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Abstract

Let A ∈ Rn×n and SOn := {U ∈ Rn×n : UU t = In,detU > 0} be the set of
n× n special orthogonal matrices. De�ne the (real) special orthogonal orbit of
A by

O(A) := {UAV : U, V ∈ SOn}.
In this paper, we show that the linear image of O(A) is star-shaped with respect
to the origin for arbitrary linear maps L : Rn×n → R` if n ≥ 2`−1. In particular,
for linear maps L : Rn×n → R2 and when A has distinct singular values, we
study B ∈ O(A) such that L(B) is a boundary point of L(O(A)). This gives
an alternative proof of a result by Li and Tam on the convexity of L(O(A)) for
linear maps L : Rn×n → R2.

AMS Classi�cation: 15A04, 15A18.
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1 Introduction

Let On := {U ∈ Rn×n : U tU = UU t = In} and SOn := {U ∈ On : detU > 0}
be the sets of n× n orthogonal matrices and n× n special orthogonal matrices
respectively. For any A ∈ Rn×n, we de�ne the special orthogonal orbit of A by

O(A) := {UAV : U, V ∈ SOn}.

It is clear that every element in O(A) has the same collection of singular values
and the same sign of determinant. In [9], Thompson studied the set of diago-
nals of the matrices in O(A), and in [8], Miranda and Thompson studied the
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characterizations of extreme values of L(O(A)) where L : Rn×n → R is a linear
map.

A set S is said to be star-shaped with respect to c ∈ S if for all 0 ≤ α ≤ 1
and x ∈ S, αx+(1−α)c ∈ S. The c is called a star center of S. In this paper, we
shall study the star-shapedness of images of O(A) under arbitrary linear maps
L : Rn×n → R`.

In fact the study of linear images of matrix orbits is a popular topic. If
A,C are n× n complex matrices and Un denotes the group of n× n (complex)
unitary matrices, then the (classical) numerical range of A, denoted by W (A),
and the C-numerical range of A, denoted by WC(A), are simply the images of
the unitary orbit of A, denoted by

Un(A) := {U∗AU : U ∈ Un},

under the linear maps

X 7−→ tr(E1X) and X 7−→ tr(CX)

respectively, where E1 is the diagonal matrix with diagonal entries 1, 0, ..., 0. It
has been proved that W (A) is always convex and WC(A) is always star-shaped
(see [1], [2], [10]). Many results on the convexity and the star-shapedness of
other generalized numerical ranges, which can be expressed as some particular
linear images of Un(A), have been obtained (e.g., see [1], [3], [4], [5], [6], [11],
[12]).

Our paper is organized as follows. In Section 2, we study an inclusion relation
of L(O(A)) with L : Rn×n → R` and n ≥ 2`−1. We then apply the inclusion
relation to show that L(O(A)) is star-shaped for general A and L : Rn×n → R`
where n ≥ 2`−1. In particular, the star-shapedness holds for L(O(A)) with
L : Rn×n → R2 and n ≥ 3. Moreover, we shall extend our results to linear
images of the following joint (real) orthogonal orbits,

O1(A1, ..., Am;G) := {(A1V, ..., AmV ) : V ∈ G},
O2(A1, ..., Am;G) := {(UA1, ..., UAm) : U ∈ G},
O3(A1, ..., Am;G) := {(UA1V, ..., UAmV ) : U, V ∈ G},

where G = On or SOn. In Section 3, we study boundary points of L(O(A))
with L : Rn×n → R2. When A ∈ Rn×n has distinct singular values, we shall
discuss the conditions on U, V ∈ SOn under which L(UAV ) will be a boundary
point of L(O(A)). Then we show that the intersection of L(O(A)) and any of its
supporting lines is path-connected. Combining the result in Section 2, convexity
of L(O(A)) for L : Rn×n → R2 then follows. This result was proved by Li and
Tam [7] with a di�erent approach. We shall also discuss the convexity of linear
images of joint orthogonal orbits.

2 Star-shapedness of linear image of O(A)

The following is the �rst main theorem in this section.
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Theorem 2.1. Let ` ≥ 3. For any A ∈ Rn×n and any linear map L : Rn×n →
R` with n ≥ 2`−1, L(O(A)) is star-shaped with respect to the origin.

We need some lemmas to prove Theorem 2.1. Note that any linear map
L : Rn×n → R` can be expressed as

L(X) =
(
tr(P1X), ..., tr(P`X)

)t
for some P1, ..., P` ∈ Rn×n. For convenience, forM ⊆ Rn×n and any P1, ..., P` ∈
Rn×n, we de�ne

L(P1, ..., P`;M) :=
{(

tr(P1X), ..., tr(P`X)
)t

: X ∈M
}
.

For A,P1, ..., P` ∈ Rn×n, we let SA(P1, ..., P`) be the set containing (P ′1, ..., P
′
`)

where P ′1, ..., P
′
` ∈ Rn×n and L(P ′1, ..., P ′` ;O(A)) ⊆ L(P1, ..., P`;O(A)). This

de�nition is motivated by Cheung and Tsing [1]. Below are some basic properties
of SA(P1, ..., P`).

