Convexity and Star-shapedness of Real Linear Images of Special Orthogonal Orbits

Pan-Shun Lau* ${ }^{* 1}$, Tuen-Wai $\mathrm{Ng}^{\dagger 1}$, and Nam-Kiu Tsing ${ }^{\ddagger 1}$
${ }^{1}$ Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

August 22, 2016

Abstract

Let $A \in \mathbb{R}^{n \times n}$ and $\mathrm{SO}_{n}:=\left\{U \in \mathbb{R}^{n \times n}: U U^{t}=I_{n}\right.$, $\left.\operatorname{det} U>0\right\}$ be the set of $n \times n$ special orthogonal matrices. Define the (real) special orthogonal orbit of A by $$
O(A):=\left\{U A V: U, V \in \mathrm{SO}_{n}\right\}
$$

In this paper, we show that the linear image of $O(A)$ is star-shaped with respect to the origin for arbitrary linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ if $n \geq 2^{\ell-1}$. In particular, for linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$ and when A has distinct singular values, we study $B \in O(A)$ such that $L(B)$ is a boundary point of $L(O(A))$. This gives an alternative proof of a result by Li and Tam on the convexity of $L(O(A)$) for linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$.

AMS Classification: 15A04, 15A18. Keywords: linear transformation, special orthogonal orbits, convexity, star-shapedness

1 Introduction

Let $\mathcal{O}_{n}:=\left\{U \in \mathbb{R}^{n \times n}: U^{t} U=U U^{t}=I_{n}\right\}$ and $\mathrm{SO}_{n}:=\left\{U \in \mathcal{O}_{n}: \operatorname{det} U>0\right\}$ be the sets of $n \times n$ orthogonal matrices and $n \times n$ special orthogonal matrices respectively. For any $A \in \mathbb{R}^{n \times n}$, we define the special orthogonal orbit of A by

$$
O(A):=\left\{U A V: U, V \in \mathrm{SO}_{n}\right\}
$$

It is clear that every element in $O(A)$ has the same collection of singular values and the same sign of determinant. In [9], Thompson studied the set of diagonals of the matrices in $O(A)$, and in [8], Miranda and Thompson studied the

[^0]characterizations of extreme values of $L(O(A))$ where $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a linear map.

A set S is said to be star-shaped with respect to $c \in S$ if for all $0 \leq \alpha \leq 1$ and $x \in S, \alpha x+(1-\alpha) c \in S$. The c is called a star center of S. In this paper, we shall study the star-shapedness of images of $O(A)$ under arbitrary linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$.

In fact the study of linear images of matrix orbits is a popular topic. If A, C are $n \times n$ complex matrices and \mathcal{U}_{n} denotes the group of $n \times n$ (complex) unitary matrices, then the (classical) numerical range of A, denoted by $W(A)$, and the C-numerical range of A, denoted by $W_{C}(A)$, are simply the images of the unitary orbit of A, denoted by

$$
\mathcal{U}_{n}(A):=\left\{U^{*} A U: U \in \mathcal{U}_{n}\right\},
$$

under the linear maps

$$
X \longmapsto \operatorname{tr}\left(E_{1} X\right) \quad \text { and } \quad X \longmapsto \operatorname{tr}(C X)
$$

respectively, where E_{1} is the diagonal matrix with diagonal entries $1,0, \ldots, 0$. It has been proved that $W(A)$ is always convex and $W_{C}(A)$ is always star-shaped (see [1], [2], [10]). Many results on the convexity and the star-shapedness of other generalized numerical ranges, which can be expressed as some particular linear images of $\mathcal{U}_{n}(A)$, have been obtained (e.g., see [1], [3], [4], [5], [6], [11], [12]).

Our paper is organized as follows. In Section 2, we study an inclusion relation of $L(O(A))$ with $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ and $n \geq 2^{\ell-1}$. We then apply the inclusion relation to show that $L(O(A))$ is star-shaped for general A and $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ where $n \geq 2^{\ell-1}$. In particular, the star-shapedness holds for $L(O(A))$ with $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$ and $n \geq 3$. Moreover, we shall extend our results to linear images of the following joint (real) orthogonal orbits,

$$
\begin{aligned}
& \boldsymbol{O}_{1}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(A_{1} V, \ldots, A_{m} V\right): V \in G\right\}, \\
& \boldsymbol{O}_{2}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(U A_{1}, \ldots, U A_{m}\right): U \in G\right\}, \\
& \boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(U A_{1} V, \ldots, U A_{m} V\right): U, V \in G\right\},
\end{aligned}
$$

where $G=\mathcal{O}_{n}$ or SO_{n}. In Section 3, we study boundary points of $L(O(A))$ with $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$. When $A \in \mathbb{R}^{n \times n}$ has distinct singular values, we shall discuss the conditions on $U, V \in \mathrm{SO}_{n}$ under which $L(U A V)$ will be a boundary point of $L(O(A))$. Then we show that the intersection of $L(O(A))$ and any of its supporting lines is path-connected. Combining the result in Section 2, convexity of $L(O(A))$ for $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$ then follows. This result was proved by Li and Tam [7] with a different approach. We shall also discuss the convexity of linear images of joint orthogonal orbits.

2 Star-shapedness of linear image of $O(A)$

The following is the first main theorem in this section.

Theorem 2.1. Let $\ell \geq 3$. For any $A \in \mathbb{R}^{n \times n}$ and any linear map $L: \mathbb{R}^{n \times n} \rightarrow$ \mathbb{R}^{ℓ} with $n \geq 2^{\ell-1}, L(O(A))$ is star-shaped with respect to the origin.

We need some lemmas to prove Theorem 2.1. Note that any linear map $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ can be expressed as

$$
L(X)=\left(\operatorname{tr}\left(P_{1} X\right), \ldots, \operatorname{tr}\left(P_{\ell} X\right)\right)^{t}
$$

for some $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{n \times n}$. For convenience, for $M \subseteq \mathbb{R}^{n \times n}$ and any $P_{1}, \ldots, P_{\ell} \in$ $\mathbb{R}^{n \times n}$, we define

$$
\mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; M\right):=\left\{\left(\operatorname{tr}\left(P_{1} X\right), \ldots, \operatorname{tr}\left(P_{\ell} X\right)\right)^{t}: X \in M\right\} .
$$

For $A, P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{n \times n}$, we let $\mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$ be the set containing $\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right)$ where $P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} \in \mathbb{R}^{n \times n}$ and $\mathcal{L}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} ; O(A)\right) \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; O(A)\right)$. This definition is motivated by Cheung and Tsing [1]. Below are some basic properties of $\mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$.

Lemma 2.2. Let $A \in \mathbb{R}^{n \times n}$. For any $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{n \times n}$, the followings hold:
(a) $\mathcal{S}_{X A Y}\left(U P_{1} V, \ldots, U P_{\ell} V\right)=\mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$ for any $U, V, X, Y \in \mathrm{SO}_{n}$;
(b) $\left(U P_{1} V, \ldots, U P_{\ell} V\right) \in \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$, for any $U, V \in \mathrm{SO}_{n}$;
(c) $\mathcal{S}_{A}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \subseteq \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$ for any $\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$;
(d) $\mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; O(A)\right)=\left\{\left(\operatorname{tr}\left(P_{1}^{\prime} A\right), \ldots, \operatorname{tr}\left(P_{\ell}^{\prime} A\right)\right)^{t}:\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)\right\}$.

Proof. (a), (b) and (c) are trivial. For (d), " \subseteq " follows from (b) and " \supseteq " follows from the definition of $\mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$.

Lemma 2.3. The following statements are equivalent (hence if one of these statements holds then the other three must also hold):
(a) $L(O(A))$ is star-shaped with respect to the origin for any $A \in \mathbb{R}^{n \times n}$ and any linear map $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$;
(b) $\mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$ is star-shaped with respect to $\left(0_{n}, \ldots, 0_{n}\right)$ for any $A \in \mathbb{R}^{n \times n}$ and any $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{n \times n}$, where 0_{n} is the $n \times n$ zero matrix;
(c) $L\left(\mathrm{SO}_{n}\right)$ is star-shaped with respect to the origin for any linear map L : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell} ;$
(d) $\mathcal{S}_{I_{n}}\left(P_{1}, \ldots, P_{\ell}\right)$ is star-shaped with respect to $\left(0_{n}, \ldots, 0_{n}\right)$ for any $P_{1}, \ldots, P_{\ell} \in$ $\mathbb{R}^{n \times n}$.

