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Abstract

Let A € R™" and SO, := {U € R : UU! = I,,detU > 0} be the set of
n X n special orthogonal matrices. Define the (real) special orthogonal orbit of
A by

O(A) :={UAV : U,V € SO, }.

In this paper, we show that the linear image of O(A) is star-shaped with respect
to the origin for arbitrary linear maps L : R™*" — Rf if n. > 2¢~1. In particular,
for linear maps L : R"*" — R? and when A has distinct singular values, we
study B € O(A) such that L(B) is a boundary point of L(O(A)). This gives
an alternative proof of a result by Li and Tam on the convexity of L(O(A)) for
linear maps L : R™*" — R2.
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1 Introduction

Let O, :={U € R™" . U'U = UU* = I,,} and SO,, := {U € O, : detU > 0}
be the sets of n X n orthogonal matrices and n x n special orthogonal matrices
respectively. For any A € R"*" we define the special orthogonal orbit of A by

O(A) == {UAV : U,V € SO, }.

It is clear that every element in O(A) has the same collection of singular values
and the same sign of determinant. In [9], Thompson studied the set of diago-
nals of the matrices in O(A), and in [8], Miranda and Thompson studied the
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characterizations of extreme values of L(O(A)) where L : R"*"™ — R is a linear
map.

A set S is said to be star-shaped with respect to c € Siffor all 0 < a <1
and x € S, ax+(1—a)c € S. The cis called a star center of S. In this paper, we
shall study the star-shapedness of images of O(A) under arbitrary linear maps
L:R™™ — RE,

In fact the study of linear images of matrix orbits is a popular topic. If
A, C are n x n complex matrices and U,, denotes the group of n x n (complex)
unitary matrices, then the (classical) numerical range of A, denoted by W (A),
and the C-numerical range of A, denoted by W (A), are simply the images of
the unitary orbit of A, denoted by

U (A) :={UAU : U € U, },
under the linear maps
X r—tr(E1X) and X +— tr(CX)

respectively, where F; is the diagonal matrix with diagonal entries 1,0, ...,0. It
has been proved that W (A) is always convex and W¢(A) is always star-shaped
(see [1], [2], [10]). Many results on the convexity and the star-shapedness of
other generalized numerical ranges, which can be expressed as some particular
linear images of U,,(A), have been obtained (e.g., see [1], [3], [4], [5], [6], [11],
[12]).

Our paper is organized as follows. In Section 2, we study an inclusion relation
of L(O(A)) with L : R™" — R’ and n > 2/~!. We then apply the inclusion
relation to show that L(O(A)) is star-shaped for general A and L : R"*" — R*
where n > 2¢=1. In particular, the star-shapedness holds for L(O(A)) with
L : R™*"™ — R? and n > 3. Moreover, we shall extend our results to linear
images of the following joint (real) orthogonal orbits,

(
01(141, ,Am, G) = {(Al‘/, ,AmV) Ve G},
OQ(Al,...,Am;G) = {(UAl, ,UAm) :U € G},
Os(A1, oy A; G) o= {(UALV, . ,UALV) : U,V € G},

where G = O,, or SO,,. In Section 3, we study boundary points of L(O(A))
with L : R®*"™ — R2, When A € R™ " has distinct singular values, we shall
discuss the conditions on U,V € SO,, under which L(UAV) will be a boundary
point of L(O(A)). Then we show that the intersection of L(O(A)) and any of its
supporting lines is path-connected. Combining the result in Section 2, convexity
of L(O(A)) for L : R"*™ — R? then follows. This result was proved by Li and
Tam [7] with a different approach. We shall also discuss the convexity of linear
images of joint orthogonal orbits.

2 Star-shapedness of linear image of O(A)

The following is the first main theorem in this section.



Theorem 2.1. Let £ > 3. For any A € R™*" and any linear map L : R"*"™ —
R with n > 271, L(O(A)) is star-shaped with respect to the origin.

