NGf
(x) for distinct e, f ∈E(H) with a common end x, then θ(uv) =1624

∗ in all other cases, θ(uv) = −1.625

• We will write G = Ω(H, s, {Se : e ∈ E(H)}).626

Theorem 7.1 (Chudnovsky and Plumettaz [9]). A connected trigraph is claw-free and Berge if627

and only if it is a thickening of a trigraph in C or an evenly structured linear interval join.628

In the following we produce a different formulation of this result. A vertex x of a trigraph is629

simplicial if N(x) ̸= ∅ and {x}∪N(x) is a strong clique. For i = 1, 2, let Gi = (Vi, θi) be a trigraph630

with a simplicial vertex xi and with |Vi| ≥ 3. The simplicial sum of G1, G2 (over x1, x2) is the631

trigraph G = (V, θ) such that V = (V1 − x1) ∪ (V2 − x2) and, for all distinct v1, v2 ∈ V ,632

• θ(v1v2) = θi(v1v2) if {v1, v2} ⊆ Vi for some i = 1, 2633

• θ(v1v2) = 1 if vi ∈ NGi(xi) for both i = 1, 2634

• θ(v1v2) = −1 if otherwise.635

We point out that both G1 and G2 are contained in G. Moreover, using the language of [9], G636

admits either a 1-join or a homogeneous set of size ≥ 2.637

Lemma 7.2. Let G be a simplicial sum of G1, G2. Then G is claw-free if and only if both G1, G2638

are; and G is Berge if and only if both G1, G2 are.639

We omit the proof since it is straightforward. This lemma suggests that we can characterize640

claw-free Berge trigraphs by determining all such trigraphs that are not simplicial sums. In the641

following we describe these trigraphs.642

Let I be the class of linear interval trigraphs. Let L be the class of trigraphs G such that G≥0 is643

the line graph of a bipartite multigraph and every triangle (a clique of size 3) of G is a strong clique.644

Let J1 be the first graph in Figure 7.2. We consider J1 as a trigraph with no semiadjacent pairs.645

Let J1 consists of trigraphs obtained from J1 by deleting k of its cubic vertices (0 ≤ k ≤ 4). Let646

J2(n) be the second trigraph in Figure 7.2, where Q1, Q2, and all vertical triples are strong cliques,647

θ(uv) could be 0, 1, or −1, and all other pairs are strongly antiadjacent. Note that J2(0) ∈ I. Let648

J2 consist of trigraphs of the form J2(n)−X for all n ≥ 1 and all X ⊆ {u, v}. Let J = J1 ∪ J2.649

u

v

Q1

Q2

1 2 n

w

Figure 7.2: J1 and J2

Theorem 7.3. A connected trigraph is claw-free and Berge if and only if it is obtained by simplicial650

summing thickenings of trigraphs in C ∪ L ∪ I ∪ J .651

We need a few lemmas in order to prove this theorem. A 1-separation of a multigraphH is a pair652

(H1,H2) of edge-disjoint proper subgraphs of H such that H1 ∪H2 = H and |V (H1)∩V (H2)| = 1.653
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Suppose G = Ω(H, s, {Se}). Then a 1-separation (H1,H2) of H is called trivial if there exists654

i ∈ {1, 2} such that Hi = K2 and Sf is a spot, where f is the only edge of Hi.655

Lemma 7.4. Suppose G = Ω(H, s, {Se}) and suppose H has a nontrivial 1-separation (H1,H2).656

Then G is a simplicial sum of two trigraphs.657

Proof. Let x be the common vertex of H1,H2. For i = 1, 2, let H ′
i be obtained from Hi by adding658

a new vertex xi and a new edge xxi. Let si be the signing of H ′
i which agrees with s on Hi, and659

si(xxi) = 1. Since all blocks of H ′
i (other than xxi) are blocks of H, (H ′

i, si) is an even structure.660

Let Sxxi be a spot and let Gi = Ω(H ′
i, si, {Se : e ∈ E(H ′

i)}). Since separation (H1,H2) is nontrivial,661

Gi must have ≥ 3 vertices. Now it is straightforward to verify that xi is a simplicial vertex of Gi662

(i = 1, 2) and G is the simplicial sum of G1 and G2 over x1 and x2.663

Lemma 7.5. Let H be a thickening of G.664

(i) H is claw-free if and only if G is claw-free.665

(ii) H is Berge if and only if G is Berge.666

Proof. Part (ii) is (6.4) of [9] and part (i) is easy to verify, as pointed out in [11].667