Lemma 2.2. Let A ∈ Rn×n. For any P1, ..., P` ∈ Rn×n, the followings hold:

(a) SXAY (UP1V, ..., UP`V ) = SA(P1, ..., P`) for any U, V,X, Y ∈ SOn;

(b) (UP1V, ..., UP`V ) ∈ SA(P1, ..., P`), for any U, V ∈ SOn;

(c) SA(P ′1, ..., P ′`) ⊆ SA(P1, ..., P`) for any (P ′1, ..., P
′
`) ∈ SA(P1, ..., P`);

(d) L(P1, ..., P`;O(A))=
{(

tr(P ′1A), ..., tr(P
′
`A)
)t
:(P ′1, ..., P

′
`)∈ SA(P1, ..., P`)

}
.

Proof. (a), (b) and (c) are trivial. For (d), �⊆� follows from (b) and �⊇� follows
from the de�nition of SA(P1, ..., P`).

Lemma 2.3. The following statements are equivalent (hence if one of these
statements holds then the other three must also hold):

(a) L(O(A)) is star-shaped with respect to the origin for any A ∈ Rn×n and
any linear map L : Rn×n → R`;

(b) SA(P1, ..., P`) is star-shaped with respect to (0n, ..., 0n) for any A ∈ Rn×n
and any P1, ..., P` ∈ Rn×n, where 0n is the n× n zero matrix;

(c) L(SOn) is star-shaped with respect to the origin for any linear map L :
Rn×n → R`;

(d) SIn(P1, ..., P`) is star-shaped with respect to (0n, ..., 0n) for any P1, ..., P` ∈
Rn×n.

Proof. ((a)⇒(b)) For any (P ′1, ..., P
′
`) ∈ SA(P1, ..., P`), U, V ∈ SOn and 0 ≤ α ≤

1, we have

(tr(αP ′1UAV ), ..., tr(αP ′`UAV ))
t ∈ L(P ′1, ..., P ′` ;O(A)) ⊆ L(P1, ..., P`;O(A)).
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Hence α(P ′1, ..., P
′
`) ∈ SA(P1, ..., P`).

((b)⇒(a)) Apply Lemma 2.2 (b).
((a)⇒(c)) If we take A = In, then O(A) = SOn.
((c)⇒(a)) Let L : Rn×n → R` be linear and A ∈ Rn×n. For any U ∈ SOn,

de�ne linear map LUA : Rn×n → R` by

LUA(X) = L(UAX).

For any U, V ∈ SOn and 0 ≤ α ≤ 1, since LUA(SOn) is star-shaped with respect
to the origin, there exists V ′ ∈ SOn such that

αL(UAV ) = αLUA(V ) = LUA(V
′) = L(UAV ′) ∈ L(O(A)).

((c)⇔(d)) Apply similar arguments as those in (a)⇔(b).

To prove Theorem 2.1, we apply Lemma 2.3 and show the star-shapedness
of SIn(P1, ..., P`) for any P1, ..., P` ∈ Rn×n with n ≥ 2`−1. For simplicity, we
denote SIn(P1, ..., P`) by S(P1, ..., P`). In fact, by the following lemma, we may
focus only on the case of n = 2`−1.

Lemma 2.4. If S(P̂1, ..., P̂`) is star-shaped with respect to the origin for all
P̂1, ..., P̂` ∈ Rn×n, then for allm > n and for all P1, ..., P` ∈ Rm×m, S(P1, ..., P`)
is star-shaped with respect to the origin.

Proof. Let m = n + k where k is a positive integer. For any (P ′1, ..., P
′
`) ∈

S(P1, ..., P`), we write

P ′i =

[
P ′i1 P ′i2
P ′i3 P ′i4

]
,

where P ′i1 ∈ Rn×n and P ′i4 ∈ Rk×k. We shall show that
(
P ′1(ε), ..., P

′
`(ε)

)
∈

S(P1, ..., P`) where P
′
i (ε) = (εIn ⊕ Ik)P ′i and 0 ≤ ε ≤ 1. For any U ∈ SOm, we

write

U =

[
U1 U2

U3 U4

]
,

where U1 ∈ Rn×n and U4 ∈ Rk×k. Then for 0 ≤ ε ≤ 1, by the hypothesis of the
lemma, there exists V ∈ SOn such that(

tr(P ′1(ε)U), ..., tr(P ′`(ε)U)
)t

= ε (tr(P ′11U1 + P ′12U3), ..., tr(P
′
`1U1 + P ′`2U3))

t

+ (tr(P ′13U2 + P ′14U4), ..., tr(P
′
`3U2 + P ′`4U4))

t

=
(
tr
[
(P ′11U1 + P ′12U3)V

]
, ..., tr

[
(P ′`1U1 + P ′`2U3)V

])t
+
(
tr(P ′13U2 + P ′14U4), ..., tr(P

′
`3U2 + P ′`4U4)

)t
=
(
tr
[
P ′1U(V ⊕ Ik)

]
, ..., tr

[
P ′`U(V ⊕ Ik)

])t
∈ L(P ′1, ..., P ′` ; SOm)

⊆ L(P1, ..., P`; SOm).
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Since this holds for all U ∈ SOm, we have
(
P ′1(ε), ..., P

′
`(ε)

)
∈ S(P1, ..., P`).