We need some lemmas to prove Theorem 2.1. Note that any linear map
L :R™™™ — R can be expressed as

L(X) = (tr(PX), ..., tr(Pr X))

for some P4, ..., P, € R™ ™. For convenience, for M C R"*"™ and any P, ..., P, €
R™*" we define

L(Py, s Py M) = { (tr(PX), ..., tr(P X)) - X € M}.

For A, Py, ..., P, € R, we let Sao(P4, ..., P;) be the set containing (P, ..., P))
where P{,...,P; € R"*" and L(P],...,P};O(A)) C L(P1,..., Pi;O(A)). This
definition is motivated by Cheung and Tsing [1]. Below are some basic properties
of SA(Pl, vy Pg).

Lemma 2.2. Let A € R"*"™. For any Py, ..., Py € R"*" the followings hold:
(a) Sxay(UPL\V,..,UPV) = 84(P1,...,P) for any U, V, X, Y € SO,,;
(b) (UPV,..,UPV) € Sa(Pr,..., Pp), for any U,V € SO,,;
(¢c) Sa(Pl,...,P}) CSa(Pr,...,P;) for any (Py,...,P}) € Sa(Pi1,..., Py);
(d) L(Py,.... Pi; O(A)={ (tr(P{A), ..., tr(P}A)) :(P], ..., P})E Sa(Py,.... Po)}.

Proof. (a), (b) and (c) are trivial. For (d), “C” follows from (b) and “2” follows
from the definition of S, (P, ..., Pr). O

Lemma 2.3. The following statements are equivalent (hence if one of these
statements holds then the other three must also hold):

(a) L(O(A)) is star-shaped with respect to the origin for any A € R™*™ and
any linear map L : R"*" — R¢;

(b) Sa(Pr, ..., Py) is star-shaped with respect to (0,, ...,0,) for any A € R**"
and any Py, ..., Py € R™™™ where 0, is the n X n zero matrix;

(¢) L(SO,,) is star-shaped with respect to the origin for any linear map L :
Rxn _y RZ,
’

(d) Si, (P, ..., Py) is star-shaped with respect to (0, ...,0,) for any P, ..., Py €
R7l><77/'

Proof. ((a)=(b)) For any (P/, ..., P}) € Sa(P1,...,P;), U,V € SO, and 0 < a <
1, we have

(tr(aP,UAV), ..., tr(aPJUAV))" € L(P], ..., Py; O(A)) C L(P}, ..., P; O(A)).



Hence o(Py, ..., P)) € Sa(P1, ..., Pr).

((b)=-(a)) Apply Lemma 2.2 (b).

((a)=(c)) If we take A = I,,, then O(A) = SO,,.

((c)=(a)) Let L : R"*™ — R’ be linear and A € R"*". For any U € SO,,
define linear map L4 : R"*"™ — R by

Lya(X) = L{UAX).

For any U,V € SO,, and 0 < o < 1, since Ly a(SO,,) is star-shaped with respect
to the origin, there exists V' € SO,, such that

aL(UAV) = aLya(V) = Lya(V') = LUAV') € L(O(4)).
((c)<(d)) Apply similar arguments as those in (a)<(b). O

To prove Theorem 2.1, we apply Lemma 2.3 and show the star-shapedness
of St (Py,...,P) for any Pi,..., P, € R™" with n > 2!, For simplicity, we
denote Sy, (P, ..., Pp) by S(P1, ..., Pp). In fact, by the following lemma, we may
focus only on the case of n = 21,

Lemma 2.4. If S(P17 . Pg) is star-shaped with respect to the origin for all
Py, .., P, e RXn, then for allm > n and for all Py, ..., P € R™*™ S(Py, ..., P)
is star-shaped wzth respect to the origin.