A trigraph G is quasi-line if N(v) is the union of two strong cliques for every v ∈ V (G). It is668

easy to see that if G is quasi-line then G is claw-free. A trigraph G is cobipartite if V (G) is the669

union of two strong cliques. Clearly, if G cobipartite then G is quasi-line and thus is claw-free. It is670

also clear that every connected cobipartite trigraph with ≥ 2 vertices is a thickening of a two-vertex671

trigraph. Thus every cobipartite trigraph is Berge.672

Proof of Theorem 7.3. To prove the backward implication, by Lemma 7.2 and Lemma 7.5, we673

only need to consider trigraphs G ∈ C ∪ L ∪ I ∪ J . If G ∈ C then the result follows from Theorem674

7.1. If G ∈ I then G is claw-free [11] and Berge [9]. If G ∈ L∪J then G is quasi-line and thus G is675

claw-free. If G ∈ J , then deleting simplicial vertices from G results in a cobipartite trigraph, which676

implies that G is Berge. Finally, assume G ∈ L and G≥0 = L(B) is the line graph of a bipartite677

multigraph B. We need to show that G is Berge. Since no semiadjacent pairs are contained in a678

triangle, every hole of G must come from a cycle of B and thus G contains no odd holes. If G has an679

antihole v1v2...vnv1 with n ≥ 7, then we consider the restriction of G on v1, ..., v6. If θ(vivi+1) = −1680

for all i = 1, ..., 5, then the graph X formed by {vivj : θ(vivj) ≥ 0} would be the complement of a681

path on six vertices, which is one of the minimal non-line-graphs. This is impossible since X is an682

induced subgraph of L(B). So θ(vivi+1) = 0 holds for some i, which makes vi, vi+1, xk a triangle683

for some k. This contradiction (two semiadjacent vertices are contained in a triangle) shows that684

G contains no antihole of length ≥ 7. Thus G is Berge, which completes the proof of the backward685

direction.686

To prove the forward implication, by Theorem 7.1, we assume G = Ω(H, s, {Se}). Since G is687

connected, H is connected as well. By Lemma 7.4, we also assume that all 1-separations of H are688

trivial. Let U be the set of all degree-one vertices u of H for which if e is the only edge incident689

with u then Se is a spot. We assume V (H) ̸= U because otherwise H = K2 and G = K1 and thus690

the result holds. Let H0 = H −U . Note that H0 is connected, as H is connected. Moreover, by its691

construction, H0 dose not have a 1-separation. Thus either H0 = K1 or H0 is a block of H.692

Suppose H0 is K1 or K2. It follows that H is a tree with 1, 2, or 3 edges. Moreover, Se is a693

20



thickening of a linear interval strip for at most one e, and every other Se is a spot. In all cases, it694

is routine to check that G is a thickening of a trigraph in I.695

Suppose H0 is a loop e. Let Se = (Ge, {z}) ∈ C′ and let Ge be a thickening of C ∈ C. If H has696

≥ 2 edges then H consists of e and a pendent edge f with Sf a spot. It follows that G = Ge, which697

is a thickening of a trigraph in C. So e is the only edge of H and G = Ge − z. If z is not the only698

vertex of Xai (here we use the notation in the definition of C′) then G is also a thickening of C. If699

z is the unique vertex of Xai then G is cobipartite. In this case G is a thickening of a two-vertex700

trigraph and thus G is a thickening of a trigraph in I.701

Suppose none of the last two cases occurs. Then H0 is a block in which every edge is on a cycle702

of length ≥ 2. Let s0 be the restriction of s on H0. Then (H0, s0) is either in F1 ∪ F2 or evenly703

signed. First we assume (H0, s0) is evenly signed. Then (H, s) is also evenly signed. Moreover, Se704

is a thickening of a spring for every edge in E0 = {e ∈ E(H0) : s(e) = 0}, and Se is a spot for every705

other edge of H. Let S′
e be a spring for each e ∈ E0 and let S′

e = Se for every other edge of H.706

Then G is a thickening of G′ = Ω(H, s, {S′
e}). Now we only need to show that G′ ∈ L. Let H ′ be707

obtained from H by subdividing each edge in E0 exactly once. Then H ′ is bipartite. It follows from708

the construction of Ω that adjacent pairs of G′ are exactly adjacent pairs of the line graph L(H ′).709

In addition, all semiadjacent pairs of G′ come from a spring, and thus no such pair is contained in710

a triangle. Therefore, G′ belongs to L, as required.711

It remains to consider the case (H0, s0) ∈ F1 ∪ F2. If (H0, s0) ∈ F1, then H is obtained from712