Note that the preceding result also holds if we multiply arbitrary n rows of P ′i
by 0 ≤ ε ≤ 1. We re-apply the result by considering all n-combinations of rows

to obtain εN (P ′1, ..., P
′
`) ∈ S(P1, ..., P`), where N =

m!

n!k!
. For any 0 ≤ α ≤ 1,

we put ε = N
√
α to obtain α(P ′1, ..., P

′
`) ∈ S(P1, ..., P`).

We now consider the following recursively de�ned matrices. Let

R(θ1) =

[
cos θ1 sin θ1
− sin θ1 cos θ1

]
and

R(θ1, ..., θk) =

[
cos θkIN sin θkR(θ1, ..., θk−1)

− sin θkR(θ1, ..., θk−1)
t cos θkIN

]
where N = 2k−1. Note that R(θ1, ..., θk) ∈ SO2k .

Lemma 2.5. Let ` ≥ 2 and P1, ..., P` ∈ RN×N where N = 2`−1. Then for any
U, V ∈ SON , the set

E(U, V ) :={(
tr
(
R(θ1, ..., θ`−1)UP1V

)
, ..., tr

(
R(θ1, ..., θ`−1)UP`V

))t
:θ1, ..., θ`−1 ∈ [0, 2π]

}
is an ellipsoid in R` centered at the origin and is a subset of L(P1, ..., P`; SON ).

Proof. We �rst show that for any A ∈ RN×N where N = 2`−1,

tr
(
R(θ1, ..., θ`−1)A

)
=
[
a1 · · · a`

]


cos θ`−1
sin θ`−1 cos θ`−2

sin θ`−1 sin θ`−2 cos θ`−3
...

sin θ`−1 sin θ`−2 · · · sin θ1


for some a1, ..., a` ∈ R by induction on `. The case for ` = 2 is trivial. Now
assume it is true for ` ≤ m where m ≥ 2 and consider A ∈ R2M×2M where
M = 2m−1. We write

A =

[
A1 A2

A3 A4

]
where Ai ∈ RM×M , i = 1, ..., 4. Then

tr
(
R(θ1, ..., θm)A

)
= cos θmtr(A1 +A4) + sin θmtr

(
R(θ1, ..., θm−1)(A3 −At2)

)
.

By induction assumption on tr
(
R(θ1, ..., θm−1)(A3−At2)

)
, tr
(
R(θ1, ..., θm)A

)
is

in the desired form. Hence we have

E(U, V ) =


T


cos θ`−1

sin θ`−1 cos θ`−2
sin θ`−1 sin θ`−2 cos θ`−3

...
sin θ`−1 sin θ`−2 · · · sin θ1

 : θ1, ..., θ`−1 ∈ [0, 2π]


,
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for some T ∈ R`×` and hence E(U, V ) is an ellipsoid in R` centered at the origin.
As R(θ1, ..., θk) is a special orthogonal matrix, E(U, V ) ⊆ L(P1, ..., P`; SON ).

Lemma 2.6. Let ` ≥ 3. For any P1, ..., P` ∈ RN×N where N = 2`−1, there
exist U, V ∈ SON such that E(U, V ) de�ned in Lemma 2.5 degenerates (i.e.,
E(U, V ) is contained in an a�ne hyperplane in R`).

Proof. From the proof of Lemma 2.5, we see that if there exist U, V ∈ SON such
that

UP1V =

[
P

(1)
1 P

(1)
2

P
(1)
3 P

(1)
4

]

where P
(1)
i ∈ RN

2 ×
N
2 , i = 1, ..., 4, tr(P

(1)
1 +P

(1)
4 ) = 0 and P

(1)
2 = P

(1)
3 = 0, then

the �rst coordinate of E(U, V ) is always 0 and hence E(U, V ) degenerates. Let
U ′, V ′ ∈ SON be such that U ′P1V

′ = diag(p1, ..., pN ). Then

U = U ′, V = V ′
([

0 −1
1 0

]
⊕ · · · ⊕

[
0 −1
1 0

])
will give the desired UP1V .

Note that, by considering P1 =

[
1 0
0 0

]
and P2 =

[
0 0
1 0

]
, then for any

U, V ∈ SO2, the ellipse E(U, V ) de�ned in Lemma 2.5 is always non-degenerate.
Hence Lemma 2.6 and Theorem 2.1 fail to hold for ` = 2.

We are now ready to prove our �rst main result.

Proof of Theorem 2.1. By Lemma 2.3 and Lemma 2.4, it su�ces to show that
for any P1, ..., P` ∈ RN×N with N = 2`−1, S(P1, ..., P`) is star-shaped with
respect to (0N , ..., 0N ). Let (P ′1, ..., P

′
`) ∈ S(P1, ..., P`) and 0 ≤ α ≤ 1. For any

U ∈ SON , we de�ne E(IN , U) as in Lemma 2.5. If α
(
tr(P ′1U), ..., tr(P ′1U)

)t ∈
E(IN , U), then we have

α
(
tr(P ′1U), ..., tr(P ′1U)

)t ∈ L(P ′1, ..., P ′` ; SON ) ⊆ L(P1, ..., P`; SON ).

Assume now α
(
tr(P ′1U), ..., tr(P ′1U)

)t
/∈ E(IN , U). As the center of E(IN , U) is

the origin, we have α
(
tr(P ′1U), ..., tr(P ′1U)

)t
lies inside the ellipsoid E(IN , U).

