The star-shapedness of a generalized numerical range

Pan-Shun Lau* ${ }^{* 1}$, Tuen-Wai $\mathrm{Ng}^{\dagger 1}$, and Nam-Kiu Tsing ${ }^{\ddagger 1}$
${ }^{1}$ Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

August 22, 2016

Abstract

Let \mathcal{H}_{n} be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_{n}^{m} be the set of all m-tuples of $n \times n$ Hermitian matrices. For $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ and for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$, we define the L-numerical range of A by

$$
W_{L}(A):=\left\{L\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right): U \in \mathbb{C}^{n \times n}, U^{*} U=I_{n}\right\}
$$

In this paper, we prove that if $\ell \leq 3, n \geq \ell$ and A_{1}, \ldots, A_{m} are simultaneously unitarily diagonalizable, then $W_{L}(A)$ is star-shaped with star center at $L\left(\frac{\operatorname{tr} A_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} A_{m}}{n} I_{n}\right)$.
AMS Classification: 15A04, 15A60.
Keywords: generalized numerical range, star-shapedness, joint unitary orbit

1 Introduction

Let $\mathbb{C}^{n \times n}$ denote the set of all $n \times n$ complex matrices, and $A \in \mathbb{C}^{n \times n}$. The (classical) numerical range of A is defined by

$$
W(A):=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

The properties of $W(A)$ were studied extensively in the last few decades and many nice results were obtained; see [10, 13]. The most beautiful result is probably the Toeplitz-Hausdorff Theorem which affirmed the convexity of $W(A)$; see $[12,17]$. The generalizations of $W(A)$ remain an active research area in the field.

[^0]For any $A \in \mathbb{C}^{n \times n}$, write $A=A_{1}+i A_{2}$ where A_{1}, A_{2} are Hermitian matrices. Then by regarding \mathbb{C} as \mathbb{R}^{2}, one can rewrite $W(A)$ as

$$
W(A):=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

This expression motivates naturally the generalization of the numerical range to the joint numerical range, which is defined as follows. Let \mathcal{H}_{n} be the set of all $n \times n$ Hermitian matrices and \mathcal{H}_{n}^{m} be the set of all m-tuples of $n \times n$ Hermitian matrices. The joint numerical range of $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ is defined as

$$
W(A)=W\left(A_{1}, \ldots, A_{m}\right):=\left\{\left(x^{*} A_{1} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

It has been shown that for $m \leq 3$ and $n \geq m$, the joint numerical range is always convex [1]. This result generalizes the Toeplitz-Hausdorff Theorem. However, the convexity of the joint numerical range fails to hold in general for $m>3$, see [1, 11, 14].

When a new generalization of numerical range is introduced, people are always interested in its convexity. Unfortunately, this nice property fails to hold in some generalizations. However, another property, namely star-shapedness, holds in some generalizations; see [5, 18]. Therefore, the star-shapedness is the next consideration when the generalized numerical ranges fail to be convex. A set M is called star-shaped with respect to a star-center $x_{0} \in M$ if for any $0 \leq \alpha \leq 1$ and $x \in M$, we have $\alpha x+(1-\alpha) x_{0} \in M$. In [15], Li and Poon showed that for a given m, the joint numerical range $W\left(A_{1}, \ldots, A_{m}\right)$ is star-shaped if n is sufficiently large.

Let \mathcal{U}_{n} be the set of all $n \times n$ unitary matrices. For $C \in \mathcal{H}_{n}$ and $A=$ $\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$, the joint C-numerical range of A is defined by

$$
W_{C}(A):=\left\{\left(\operatorname{tr}\left(C U^{*} A_{1} U\right), \ldots, \operatorname{tr}\left(C U^{*} A_{m} U\right): U \in \mathcal{U}_{n}\right\}\right.
$$

where $\operatorname{tr}(\cdot)$ is the trace function. When C is the diagonal matrix with diagonal elements $1,0, \ldots, 0$, then $W_{C}(A)$ reduces to $W(A)$. Hence the joint C-numerical range is a generalization of the joint numerical range. In [3], Au-Yeung and Tsing generalized the convexity result of the joint numerical range to the joint C-numerical range by showing that $W_{C}(A)$ is always convex if $m \leq 3$ and $n \geq m$. However $W_{C}(A)$ fails to be convex in general if $m>3$. One may consult [6] and [7] for the study of the convexity of $W_{C}(A)$. The star-shapedness of $W_{C}(A)$ remains unclear for $m>3$.

