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Abstract

Let H, be the set of all n x n Hermitian matrices and H}' be the set of all
m-tuples of n x n Hermitian matrices. For A = (44, ..., A;,) € H and for any
linear map L : H™ — R, we define the L-numerical range of A by

WL(A) := {L(U* AU, ..., U*A,U) : U € C™" U*U = I,,}.

In this paper, we prove that if £ < 3, n > ¢ and A,..., A,, are simultane-
ously unitarily diagonalizable, then Wi, (A) is star-shaped with star center at
L, . 2ang ),

n
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1 Introduction

Let C™"*"™ denote the set of all n x n complex matrices, and A € C"*™. The
(classical) numerical range of A is defined by

W(A) ={a"Az: 2z € C", 2"z = 1}.

The properties of W(A) were studied extensively in the last few decades and
many nice results were obtained; see [10, 13]. The most beautiful result is prob-
ably the Toeplitz-Hausdorff Theorem which affirmed the convexity of W(A);
see [12, 17]. The generalizations of W (A) remain an active research area in the
field.
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For any A € C™"*" write A = A;+1iAs where A1, A; are Hermitian matrices.
Then by regarding C as R?, one can rewrite W (A) as

W(A) :={(z* A1z, 2" Asx) : x € C™, x*z = 1}.

This expression motivates naturally the generalization of the numerical range to
the joint numerical range, which is defined as follows. Let H,, be the set of all
n x n Hermitian matrices and #H)' be the set of all m-tuples of n x n Hermitian
matrices. The joint numerical range of A = (A4, ..., 4;,) € H? is defined as

W(A) =W(Ay, ..., Ap) = {(z" A1z, ..., 2" Apx) : x € C" %z = 1}.

It has been shown that for m < 3 and n > m, the joint numerical range is always
convex [1]. This result generalizes the Toeplitz-Hausdorff Theorem. However,
the convexity of the joint numerical range fails to hold in general for m > 3, see
[1, 11, 14].

When a new generalization of numerical range is introduced, people are
always interested in its convexity. Unfortunately, this nice property fails to hold
in some generalizations. However, another property, namely star-shapedness,
holds in some generalizations; see [5, 18]. Therefore, the star-shapedness is
the next consideration when the generalized numerical ranges fail to be convex.
A set M is called star-shaped with respect to a star-center zo € M if for any
0<a<landz e M, wehave ax+(1—a)zo € M. In [15], Li and Poon showed
that for a given m, the joint numerical range W (A1, ..., A,,) is star-shaped if n
is sufficiently large.

Let U, be the set of all n X n unitary matrices. For C € H, and A =
(A4, ..., Ay) € H, the joint C-numerical range of A is defined by

We(A) = {(tr(CU* AU, ..., tx(CU* A, U) - U € U},

where tr(-) is the trace function. When C'is the diagonal matrix with diagonal
elements 1,0, ...,0, then W (A) reduces to W(A). Hence the joint C-numerical
range is a generalization of the joint numerical range. In [3], Au-Yeung and
Tsing generalized the convexity result of the joint numerical range to the joint
C-numerical range by showing that W (A) is always convex if m < 3 and n > m.
However W¢(A) fails to be convex in general if m > 3. One may consult [6]
and [7] for the study of the convexity of Wx(A). The star-shapedness of W (A)
remains unclear for m > 3.
For A = (A44,...,A,) € H, we define the joint unitary orbit of A by

Un(A) ={(U" AU, ..U AU) : U €Uy}
For C € H,,, we consider the linear map L¢ : ‘H]"" — R™ defined by
Lo(Xq, .y Xm) = (tr(CXy), ..., tr(CX,n)).

Then the joint C-numerical range of A is the linear image of U,,(A) under L¢.
Inspired by this alternative expression, we consider the following generalized



numerical range of A € H™. For A = (A4;,...,A,) € H and linear map
L:H™ — R, we define

Wi (A) = LUy (A)) = {LU AU, .., U* A U) - U € Uy),

and call it the L-numerical range of A, due to [4]. Because L¢ is a special case of
general linear maps L, the L-numerical range generalizes the joint C-numerical
range and hence the classical numerical range.

In this paper, We shall study in Section two an inclusion relation of the
L-numerical range of m-tuples of simultaneously unitarily diagonalizable Her-
mitian matrices and linear maps L : ‘H]" — RY with ¢ = 2,3. This inclusion
relation will be applied in Section three to show that the L-numerical ranges of
A under our consideration are star-shaped.

2 An Inclusion Relation for L-numerical Ranges

The following results follow easily from the the definition of the L-numerical
range.

Lemma 2.1. Let (A1,...,A) € H™ and L : H* — R’ be linear. Then the
followings hold:

(i) Wr(a(Ay,...,An) + B(In, ... 1)) = aWp(Ax, ..., Ap) + BL(L,, ..., I,) if
a, B eR;

(ii) Wr(U*AU, ..., U*A,,U) = Wi (Ay,...,Ap) for all unitary U.