As SON × SON is path connected, consider a continuous function f : [0, 1] →
SON × SON with f(0) = (IN , U) and f(1) = (U ′, V ′) where (U ′, V ′) are de-
�ned in Lemma 2.6. Then by continuity of f , there exists s ∈ [0, 1] such that

α
(
tr(P ′1U), ..., tr(P ′1U)

)t ∈ E(f(s)) ⊆ L(P ′1, ..., P ′` ; SON ) ⊆ L(P1, ..., P`; SON ).
As it is true for all U ∈ SON , we have

α(P ′1, ..., P
′
`) + (1− α)(0n, ..., 0n) = α(P ′1, ..., P

′
`) ∈ S(P1, ..., P`).
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In fact for ` = 2, we have the following theorem, the proof of which is given
by Lemma 2.8 to Corollary 2.11.

Theorem 2.7. Let A ∈ Rn×n and L : Rn×n → R2 be a linear map with n ≥ 3.
Then L(O(A)) is star-shaped with respect to the origin.

Lemma 2.8. Let n ≥ 2. For any P,Q ∈ Rn×n, U ∈ SOn, the locus of the point(
tr(TθPU), tr(TθQU)

)t
where Tθ = R(θ) ⊕ In−2 forms an ellipse E(U) in R2

when θ runs through [0, 2π].

Proof. We write

P =

 p(1)
p(2)
P(3)

 , Q =

 q(1)
q(2)
Q(3)

 and U =
[
u(1) u(2) U (3)

]
where pt(1), p

t
(2), q

t
(1), q

t
(2), u

(1), u(2) ∈ Rn and P t(3), Q
t
(3), U

(3) ∈ Rn×(n−2). Direct
computation shows

tr(TθPU) = cos θ(p(1)u
(1) + p(2)u

(2)) + sin θ(p(2)u
(1) − p(1)u(2)) + tr(P t(3)U

(3)).

Similarly for tr(TθQU). Hence[
tr(TθPU)
tr(TθQU)

]
=

[
p(1)u

(1) + p(2)u
(2) p(2)u

(1) − p(1)u(2)
q(1)u

(1) + q(2)u
(2) q(2)u

(1) − q(1)u(2)
] [

cos θ
sin θ

]
+

[
tr(P(3)U

(3))
tr(Q(3)U

(3))

]
,

the locus of which forms an ellipse (possibly degenerate) when θ runs through
[0, 2π].

Lemma 2.9. For any P,Q ∈ Rn×n with n ≥ 3, there exists U0 ∈ SOn such
that the ellipse E(U0) de�ned in Lemma 2.8 degenerates.

Proof. Note that E(U) degenerates if we �nd orthonormal vectors u(1), u(2) ∈
Rn such that the matrix[

p(1)u
(1) + p(2)u

(2) p(2)u
(1) − p(1)u(2)

q(1)u
(1) + q(2)u

(2) q(2)u
(1) − q(1)u(2)

]
is singular. We will show that for any given p1, p2 ∈ Rn, there exist orthonormal
vectors u1, u2 such that pt1u2 = pt2u1 = pt1u1 + pt2u2 = 0. By scaling and
rotating, we assume without loss of generality that p1 = (1, 0, ..., 0)t and p2 =
(a, b, 0, ..., 0)t where a, b ∈ R and 0 ≤ b ≤ 1. If a = 0 or b = 0, we can take
u1 = (−b, 0,

√
1− b2, 0, ..., 0)t and u2 = (0, 1, 0, ..., 0)t. Now, assume that a 6= 0

and 0 < b ≤ 1. For θ ∈ [0, π] consider unit vectors

vθ =



0
cos θ
sin θ
0
...
0


and wθ =

1√
b2 sin2 θ + a2



−b sin θ
a sin θ
−a cos θ

0
...
0


.
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Clearly, pt1vθ = pt2wθ = vtθwθ = 0. De�ne f(θ) = p1wθ + p2vθ = b cos θ −
b sin θ√

b2 sin2 θ + a2
which is a continuous function with f(0) = b and f(π) = −b.

Hence there exists θ′ ∈ [0, π] such that f(θ′) = 0. Then we take u2 = vθ′ and
u1 = wθ′ .

Lemma 2.10. For P,Q ∈ Rn×n, n ≥ 3 and 0 ≤ ε ≤ 1 we de�ne

Pε =

[
εI2

In−2

]
P and Qε =

[
εI2

In−2

]
Q.

Then (Pε, Qε) ∈ S(P,Q).

Proof. For any U ∈ SOn, consider the ellipse E(U) de�ned in Lemma 2.8. If(
tr(PεU), tr(QεU)

)t ∈ E(U), then we have
(
tr(PεU), tr(QεU)

)t ∈ L(P,Q; SOn).

Now assume that
(
tr(PεU), tr(QεU)

)t
/∈ E(U). Then

(
tr(PεU), tr(QεU)

)t
lies

inside the ellipse E(U). Since SOn is path-connected, consider a continuous
function f : [0, 1] → SOn with f(0) = U and f(1) = U0 where U0 is de�ned in
Lemma 2.9. Since E(f(1)) degenerates, by continuity of f , there exist s ∈ [0, 1]

such that
(
tr(PεU), tr(QεU)

)t ∈ E(f(s)) ⊆ L(P,Q; SOn). As it is true for
all U ∈ SOn, we have L(Pε, Qε; SOn) ⊆ L(P,Q; SOn) and hence (Pε, Qε) ∈
S(P,Q).