For $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$, we define the joint unitary orbit of A by

$$
\mathcal{U}_{n}(A):=\left\{\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right): U \in \mathcal{U}_{n}\right\} .
$$

For $C \in \mathcal{H}_{n}$, we consider the linear map $L_{C}: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{m}$ defined by

$$
L_{C}\left(X_{1}, \ldots, X_{m}\right)=\left(\operatorname{tr}\left(C X_{1}\right), \ldots, \operatorname{tr}\left(C X_{m}\right)\right)
$$

Then the joint C-numerical range of A is the linear image of $\mathcal{U}_{n}(A)$ under L_{C}. Inspired by this alternative expression, we consider the following generalized
numerical range of $A \in \mathcal{H}_{n}^{m}$. For $A=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ and linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$, we define

$$
W_{L}(A)=L\left(\mathcal{U}_{n}(A)\right):=\left\{L\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right): U \in \mathcal{U}_{n}\right\}
$$

and call it the L-numerical range of A, due to [4]. Because L_{C} is a special case of general linear maps L, the L-numerical range generalizes the joint C-numerical range and hence the classical numerical range.

In this paper, We shall study in Section two an inclusion relation of the L-numerical range of m-tuples of simultaneously unitarily diagonalizable Hermitian matrices and linear maps $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ with $\ell=2,3$. This inclusion relation will be applied in Section three to show that the L-numerical ranges of A under our consideration are star-shaped.

2 An Inclusion Relation for L-numerical Ranges

The following results follow easily from the the definition of the L-numerical range.

Lemma 2.1. Let $\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{H}_{n}^{m}$ and $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ be linear. Then the followings hold:
(i) $W_{L}\left(\alpha\left(A_{1}, \ldots, A_{m}\right)+\beta\left(I_{n}, \ldots, I_{n}\right)\right)=\alpha W_{L}\left(A_{1}, \ldots, A_{m}\right)+\beta L\left(I_{n}, \ldots, I_{n}\right)$ if $\alpha, \beta \in \mathbb{R}$;
(ii) $W_{L}\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right)=W_{L}\left(A_{1}, \ldots, A_{m}\right)$ for all unitary U.

In the following we shall consider those A_{1}, \ldots, A_{m} which are simultaneously unitarily diagonalizable, i.e., there exists $U \in \mathcal{U}_{n}$ such that $U^{*} A_{1} U, \ldots, U^{*} A_{m} U$ are all diagonal. Hence by Lemma 2.1, we assume without loss of generality that A_{1}, \ldots, A_{m} are (real) diagonal matrices. For $d=\left(d_{1}, \ldots, d_{n}\right)^{T} \in \mathbb{R}^{n}$, we denote by $\operatorname{diag}(d)$ the $n \times n$ diagonal matrix with diagonal elements d_{1}, \ldots, d_{n}. We first introduce a special class of matrices which is useful in studying the generalized numerical range; see $[9,16,18]$.

An $n \times n$ real matrix $P=\left(p_{i j}\right)$ is called a pinching matrix if for some $1 \leq s<t \leq n$ and $0 \leq \alpha \leq 1$,

$$
p_{i j}=\left\{\begin{array}{cc}
\alpha, & \text { if }(i, j)=(s, s) \text { or }(t, t), \\
1-\alpha, & \text { if }(i, j)=(s, t) \text { or }(t, s), \\
1, & \text { if } i=j \neq s, t, \\
0 & \text { otherwise }
\end{array}\right.
$$

Definition 2.2. Assume $D=\left(\operatorname{diag}\left(d^{(1)}\right), \ldots, \operatorname{diag}\left(d^{(m)}\right)\right), \hat{D}=\left(\operatorname{diag}\left(\hat{d}^{(1)}\right), \ldots\right.$, $\left.\operatorname{diag}\left(\hat{d}^{(m)}\right)\right)$ where $d^{(1)}, \ldots, d^{(m)}, \hat{d}^{(1)}, \ldots \hat{d}^{(m)} \in \mathbb{R}^{n}$. We say $\hat{D} \prec D$ if there exist a finite number of pinching matrices P_{1}, \ldots, P_{k} such that $\hat{d}^{(i)}=P_{1} P_{2} \cdots P_{k} d^{(i)}$ for all $i=1, \ldots, m$.