Proof. $((\mathrm{a}) \Rightarrow(\mathrm{b}))$ For any $\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right), U, V \in \mathrm{SO}_{n}$ and $0 \leq \alpha \leq$ 1, we have

$$
\left(\operatorname{tr}\left(\alpha P_{1}^{\prime} U A V\right), \ldots, \operatorname{tr}\left(\alpha P_{\ell}^{\prime} U A V\right)\right)^{t} \in \mathcal{L}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} ; O(A)\right) \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; O(A)\right)
$$

Hence $\alpha\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}_{A}\left(P_{1}, \ldots, P_{\ell}\right)$.
$((\mathrm{b}) \Rightarrow(\mathrm{a}))$ Apply Lemma 2.2 (b).
$((\mathrm{a}) \Rightarrow(\mathrm{c}))$ If we take $A=I_{n}$, then $O(A)=\mathrm{SO}_{n}$.
$((\mathrm{c}) \Rightarrow(\mathrm{a}))$ Let $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ be linear and $A \in \mathbb{R}^{n \times n}$. For any $U \in \mathrm{SO}_{n}$, define linear map $L_{U A}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ by

$$
L_{U A}(X)=L(U A X)
$$

For any $U, V \in \mathrm{SO}_{n}$ and $0 \leq \alpha \leq 1$, since $L_{U A}\left(\mathrm{SO}_{n}\right)$ is star-shaped with respect to the origin, there exists $V^{\prime} \in \mathrm{SO}_{n}$ such that

$$
\alpha L(U A V)=\alpha L_{U A}(V)=L_{U A}\left(V^{\prime}\right)=L\left(U A V^{\prime}\right) \in L(O(A)) .
$$

$((\mathrm{c}) \Leftrightarrow(\mathrm{d}))$ Apply similar arguments as those in $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$.
To prove Theorem 2.1, we apply Lemma 2.3 and show the star-shapedness of $\mathcal{S}_{I_{n}}\left(P_{1}, \ldots, P_{\ell}\right)$ for any $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{n \times n}$ with $n \geq 2^{\ell-1}$. For simplicity, we denote $\mathcal{S}_{I_{n}}\left(P_{1}, \ldots, P_{\ell}\right)$ by $\mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$. In fact, by the following lemma, we may focus only on the case of $n=2^{\ell-1}$.

Lemma 2.4. If $\mathcal{S}\left(\hat{P}_{1}, \ldots, \hat{P}_{\ell}\right)$ is star-shaped with respect to the origin for all $\hat{P}_{1}, \ldots, \hat{P}_{\ell} \in \mathbb{R}^{n \times n}$, then for all $m>n$ and for all $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{m \times m}, \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$ is star-shaped with respect to the origin.
Proof. Let $m=n+k$ where k is a positive integer. For any $\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in$ $\mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$, we write

$$
P_{i}^{\prime}=\left[\begin{array}{ll}
P_{i 1}^{\prime} & P_{i 2}^{\prime} \\
P_{i 3}^{\prime} & P_{i 4}^{\prime}
\end{array}\right]
$$

where $P_{i 1}^{\prime} \in \mathbb{R}^{n \times n}$ and $P_{i 4}^{\prime} \in \mathbb{R}^{k \times k}$. We shall show that $\left(P_{1}^{\prime}(\epsilon), \ldots, P_{\ell}^{\prime}(\epsilon)\right) \in$ $\mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$ where $P_{i}^{\prime}(\epsilon)=\left(\epsilon I_{n} \oplus I_{k}\right) P_{i}^{\prime}$ and $0 \leq \epsilon \leq 1$. For any $U \in \mathrm{SO}_{m}$, we write

$$
U=\left[\begin{array}{ll}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right]
$$

where $U_{1} \in \mathbb{R}^{n \times n}$ and $U_{4} \in \mathbb{R}^{k \times k}$. Then for $0 \leq \epsilon \leq 1$, by the hypothesis of the lemma, there exists $V \in \mathrm{SO}_{n}$ such that

$$
\begin{aligned}
&\left(\operatorname{tr}\left(P_{1}^{\prime}(\epsilon) U\right), \ldots,\right. \\
&=\left.\operatorname{tr}\left(P_{\ell}^{\prime}(\epsilon) U\right)\right)^{t} \\
&= \operatorname{tr}\left(P_{11}^{\prime} U_{1}+\right. \\
&\left.\left.P_{12}^{\prime} U_{3}\right), \ldots, \operatorname{tr}\left(P_{\ell 1}^{\prime} U_{1}+P_{\ell 2}^{\prime} U_{3}\right)\right)^{t} \\
& \quad+\left(\operatorname{tr}\left(P_{13}^{\prime} U_{2}+P_{14}^{\prime} U_{4}\right), \ldots, \operatorname{tr}\left(P_{\ell 3}^{\prime} U_{2}+P_{\ell 4}^{\prime} U_{4}\right)\right)^{t} \\
&= \operatorname{tr}\left[\left(P_{11}^{\prime} U_{1}+\right.\right. \\
&\left.\left.\left.P_{12}^{\prime} U_{3}\right) V\right], \ldots, \operatorname{tr}\left[\left(P_{\ell 1}^{\prime} U_{1}+P_{\ell 2}^{\prime} U_{3}\right) V\right]\right)^{t} \\
& \quad+\left(\operatorname{tr}\left(P_{13}^{\prime} U_{2}+P_{14}^{\prime} U_{4}\right), \ldots, \operatorname{tr}\left(P_{\ell 3}^{\prime} U_{2}+P_{\ell 4}^{\prime} U_{4}\right)\right)^{t} \\
&=\left(\operatorname{tr}\left[P_{1}^{\prime} U\left(V \oplus I_{k}\right)\right], \ldots, \operatorname{tr}\left[P_{\ell}^{\prime} U\left(V \oplus I_{k}\right)\right]\right)^{t} \\
& \in \mathcal{L}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} ; \mathrm{SO}_{m}\right) \\
& \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{m}\right) .
\end{aligned}
$$

Since this holds for all $U \in \mathrm{SO}_{m}$, we have $\left(P_{1}^{\prime}(\epsilon), \ldots, P_{\ell}^{\prime}(\epsilon)\right) \in \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$. Note that the preceding result also holds if we multiply arbitrary n rows of P_{i}^{\prime} by $0 \leq \epsilon \leq 1$. We re-apply the result by considering all n-combinations of rows to obtain $\epsilon^{N}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$, where $N=\frac{m!}{n!k!}$. For any $0 \leq \alpha \leq 1$, we put $\epsilon=\sqrt[N]{\alpha}$ to obtain $\alpha\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$.

We now consider the following recursively defined matrices. Let

$$
R\left(\theta_{1}\right)=\left[\begin{array}{cc}
\cos \theta_{1} & \sin \theta_{1} \\
-\sin \theta_{1} & \cos \theta_{1}
\end{array}\right]
$$

and

$$
R\left(\theta_{1}, \ldots, \theta_{k}\right)=\left[\begin{array}{cc}
\cos \theta_{k} I_{N} & \sin \theta_{k} R\left(\theta_{1}, \ldots, \theta_{k-1}\right) \\
-\sin \theta_{k} R\left(\theta_{1}, \ldots, \theta_{k-1}\right)^{t} & \cos \theta_{k} I_{N}
\end{array}\right]
$$

where $N=2^{k-1}$. Note that $R\left(\theta_{1}, \ldots, \theta_{k}\right) \in \mathrm{SO}_{2^{k}}$.
Lemma 2.5. Let $\ell \geq 2$ and $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{N \times N}$ where $N=2^{\ell-1}$. Then for any $U, V \in \mathrm{SO}_{N}$, the set

$$
\begin{aligned}
& E(U, V):= \\
& \left\{\left(\operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{\ell-1}\right) U P_{1} V\right), \ldots, \operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{\ell-1}\right) U P_{\ell} V\right)\right)^{t}: \theta_{1}, \ldots, \theta_{\ell-1} \in[0,2 \pi]\right\}
\end{aligned}
$$

is an ellipsoid in \mathbb{R}^{ℓ} centered at the origin and is a subset of $\mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{N}\right)$. Proof. We first show that for any $A \in \mathbb{R}^{N \times N}$ where $N=2^{\ell-1}$,

$$
\operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{\ell-1}\right) A\right)=\left[\begin{array}{lll}
a_{1} & \cdots & a_{\ell}
\end{array}\right]\left[\begin{array}{c}
\cos \theta_{\ell-1} \\
\sin \theta_{\ell-1} \cos \theta_{\ell-2} \\
\sin \theta_{\ell-1} \sin \theta_{\ell-2} \cos \theta_{\ell-3} \\
\vdots \\
\sin \theta_{\ell-1} \sin \theta_{\ell-2} \cdots \sin \theta_{1}
\end{array}\right]
$$

for some $a_{1}, \ldots, a_{\ell} \in \mathbb{R}$ by induction on ℓ. The case for $\ell=2$ is trivial. Now assume it is true for $\ell \leq m$ where $m \geq 2$ and consider $A \in \mathbb{R}^{2 M \times 2 M}$ where $M=2^{m-1}$. We write