K4 by adding parallel edges and adding pendent edges to distinct vertices. Moreover, every Se is713

a spot. It follows that G is an ordinary graph (meaning that G has no semiadjacent pairs) and714

this graph is exactly L(H). Now it is clear that G is a thickening of L(si(H)), which belongs to715

J1. So we assume (H0, s0) ∈ F2. Let V (H0) = {x1, x2, y1, ..., ym} (m ≥ 1) such that xi (i = 1, 2)716

is adjacent to all other vertices. Like before, we assume that H0 has no parallel edges, except for717

two possible edges e0, e1 between x1, x2, and such that s(e0) = 0 and s(e1) = 1. We also assume718

that Se0 is a spring, if e0 is present. Suppose H is obtained by adding pendent edges to y1, ..., yn719

(n ≥ 0) and to k of x1, x2 (0 ≤ k ≤ 2). If e0 is present, then G is a thickening of J2(n), where720

θ(uv) = 0. So assume that e0 is not in H, and thus G = L(H). For i = 1, 2, let Qi be the clique of721

G formed by edges of H incident with xi. Let Q
′
i = Qi −{x1x2, xiy1, ..., xiyn}. If Q′

1 ̸= ∅ is neither722

complete nor anticomplete to Q′
2 ̸= ∅, then again G is a thickening of J2(n) with θ(uv) = 0. In the723

remainder cases (which are: some Q′
i is empty, or Q′

1 ̸= ∅ is complete or anticomplete to Q′
2 ̸= ∅),724

if n = 0 then G is a thickening of K3, and if n ≥ 1 then G = J2(n)−X for some X ⊆ {u, v}.725

8 Claw-free box-perfect graphs726

In this section we prove the following.727

Theorem 8.1. A claw-free perfect graph is box-perfect if and only if it is S3-free.728

We divide the proof into several lemmas. Let G be a trigraph. We call G a sun if G ∈ tri(S3).729

We call G an incomparability trigraph if G≥0 is an incomparability graph. We call G elementary if it730

is a thickening of a trigraph in L. We remark that when an elementary trigraph has no semiadjacent731

pairs then they are exactly elementary graphs discussed in [18].732
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Lemma 8.2. Let G be a connected Berge trigraph. If G is {claw, sun}-free then G is obtained by733

simplicial summing incomparability trigraphs and elementary trigraphs.734

Proof. Since G is connected, Berge, and claw-free, by Theorem 7.3, G is obtained by simplicial735

summing thickenings of trigraphs in C∪L∪I∪J . Therefore, we may assume that G is a thickening736

of a trigraph G0 ∈ C ∪L∪ I ∪J . If G0 ∈ L then G is elementary and we are done. If G0 ∈ C then737

G0|{a1, a2, a3, x1, x2, x3} (here we are using the notation in the definition of C) is a sun and thus738

G contains a sun, which is impossible. So we assume that G0 ∈ I ∪ J . In the following we prove739

that G is an incomparability trigraph.740

Suppose G0 ∈ I. Then vertices of G0 can be ordered as v1, ..., vn such that if i < j < k and741

θ0(vivk) ≥ 0 then θ0(vivj) = θ0(vjvk) = 1. Using the notation in the definition of thickening, we742

let Xvi = {xi,j : j = 1, ..., ni} (1 ≤ i ≤ n). Now we define a binary relation ≺ on V (G) such that743

xi1,j1 ≺ xi2,j2 if θ(xi1,j1xi2,j2) = −1 and (i1, j1) is lexicographically smaller than (i2, j2). We claim744

that ≺ is transitive. Suppose xi1,j1 ≺ xi2,j2 ≺ xi3,j3 . Since each Xvi is a strong clique, we must745

have i1 < i2 < i3. It follows that θ0(vi1vi2) ≤ 0 and θ0(vi2vi3) ≤ 0. As a result, θ0(vi1vi3) = −1 and746

thus θ(xi1,j1xi3,j3) = −1, which proves our claim. This claim implies that the complement of G≥0
747

is the comparability graph of poset (V (G),≺), which proves that G≥0 is an incomparability graph748

and thus G is an incomparability trigraph.749

Now suppose G0 ∈ J . We claim that G0 is a thickening of a trigraph in I. This claim clearly750

implies that G is a thickening of trigraph in I, and thus the last paragraph proves that G is an751

incomparability trigraph.752

Before proving the claim we make an observation. It is clear that every cobipartite trigraph is753

a thickening of a trigraph that has exactly two vertices and that the two vertices are semiadjacent.754