Proof. Let m = n + k where k is a positive integer. For any (Pf,...,P)) €
S(Py, ..., Py), we write
P. P!
A=l F
where P/} € R™*" and P}, € R***. We shall show that (P{(e),..., P/(c)) €
S(P, ..., P;) where P/(e) = (el,, ® I)P! and 0 < € < 1. For any U € SO,,, we
write
_ Ui U
7=luy )

where U; € R™*" and Uy € RF**. Then for 0 < € < 1, by the hypothesis of the
lemma, there exists V' € SO,, such that

(tr(P{()U), ..., tr(P}(e)U))
= ¢ (tr(P Uy + PlyUs), ..., tr(P), Uy + PjUs))"
+ (tr(Pl3Us + PlyUy), ... tr(PlUs + Py, Uy))

t
- (tr[(Pl’lUl + PlyUs)V], . tr[(PLU + P52U3)V])

t

t
+ (tr(Pl’3U2 4 PLUL), ooy tr(PlaUs + Pg4U4))

:(tr[Pl (V@ L)],..tr[PU (V@Ik)Dt

)]
€ C(Pl,.. PE,SOm)
- [:(Pl,.. Pg,SOm)



Since this holds for all U € SO,,, we have (P{(e),...,P)(¢)) € S(Pi,..., ).

Note that the preceding result also holds if we multiply arbitrary n rows of P/

by 0 < e < 1. We re-apply the result by considering all n-combinations of rows
!

to obtain N (P}, ..., P}) € S(P, ..., P;), where N = % For any 0 < a < 1,
nlk!

we put € = ¥/« to obtain «(P;, ..., P)) € S(P, ..., Py). O

We now counsider the following recursively defined matrices. Let

| cosb; sinb;
R(01) = {— sinf; cos 91}
and 0 0 R(0 Or—1)
o cos Oy sinfp R(0,...,0k_1
R(61, ., 0x) = {— $in 0x R(01, .., Op_1)" cos O Iy }

where N = 2¢=1. Note that R(61,...,0;) € SOqx.

Lemma 2.5. Let £ > 2 and Py, ..., P, € RV*N where N = 2¢=1. Then for any
U,V € SOy, the set

E(U,V):=
{(tr(R(Gl, 0 )UPLV), .t (R (6, ...,Ge,l)UPgV))tzﬁh...793,1 € [o,m}

is an ellipsoid in R centered at the origin and is a subset of L(Pi, ..., P;; SOnN).
Proof. We first show that for any A € RV*N where N = 2¢71,

cosfp_1
sinf@y_1 cosBp_o

tr(R(917...79z71)A)=[a1 az] sin@p_1sin0p_o cos Bp_s3

sinfy_1sinfy_o---sinby
for some aq,...,a¢ € R by induction on ¢. The case for ¢/ = 2 is trivial. Now
assume it is true for £ < m where m > 2 and consider A € RZ2M*2M where
M =2m"1, We write 1
_ |4 2

= i
where A; € RM*M i — 1. .., 4. Then
tr(R(Ql, s Gm)A) = cos O tr(A; + Ag) + sin Gmtr(R(Hl, ey Om—1) (A3 — Atz))
By induction assumption on tr(R(61, ..., 0p—1)(Az — Ab)), tr(R(61, ..., 0,) A) is
in the desired form. Hence we have

cosBp_1
sinfy_1 cosBy_o

E(U,V)={ T |sinbr1sinbeocosbes | .g, 4, ,el0,27]p,

sin 95_1 sin 95_2 -+ -8in 91



for some T € R*¢ and hence E(U, V) is an ellipsoid in R centered at the origin.
As R(0y,...,0;) is a special orthogonal matrix, E(U,V) C L(Py,..., Pr;; SOn).
O

Lemma 2.6. Let £ > 3. For any Py,.... Py € RV*N where N = 2671 there
exist U,V € SOy such that E(U,V) defined in Lemma 2.5 degenerates (i.e.,
E(U,V) is contained in an affine hyperplane in RY).