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]
$$

where $A_{i} \in \mathbb{R}^{M \times M}, i=1, \ldots, 4$. Then

$$
\operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{m}\right) A\right)=\cos \theta_{m} \operatorname{tr}\left(A_{1}+A_{4}\right)+\sin \theta_{m} \operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{m-1}\right)\left(A_{3}-A_{2}^{t}\right)\right)
$$

By induction assumption on $\operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{m-1}\right)\left(A_{3}-A_{2}^{t}\right)\right), \operatorname{tr}\left(R\left(\theta_{1}, \ldots, \theta_{m}\right) A\right)$ is in the desired form. Hence we have

$$
E(U, V)=\left\{T\left[\begin{array}{c}
\cos \theta_{\ell-1} \\
\sin \theta_{\ell-1} \cos \theta_{\ell-2} \\
\sin \theta_{\ell-1} \sin \theta_{\ell-2} \cos \theta_{\ell-3} \\
\vdots \\
\sin \theta_{\ell-1} \sin \theta_{\ell-2} \cdots \sin \theta_{1}
\end{array}\right]: \theta_{1}, \ldots, \theta_{\ell-1} \in[0,2 \pi]\right\}
$$

for some $T \in \mathbb{R}^{\ell \times \ell}$ and hence $E(U, V)$ is an ellipsoid in \mathbb{R}^{ℓ} centered at the origin. As $R\left(\theta_{1}, \ldots, \theta_{k}\right)$ is a special orthogonal matrix, $E(U, V) \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{N}\right)$.

Lemma 2.6. Let $\ell \geq 3$. For any $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{N \times N}$ where $N=2^{\ell-1}$, there exist $U, V \in \mathrm{SO}_{N}$ such that $E(U, V)$ defined in Lemma 2.5 degenerates (i.e., $E(U, V)$ is contained in an affine hyperplane in $\left.\mathbb{R}^{\ell}\right)$.

Proof. From the proof of Lemma 2.5, we see that if there exist $U, V \in \mathrm{SO}_{N}$ such that

$$
U P_{1} V=\left[\begin{array}{ll}
P_{1}^{(1)} & P_{2}^{(1)} \\
P_{3}^{(1)} & P_{4}^{(1)}
\end{array}\right]
$$

where $P_{i}^{(1)} \in \mathbb{R}^{\frac{N}{2} \times \frac{N}{2}}, i=1, \ldots, 4, \operatorname{tr}\left(P_{1}^{(1)}+P_{4}^{(1)}\right)=0$ and $P_{2}^{(1)}=P_{3}^{(1)}=0$, then the first coordinate of $E(U, V)$ is always 0 and hence $E(U, V)$ degenerates. Let $U^{\prime}, V^{\prime} \in \mathrm{SO}_{N}$ be such that $U^{\prime} P_{1} V^{\prime}=\operatorname{diag}\left(p_{1}, \ldots, p_{N}\right)$. Then

$$
U=U^{\prime}, \quad V=V^{\prime}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right)
$$

will give the desired $U P_{1} V$.
Note that, by considering $P_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, then for any $U, V \in \mathrm{SO}_{2}$, the ellipse $E(U, V)$ defined in Lemma 2.5 is always non-degenerate. Hence Lemma 2.6 and Theorem 2.1 fail to hold for $\ell=2$.

We are now ready to prove our first main result.
Proof of Theorem 2.1. By Lemma 2.3 and Lemma 2.4, it suffices to show that for any $P_{1}, \ldots, P_{\ell} \in \mathbb{R}^{N \times N}$ with $N=2^{\ell-1}, \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$ is star-shaped with respect to $\left(0_{N}, \ldots, 0_{N}\right)$. Let $\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)$ and $0 \leq \alpha \leq 1$. For any $U \in \mathrm{SO}_{N}$, we define $E\left(I_{N}, U\right)$ as in Lemma 2.5. If $\alpha\left(\operatorname{tr}\left(P_{1}^{\prime} U\right), \ldots, \operatorname{tr}\left(P_{1}^{\prime} U\right)\right)^{t} \in$ $E\left(I_{N}, U\right)$, then we have

$$
\alpha\left(\operatorname{tr}\left(P_{1}^{\prime} U\right), \ldots, \operatorname{tr}\left(P_{1}^{\prime} U\right)\right)^{t} \in \mathcal{L}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} ; \mathrm{SO}_{N}\right) \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{N}\right)
$$

Assume now $\alpha\left(\operatorname{tr}\left(P_{1}^{\prime} U\right), \ldots, \operatorname{tr}\left(P_{1}^{\prime} U\right)\right)^{t} \notin E\left(I_{N}, U\right)$. As the center of $E\left(I_{N}, U\right)$ is the origin, we have $\alpha\left(\operatorname{tr}\left(P_{1}^{\prime} U\right), \ldots, \operatorname{tr}\left(P_{1}^{\prime} U\right)\right)^{t}$ lies inside the ellipsoid $E\left(I_{N}, U\right)$. As $\mathrm{SO}_{N} \times \mathrm{SO}_{N}$ is path connected, consider a continuous function $f:[0,1] \rightarrow$ $\mathrm{SO}_{N} \times \mathrm{SO}_{N}$ with $f(0)=\left(I_{N}, U\right)$ and $f(1)=\left(U^{\prime}, V^{\prime}\right)$ where $\left(U^{\prime}, V^{\prime}\right)$ are defined in Lemma 2.6. Then by continuity of f, there exists $s \in[0,1]$ such that $\alpha\left(\operatorname{tr}\left(P_{1}^{\prime} U\right), \ldots, \operatorname{tr}\left(P_{1}^{\prime} U\right)\right)^{t} \in E(f(s)) \subseteq \mathcal{L}\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime} ; \mathrm{SO}_{N}\right) \subseteq \mathcal{L}\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{N}\right)$. As it is true for all $U \in \mathrm{SO}_{N}$, we have

$$
\alpha\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right)+(1-\alpha)\left(0_{n}, \ldots, 0_{n}\right)=\alpha\left(P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}\right) \in \mathcal{S}\left(P_{1}, \ldots, P_{\ell}\right)
$$

In fact for $\ell=2$, we have the following theorem, the proof of which is given by Lemma 2.8 to Corollary 2.11.
Theorem 2.7. Let $A \in \mathbb{R}^{n \times n}$ and $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$ be a linear map with $n \geq 3$. Then $L(O(A))$ is star-shaped with respect to the origin.

Lemma 2.8. Let $n \geq 2$. For any $P, Q \in \mathbb{R}^{n \times n}, U \in \mathrm{SO}_{n}$, the locus of the point $\left(\operatorname{tr}\left(T_{\theta} P U\right), \operatorname{tr}\left(T_{\theta} Q U\right)\right)^{t}$ where $T_{\theta}=R(\theta) \oplus I_{n-2}$ forms an ellipse $E(U)$ in \mathbb{R}^{2} when θ runs through $[0,2 \pi]$.