Lemma 2.10 remains valid if we consider SA(P,Q) instead of S(P,Q).

Corollary 2.11. Let A ∈ Rn×n and n ≥ 3. For any P,Q ∈ Rn×n and 0 ≤ ε ≤
1, we de�ne

Pε =

[
εI2

In−2

]
P and Qε =

[
εI2

In−2

]
Q.

Then (Pε, Qε) ∈ SA(P,Q).

Proof. For any U, V ∈ SOn, let P ′ = PUAV , Q = QUAV , P ′ε = (εI2 ⊕
In−2)P

′ = PεUAV and Q′ε = (εI2 ⊕ In−2)Q
′ = QεUAV. By Lemma 2.10,

because (P ′ε , Q
′
ε) ∈ S(P ′, Q′), there exists W ∈ SOn such that(

tr(PεUAV ), tr(QεUAV )
)t

= (trP ′ε , trQ
′
ε)
t

=
(
tr(P ′W ), tr(Q′W )

)t
=
(
tr(PUAVW ), tr(QUAVW )

)t
∈ L(P,Q;O(A)).

As this is true for all U, V ∈ SOn, we have L(Pε, Qε;O(A)) ⊆ L(P,Q;O(A)).

Note that in Lemma 2.10 and Corollary 2.11, Pε, Qε can be de�ned by picking
arbitrary two rows of P and Q instead of the �rst two rows. We are now ready
to prove our second main theorem.
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Proof of Theorem 2.7. By Lemma 2.3, it su�ces to show that for all P,Q ∈
Rn×n, S(P,Q) is star-shaped with respect to (0n, 0n). Let (P ′, Q′) ∈ S(P,Q)
and 0 ≤ α ≤ 1. We apply Lemma 2.10 repeatedly to every two rows of P,Q.
Then we have (εNP ′, εNQ′) ∈ S(P ′, Q′) ⊆ S(P,Q) where N = n!

2(n−2)! . Taking

ε = N
√
α, we have

α(P ′, Q′) = α(P ′, Q′) + (1− α)(0n, 0n) ∈ S(P,Q).

For the case of ` = 2 and ` = 3, we know that n = 3 and n = 4 are
respectively the smallest integers such that L(O(A)) is star-shaped for all A ∈
Rn×n and all linear maps L : Rn×n → R`. However, for ` ≥ 4, n = 2`−1 may
not be the smallest integer to ensure star-shapedness of L(O(A)). One may ask
the following question.

Problem 1. For a given ` ≥ 4, what is the smallest n such that L(SOn) is
star-shaped for all linear maps L : Rn×n → R`?

The preceding results on star-shapedness of L(O(A)) can be easily gen-
eralized to the following joint orbits. We let (Rn×n)m := {(A1, ..., Am) :
A1, ..., Am ∈ Rn×n}.

De�nition 1. For any A1, ..., Am ∈ Rn×n, we de�ne

O1(A1, ..., Am;G) := {(A1V, ..., AmV ) : V ∈ G},
O2(A1, ..., Am;G) := {(UA1, ..., UAm) : U ∈ G},
O3(A1, ..., Am;G) := {(UA1V, ..., UAmV ) : U, V ∈ G},

where G = On or SOn.

Theorem 2.12. Let L : (Rn×n)m → R` be linear, (A1, ..., Am) ∈ (Rn×n)m and
G = On or SOn. If

(i) ` = 2 and n ≥ 3, or

(ii) ` ≥ 3 and n ≥ 2`−1,

then L(Oi(A1, ..., Am;G)), i = 1, 2, 3, are star-shaped with respect to the origin.

Proof. The case of G = On can be derived from the case G = SOn easily. Hence
we consider the case G = SOn only and simply denote Oi(A1, ..., Am; SOn) by
Oi(A1, ..., Am). For any given L : (Rn×n)m → R`, express it by

L(X1, ..., Xm) =

(
tr

(
m∑
i=1

P
(1)
i Xi

)
, ..., tr

(
m∑
i=1

P
(`)
i Xi

))t
,
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for some P
(j)
i ∈ Rn×n, i = 1, ...,m, j = 1, ..., `. For O1(A1, ..., Am) we have

L(O1(A1, ..., Am))

=


(
tr

(
m∑
i=1

P
(1)
i AiU

)
, ..., tr

(
m∑
i=1

P
(`)
i AiU

))t
: U ∈ SOn


= L

(
m∑
i=1

P
(1)
i Ai, ...,

m∑
i=1

P
(`)
i Ai; SOn

)
.

Similarly for L(O2(A1, ..., Am)). Hence the star-shapedness follows from Theo-
rem 2.1 and Theorem 2.7.

Now consider the case of O3(A1, ..., Am). For any U, V ∈ SOn, we have

L(UA1V, ..., UAmV ) =

(
tr

(
m∑
i=1

P
(1)
i UAiV

)
, ..., tr

(
m∑
i=1

P
(`)
i UAiV

))t

∈ L

(
m∑
i=1

P
(1)
i UAi, ...,

m∑
i=1

P
(`)
i UAi; SON

)
.