In the following we shall consider those A, ..., A,, which are simultaneously
unitarily diagonalizable, i.e., there exists U € U,, such that U*A U, ...,U* A, U
are all diagonal. Hence by Lemma 2.1, we assume without loss of generality that
Ay, ..., Ay, are (real) diagonal matrices. For d = (dy,...,d,)T € R™, we denote
by diag(d) the n x n diagonal matrix with diagonal elements d, ..., d,. We first
introduce a special class of matrices which is useful in studying the generalized
numerical range; see [9, 16, 18].

An n x n real matrix P = (p;;) is called a pinching matrix if for some
1<s<t<nand 0<a<l,

a, if (¢,7) = (s,8) or (t,t),
) 1—a, if(i,j)=(st)or (ts),
pij = 1, if i = j # s,t,
0 otherwise.

Definition 2.2. Assume D = (diag(d™), ..., diag(d™)), D = (diag(dV), ...,
diag(d™)) where d, ..., d™ dV . .d™ e R™. We say D < D if there exist
a finite number of pinching matrices Py, ..., Pi, such that d® = PPy Pd®
foralli=1,...m.

The following inclusion relation is the main result in this section.



Theorem 2.3. Let D, D € Hy' and n > 2. If D < D, then for any linear map
L:H™ — R3, we have Wr(D) C W (D).

To prove Theorem 2.3, we need some lemmas. For 0,¢ € R, let Ty 4 € U,
be defined by
cosf sinfeV 1% 0
Tyo = | —sinf cosfeV—1? 0
0 0 I, o

Lemma 2.4. Let D = (D1, ...,Dy,) € H be an m-tuple of diagonal matrices.
Then for any linear map L : H™ — R3 and U € U, the set of points

Er(D,U) = {L(U*Ty ,D1Tp U, ..., U Ty s Dy Ty U) : 0 € [0, 7], ¢ € [0,27]}
forms an ellipsoid in R3.

Proof. Note that for any L : H™ — R3, we can always express L as

L(X1, ... X <tr (ZPX) Jtr (22 Qz‘Xi> tr (i RiXi>>

for some suitable P;, Q;, R; € H,,i=1,....,m. For U € Z/In, we write UP,U* =
(05). UQU* = (6y). URU” = (1) and D, = ding(d, ...a"), i = 1.,
By direct computations, the first coordlnate of points in EL (D, U) is

<§: PiU*T;@DiTMU)

(Z DiT97¢UPiU*Tg‘7¢>
1 m: m n
§Z d() pn +p +ZZdl)p§j

=1 j=3
L1 <& ;
5 Z d(Z 1) - pé;)) cos 26
+ Z(dgi) - déi))Re(pgl)e‘/jw) sin 26.
i=1

Similarly for the second and the third coordinates of points in Er(D,U). Note
that for aj,as,bi,ba,c1,¢0 € R and ag,bs,c3 € C, the points (ay,b1,¢1) +
(ag, ba, c2) cos 20 + Re(age‘/j‘j’7 byeV 19, c;:,e\/jld’) sin 20 form an ellipsoid in R3
when 6, ¢ run through [0,7] and [0, 27] respectively. Hence Ep(D,U) is an
ellipsoid in R3. O

Note that Er(D,U) C Wr(D) for any U € U,



Lemma 2.5. Let D € H] be an m-tuple of diagonal matrices with n > 2.
Then for any linear map L : H™ — R3, there exists V € U,, such that Er(D,V)
defined in Lemma 2.4 degenerates (i.e., Er(D,V) is contained in a plane in
R3).

Proof. Following the notations in Lemma 2.4 and its proof, we let a; = dg’) —
dg) fori =1,..,mand P' = YI" ;P € H,. Since n > 2, by generalized
interlacing inequalities for eigenvalues of Hermitian matrices (see [8]), there
exist V € U,, and a € R such that VP'V* has al, as leading 2 x 2 principal
submatrix. For any matrix M, let M;; denote its (¢,j) entry. Then by taking
U =V in the proof of Lemma 2.4, the first coordinate of points in E(D,V) is
a + bcos 20 + csin 20 where

a = % Z(dgl) + dg)) pll + Z Zd(Z Dii

i=1 i=1 j=3

= %iai [(VPV*)11 — (VP V")a0]

i=1

b)) 5l E)),

—Re VPV 216 ) 0.

Since the first coordinate of points in Ey (D, V) is constant for 6 € [0, 7] and
¢ € 10,27], Er(D,V) degenerates. O
Proof of Theorem 2.3. Let D = (D1, ..., Dy,) = (diag(dM), ..., diag(d™)) and
D = (Dy,...,Dy,) = (diag(dV), ..., diag(d™)) where dV), ... d™) dM ... ™)
R™. We may further assume without loss of generality that d®) = Pd® for all
i=1,...,mand P = (1 ika 1 ;a) @ I,,_o with 0 < a < 1. Then we have

D; = T oDiTo0 + (1 — a)T; oDiTs 0, i=1,..,m.