Proof. We write

$$
P=\left[\frac{p_{(1)}}{p_{(2)}}\left[\frac{P_{(3)}}{P_{2}}\right], \quad Q=\left[\frac{q_{(1)}}{\frac{q_{(2)}}{Q_{(3)}}}\right] \quad \text { and } \quad U=\left[u^{(1)}\left|u^{(2)}\right| U^{(3)}\right]\right.
$$

where $p_{(1)}^{t}, p_{(2)}^{t}, q_{(1)}^{t}, q_{(2)}^{t}, u^{(1)}, u^{(2)} \in \mathbb{R}^{n}$ and $P_{(3)}^{t}, Q_{(3)}^{t}, U^{(3)} \in \mathbb{R}^{n \times(n-2)}$. Direct computation shows
$\operatorname{tr}\left(T_{\theta} P U\right)=\cos \theta\left(p_{(1)} u^{(1)}+p_{(2)} u^{(2)}\right)+\sin \theta\left(p_{(2)} u^{(1)}-p_{(1)} u^{(2)}\right)+\operatorname{tr}\left(P_{(3)}^{t} U^{(3)}\right)$.
Similarly for $\operatorname{tr}\left(T_{\theta} Q U\right)$. Hence
$\left[\begin{array}{c}\operatorname{tr}\left(T_{\theta} P U\right) \\ \operatorname{tr}\left(T_{\theta} Q U\right)\end{array}\right]=\left[\begin{array}{ll}p_{(1)} u^{(1)}+p_{(2)} u^{(2)} & p_{(2)} u^{(1)}-p_{(1)} u^{(2)} \\ q_{(1)} u^{(1)}+q_{(2)} u^{(2)} & q_{(2)} u^{(1)}-q_{(1)} u^{(2)}\end{array}\right]\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]+\left[\begin{array}{c}\operatorname{tr}\left(P_{(3)} U^{(3)}\right) \\ \operatorname{tr}\left(Q_{(3)} U^{(3)}\right)\end{array}\right]$,
the locus of which forms an ellipse (possibly degenerate) when θ runs through $[0,2 \pi]$.

Lemma 2.9. For any $P, Q \in \mathbb{R}^{n \times n}$ with $n \geq 3$, there exists $U_{0} \in \mathrm{SO}_{n}$ such that the ellipse $E\left(U_{0}\right)$ defined in Lemma 2.8 degenerates.
Proof. Note that $E(U)$ degenerates if we find orthonormal vectors $u^{(1)}, u^{(2)} \in$ \mathbb{R}^{n} such that the matrix

$$
\left[\begin{array}{cc}
p_{(1)} u^{(1)}+p_{(2)} u^{(2)} & p_{(2)} u^{(1)}-p_{(1)} u^{(2)} \\
q_{(1)} u^{(1)}+q_{(2)} u^{(2)} & q_{(2)} u^{(1)}-q_{(1)} u^{(2)}
\end{array}\right]
$$

is singular. We will show that for any given $p_{1}, p_{2} \in \mathbb{R}^{n}$, there exist orthonormal vectors u_{1}, u_{2} such that $p_{1}^{t} u_{2}=p_{2}^{t} u_{1}=p_{1}^{t} u_{1}+p_{2}^{t} u_{2}=0$. By scaling and rotating, we assume without loss of generality that $p_{1}=(1,0, \ldots, 0)^{t}$ and $p_{2}=$ $(a, b, 0, \ldots, 0)^{t}$ where $a, b \in \mathbb{R}$ and $0 \leq b \leq 1$. If $a=0$ or $b=0$, we can take $u_{1}=\left(-b, 0, \sqrt{1-b^{2}}, 0, \ldots, 0\right)^{t}$ and $u_{2}=(0,1,0, \ldots, 0)^{t}$. Now, assume that $a \neq 0$ and $0<b \leq 1$. For $\theta \in[0, \pi]$ consider unit vectors

$$
v_{\theta}=\left[\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta \\
0 \\
\vdots \\
0
\end{array}\right] \quad \text { and } \quad w_{\theta}=\frac{1}{\sqrt{b^{2} \sin ^{2} \theta+a^{2}}}\left[\begin{array}{c}
-b \sin \theta \\
a \sin \theta \\
-a \cos \theta \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Clearly, $p_{1}^{t} v_{\theta}=p_{2}^{t} w_{\theta}=v_{\theta}^{t} w_{\theta}=0$. Define $f(\theta)=p_{1} w_{\theta}+p_{2} v_{\theta}=b \cos \theta-$ $\frac{b \sin \theta}{\sqrt{b^{2} \sin ^{2} \theta+a^{2}}}$ which is a continuous function with $f(0)=b$ and $f(\pi)=-b$. Hence there exists $\theta^{\prime} \in[0, \pi]$ such that $f\left(\theta^{\prime}\right)=0$. Then we take $u_{2}=v_{\theta^{\prime}}$ and $u_{1}=w_{\theta^{\prime}}$.

Lemma 2.10. For $P, Q \in \mathbb{R}^{n \times n}, n \geq 3$ and $0 \leq \epsilon \leq 1$ we define

$$
P_{\epsilon}=\left[\begin{array}{ll}
\epsilon I_{2} & \\
& I_{n-2}
\end{array}\right] P \quad \text { and } \quad Q_{\epsilon}=\left[\begin{array}{cc}
\epsilon I_{2} & \\
& I_{n-2}
\end{array}\right] Q .
$$

Then $\left(P_{\epsilon}, Q_{\epsilon}\right) \in \mathcal{S}(P, Q)$.
Proof. For any $U \in \mathrm{SO}_{n}$, consider the ellipse $E(U)$ defined in Lemma 2.8. If $\left(\operatorname{tr}\left(P_{\epsilon} U\right), \operatorname{tr}\left(Q_{\epsilon} U\right)\right)^{t} \in E(U)$, then we have $\left(\operatorname{tr}\left(P_{\epsilon} U\right), \operatorname{tr}\left(Q_{\epsilon} U\right)\right)^{t} \in \mathcal{L}\left(P, Q ; \mathrm{SO}_{n}\right)$. Now assume that $\left(\operatorname{tr}\left(P_{\epsilon} U\right), \operatorname{tr}\left(Q_{\epsilon} U\right)\right)^{t} \notin E(U)$. Then $\left(\operatorname{tr}\left(P_{\epsilon} U\right), \operatorname{tr}\left(Q_{\epsilon} U\right)\right)^{t}$ lies inside the ellipse $E(U)$. Since SO_{n} is path-connected, consider a continuous function $f:[0,1] \rightarrow \mathrm{SO}_{n}$ with $f(0)=U$ and $f(1)=U_{0}$ where U_{0} is defined in Lemma 2.9. Since $E(f(1))$ degenerates, by continuity of f, there exist $s \in[0,1]$ such that $\left(\operatorname{tr}\left(P_{\epsilon} U\right), \operatorname{tr}\left(Q_{\epsilon} U\right)\right)^{t} \in E(f(s)) \subseteq \mathcal{L}\left(P, Q ; \mathrm{SO}_{n}\right)$. As it is true for all $U \in \mathrm{SO}_{n}$, we have $\mathcal{L}\left(P_{\epsilon}, Q_{\epsilon} ; \mathrm{SO}_{n}\right) \subseteq \mathcal{L}\left(P, Q ; \mathrm{SO}_{n}\right)$ and hence $\left(P_{\epsilon}, Q_{\epsilon}\right) \in$ $\mathcal{S}(P, Q)$.