Since this two-vertex trigraph is in I, our claim holds if G0 is cobipartite.755

We first consider the case G0 ∈ J1. If G0 has two or more cubic vertices then G0 contains an756

induced S3. So G0 contains at most one cubic vertex and in this case G0 is cobipartite. Next we757

assume G0 ∈ J2 and let G0 = J2(n) −X (see the definition of J2). Let xiyizi (1 ≤ i ≤ n) denote758

the vertical triangles of J2(n), where yi ∈ Q1 and zi ∈ Q2. If n ≥ 3 then G0|{w, x1, y1, z1, y2, z3} is759

a sun. So we have n ≤ 2. Now it is straightforward to verify that either G0 is cobipartite, or G0760

contains a sun (found in a similar way), or G0 = J2(2)−{u, v}. In the last case, G0 is a thickening761

of the trigraph G∗ = ({t1, t2, t3, t4, t5}, θ∗), where θ∗(titi+1) = 1 (i = 1, 2, 3, 4), θ∗(t2t4) = 0, and762

θ∗(titj) = −1 for all other pairs. This completes the proof of our claim and also completes the763

proof of the lemma.764

Although simplicial sum was defined for trigraphs, this operation can be naturally inherited by765

ordinary graphs. Moreover, we have the following.766

Lemma 8.3. The simplicial sum of two ESP graphs is ESP.767

Proof. Let G be the simplicial sum of G1 and G2 over x1 and x2, where Gi is an ESP graph with a768

simplicial vertex xi for i = 1, 2. Let Λ be a set of maximal cliques of G. Note that NG1(x1)∪NG2(x2)769

is the only maximal clique of G that contains edges between NG1(x1) and NG2(x2). For i = 1, 2, let770

Λi consist of members of Λ that are cliques in Gi. Since Gi is ESP, Λi has an equitable subpartition771

(Λi1,Λi2). If Λ does not contain the clique NG1(x1)∪NG2(x2), then (Λ11∪Λ21,Λ12∪Λ22) is clearly772

an equitable subpartition of Λ. Now assume that Λ contains NG1(x1) ∪NG2(x2). For i = 1, 2, let773
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Λ′
i = Λi∪{{xi}∪NGi(xi)}. Note that dΛ′

i
(xi) = 1. Since Gi is ESP, Λ

′
i has an equitable subpartition774

(Λ′
i1,Λ

′
i2). Without loss of generality, suppose dΛ′

i1
(xi) = 1 and dΛ′

i2
(xi) = 0 for i = 1, 2. Let Λ′ be775

obtained from Λ′
11 ∪ Λ′

21 by replacing the two cliques containing x1 or x2 by NG1(x1) ∪ NG2(x2);776

and set Λ′′ = Λ′
12 ∪ Λ′

22. Then (Λ′,Λ′′) is an equitable subpartition of Λ.777

Lemma 8.4. Let Λ be a set of cliques of a graph G, for which V (G) is partitioned into two cliques778

X,Y . Then G has a multiset Λ′ of cliques such that779

(i) |Λ′| = |Λ| and dΛ′(v) = dΛ(v), for all v ∈ V (G);780

(ii) members of Λ′ can be enumerated as Q1, ..., Q|Λ| such that every v ∈ X appears in the first781

dΛ(v) terms and every v ∈ Y appears in the last dΛ(v) terms.782

Proof. For each i = 1, ..., |Λ|, let Xi = {x ∈ X : i ≤ dΛ(x)} and Yi = {y ∈ Y : i ≥ |Λ|−dΛ(y)+1}.783

Then for every i, Qi = Xi∪Yi is a clique since dΛ(x)+dΛ(y) ≤ |Λ| holds for all non-adjacent x ∈ X784

and y ∈ Y . Now it is clear that Λ′ = {Q1, ..., Q|Λ|} satisfies the requirements.785

Lemma 8.5. Elementary graphs are ESP.786

Proof. Let elementary graph H be obtained by thickening a trigraph G, where G≥0 is the line787

graph of a bipartite multigraph B and such that semiadjacent pairs of G are not contained in788

any triangle. Let (Z1, Z2) be a partition of V (B) into two stable sets. Let u1v1, ..., unvn be the789

semiadjacent pairs of G. Let (Xv : v ∈ V (G)) be the partition of V (H) over which G is thickened.790

For i = 1, ..., n, let Hi = H[Xui ∪Xvi ]. Since no semiadjacent pairs of G are contained in a triangle,791

it is easy to see that for each maximal clique C of H, either C is a maximal clique of some Hi or792