By star-shapedness of L
(∑m

i=1 P
(1)
i UAi, ...,

∑m
i=1 P

(`)
i UAi; SON

)
, for any 0 ≤

α ≤ 1 we have

αL(UA1V, ..., UAmV ) ∈ L

(
m∑
i=1

P
(1)
i UAi, ...,

m∑
i=1

P
(1)
i UAi; SON

)t
⊆ L(O3(A1, ..., Am)).

3 Convexity of linear image of O(A)

We �rst give two non-convex examples, one is a linear image of O(A) under
L : Rn×n → R` with ` ≥ 3 and another is a linear image of O3(A1, ..., Am)
under L : (Rn×n)m → R` with ` ≥ 2.

Example 1. Consider O(In) = SOn with n ≥ 2 and the linear map L : Rn×n →
R` with ` ≥ 3 de�ned by

L(X) = (tr(P1X), ..., tr(P`X))t

where

P1 = In−2 ⊕ 02, P2 = In−2 ⊕
[
1 0
0 0

]
, P3 = In−2 ⊕

[
0 1
0 0

]
,
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and Pj = 0n for j = 4, ..., `. The mid-point of points L(In) = (n − 2, n −

1, n− 2, 0, ..., 0)t and L

(
In−2 ⊕

[
0 −1
1 0

])
= (n− 2, n− 2, n− 1, 0, ..., 0)t is in

L(P1, ..., P`; SOn) only if there exists U ∈ SOn having the form

U = In−2 ⊕
[
u11 u12
u21 u22

]
with u11 = 1

2 = u21. This is impossible as u211 + u221 = 1. Hence L(SOn) is
non-convex.

Example 2. For n ≥ 3, m ≥ 2, ` ≥ 2, consider the matrices,

A1 =

1 0 0
0 0 0
0 0 0

⊕ 0n−3, A2 =

0 0 0
0 1 0
0 0 0

⊕ 0n−3, Aj = 0n, j = 3, ...,m,

and the linear map L : (Rn×n)m → R` de�ned by

L(X1, ..., Xm) :=
(
tr(A1X1 +A2X2), tr(A2X1 −A1X2), 0, ..., 0

)t
.

By taking U = V = In, and U =

0 1 0
1 0 0
0 0 −1

⊕ In−3, V =

 0 1 0
−1 0 0
0 0 1

⊕ In−3
respectively, we have (2, 0, 0, ..., 0)t, (0, 2, 0, ..., 0)t ∈ L(O3(A1, ..., Am)). We
shall show that their mid-point which is (1, 1, 0, ..., 0)t /∈ L(O3(A1, ..., Am)).
For any U = [uij ], V = [vij ] ∈ SOn, by direct computation we have

UA1V =

u11v11 ∗ ∗
∗ u21v12 ∗
∗ ∗ ∗

 , UA2V =

u12v13 ∗ ∗
∗ u22v22 ∗
∗ ∗ ∗

 .
Hence (1, 1, 0, ..., 0) ∈ L(O3(A1, ..., Am)) only if u11v11 + u22v22 = 1 = u21v12 −
u12v13 for some U, V ∈ SOn. We shall show that such U, V do not exist. For
X = (xij), Y = (yij) ∈ Rn×n, denote X ◦ Y := (xijyij) ∈ Rn×n. Since
each absolute row (column) sum of U ◦ V is not greater than one, we have
(1, 1, 0, ..., 0) ∈ L(O3(A1, ..., Am)) only if there exist U, V ∈ SOn such that

U ◦ V =



1

2

1

2
0

−1

2

1

2
0

0 0 ∗

 or U ◦ V =



1

2
−1

2
0

1

2

1

2
0

0 0 ∗

 .

The possible choices of the leading 2× 2 principal submatices of U and V are

±
√
2

2

[
1 k1
−k2 k1k2

]
where k1, k2 = ±1. However, any two of them will not give the U ◦V as required.
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From the above two examples we know that L(O(A)) is not convex in gen-
eral. However if the codomain of L is R2 then L(O(A)) is always convex. This
result was obtained by Li and Tam [7] by using techniques in Lie algebra. In
the following, we shall give an alternative proof on this result by showing that
L(O(A)) has convex boundary for all A ∈ Rn×n and linear L : Rn×n → R2,
i.e., the intersection of L(O(A)) with any of its supporting lines is path con-
nected. Combining with the star-shapedness property of L(O(A)), the convexity
of L(O(A)) follows. We �rst need some notations.

De�nition 2. For A = (aij) ∈ Rn×n, we denote its diagonal as d(A) =
(a11, a22, ..., ann)

t ∈ Rn. We further denote the sum of the �rst k diago-
nal elements of A by tk(A). Moreover for P ∈ Rn×n, we denote r(P,A) =
max{tr(PUAV ) : U, V ∈ SOn} and GP (A) = {B ∈ O(A) : tr(PB) = r(P,A)}.

We shall characterize the set GP (A) when A has distinct singular values and
then show that it is path connected. Note that for any U, V ∈ SOn, GP (UAV ) =
GP (A) and GUPV (A) = {V tBU t : B ∈ GP (A)}. Hence we may assume that A,P
are diagonal matrices.