Lemma 2.10 remains valid if we consider $\mathcal{S}_{A}(P, Q)$ instead of $\mathcal{S}(P, Q)$.
Corollary 2.11. Let $A \in \mathbb{R}^{n \times n}$ and $n \geq 3$. For any $P, Q \in \mathbb{R}^{n \times n}$ and $0 \leq \epsilon \leq$ 1, we define

$$
P_{\epsilon}=\left[\begin{array}{ll}
\epsilon I_{2} & \\
& I_{n-2}
\end{array}\right] P \quad \text { and } \quad Q_{\epsilon}=\left[\begin{array}{ll}
\epsilon I_{2} & \\
& I_{n-2}
\end{array}\right] Q .
$$

Then $\left(P_{\epsilon}, Q_{\epsilon}\right) \in \mathcal{S}_{A}(P, Q)$.
Proof. For any $U, V \in \mathrm{SO}_{n}$, let $P^{\prime}=P U A V, Q=Q U A V, P_{\epsilon}^{\prime}=\left(\epsilon I_{2} \oplus\right.$ $\left.I_{n-2}\right) P^{\prime}=P_{\epsilon} U A V$ and $Q_{\epsilon}^{\prime}=\left(\epsilon I_{2} \oplus I_{n-2}\right) Q^{\prime}=Q_{\epsilon} U A V$. By Lemma 2.10, because $\left(P_{\epsilon}^{\prime}, Q_{\epsilon}^{\prime}\right) \in \mathcal{S}\left(P^{\prime}, Q^{\prime}\right)$, there exists $W \in \mathrm{SO}_{n}$ such that

$$
\begin{aligned}
\left(\operatorname{tr}\left(P_{\epsilon} U A V\right), \operatorname{tr}\left(Q_{\epsilon} U A V\right)\right)^{t} & =\left(\operatorname{tr} P_{\epsilon}^{\prime}, \operatorname{tr} Q_{\epsilon}^{\prime}\right)^{t} \\
& =\left(\operatorname{tr}\left(P^{\prime} W\right), \operatorname{tr}\left(Q^{\prime} W\right)\right)^{t} \\
& =(\operatorname{tr}(P U A V W), \operatorname{tr}(Q U A V W))^{t} \\
& \in \mathcal{L}(P, Q ; O(A))
\end{aligned}
$$

As this is true for all $U, V \in \mathrm{SO}_{n}$, we have $\mathcal{L}\left(P_{\epsilon}, Q_{\epsilon} ; O(A)\right) \subseteq \mathcal{L}(P, Q ; O(A))$.
Note that in Lemma 2.10 and Corollary 2.11, $P_{\epsilon}, Q_{\epsilon}$ can be defined by picking arbitrary two rows of P and Q instead of the first two rows. We are now ready to prove our second main theorem.

Proof of Theorem 2.7. By Lemma 2.3, it suffices to show that for all $P, Q \in$ $\mathbb{R}^{n \times n}, \mathcal{S}(P, Q)$ is star-shaped with respect to $\left(0_{n}, 0_{n}\right)$. Let $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{S}(P, Q)$ and $0 \leq \alpha \leq 1$. We apply Lemma 2.10 repeatedly to every two rows of P, Q. Then we have $\left(\epsilon^{N} P^{\prime}, \epsilon^{N} Q^{\prime}\right) \in \mathcal{S}\left(P^{\prime}, Q^{\prime}\right) \subseteq \mathcal{S}(P, Q)$ where $N=\frac{n!}{2(n-2)!}$. Taking $\epsilon=\sqrt[N]{\alpha}$, we have

$$
\alpha\left(P^{\prime}, Q^{\prime}\right)=\alpha\left(P^{\prime}, Q^{\prime}\right)+(1-\alpha)\left(0_{n}, 0_{n}\right) \in \mathcal{S}(P, Q)
$$

For the case of $\ell=2$ and $\ell=3$, we know that $n=3$ and $n=4$ are respectively the smallest integers such that $L(O(A))$ is star-shaped for all $A \in$ $\mathbb{R}^{n \times n}$ and all linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$. However, for $\ell \geq 4, n=2^{\ell-1}$ may not be the smallest integer to ensure star-shapedness of $L(O(A))$. One may ask the following question.

Problem 1. For a given $\ell \geq 4$, what is the smallest n such that $L\left(\mathrm{SO}_{n}\right)$ is star-shaped for all linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$?

The preceding results on star-shapedness of $L(O(A))$ can be easily generalized to the following joint orbits. We let $\left(\mathbb{R}^{n \times n}\right)^{m}:=\left\{\left(A_{1}, \ldots, A_{m}\right)\right.$: $\left.A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}\right\}$.

Definition 1. For any $A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$, we define

$$
\begin{aligned}
& \boldsymbol{O}_{1}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(A_{1} V, \ldots, A_{m} V\right): V \in G\right\}, \\
& \boldsymbol{O}_{2}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(U A_{1}, \ldots, U A_{m}\right): U \in G\right\}, \\
& \boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m} ; G\right):=\left\{\left(U A_{1} V, \ldots, U A_{m} V\right): U, V \in G\right\},
\end{aligned}
$$

where $G=\mathcal{O}_{n}$ or SO_{n}.
Theorem 2.12. Let $L:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{\ell}$ be linear, $\left(A_{1}, \ldots, A_{m}\right) \in\left(\mathbb{R}^{n \times n}\right)^{m}$ and $G=\mathcal{O}_{n}$ or SO_{n}. If
(i) $\ell=2$ and $n \geq 3$, or
(ii) $\ell \geq 3$ and $n \geq 2^{\ell-1}$,
then $L\left(\boldsymbol{O}_{i}\left(A_{1}, \ldots, A_{m} ; G\right)\right), i=1,2,3$, are star-shaped with respect to the origin.
Proof. The case of $G=\mathcal{O}_{n}$ can be derived from the case $G=\mathrm{SO}_{n}$ easily. Hence we consider the case $G=\mathrm{SO}_{n}$ only and simply denote $\boldsymbol{O}_{i}\left(A_{1}, \ldots, A_{m} ; \mathrm{SO}_{n}\right)$ by $\boldsymbol{O}_{i}\left(A_{1}, \ldots, A_{m}\right)$. For any given $L:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{\ell}$, express it by

$$
L\left(X_{1}, \ldots, X_{m}\right)=\left(\operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(1)} X_{i}\right), \ldots, \operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(\ell)} X_{i}\right)\right)^{t}
$$

for some $P_{i}^{(j)} \in \mathbb{R}^{n \times n}, i=1, \ldots, m, j=1, \ldots, \ell$. For $\boldsymbol{O}_{1}\left(A_{1}, \ldots, A_{m}\right)$ we have

$$
\begin{aligned}
& L\left(\boldsymbol{O}_{1}\left(A_{1}, \ldots, A_{m}\right)\right) \\
= & \left\{\left(\operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(1)} A_{i} U\right), \ldots, \operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(\ell)} A_{i} U\right)\right)^{t}: U \in \mathrm{SO}_{n}\right\} \\
= & \mathcal{L}\left(\sum_{i=1}^{m} P_{i}^{(1)} A_{i}, \ldots, \sum_{i=1}^{m} P_{i}^{(\ell)} A_{i} ; \mathrm{SO}_{n}\right) .
\end{aligned}
$$

Similarly for $L\left(\boldsymbol{O}_{2}\left(A_{1}, \ldots, A_{m}\right)\right)$. Hence the star-shapedness follows from Theorem 2.1 and Theorem 2.7.

Now consider the case of $\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)$. For any $U, V \in \mathrm{SO}_{n}$, we have

$$
\begin{aligned}
L\left(U A_{1} V, \ldots, U A_{m} V\right) & =\left(\operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(1)} U A_{i} V\right), \ldots, \operatorname{tr}\left(\sum_{i=1}^{m} P_{i}^{(\ell)} U A_{i} V\right)\right)^{t} \\
& \in \mathcal{L}\left(\sum_{i=1}^{m} P_{i}^{(1)} U A_{i}, \ldots, \sum_{i=1}^{m} P_{i}^{(\ell)} U A_{i} ; \mathrm{SO}_{N}\right)
\end{aligned}
$$

By star-shapedness of $\mathcal{L}\left(\sum_{i=1}^{m} P_{i}^{(1)} U A_{i}, \ldots, \sum_{i=1}^{m} P_{i}^{(\ell)} U A_{i} ; \mathrm{SO}_{N}\right)$, for any $0 \leq$ $\alpha \leq 1$ we have

$$
\begin{aligned}
\alpha L\left(U A_{1} V, \ldots, U A_{m} V\right) & \in \mathcal{L}\left(\sum_{i=1}^{m} P_{i}^{(1)} U A_{i}, \ldots, \sum_{i=1}^{m} P_{i}^{(1)} U A_{i} ; \mathrm{SO}_{N}\right)^{t} \\
& \subseteq L\left(\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)\right)
\end{aligned}
$$