C = ∪{Xv : v ∈ Q} for some maximal strong clique Q of G. On the other hand, since G≥0 = L(B),793

for each maximal clique Q of G there exists a vertex z of B such that members of Q are precisely794

edges of B that are incident with z. We will say that Q and C = ∪{Xv : v ∈ Q} come from z.795

Note that, if Q,Q′ are maximal cliques of G with ui ∈ Q−Q′ and vi ∈ Q′ −Q for some i, then Q796

and Q′ come from vertices that both belong to Z1 or both belong to Z2.797

Let Λ be a set of maximal cliques ofH. We need to show that Λ admits an equitable subpartition.798

For i = 1, ..., n, let Λ(i) = {C ∈ Λ : C ⊆ V (Hi)}. Let Λ(0) = Λ − Λ(1)... − Λ(n). We assume by799

Lemma 8.4 that members of each Λ(i) are enumerated as C
(i)
1 , ..., C

(i)
ni such that every x ∈ Xui800

appears in the first dΛ(i)(x) terms and every x ∈ Xvi appears in the last dΛ(i)(x) terms. In the801

following we define a partition (Λ1,Λ2) of Λ. To verify that (Λ1,Λ2) is an equitable subpartition802

of Λ we only need to verify min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋, for all x ∈ V (H).803

We first consider Λ(0). If C ∈ Λ(0) then C comes from a vertex z of B. In this case we put C804

into Λi if z ∈ Zi (i = 1, 2). Since each v ∈ V (G) is contained in at most two maximal cliques, we805

deduce that dΛ(x) ≤ 2 for all x ∈ V (H) − V (H1) − ...V (Hn). For these x, our partition of Λ(0)
806

guarantees that min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋.807

For cliques in each Λ(i) (i = 1, 2, ..., n) we consider three cases. If none of Xui , Xvi is contained808

in any clique of Λ(0), then dΛ(x) = dΛ(i)(x) for all x ∈ V (Hi). Moreover, for each x ∈ V (Hi), since809

cliques containing x appear consecutively in the sequence C
(i)
1 , ...., C

(i)
ni , putting C

(i)
j into Λ1 for all810

odd j and putting C
(i)
j into Λ2 for all even j lead to min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋.811

If exactly one of Xui , Xvi is contained in a clique of Λ(0), we assume by symmetry that Xui is812

contained in a clique C ∈ Λ(0). We also assume without loss of generality that C has been placed813
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into Λ2. For each x ∈ V (Hi), since cliques containing x appear consecutively in the sequence814

Xui , C
(i)
1 , ...., C

(i)
ni , putting C

(i)
j into Λ1 for all odd j and putting C

(i)
j into Λ2 for all even j lead to815

min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋.816

If both Xui , Xvi are contained in cliques, say C,D, of Λ(0), by discussion in the first paragraph817

of this proof, we assume that both C,D have been placed into Λ2. We consider two subcases.818

Suppose ni is odd. For each x ∈ V (Hi), since cliques containing x appear consecutively in the819

sequence Xui , C
(i)
1 , ...., C

(i)
ni , Xvi , putting C

(i)
j into Λ1 for all odd j and putting C

(i)
j into Λ2 for all820

even j lead to min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋. Now suppose ni is even. For each x ∈ V (Hi),821

note that cliques containing x appear consecutively in the sequence C
(i)
1 , Xui , C

(i)
2 , ...., C

(i)
ni , Xvi ,822

unless x ∈ C
(i)
1 ∩Xvi . In this case we put C

(i)
j into Λ2 for all odd j > 1 and we put the rest into823

Λ1. For each x ∈ V (Hi)− (C
(i)
1 ∩Xvi), it is clear that min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋. For each824

x ∈ C
(i)
1 ∩ Xvi , we have dΛ(x) = 1 + ni. Our partition yields dΛ2(x) = ni/2, which also leads to825

min{dΛ1(x), dΛ2(x)} ≥ ⌊dΛ(x)/2⌋.826

Proof of Theorem 8.1. The forward implication is clear, so we only need to consider the backward827

implication. Let G be perfect and {claw, S3}-free. By Lemma 8.2, each component of G is obtained828

by simplicial summing incomparability graphs and elementary graphs. By Theorem 4.2 and Lemma829

8.5, incomparability graphs and elementary graphs are ESP. Thus G is ESP by Lemma 8.3, which830

proves that G is box-perfect by Theorem 3.7.831
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