The following inclusion relation is the main result in this section.

Theorem 2.3. Let $D, \hat{D} \in \mathcal{H}_{n}^{m}$ and $n>2$. If $\hat{D} \prec D$, then for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$, we have $W_{L}(\hat{D}) \subset W_{L}(D)$.

To prove Theorem 2.3, we need some lemmas. For $\theta, \phi \in \mathbb{R}$, let $T_{\theta, \phi} \in \mathcal{U}_{n}$ be defined by

$$
T_{\theta, \phi}=\left(\begin{array}{ccc}
\cos \theta & \sin \theta e^{\sqrt{-1} \phi} & 0 \\
-\sin \theta & \cos \theta e^{\sqrt{-1} \phi} & 0 \\
0 & 0 & I_{n-2}
\end{array}\right)
$$

Lemma 2.4. Let $D=\left(D_{1}, \ldots, D_{m}\right) \in \mathcal{H}_{n}^{m}$ be an m-tuple of diagonal matrices. Then for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$ and $U \in \mathcal{U}_{n}$, the set of points

$$
E_{L}(D, U):=\left\{L\left(U^{*} T_{\theta, \phi}^{*} D_{1} T_{\theta, \phi} U, \ldots, U^{*} T_{\theta, \phi}^{*} D_{m} T_{\theta, \phi} U\right): \theta \in[0, \pi], \phi \in[0,2 \pi]\right\}
$$

forms an ellipsoid in \mathbb{R}^{3}.
Proof. Note that for any $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$, we can always express L as

$$
L\left(X_{1}, \ldots, X_{m}\right)=\left(\operatorname{tr}\left(\sum_{i=1}^{m} P_{i} X_{i}\right), \operatorname{tr}\left(\sum_{i=1}^{m} Q_{i} X_{i}\right), \operatorname{tr}\left(\sum_{i=1}^{m} R_{i} X_{i}\right)\right)
$$

for some suitable $P_{i}, Q_{i}, R_{i} \in \mathcal{H}_{n}, i=1, \ldots, m$. For $U \in \mathcal{U}_{n}$, we write $U P_{i} U^{*}=$ $\left(p_{j k}^{(i)}\right), U Q_{i} U^{*}=\left(q_{j k}^{(i)}\right), U R_{i} U^{*}=\left(r_{j k}^{(i)}\right)$ and $D_{i}=\operatorname{diag}\left(d_{1}^{(i)}, \ldots, d_{n}^{(i)}\right), i=1, \ldots, m$. By direct computations, the first coordinate of points in $E_{L}(D, U)$ is

$$
\begin{aligned}
& \quad \operatorname{tr}\left(\sum_{i=1}^{m} P_{i} U^{*} T_{\theta, \phi}^{*} D_{i} T_{\theta, \phi} U\right) \\
& =\operatorname{tr}\left(\sum_{i=1}^{m} D_{i} T_{\theta, \phi} U P_{i} U^{*} T_{\theta, \phi}^{*}\right) \\
& =\frac{1}{2} \sum_{i=1}^{m}\left(d_{1}^{(i)}+d_{2}^{(i)}\right)\left(p_{11}^{(i)}+p_{22}^{(i)}\right)+\sum_{i=1}^{m} \sum_{j=3}^{n} d_{j}^{(i)} p_{j j}^{(i)} \\
& \quad+\frac{1}{2} \sum_{i=1}^{m}\left(d_{1}^{(i)}-d_{2}^{(i)}\right)\left(p_{11}^{(i)}-p_{22}^{(i)}\right) \cos 2 \theta \\
& \quad+\sum_{i=1}^{m}\left(d_{1}^{(i)}-d_{2}^{(i)}\right) \operatorname{Re}\left(p_{21}^{(i)} e^{\sqrt{-1} \phi}\right) \sin 2 \theta
\end{aligned}
$$