3 Convexity of linear image of $O(A)$

We first give two non-convex examples, one is a linear image of $O(A)$ under $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ with $\ell \geq 3$ and another is a linear image of $\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)$ under $L:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{\ell}$ with $\ell \geq 2$.
Example 1. Consider $O\left(I_{n}\right)=\mathrm{SO}_{n}$ with $n \geq 2$ and the linear map $L: \mathbb{R}^{n \times n} \rightarrow$ \mathbb{R}^{ℓ} with $\ell \geq 3$ defined by

$$
L(X)=\left(\operatorname{tr}\left(P_{1} X\right), \ldots, \operatorname{tr}\left(P_{\ell} X\right)\right)^{t}
$$

where

$$
P_{1}=I_{n-2} \oplus 0_{2}, \quad P_{2}=I_{n-2} \oplus\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad P_{3}=I_{n-2} \oplus\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and $P_{j}=0_{n}$ for $j=4, \ldots, \ell$. The mid-point of points $L\left(I_{n}\right)=(n-2, n-$ $1, n-2,0, \ldots, 0)^{t}$ and $L\left(I_{n-2} \oplus\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)=(n-2, n-2, n-1,0, \ldots, 0)^{t}$ is in $L\left(P_{1}, \ldots, P_{\ell} ; \mathrm{SO}_{n}\right)$ only if there exists $U \in \mathrm{SO}_{n}$ having the form

$$
U=I_{n-2} \oplus\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]
$$

with $u_{11}=\frac{1}{2}=u_{21}$. This is impossible as $u_{11}^{2}+u_{21}^{2}=1$. Hence $L\left(\mathrm{SO}_{n}\right)$ is non-convex.

Example 2. For $n \geq 3, m \geq 2, \ell \geq 2$, consider the matrices,

$$
A_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \oplus 0_{n-3}, \quad A_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \oplus 0_{n-3}, \quad A_{j}=0_{n}, \quad j=3, \ldots, m
$$

and the linear map $L:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{\ell}$ defined by

$$
L\left(X_{1}, \ldots, X_{m}\right):=\left(\operatorname{tr}\left(A_{1} X_{1}+A_{2} X_{2}\right), \operatorname{tr}\left(A_{2} X_{1}-A_{1} X_{2}\right), 0, \ldots, 0\right)^{t}
$$

By taking $U=V=I_{n}$, and $U=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right] \oplus I_{n-3}, V=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \oplus I_{n-3}$ respectively, we have $(2,0,0, \ldots, 0)^{t},(0,2,0, \ldots, 0)^{t} \in L\left(\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)\right)$. We shall show that their mid-point which is $(1,1,0, \ldots, 0)^{t} \notin L\left(\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)\right)$. For any $U=\left[u_{i j}\right], V=\left[v_{i j}\right] \in \mathrm{SO}_{n}$, by direct computation we have

$$
U A_{1} V=\left[\begin{array}{ccc}
u_{11} v_{11} & * & * \\
* & u_{21} v_{12} & * \\
* & * & *
\end{array}\right], \quad U A_{2} V=\left[\begin{array}{ccc}
u_{12} v_{13} & * & * \\
* & u_{22} v_{22} & * \\
* & * & *
\end{array}\right] .
$$

Hence $(1,1,0, \ldots, 0) \in L\left(\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)\right)$ only if $u_{11} v_{11}+u_{22} v_{22}=1=u_{21} v_{12}-$ $u_{12} v_{13}$ for some $U, V \in \mathrm{SO}_{n}$. We shall show that such U, V do not exist. For $X=\left(x_{i j}\right), Y=\left(y_{i j}\right) \in \mathbb{R}^{n \times n}$, denote $X \circ Y:=\left(x_{i j} y_{i j}\right) \in \mathbb{R}^{n \times n}$. Since each absolute row (column) sum of $U \circ V$ is not greater than one, we have $(1,1,0, \ldots, 0) \in L\left(\boldsymbol{O}_{3}\left(A_{1}, \ldots, A_{m}\right)\right)$ only if there exist $U, V \in \mathrm{SO}_{n}$ such that

$$
U \circ V=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & *
\end{array}\right] \quad \text { or } \quad U \circ V=\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & *
\end{array}\right]
$$

The possible choices of the leading 2×2 principal submatices of U and V are

$$
\pm \frac{\sqrt{2}}{2}\left[\begin{array}{cc}
1 & k_{1} \\
-k_{2} & k_{1} k_{2}
\end{array}\right]
$$

where $k_{1}, k_{2}= \pm 1$. However, any two of them will not give the $U \circ V$ as required.

From the above two examples we know that $L(O(A))$ is not convex in general. However if the codomain of L is \mathbb{R}^{2} then $L(O(A))$ is always convex. This result was obtained by Li and Tam [7] by using techniques in Lie algebra. In the following, we shall give an alternative proof on this result by showing that $L(O(A))$ has convex boundary for all $A \in \mathbb{R}^{n \times n}$ and linear $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$, i.e., the intersection of $L(O(A))$ with any of its supporting lines is path connected. Combining with the star-shapedness property of $L(O(A)$), the convexity of $L(O(A))$ follows. We first need some notations.

Definition 2. For $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$, we denote its diagonal as $d(A)=$ $\left(a_{11}, a_{22}, \ldots, a_{n n}\right)^{t} \in \mathbb{R}^{n}$. We further denote the sum of the first k diagonal elements of A by $t_{k}(A)$. Moreover for $P \in \mathbb{R}^{n \times n}$, we denote $r(P, A)=$ $\max \left\{\operatorname{tr}(P U A V): U, V \in \mathrm{SO}_{n}\right\}$ and $\mathcal{G}_{P}(A)=\{B \in O(A): \operatorname{tr}(P B)=r(P, A)\}$.

We shall characterize the set $\mathcal{G}_{P}(A)$ when A has distinct singular values and then show that it is path connected. Note that for any $U, V \in \mathrm{SO}_{n}, \mathcal{G}_{P}(U A V)=$ $\mathcal{G}_{P}(A)$ and $\mathcal{G}_{U P V}(A)=\left\{V^{t} B U^{t}: B \in \mathcal{G}_{P}(A)\right\}$. Hence we may assume that A, P are diagonal matrices.

Lemma 3.1. Let $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)$ where $a_{1}>a_{2}>\cdots>a_{n-1}>$ $\left|a_{n}\right| \geq 0$ and $B \in O(A)$. If $t_{k}(B)=t_{k}(A)$ then

$$
B=\left[\begin{array}{ll}
W & \\
& X_{1}
\end{array}\right] A\left[\begin{array}{ll}
W^{t} & \\
& X_{2}
\end{array}\right]
$$

where $W \in \mathrm{SO}_{k}, X_{1}, X_{2} \in \mathrm{SO}_{n-k}$.
Proof. Let $B=U A V$ where $U, V \in \mathrm{SO}_{n}$ and write

$$
U=\left(u_{i j}\right)=\left[\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right], \quad V=\left(v_{i j}\right)=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right],
$$

where $U_{11}, V_{11} \in \mathbb{R}^{k \times k}, U_{22}, V_{22} \in \mathbb{R}^{(n-k) \times(n-k)}$. Denote

$$
\left[\begin{array}{ll}
U_{11} & U_{12}
\end{array}\right]=\left[\begin{array}{lll}
u_{* 1} & \cdots & u_{* n}
\end{array}\right], \quad\left[\begin{array}{c}
V_{11} \\
V_{21}
\end{array}\right]=\left[\begin{array}{c}
v_{1 *} \\
\vdots \\
v_{n *}
\end{array}\right]
$$

where $u_{* j}^{t}=\left(u_{1 j}, \ldots, u_{k j}\right), v_{j *}=\left(v_{j 1}, \ldots, v_{j k}\right), j=1, \ldots, n$. Then $t_{k}(U A V)=$ $\operatorname{tr}\left(U_{11} A_{11} V_{11}+U_{12} A_{22} V_{21}\right)=\operatorname{tr}\left(A_{11} V_{11} U_{11}+A_{22} V_{21} U_{12}\right)=\sum_{i=1}^{n} a_{i} v_{i *} u_{* i}$. Since $v_{i *} u_{* i} \leq 1, \sum_{i=1}^{n} v_{i *} u_{* i} \leq k$ and $a_{1}>\cdots>a_{k}>\cdots>a_{n}$, we have $\sum_{i=1}^{n} a_{i} v_{i *} u_{* i} \leq \sum_{i=1}^{k} a_{i i}$ with equality holds if and only if $v_{i *} u_{* i}=1$ for $i \leq k$ and $v_{i *} u_{* i}=0$ for $i>k$. Hence we have $v_{i *}=u_{* i}^{t}$ and $u_{* i} u_{* i}^{t}=1$. Now $U=W \oplus X_{1}$ and $V=W^{t} \oplus X_{1}$ where $W \in \mathcal{O}_{k}, X_{1}, X_{2} \in \mathcal{O}_{n-k}$ and $\operatorname{det} W=\operatorname{det} X_{1}=\operatorname{det} X_{2}$. If $\operatorname{det} W=\operatorname{det} X_{1}=\operatorname{det} X_{2}=-1$, then we have $B=\left(\left(W D_{1}\right) \oplus\left(X_{1} D_{2}\right)\right) A\left(\left(W D_{1}\right)^{t} \oplus\left(D_{2} X_{2}\right)\right)$ where $D_{1}=I_{k-1} \oplus-1$ and $D_{2}=-1 \oplus I_{n-k-1}$.