Proof. From the proof of Lemma 2.5, we see that if there exist U,V € SOy such
that
P1(1) P

UPV = 2
1 P?El) Pf)

N
2

where Pi(l) ERY*T, i=1,..,4, tr(Pl(l) —|—Pf)) =0 and Pz(l) = Pél) =0, then
the first coordinate of E(U, V) is always 0 and hence E(U, V) degenerates. Let
U', V' € SOn be such that U’ P, V' = diag(ps, ..., pn). Then

o (0 =1 |0 -1
U=U, V—V([1 0}69 @L 0})
will give the desired UP, V. O

Note that, by considering P, = Ll) 8} and P, = {(1) 8

U,V € SOy, the ellipse E(U, V) defined in Lemma 2.5 is always non-degenerate.
Hence Lemma 2.6 and Theorem 2.1 fail to hold for ¢ = 2.
We are now ready to prove our first main result.

], then for any

Proof of Theorem 2.1. By Lemma 2.3 and Lemma 2.4, it suffices to show that
for any Pi,...,P, € RNV with N = 271 S(Py,..., P;) is star-shaped with
respect to (Oy,...,0n). Let (Pf,...,P)) € S(P1,...,P;) and 0 < a < 1. For any
U € SOy, we define E(Iy,U) as in Lemma 2.5. If a(tr(P{U), ...,tr(Pl'U))t €
E(In,U), then we have

a(tr(PU), ... tr(PU))" € L(P), ..., P};SON) C L(Py, ..., P;; SON).

Assume now a(tr(P{U), ...7tr(P1’U))t ¢ E(In,U). As the center of E(Iy,U) is
the origin, we have a(tr(P{U), ...,tr(Pl’U))t lies inside the ellipsoid E(In,U).
As SOn x SOy is path connected, consider a continuous function f : [0,1] —
SOn x SOn with f(0) = (Iy,U) and f(1) = (U’,V’) where (U’,V’) are de-
fined in Lemma 2.6. Then by continuity of f, there exists s € [0, 1] such that
oz(tr(Pl’U),...,tr(Pl’U))t € E(f(s)) € L(P{,...,P};SON) C L(P1, ..., Pr; SOn).
As it is true for all U € SOy, we have

a(Pl,....P))+ (1 —a)(0p,....,0,) = a(P], ..., P)) € S(P1,..., ).



In fact for £ = 2, we have the following theorem, the proof of which is given
by Lemma 2.8 to Corollary 2.11.

Theorem 2.7. Let A € R™*" and L : R"*" — R? be a linear map with n > 3.
Then L(O(A)) is star-shaped with respect to the origin.

Lemma 2.8. Let n > 2. For any P,Q € R"*™ U € SO,,, the locus of the point
(tI‘(T@PU),tI“(TQQU))t where Ty = R(0) @ I,_o forms an ellipse E(U) in R?
when 6 runs through [0, 27].

Proof. We write

P q
p— = 0= U and  U=[u®|u® |U®
P(2) s q(2)
Py Q3)

where p’El),p'EQ),qfl), qu),u(l), u? € R” and P(t3)’ QIZB), U®B) ¢ R"*(n=2)  Direct
computation shows

tr(Ty PU) = cos 9(p(1)u(1) + p(2)u(2)) + sin G(p(g)u(l) - p(l)u@)) + tr(P(tg)U(S)).

Similarly for tr(TpQU). Hence

tI‘(TgPU) _ p(l)u(l) + p(g)u@) p(g)u(l) — p(l)U(Q) cosf tI‘(P(g)U(g))

tr(ToQU) | — |gyu™ + qoyu®  gau® —quyu® | [sinb] " [tr(QsU®) |’
the locus of which forms an ellipse (possibly degenerate) when 6 runs through
[0, 27]. O

Lemma 2.9. For any P,Q € R™ "™ with n > 3, there exists Uy € SO,, such
that the ellipse E(Uy) defined in Lemma 2.8 degenerates.