For any U € U,, we have L(U*DU) € conv(E(D,U)) where conv(-) denotes
the convex hull. By path-connectedness of U,,, there exists a continuous function



f:[0,1] = U, such that f(0) = U and f(1) =V where V is defined in Lemma
2.5 and hence E(D, f(1)) degenerates. By continuity, there exists ¢ € [0, 1] such
that L(U*DU) € E(D, f(t)) C Wr(D). O

Using similar techniques, one can prove that Theorem 2.3 stills holds for all
linear maps L : H™ — R? with n > 2. However, the following example shows
that the inclusion relation in Theorem 2.3 fails to hold if L : H™ — R’ is linear
with ¢ > 3.

Example 2.6. Let n > 2, d = (1,..,0)7, d = (1,3,0,...,00T € R" and

let Oy, be the k x k zero matriz. Consider D = (diag(d), Oy, ...,O,), D =

(diag(d), Oy, ...,Op) € H and L : H* — R with £ > 4 defined by
L(Xl7 7Xm) = (tI‘(PX1>,tI‘(QX1>,tI‘(RX1>,tI‘(SX1>,O, ,0)

1 0 0
P = (0 1) ¥ On—27 Q = (—Z 0) D On—27

1 0 0 1
re( %)eons s=(° Doors

Then we have D < D and (1,0, ...,0) € Wi(D), but (1,0,...,0) ¢ W(D).

where

3 Star-shapedness of the L-numerical range

The L-numerical range may fail to be convex for linear maps L : H" — R’ with
¢ > 2 even when Ay, ..., A,, € H, are simultaneously unitarily diagonalizable;
see [2]. However, we shall show in this section that for n > 2, Wr(A44,..., Ap)
is always star-shaped for all linear maps L : H™ — R and simultaneously
unitarily diagonalizable A1, ..., A,, € H,. The following result is the essential
element in our proof.

Proposition 3.1. [18] Let P, be the set of all finite products of n x n pinching
matrices. Then for 0 < a <1, al, + (1 —«)J, is in the closure of P,, where J,
is the n X n matriz with all entries equal 1/n.

Note that for any A € H*, U,,(A) is compact. Hence W, (A) is compact for
all linear maps L.

Theorem 3.2. Let D = (D, ..., Dy,) € H]? be an m-tuple of diagonal matrices
with n > 2. Then for any linear map L : H™ — R3 |, Wr(D) is star-shaped with
respect to star-center L(%In, ey %In).

Proof. By Lemma 2.1, we may assume without loss of generality that trD; =0
for i = 1,...,m; otherwise we replace D; by D; — “TDT‘I,Z. Let D; = diag(d®)
where d¥ € R", i = 1,....,m. For any 0 < o < 1, we have ad®? = [al, +
(1 = )J,]d®. Then for any U € U, by Proposition 3.1, Theorem 2.3 and the
compactness of W, (D), we have aL(U*DU) € Wr(aD) C Wr(D) = Wr(D)
where M denotes the closure of M. O




For alinear map L : H}" — R?2, by regarding it as a projection of some linear
map L : H™ — R3, we deduce the following corollary easily.

Corollary 3.3. Let D = (Dy, ..., D,,) € HI™ be an m-tuple of diagonal matrices
with n > 2. Then for any linear map L : H™ — R?> |, Wr(D) is star-shaped

with respect to star-center L(%In, ey “2’" I,).

Proof. We only need to consider the case n = 2. We may assume without loss of
generality that m = 1 and D = diag(1, —1). For any linear map L : Hy — R2,
we express it as L(X) := (tr(PX), tr(QX)) for some P,Q € Hs. Then we have

Wr(D) = {2(z" Pz, 2" Qx) — (trP,trQ) : . € C",z"z = 1}
= QW(P’ Q) - (tI‘P, tI‘Q),

which is convex and contains the origin. This implies that Wy, (D) is star-shaped

with respect to star-center L (£1,), which is the origin. O

Note that the star-shapedness of the L-numerical range for linear maps L :
H™ — RY with ¢ > 3 remains open in the diagonal case. Moreover, for general
cases of A = (44,...,A,,) where Ay, ..., A, are not necessarily simultaneously
unitarily diagonlizable and L : H™ — R? with m > 3, the star-shapedness of
W (A) is also unclear. However, by applying a result in [4], we can show that
L(eday, . BAn Yy e Wi (AL, ..., Ay,) for all linear maps L : H7* — R2.

n n

Proposition 3.4 ([4], P. 23.). Let Ay = (agf)) EHn, k=1,...m. For0<e<
1, define Ag(€) as

(k) (k) (k)

aj; €ty o €4y,
(k) (k) (k)
€ea a €a
A= |y
eaékl) eagg) _ aSﬁZ

Then Wi,(A1(€), ..., Am(€)) € Wr(A1, ..., Ap) for any linear map L : H™ — R2.

Theorem 3.5. Let A = (A1,..A,) € H™ and L : H™ — R? be linear. Then
L(EAy,, .. M Au] ) e Wi(A).

n

Proof. Define A;(¢) as in Proposition 3.4 and note that trd;(e) = trA; for
i =1,...,m. Hence by Corollary 3.3 and Proposition 3.4, we have

trA tr A,
L( rnlln,..., rn In> € WL(A1(0), ..., An(0)) € Wi(Ay, ... Am).
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