Lemma 3.1. Let A = diag(a1, ..., an−1, an) where a1 > a2 > · · · > an−1 >
|an| ≥ 0 and B ∈ O(A). If tk(B) = tk(A) then

B =

[
W

X1

]
A

[
W t

X2

]
,

where W ∈ SOk, X1, X2 ∈ SOn−k.

Proof. Let B = UAV where U, V ∈ SOn and write

U = (uij) =

[
U11 U12

U21 U22

]
, V = (vij) =

[
V11 V12
V21 V22

]
,

where U11, V11 ∈ Rk×k, U22, V22 ∈ R(n−k)×(n−k). Denote

[
U11 U12

]
=
[
u∗1 · · · u∗n

]
,

[
V11
V21

]
=

v1∗...
vn∗

 ,
where ut∗j = (u1j , ..., ukj), vj∗ = (vj1, ..., vjk), j = 1, ..., n. Then tk(UAV ) =

tr(U11A11V11 + U12A22V21) = tr(A11V11U11 + A22V21U12) =
∑n
i=1 aivi∗u∗i.

Since vi∗u∗i ≤ 1,
∑n
i=1 vi∗u∗i ≤ k and a1 > · · · > ak > · · · > an, we have∑n

i=1 aivi∗u∗i ≤
∑k
i=1 aii with equality holds if and only if vi∗u∗i = 1 for

i ≤ k and vi∗u∗i = 0 for i > k. Hence we have vi∗ = ut∗i and u∗iu
t
∗i = 1.

Now U = W ⊕ X1 and V = W t ⊕ X1 where W ∈ Ok, X1, X2 ∈ On−k and
detW = detX1 = detX2. If detW = detX1 = detX2 = −1, then we have
B = ((WD1)⊕ (X1D2))A ((WD1)

t ⊕ (D2X2)) where D1 = Ik−1 ⊕ −1 and
D2 = −1⊕ In−k−1.
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Thompson [9] gave the following result on characterizing the diagonal ele-
ments of O(A).

Proposition 3.2. [9] A vector d = (d1, ..., dn) is the diagonal of a matrix
A ∈ Rn×n with singular values s1 ≥ s1 ≥ · · · ≥ sn if and only if d lies in the
convex hull of those vectors (±sσ(1), ...,±sσ(n)) with an even number (possibly
zero) of negative signs and arbitrary permutation σ.

For matrices A,B ∈ Rn×n, the following result by Miranda and Thompson
[8] can be regarded as a characterization of the extreme values of O(A) under
the linear map X 7−→ tr(BX).

Proposition 3.3. [8] Let A,B ∈ Rn×n have singular values s1(A) ≥ · · · ≥
sn(A) and s1(B) ≥ · · · ≥ sn(B) respectively. Then

max
U,V ∈SOn

tr(BUAV ) =

n−1∑
i=1

si(A)si(B) + (sign det(AB))sn(A)sn(B).

Theorem 3.4. Let A = diag(a1, ..., an−1,±an) where a1 > · · · > an ≥ 0 and
P = p1In1

⊕ · · · ⊕ pkInk where p1 > · · · > pk ≥ 0 and n1 + · · ·+ nk = n. Then

(i) if pk > 0,

GP (A) =


U1

. . .

Uk

A
U

t
1

. . .

U tk

 :
Ui ∈ SOni ,

i = 1, ..., k

 ;

(ii) if pk = 0,

GP (A) =



U1

. . .

Uk−1
U

A

U t1

. . .

U tk−1
V

 :

Ui ∈ SOni ,

i = 1, ..., k − 1,

U, V ∈ SOnk

 .

In both cases, GP (A) is path connected.

Proof. (⊇) Obvious. (⊆). We assume that A = A1⊕· · ·⊕Ak where Ai ∈ Rni×ni .
We have r(P,A) = d(P )td(A) =

∑k
i=1 pitrAi. Let U, V ∈ SOn such that

tr(PUAV ) = r(P,A) = d(P )td(UAV ). Write

UAV = B =


B11 B12 · · · B1k

B21 B22 · · · B2k

... · · ·
. . .

...
Bk1 Bk2 · · · Bkk


where Bij ∈ Rni×nj . We have tr(PUAV ) = tr(PB) =

∑k
i=1 pitrBii. We

shall show that trBii = trAi for all i whenever pi > 0. By Proposition 3.2,
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d(B) =
∑
αisi where αi > 0,

∑
αi = 1 and si are vector of (±aσ(1), ...,±aσ(n)),

σ is a permutation on {1, ..., n} and the number of negative signs is even (odd,
respectively) if detA ≥ 0 (≤ 0, respectively). If k = 1, then P = p1I, and
the proof is trivial. Now consider k > 1, hence p1 > 0. We �rst show that
trB11 = trA1. Note that trB11 < trA1 holds if and only if at least one of the
following cases hold:

(1) there exists i1 such that the �rst n1 elements of si1 contain −aj where
j ≤ n1;

(2) there exists i1 such that the �rst n1 elements of si1 contain ±aj where
j > n1.