Proof. Note that E(U) degenerates if we find orthonormal vectors u"), u( ¢
R"™ such that the matrix

Pyt +peu®  peyult) —pau
au® +g@u®  qeut) —qau®

is singular. We will show that for any given p1, ps € R"™, there exist orthonormal
vectors uy,up such that plus = pbu; = pluy + pbus = 0. By scaling and
rotating, we assume without loss of generality that p; = (1,0,...,0)! and ps =
(a,b,0,...,0)" where a,b € Rand 0 < b < 1. If a = 0 or b = 0, we can take
up = (=b,0,v/1—102,0,...,0)* and uy = (0,1,0,...,0)’. Now, assume that a # 0
and 0 < b < 1. For 0 € [0, 7] consider unit vectors

[0 [—bsind]
cos 6 asin 6
sin 0 1 —acosd
Vg = 0 and wy = ——— 0
Vb2 sin? 6 + a2 )
L 0 - L 0 -



Clearly, pivg = plwy = viwsy = 0. Define f(0) = prwg + pove = bcost —
bsin 6
Vb2 sin? 6 + a2
Hence there exists 6’ € [0, 7] such that f(6’) = 0. Then we take us = ver and
U = Wer- O

which is a continuous function with f(0) = b and f(7) = —b.

Lemma 2.10. For P,Q € R"*"™ n >3 and 0 < ¢ <1 we define
ey _|ela
P. = { In—2:| P and Q.= [ In_2:| Q.

Then (P.,Q.) € S(P,Q).

Proof. For any U € SO,,, consider the ellipse E(U) defined in Lemma 2.8. If
(tr(P.U), tr(Q.U))" € E(U), then we have (tr(P.U), tr(Q.U))" € L(P,Q;S0y,).
Now assume that (tr(PeU)ﬁur(QeU))t ¢ E(U). Then (tr(PEU),tr(QgU))t lies
inside the ellipse E(U). Since SO,, is path-connected, consider a continuous
function f : [0,1] — SO, with f(0) = U and f(1) = Uy where Uy is defined in
Lemma 2.9. Since E(f(1)) degenerates, by continuity of f, there exist s € [0, 1]
such that (tr(P.U),tr(Q.U))" € E(f(s)) C L(P,Q;S0,). As it is true for
all U € SO,, we have L(P.,Q.;SO,) C L(P,Q;S0,) and hence (P.,Q.) €
S(P,Q). O

Lemma 2.10 remains valid if we consider S4(P, Q) instead of S(P, Q).

Corollary 2.11. Let A € R"*™ and n > 3. For any P,Q € R"*" and 0 < e <
1, we define

I el
P = |2 P d Q.= |7 ]
|: ]n2:| a Q |: In72 Q

Then (P, Q.) € Sa(P, Q).

Proof. For any U,V € SO,, let P/ = PUAV, Q = QUAV, P! = (el2 ®
I, 2)P' = PUAV and Q. = (els ® I,,_2)Q" = Q.UAV. By Lemma 2.10,
because (P!, Q) € S(P',Q’), there exists W € SO,, such that

(trP!, trQ’)*

(tr(P'W), tr(Q’ W))

(te(PUAVW), tr(QUAVW))'
€ L(P,Q;0(4)).

(tr(PUAV), r(QUAV))'

As this is true for all U,V € SO,,, we have L(P.,Q;O(A)) C L(P,Q;0(A)). O

Note that in Lemma 2.10 and Corollary 2.11, P,, Q). can be defined by picking
arbitrary two rows of P and @ instead of the first two rows. We are now ready
to prove our second main theorem.