Similarly for the second and the third coordinates of points in $E_{L}(D, U)$. Note that for $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{R}$ and $a_{3}, b_{3}, c_{3} \in \mathbb{C}$, the points $\left(a_{1}, b_{1}, c_{1}\right)+$ $\left(a_{2}, b_{2}, c_{2}\right) \cos 2 \theta+\operatorname{Re}\left(a_{3} e^{\sqrt{-1} \phi}, b_{3} e^{\sqrt{-1} \phi}, c_{3} e^{\sqrt{-1} \phi}\right) \sin 2 \theta$ form an ellipsoid in \mathbb{R}^{3} when θ, ϕ run through $[0, \pi]$ and $[0,2 \pi]$ respectively. Hence $E_{L}(D, U)$ is an ellipsoid in \mathbb{R}^{3}.

Note that $E_{L}(D, U) \subset W_{L}(D)$ for any $U \in \mathcal{U}_{n}$.

Lemma 2.5. Let $D \in \mathcal{H}_{n}^{m}$ be an m-tuple of diagonal matrices with $n>2$. Then for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$, there exists $V \in \mathcal{U}_{n}$ such that $E_{L}(D, V)$ defined in Lemma 2.4 degenerates (i.e., $E_{L}(D, V)$ is contained in a plane in \mathbb{R}^{3}).
Proof. Following the notations in Lemma 2.4 and its proof, we let $\alpha_{i}=d_{1}^{(i)}-$ $d_{2}^{(i)}$ for $i=1, \ldots, m$ and $P^{\prime}=\sum_{i=1}^{m} \alpha_{i} P_{i} \in \mathcal{H}_{n}$. Since $n>2$, by generalized interlacing inequalities for eigenvalues of Hermitian matrices (see [8]), there exist $V \in \mathcal{U}_{n}$ and $\alpha \in \mathbb{R}$ such that $V P^{\prime} V^{*}$ has αI_{2} as leading 2×2 principal submatrix. For any matrix M, let $M_{i j}$ denote its (i, j) entry. Then by taking $U=V$ in the proof of Lemma 2.4, the first coordinate of points in $E_{L}(D, V)$ is $a+b \cos 2 \theta+c \sin 2 \theta$ where

$$
\begin{aligned}
a & =\frac{1}{2} \sum_{i=1}^{m}\left(d_{1}^{(i)}+d_{2}^{(i)}\right)\left(p_{11}^{(i)}+p_{22}^{(i)}\right)+\sum_{i=1}^{m} \sum_{j=3}^{n} d_{j}^{(i)} p_{i i} \\
b & =\frac{1}{2} \sum_{i=1}^{m} \alpha_{i}\left[\left(V P_{i} V^{*}\right)_{11}-\left(V P_{i} V^{*}\right)_{22}\right] \\
& =\frac{1}{2}\left(V\left(\sum_{i=1}^{m} \alpha_{i} P_{i}\right) V^{*}\right)_{11}-\frac{1}{2}\left(V\left(\sum_{i=1}^{m} \alpha_{i} P_{i}\right) V^{*}\right)_{22} \\
& =\frac{1}{2}\left(V P^{\prime} V^{*}\right)_{11}-\frac{1}{2}\left(V P^{\prime} V^{*}\right)_{22} \\
& =\frac{1}{2} \alpha-\frac{1}{2} \alpha=0, \\
c & =\sum_{i=1}^{m} \alpha_{i} \operatorname{Re}\left(\left(V P_{i} V^{*}\right)_{21} e^{\sqrt{-1} \phi}\right) \\
& =\operatorname{Re}\left[\left(V\left(\sum_{i=1}^{m} \alpha_{i} P_{i}\right) V^{*}\right)_{21} e^{\sqrt{-1} \phi}\right] \\
& =\operatorname{Re}\left(\left(V P^{\prime} V^{*}\right)_{21} e^{\sqrt{-1} \phi}\right)=0 .
\end{aligned}
$$

Since the first coordinate of points in $E_{L}(D, V)$ is constant for $\theta \in[0, \pi]$ and $\phi \in[0,2 \pi], E_{L}(D, V)$ degenerates.