In case (1), we construct s′i1 from s by multiplying −1 to −aj and arbitrary aq
for some q > n1. If in case (2), then there exists i′ < n1 such that ±ai′ will
not be the �rst n1 elements of si1 . In this case, we construct s′i1 from si1 by
interchanging ±aj and ±ai′ and multiplying −1 to both if necessary to have ai′

instead of −ai′ . Replace si1 in
∑
αisi by s

′
i1

to form s. By Proposition 3.2,
there exists B′ ∈ O(A) such that d(B′) = s. We shall have d(P )td(B) =
d(P )t(

∑
αisi) = d(P )ts + d(P )t(si1 − s′i1) < d(P )ts, which contradicts the

assumption on B. Therefore, we have trB11 = trA1. By Lemma 3.1, we have
U = U1 ⊕ U2 and V = V t1 ⊕ V2 where U1, V1 ∈ SOn1

, V2, U2 ∈ SOn−n1
and

V t1 = U1. Apply similar approach for Bii where pi > 0. Hence, if pk > 0, we
have U = U1 ⊕ · · · ⊕ Uk and V = U t where Ui ∈ SOni , i = 1, ..., k; otherwise
if pk = 0, U = U1 ⊕ · · · ⊕ Uk−1 ⊕ U ′ and V = U t1 ⊕ · · · ⊕ U tk−1 ⊕ V ′ where
Ui ∈ SOni , i = 1, ..., k − 1, U ′, V ′ ∈ SOnk . The path connectedness of GP (A)
follows from the path connectedness of SOni for all i.

Corollary 3.5. If A ∈ Rn×n has n distinct singular values, then L(O(A)) has
convex boundary for all linear maps L : Rn×n → R2.

Proof. Let P,Q ∈ Rn×n be such that L(P,Q;O(A)) = L(O(A)). Then L(O(A))
has convex boundary if for any θ ∈ [0, 2π], the set

{− sin θx+ cos θy : (x, y) ∈ L(P,Q;O(A)), cos θx+ sin θy = rθ},

where rθ = max{cos θx + sin θy : (x, y) ∈ L(P,Q;O(A))}, is path connected.
For any θ ∈ [0, 2π], we de�ne P ′θ = − sin θP +cos θQ and Q′θ = cos θP +sin θQ,
then we have

{− sin θx+ cos θy : (x, y) ∈ L(P,Q;O(A)), cos θx+ sin θy = rθ}
= {tr (P ′θUAV ) : U, V ∈ SOn, tr (Q

′
θUAV ) = rθ}

= {tr(P ′θX) : X ∈ GQ′
θ
(A)}

Hence by Theorem 3.4, it is path connected.

Note that a set M ⊆ R2 is convex if and only if it is star-shaped and has
convex boundary. Hence by Theorem 2.12 and Corollary 3.5, the following result
is clear.

14



Theorem 3.6. Let n ≥ 3. If A ∈ Rn×n has n distinct singular values, then
L(O(A)) is convex for all linear maps L : Rn×n → R2.

In fact, the condition of distinct singular values in Theorem 3.6 can be
removed by applying the following lemma.

Lemma 3.7. Let L : Rn×n → R` be a linear map. Suppose L(O(A)) is convex
for all A in a dense set S of Rn×n. Then L(O(A)) is convex for all A ∈ Rn×n.

Proof. Suppose that A0 ∈ Rn×n such that L(O(A0)) is not convex. Then there
exist x1, x2 ∈ L(O(A0)) such that y = 1

2 (x1+x2) /∈ L(O((A0)). Since L(O(A0))
is compact, there exists ε > 0 such that B(y, ε) := {x ∈ R` : ‖x− y‖ < ε}
has empty intersection with L(O(A0)). Since S is dense in Rn×n, there exists
Aε ∈ S such that for all U, V ∈ SOn,

‖L(UA0V )− L(UAεV )‖ < ε

2
.

Hence there exist x′1, x
′
2 ∈ L(O(Aε)) such that ‖x′1 − x1‖ < ε

2 and ‖x′2 − x2‖ <
ε
2 . By convexity of L(O(Aε)), y

′ = 1
2 (x
′
1 + x′2) ∈ L(O(Aε). We have

‖y′ − y‖ =
∥∥∥∥12(x′1 + x′2)−

1

2
(x1 + x2)

∥∥∥∥ < 1

2

( ε
2
+
ε

2

)
=
ε

2
.

By assumption of Aε, there exists z ∈ L(O(A0)) such that ‖z − y′‖ < ε
2 . Then

‖z − y‖ = ‖(z − y′) + (y′ − y)‖ < ‖(z − y′)‖ + ‖(y′ − y)‖ < ε
2 + ε

2 = ε, contra-
dicting the fact that B(y, ε) ∩ L(O(A0)) = ∅.

Since the set of n × n matrices with n distinct singular values is dense in
Rn×n, by Lemma 3.7 we have the following result.

Theorem 3.8. Let n ≥ 3. L(O(A)) is convex for all linear maps L : Rn×n →
R2 and A ∈ Rn×n.

From the proof of Corollary 2.12, the convexity of L(O(A)) can be extended
to L(Oi(A1, ..., Am)), i = 1, 2.

Corollary 3.9. Let n ≥ 3. L(Oi(A1, ..., Am)), i = 1, 2, is convex for all linear
maps L : (Rn×n)m → R2 and A1, ..., Am ∈ Rn×n.
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