Proof of Theorem 2.7. By Lemma 2.3, it suffices to show that for all P,Q €
R™*" S(P,Q) is star-shaped with respect to (0,,0,). Let (P',Q’) € S(P,Q)
and 0 < a < 1. We apply Lemma 2.10 repeatedly to every two rows of P, Q.
Then we have (VP N Q') € S(P', Q") C S(P,Q) where N = 2(n”7_'2), Taking
e = ¥/a, we have

a(P,Q") =a(P,Q")+ (1 - a)(0,,0,) € S(P,Q).
O

For the case of £ = 2 and ¢ = 3, we know that n = 3 and n = 4 are
respectively the smallest integers such that L(O(A)) is star-shaped for all A €
R™ ™ and all linear maps L : R"*" — R*. However, for £ > 4, n = 2~! may
not be the smallest integer to ensure star-shapedness of L(O(A)). One may ask
the following question.

Problem 1. For a given ¢ > 4, what is the smallest n such that L(SO,) is
star-shaped for all linear maps L : R"*" — R¢?

The preceding results on star-shapedness of L(O(A)) can be easily gen-
eralized to the following joint orbits. We let (R™*™)™ := {(A1,....,4n) :
Apy oy Ay € RPXPY

Definition 1. For any Ay, ..., A,, € R"*" we define

01(141, ,Am, G) : {(Al‘/, ,AmV) Ve G},
OQ(Al,...,Am;G) = {(UAl, ,UAm) U € G},
03(A1, ey A G) : {(UAﬂé ceey UAmV) U,V e G},

where G = O,, or SO,,.

Theorem 2.12. Let L : (R™*™)™ — R be linear, (Ay, ..., Ay) € (R™™)™ and
G =0, orSO,. If

(i) L=2 and n >3, or
(i3) € >3 and n > 2°71,
then L(O; (A1, ..., An; Q)), i = 1,2,3, are star-shaped with respect to the origin.

Proof. The case of G = O,, can be derived from the case G = SO,, easily. Hence
we consider the case G = SO,, only and simply denote O;(A4;, ..., A;,; SO,) by
O;(Ay, ..., A,,). For any given L : (R™*™)™ — R’ express it by

m m t
L(X1, ., Xon) = (tr (ZPi(l)Xi> L tr <Z P}“Xi» 7
i=1 i=1



for some P\ € Rv*" =1, m,j =1,....L. For O1(Ay, ..., Ay,) We have

%

L(O1(Ay, ..., Ap))

m m t
- { (tr (Z P}”AiU) e tr <Z P}”AiU)) U e son}
=1 =1

—C <§: P, .., i P9 4;; son> .

i=1 i=1

Similarly for L(O2(Ayq, ..., Ar)). Hence the star-shapedness follows from Theo-
rem 2.1 and Theorem 2.7.
Now consider the case of O3(Ay, ..., Ay). For any U,V € SO,,, we have

m m t
L(UALV,..,UA,V) = (tr (Z Pf”UAN) o tr (Z pY UAN))

i=1 i=1
€L (Z POUA;, LY POUA; soN> :
=1 =1

By star-shapedness of £ (ZZL Pi(l)UAi, P PZ-(Z)UAi; SON), for any 0 <
a <1 we have

m m t
aL(UALV,..,UA,V) € L (Z POUA;, LY PPYUA; SON>
i=1 i=1

C L(O3(Aq, ..., An)).

3 Convexity of linear image of O(A)

We first give two non-convex examples, one is a linear image of O(A) under
L : R™" — R’ with £ > 3 and another is a linear image of O3(Ay, ..., A,,)
under L : (R™™)™ — RY with £ > 2.

Example 1. Consider O(1,,) = SO,, with n > 2 and the linear map L : R"*" —
Rf with £ > 3 defined by

L(X) = (tr(PX), ..., tr(P X))

where

1 0 0 1
Pi=1, 290y P= n—2®[0 0}, Ps = ”_2@{0 0},

10



and P; = 0, for j = 4,...,4. The mid-point of points L(I,,) = (n — 2,n —

1,mn—2,0,...,0)" and L (In2 ® {(1) _01}) =(n-2,n—2,n-1,0,...,0)" is in

L(P,..., P;;SO,,) only if there exists U € SO,, having the form
U=1, 50 [uu Ulz]
U1  U22

with u1; = 4 = upi. This is impossible as u}; + u3; = 1. Hence L(SO,,) is

non-convex.