Proof of Theorem 2.3. Let $D=\left(D_{1}, \ldots, D_{m}\right)=\left(\operatorname{diag}\left(d^{(1)}\right), \ldots, \operatorname{diag}\left(d^{(m)}\right)\right)$ and $\hat{D}=\left(\hat{D}_{1}, \ldots, \hat{D}_{m}\right)=\left(\operatorname{diag}\left(\hat{d}^{(1)}\right), \ldots, \operatorname{diag}\left(\hat{d}^{(m)}\right)\right)$ where $d^{(1)}, . ., d^{(m)}, \hat{d}^{(1)}, \ldots, \hat{d}^{(m)} \in$ \mathbb{R}^{n}. We may further assume without loss of generality that $\hat{d}^{(i)}=P d^{(i)}$ for all $i=1, \ldots, m$ and $P=\left(\begin{array}{cc}\alpha & 1-\alpha \\ 1-\alpha & \alpha\end{array}\right) \oplus I_{n-2}$ with $0 \leq \alpha \leq 1$. Then we have

$$
\hat{D}_{i}=\alpha T_{0,0}^{*} D_{i} T_{0,0}+(1-\alpha) T_{\frac{\pi}{2}, 0}^{*} D_{i} T_{\frac{\pi}{2}, 0}, \quad i=1, \ldots, m
$$

For any $U \in \mathcal{U}_{n}$, we have $L\left(U^{*} \hat{D} U\right) \in \operatorname{conv}\left(E_{L}(D, U)\right)$ where $\operatorname{conv}(\cdot)$ denotes the convex hull. By path-connectedness of \mathcal{U}_{n}, there exists a continuous function
$f:[0,1] \rightarrow \mathcal{U}_{n}$ such that $f(0)=U$ and $f(1)=V$ where V is defined in Lemma 2.5 and hence $E(D, f(1))$ degenerates. By continuity, there exists $t \in[0,1]$ such that $L\left(U^{*} \hat{D} U\right) \in E(D, f(t)) \subset W_{L}(D)$.

Using similar techniques, one can prove that Theorem 2.3 stills holds for all linear maps $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$ with $n \geq 2$. However, the following example shows that the inclusion relation in Theorem 2.3 fails to hold if $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ is linear with $\ell>3$.

Example 2.6. Let $n \geq 2, d=(1, \ldots, 0)^{T}, \hat{d}=\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right)^{T} \in \mathbb{R}^{n}$ and let O_{k} be the $k \times k$ zero matrix. Consider $D=\left(\operatorname{diag}(d), O_{n}, \ldots, O_{n}\right), \hat{D}=$ $\left(\operatorname{diag}(\hat{d}), O_{n}, \ldots, O_{n}\right) \in \mathcal{H}_{n}^{m}$ and $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ with $\ell \geq 4$ defined by

$$
L\left(X_{1}, \ldots, X_{m}\right)=\left(\operatorname{tr}\left(P X_{1}\right), \operatorname{tr}\left(Q X_{1}\right), \operatorname{tr}\left(R X_{1}\right), \operatorname{tr}\left(S X_{1}\right), 0, \ldots, 0\right)
$$

where

$$
\begin{aligned}
& P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \oplus O_{n-2}, \quad Q=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \oplus O_{n-2}, \\
& R=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \oplus O_{n-2}, \quad S=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus O_{n-2} .
\end{aligned}
$$

Then we have $\hat{D} \prec D$ and $(1,0, \ldots, 0) \in W_{L}(\hat{D})$, but $(1,0, \ldots, 0) \notin W_{L}(D)$.

3 Star-shapedness of the L-numerical range

The L-numerical range may fail to be convex for linear maps $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ with $\ell \geq 2$ even when $A_{1}, \ldots, A_{m} \in \mathcal{H}_{n}$ are simultaneously unitarily diagonalizable; see [2]. However, we shall show in this section that for $n>2, W_{L}\left(A_{1}, \ldots, A_{m}\right)$ is always star-shaped for all linear maps $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$ and simultaneously unitarily diagonalizable $A_{1}, \ldots, A_{m} \in \mathcal{H}_{n}$. The following result is the essential element in our proof.
Proposition 3.1. [18] Let \mathbb{P}_{n} be the set of all finite products of $n \times n$ pinching matrices. Then for $0 \leq \alpha \leq 1, \alpha I_{n}+(1-\alpha) J_{n}$ is in the closure of \mathbb{P}_{n} where J_{n} is the $n \times n$ matrix with all entries equal $1 / n$.