Thompson [9] gave the following result on characterizing the diagonal elements of $O(A)$.

Proposition 3.2. [9] A vector $d=\left(d_{1}, \ldots, d_{n}\right)$ is the diagonal of a matrix $A \in \mathbb{R}^{n \times n}$ with singular values $s_{1} \geq s_{1} \geq \cdots \geq s_{n}$ if and only if d lies in the convex hull of those vectors $\left(\pm s_{\sigma(1)}, \ldots, \pm s_{\sigma(n)}\right)$ with an even number (possibly zero) of negative signs and arbitrary permutation σ.

For matrices $A, B \in \mathbb{R}^{n \times n}$, the following result by Miranda and Thompson [8] can be regarded as a characterization of the extreme values of $O(A)$ under the linear map $X \longmapsto \operatorname{tr}(B X)$.

Proposition 3.3. [8] Let $A, B \in \mathbb{R}^{n \times n}$ have singular values $s_{1}(A) \geq \cdots \geq$ $s_{n}(A)$ and $s_{1}(B) \geq \cdots \geq s_{n}(B)$ respectively. Then

$$
\max _{U, V \in \mathrm{SO}_{n}} \operatorname{tr}(B U A V)=\sum_{i=1}^{n-1} s_{i}(A) s_{i}(B)+(\operatorname{sign} \operatorname{det}(A B)) s_{n}(A) s_{n}(B)
$$

Theorem 3.4. Let $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n-1}, \pm a_{n}\right)$ where $a_{1}>\cdots>a_{n} \geq 0$ and $P=p_{1} I_{n_{1}} \oplus \cdots \oplus p_{k} I_{n_{k}}$ where $p_{1}>\cdots>p_{k} \geq 0$ and $n_{1}+\cdots+n_{k}=n$. Then
(i) if $p_{k}>0$,

$$
\mathcal{G}_{P}(A)=\left\{\left[\begin{array}{ccc}
U_{1} & & \\
& \ddots & \\
& & U_{k}
\end{array}\right] A\left[\begin{array}{ccc}
U_{1}^{t} & & \\
& \ddots & \\
& & U_{k}^{t}
\end{array}\right]: \begin{array}{l}
U_{i} \in \mathrm{SO}_{n_{i}} \\
i=1, \ldots, k
\end{array}\right\}
$$

(ii) if $p_{k}=0$,

$$
\mathcal{G}_{P}(A)=\left\{\left[\begin{array}{cccc}
U_{1} & & & \\
& \ddots & & \\
& & U_{k-1} & \\
& & & \\
& & &
\end{array}\right] A\left[\begin{array}{cccc}
U_{1}^{t} & & & \\
& \ddots & & \\
& & & U_{k-1}^{t} \\
& & & V
\end{array}\right] \begin{array}{l}
U_{i} \in \mathrm{SO}_{n_{i}} \\
: i=1, \ldots, k-1, \\
U, V \in \mathrm{SO}_{n_{k}}
\end{array}\right\}
$$

In both cases, $\mathcal{G}_{P}(A)$ is path connected.
Proof. (\supseteq) Obvious. (\subseteq). We assume that $A=A_{1} \oplus \cdots \oplus A_{k}$ where $A_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$. We have $r(P, A)=d(P)^{t} d(A)=\sum_{i=1}^{k} p_{i} \operatorname{tr} A_{i}$. Let $U, V \in \mathrm{SO}_{n}$ such that $\operatorname{tr}(P U A V)=r(P, A)=d(P)^{t} d(U A V)$. Write

$$
U A V=B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 k} \\
B_{21} & B_{22} & \cdots & B_{2 k} \\
\vdots & \cdots & \ddots & \vdots \\
B_{k 1} & B_{k 2} & \cdots & B_{k k}
\end{array}\right]
$$

where $B_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$. We have $\operatorname{tr}(P U A V)=\operatorname{tr}(P B)=\sum_{i=1}^{k} p_{i} \operatorname{tr} B_{i i}$. We shall show that $\operatorname{tr} B_{i i}=\operatorname{tr} A_{i}$ for all i whenever $p_{i}>0$. By Proposition 3.2,
$\mathrm{d}(B)=\sum \alpha_{i} s_{i}$ where $\alpha_{i}>0, \sum \alpha_{i}=1$ and s_{i} are vector of $\left(\pm a_{\sigma(1)}, \ldots, \pm a_{\sigma(n)}\right)$, σ is a permutation on $\{1, \ldots, n\}$ and the number of negative signs is even (odd, respectively) if $\operatorname{det} A \geq 0$ (≤ 0, respectively). If $k=1$, then $P=p_{1} I$, and the proof is trivial. Now consider $k>1$, hence $p_{1}>0$. We first show that $\operatorname{tr} B_{11}=\operatorname{tr} A_{1}$. Note that $\operatorname{tr} B_{11}<\operatorname{tr} A_{1}$ holds if and only if at least one of the following cases hold:
(1) there exists i_{1} such that the first n_{1} elements of $s_{i_{1}}$ contain $-a_{j}$ where $j \leq n_{1} ;$
(2) there exists i_{1} such that the first n_{1} elements of $s_{i_{1}}$ contain $\pm a_{j}$ where $j>n_{1}$.

In case (1), we construct $s_{i_{1}}^{\prime}$ from s by multiplying -1 to $-a_{j}$ and arbitrary a_{q} for some $q>n_{1}$. If in case (2), then there exists $i^{\prime}<n_{1}$ such that $\pm a_{i^{\prime}}$ will not be the first n_{1} elements of $s_{i_{1}}$. In this case, we construct $s_{i_{1}}^{\prime}$ from $s_{i_{1}}$ by interchanging $\pm a_{j}$ and $\pm a_{i^{\prime}}$ and multiplying -1 to both if necessary to have $a_{i^{\prime}}$ instead of $-a_{i^{\prime}}$. Replace $s_{i_{1}}$ in $\sum \alpha_{i} s_{i}$ by $s_{i_{1}}^{\prime}$ to form s. By Proposition 3.2, there exists $B^{\prime} \in O(A)$ such that $\mathrm{d}\left(B^{\prime}\right)=s$. We shall have $\mathrm{d}(P)^{t} \mathrm{~d}(B)=$ $\mathrm{d}(P)^{t}\left(\sum \alpha_{i} s_{i}\right)=\mathrm{d}(P)^{t} s+\mathrm{d}(P)^{t}\left(s_{i_{1}}-s_{i_{1}}^{\prime}\right)<\mathrm{d}(P)^{t} s$, which contradicts the assumption on B. Therefore, we have $\operatorname{tr} B_{11}=\operatorname{tr} A_{1}$. By Lemma 3.1, we have $U=U_{1} \oplus U_{2}$ and $V=V_{1}^{t} \oplus V_{2}$ where $U_{1}, V_{1} \in \mathrm{SO}_{n_{1}}, V_{2}, U_{2} \in \mathrm{SO}_{n-n_{1}}$ and $V_{1}^{t}=U_{1}$. Apply similar approach for $B_{i i}$ where $p_{i}>0$. Hence, if $p_{k}>0$, we have $U=U_{1} \oplus \cdots \oplus U_{k}$ and $V=U^{t}$ where $U_{i} \in \mathrm{SO}_{n_{i}}, i=1, \ldots, k$; otherwise if $p_{k}=0, U=U_{1} \oplus \cdots \oplus U_{k-1} \oplus U^{\prime}$ and $V=U_{1}^{t} \oplus \cdots \oplus U_{k-1}^{t} \oplus V^{\prime}$ where $U_{i} \in \mathrm{SO}_{n_{i}}, i=1, \ldots, k-1, U^{\prime}, V^{\prime} \in \mathrm{SO}_{n_{k}}$. The path connectedness of $\mathcal{G}_{P}(A)$ follows from the path connectedness of $\mathrm{SO}_{n_{i}}$ for all i.