Note that for any $A \in \mathcal{H}_{n}^{m}, \mathcal{U}_{n}(A)$ is compact. Hence $W_{L}(A)$ is compact for all linear maps L.

Theorem 3.2. Let $D=\left(D_{1}, \ldots, D_{m}\right) \in \mathcal{H}_{n}^{m}$ be an m-tuple of diagonal matrices with $n>2$. Then for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}, W_{L}(D)$ is star-shaped with respect to star-center $L\left(\frac{\operatorname{tr} D_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} D_{m}}{n} I_{n}\right)$.
Proof. By Lemma 2.1, we may assume without loss of generality that $\operatorname{tr} D_{i}=0$ for $i=1, \ldots, m$; otherwise we replace D_{i} by $D_{i}-\frac{\operatorname{tr} D_{i}}{n} I_{n}$. Let $D_{i}=\operatorname{diag}\left(d^{(i)}\right)$ where $d^{(i)} \in \mathbb{R}^{n}, i=1, \ldots, m$. For any $0 \leq \alpha \leq 1$, we have $\alpha d^{(i)}=\left[\alpha I_{n}+\right.$ $\left.(1-\alpha) J_{n}\right] d^{(i)}$. Then for any $U \in \mathcal{U}_{n}$, by Proposition 3.1, Theorem 2.3 and the compactness of $W_{L}(D)$, we have $\alpha L\left(U^{*} D U\right) \in W_{L}(\alpha D) \subset \overline{W_{L}(D)}=W_{L}(D)$ where \bar{M} denotes the closure of M.

For a linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$, by regarding it as a projection of some linear map $\hat{L}: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{3}$, we deduce the following corollary easily.

Corollary 3.3. Let $D=\left(D_{1}, \ldots, D_{m}\right) \in \mathcal{H}_{n}^{m}$ be an m-tuple of diagonal matrices with $n \geq 2$. Then for any linear map $L: H_{n}^{m} \rightarrow \mathbb{R}^{2}, W_{L}(D)$ is star-shaped with respect to star-center $L\left(\frac{\operatorname{tr} D_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} D_{m}}{n} I_{n}\right)$.
Proof. We only need to consider the case $n=2$. We may assume without loss of generality that $m=1$ and $D=\operatorname{diag}(1,-1)$. For any linear map $L: \mathcal{H}_{2} \rightarrow \mathbb{R}^{2}$, we express it as $L(X):=(\operatorname{tr}(P X), \operatorname{tr}(Q X))$ for some $P, Q \in \mathcal{H}_{2}$. Then we have

$$
\begin{aligned}
W_{L}(D) & =\left\{2\left(x^{*} P x, x^{*} Q x\right)-(\operatorname{tr} P, \operatorname{tr} Q): x \in \mathbb{C}^{n}, x^{*} x=1\right\} \\
& =2 W(P, Q)-(\operatorname{tr} P, \operatorname{tr} Q)
\end{aligned}
$$

which is convex and contains the origin. This implies that $W_{L}(D)$ is star-shaped with respect to star-center $L\left(\frac{\operatorname{tr} D}{n} I_{2}\right)$, which is the origin.

Note that the star-shapedness of the L-numerical range for linear maps L : $\mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{\ell}$ with $\ell>3$ remains open in the diagonal case. Moreover, for general cases of $A=\left(A_{1}, \ldots, A_{m}\right)$ where A_{1}, \ldots, A_{m} are not necessarily simultaneously unitarily diagonlizable and $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$ with $m \geq 3$, the star-shapedness of $W_{L}(A)$ is also unclear. However, by applying a result in [4], we can show that $L\left(\frac{\operatorname{tr} A_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} A_{m}}{n} I_{n}\right) \in W_{L}\left(A_{1}, \ldots, A_{m}\right)$ for all linear maps $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$.