Corollary 3.5. If $A \in \mathbb{R}^{n \times n}$ has n distinct singular values, then $L(O(A))$ has convex boundary for all linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$.

Proof. Let $P, Q \in \mathbb{R}^{n \times n}$ be such that $\mathcal{L}(P, Q ; O(A))=L(O(A))$. Then $L(O(A))$ has convex boundary if for any $\theta \in[0,2 \pi]$, the set

$$
\left\{-\sin \theta x+\cos \theta y:(x, y) \in \mathcal{L}(P, Q ; O(A)), \cos \theta x+\sin \theta y=r_{\theta}\right\},
$$

where $r_{\theta}=\max \{\cos \theta x+\sin \theta y:(x, y) \in \mathcal{L}(P, Q ; O(A))\}$, is path connected. For any $\theta \in[0,2 \pi]$, we define $P_{\theta}^{\prime}=-\sin \theta P+\cos \theta Q$ and $Q_{\theta}^{\prime}=\cos \theta P+\sin \theta Q$, then we have

$$
\begin{aligned}
& \left\{-\sin \theta x+\cos \theta y:(x, y) \in \mathcal{L}(P, Q ; O(A)), \cos \theta x+\sin \theta y=r_{\theta}\right\} \\
= & \left\{\operatorname{tr}\left(P_{\theta}^{\prime} U A V\right): U, V \in \mathrm{SO}_{n}, \operatorname{tr}\left(Q_{\theta}^{\prime} U A V\right)=r_{\theta}\right\} \\
= & \left\{\operatorname{tr}\left(P_{\theta}^{\prime} X\right): X \in \mathcal{G}_{Q_{\theta}^{\prime}}(A)\right\}
\end{aligned}
$$

Hence by Theorem 3.4, it is path connected.
Note that a set $M \subseteq \mathbb{R}^{2}$ is convex if and only if it is star-shaped and has convex boundary. Hence by Theorem 2.12 and Corollary 3.5, the following result is clear.

Theorem 3.6. Let $n \geq 3$. If $A \in \mathbb{R}^{n \times n}$ has n distinct singular values, then $L(O(A))$ is convex for all linear maps $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{2}$.

In fact, the condition of distinct singular values in Theorem 3.6 can be removed by applying the following lemma.

Lemma 3.7. Let $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{\ell}$ be a linear map. Suppose $L(O(A))$ is convex for all A in a dense set S of $\mathbb{R}^{n \times n}$. Then $L(O(A))$ is convex for all $A \in \mathbb{R}^{n \times n}$.

Proof. Suppose that $A_{0} \in \mathbb{R}^{n \times n}$ such that $L\left(O\left(A_{0}\right)\right)$ is not convex. Then there exist $x_{1}, x_{2} \in L\left(O\left(A_{0}\right)\right)$ such that $y=\frac{1}{2}\left(x_{1}+x_{2}\right) \notin L\left(O\left(\left(A_{0}\right)\right)\right.$. Since $L\left(O\left(A_{0}\right)\right)$ is compact, there exists $\epsilon>0$ such that $B(y, \epsilon):=\left\{x \in \mathbb{R}^{\ell}:\|x-y\|<\epsilon\right\}$ has empty intersection with $L\left(O\left(A_{0}\right)\right)$. Since S is dense in $\mathbb{R}^{n \times n}$, there exists $A_{\epsilon} \in S$ such that for all $U, V \in \mathrm{SO}_{n}$,

$$
\left\|L\left(U A_{0} V\right)-L\left(U A_{\epsilon} V\right)\right\|<\frac{\epsilon}{2}
$$

Hence there exist $x_{1}^{\prime}, x_{2}^{\prime} \in L\left(O\left(A_{\epsilon}\right)\right)$ such that $\left\|x_{1}^{\prime}-x_{1}\right\|<\frac{\epsilon}{2}$ and $\left\|x_{2}^{\prime}-x_{2}\right\|<$ $\frac{\epsilon}{2}$. By convexity of $L\left(O\left(A_{\epsilon}\right)\right), y^{\prime}=\frac{1}{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right) \in L\left(O\left(A_{\epsilon}\right)\right.$. We have

$$
\left\|y^{\prime}-y\right\|=\left\|\frac{1}{2}\left(x_{1}^{\prime}+x_{2}^{\prime}\right)-\frac{1}{2}\left(x_{1}+x_{2}\right)\right\|<\frac{1}{2}\left(\frac{\epsilon}{2}+\frac{\epsilon}{2}\right)=\frac{\epsilon}{2} .
$$

By assumption of A_{ϵ}, there exists $z \in L\left(O\left(A_{0}\right)\right)$ such that $\left\|z-y^{\prime}\right\|<\frac{\epsilon}{2}$. Then $\|z-y\|=\left\|\left(z-y^{\prime}\right)+\left(y^{\prime}-y\right)\right\|<\left\|\left(z-y^{\prime}\right)\right\|+\left\|\left(y^{\prime}-y\right)\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$, contradicting the fact that $B(y, \epsilon) \cap L\left(O\left(A_{0}\right)\right)=\emptyset$.

Since the set of $n \times n$ matrices with n distinct singular values is dense in $\mathbb{R}^{n \times n}$, by Lemma 3.7 we have the following result.

Theorem 3.8. Let $n \geq 3$. $L(O(A))$ is convex for all linear maps $L: \mathbb{R}^{n \times n} \rightarrow$ \mathbb{R}^{2} and $A \in \mathbb{R}^{n \times n}$.

From the proof of Corollary 2.12, the convexity of $L(O(A))$ can be extended to $L\left(\boldsymbol{O}_{i}\left(A_{1}, \ldots, A_{m}\right)\right), i=1,2$.

Corollary 3.9. Let $n \geq 3$. $L\left(\boldsymbol{O}_{i}\left(A_{1}, \ldots, A_{m}\right)\right), i=1,2$, is convex for all linear maps $L:\left(\mathbb{R}^{n \times n}\right)^{m} \rightarrow \mathbb{R}^{2}$ and $A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$.

References

[1] W.S. Cheung, N.K. Tsing, The C-numerical Range of Matrices is Starshaped, Linear and Multilinear Algebra 41 (1996), 245-250.
[2] F. Hausdorff, Das Wertvorrat einer Bilinearform, Math. Zeit. 3 (1919), 314316.
[3] A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[4] C.K. Li, C-numerical Ranges and C-numerical Radii, Linear and Multilinear Algebra, 37 (1994), 51-82.
[5] C.K. Li, Y.T. Poon, Convexity of the Joint Numerical Range, SIAM J. Matrix Analysis Appl. 21 (1999), 668-678.
[6] C.K. Li, Y.T. Poon, Generalized Numerical Ranges and Quantum Error Correction, J. Operator Theory. 66 (2011), 335-351.
[7] C.K. Li, T.Y. Tam, Numerical Ranges Arising from Simple Lie Algebras, Canad. J. Math. 52 (2000), 141-171.
[8] H. Miranda, R.C. Thompson, Group Majorization, the Convex Hulls of Sets of Matrices, and the Diagonal Element-Singular Value Inequalities, Linear Algebra Appl. 199 (1994), 131-141.
[9] R.C. Thompson, Singular Values, Diagonal Elements, and Convexity, SIAM J. Appl. Math. 32 (1977), 39-63.
[10] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Zeit. 2 (1918), 187-197.
[11] N.K. Tsing, On the Shape of the Generalized Numerical Ranges, Linear and Multilinear Algebra, 10 (1981), 173-182.
[12] R. Westwick, A Theorem on Numerical Range, Linear and Multilinear Algebra, 2 (1975), 311-315

[^0]: *panlau@hku.hk
 †ntw@maths.hku.hk
 $\ddagger n k t s i n g @ h k u . h k$