Proposition 3.4 ([4], P. 23.). Let $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathcal{H}_{n}, k=1, \ldots, m$. For $0 \leq \epsilon \leq$ 1 , define $A_{k}(\epsilon)$ as

$$
A_{k}(\epsilon)=\left(\begin{array}{cccc}
a_{11}^{(k)} & \epsilon a_{12}^{(k)} & \cdots & \epsilon a_{1 n}^{(k)} \\
\epsilon a_{21}^{(k)} & a_{22}^{(k)} & \cdots & \epsilon a_{2 n}^{(k)} \\
\vdots & \vdots & \ddots & \vdots \\
\epsilon a_{n 1}^{(k)} & \epsilon a_{12}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right), \quad k=1, \ldots, m .
$$

Then $W_{L}\left(A_{1}(\epsilon), \ldots, A_{m}(\epsilon)\right) \subseteq W_{L}\left(A_{1}, \ldots, A_{m}\right)$ for any linear map $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$.
Theorem 3.5. Let $A=\left(A_{1}, \ldots A_{m}\right) \in \mathcal{H}_{n}^{m}$ and $L: \mathcal{H}_{n}^{m} \rightarrow \mathbb{R}^{2}$ be linear. Then $L\left(\frac{\operatorname{tr} A_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} A_{m}}{n} I_{n}\right) \in W_{L}(A)$.
Proof. Define $A_{i}(\epsilon)$ as in Proposition 3.4 and note that $\operatorname{tr} A_{i}(\epsilon)=\operatorname{tr} A_{i}$ for $i=1, \ldots, m$. Hence by Corollary 3.3 and Proposition 3.4, we have

$$
L\left(\frac{\operatorname{tr} A_{1}}{n} I_{n}, \ldots, \frac{\operatorname{tr} A_{m}}{n} I_{n}\right) \in W_{L}\left(A_{1}(0), \ldots, A_{m}(0)\right) \subseteq W_{L}\left(A_{1}, \ldots A_{m}\right)
$$

References

[1] Y.H. Au-Yeung, Y.T. Poon, A remark on the convexity and positive definiteness concerning hermitian matrices, Southeast Bull. Math. 3 (1979) 85-92.
[2] Y.H. Au-Yeung, N.K. Tsing, A conjecture of Marcus on the generalized numerical range, Linear and Multilinear Algebra 14 (1983) 235-239.
[3] Y.H. Au-Yeung, N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983) 215-218.
[4] Y.K. Chan, The L-numerical range: Linear image of joint unitary orbit of hermitian matrices, M.Phil Thesis, The University of Hong Kong, 2002.
[5] W.S. Cheung, N.K. Tsing, The C-numerical range of matrices is starshaped, Linear and Multilinear Algebra 41 (1996) 245-250.
[6] M.T. Chien, H. Nakazato, Strict convexity of the joint c-numerical range, Linear Algebra Appl. 438 (2013) 1305-1321.
[7] M.D. Choi, C.K. Li, Y.T. Poon, Some convexity features associated with unitary orbits, Canad. J. Math. 55 (2003) 91-111.
[8] K. Fan, G. Pall, Imbedding conditions for hermitian and normal matrices, Canad. J. Math. 9 (1957) 298-304.
[9] M. Goldberg, E.G. Straus, Elementary inclusion relations for generalized numerical range, Linear Algebra Appl. 18 (1977) 1-24.
[10] K.E. Gustafson, D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1996.
[11] E. Gutkin, E.A. Jonckheere, M. Karow, Convexity of the joint numerical range: Topological and differential geometric viewpoints, Linear Algebra Appl. 376 (2004) 143-171.
[12] F. Hausdorff, Das Wertvorrat einer Bilinearform, Math. Zeit. 3 (1919) 314316.
[13] A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[14] C.K. Li, Y.T. Poon, Convexity of the joint numerical range, SIAM J. Matrix. Anal. Appl. 21 (2000) 668-678.
[15] C.K. Li, Y.T. Poon, Generalized numerical ranges and quantum error correction, J. Operator Theory 66 (2011) 335-351.
[16] Y.T. Poon, Another proof of a result of Westwick, Linear Algebra Appl. 9 (1980) 35-37.
[17] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Zeit. 2 (1918) 187-197.
[18] N.K. Tsing, On the shape of the generalized numerical ranges, Linear and Multilinear Algebra 10 (1981) 173-182.

[^0]: *panlau@hku.hk
 †ntw@maths.hku.hk
 \ddagger nktsing@hku.hk