Example 2. For n > 3, m > 2, { > 2, consider the matrices,

1 00 0 00
Al =10 0 O @On_g, A2 =10 1 0| On_g, Aj = On, _] = 3, ey,
0 0 O 0 0 O

and the linear map L : (R"*")™ — R’ defined by

L(Xl, ;Xm) = (tI‘(Ale +A2X2>,tr(A2X1 - Ang),O, ...,O)t.
01 0 0 10

By taking U =V =1I,,andU= |1 0 0 |®L,_5,V=|-1 0 0|®I,_3
0 0 -1 0 01

respectively, we have (2,0,0,...,0)% (0,2,0,...,0)t € L(O3(Ay,...,An)). We
shall show that their mid-point which is (1,1,0,...,0)" ¢ L(O3(A1,...,An)).
For any U = [u;;], V = [v;5] € SOy, by direct computation we have

U11011 * * U12V13 * *
UA1V = * U21V12  *| , UAQV = * U22V22  *
* * * * *

Hence (1, 1,0, 70) S L(Og(Al, ceey Am)) only if wi1v11 + Ugoeg = 1 = U010 —
u12v13 for some U,V € SO,,. We shall show that such U,V do not exist. For
X = (l‘ij), Y = (yij) € Rnxn’ denote X oY := (Jiijyij) € R™*™_ Since
each absolute row (column) sum of U o V' is not greater than one, we have
(1,1,0,...,0) € L(O3(Ay, ..., A,,)) only if there exist U,V € SO,, such that

1 1

1
- -0 - — 0
2 2 2 2
UoV=| 11 ol or UoVv=|1 1 0
2 2 2 2
0 0 = 0 0 =«

The possible choices of the leading 2 x 2 principal submatices of U and V are

LV20 1k
2 |—ky kikg

where k1, ko = +1. However, any two of them will not give the UoV as required.

11



From the above two examples we know that L(O(A)) is not convex in gen-
eral. However if the codomain of L is R? then L(O(A)) is always convex. This
result was obtained by Li and Tam [7] by using techniques in Lie algebra. In
the following, we shall give an alternative proof on this result by showing that
L(O(A)) has convex boundary for all A € R"*" and linear L : R"*" — R2,
i.e., the intersection of L(O(A)) with any of its supporting lines is path con-
nected. Combining with the star-shapedness property of L(O(A)), the convexity
of L(O(A)) follows. We first need some notations.

Definition 2. For A = (a;;) € R™ ", we denote its diagonal as d(A4) =
(a11,a22, .oy ann)t € R™  We further denote the sum of the first k diago-
nal elements of A by tx(A). Moreover for P € R"*", we denote r(P,A) =
max{tr(PUAV) : U,V € SO, } and Gp(A) = {B € O(A) : tr(PB) =r(P, A)}.

We shall characterize the set Gp(A) when A has distinct singular values and
then show that it is path connected. Note that for any U,V € SO,,, Gp(UAV) =
Gp(A)and Gypy(A) = {V!BU': B € Gp(A)}. Hence we may assume that A, P
are diagonal matrices.

Lemma 3.1. Let A = diag(ay,...,an—1,a,) where a; > as > -+ > ap_1 >
|an| >0 and B € O(A). If t(B) = ti(A) then

b= {W Xl] 4 [Wt XJ ’

where W € SOy, X1, X5 € SO, _k.
Proof. Let B =UAV where U,V € SO,, and write

_ ) Ull U12 o N V11 V12
U= (uy) = {Uzl Uzz] V=) = |:V21 VgJ ’

where Uy1, Vi1 € Rka, Uss, Voo € R(=k)x(n=k) Denote

V1x

_ o Vil _ | .
U1 Urg] = [us Usp] » |:‘/21:| =1,

Unx

where ul; = (u1j, .., ukj) Vjx = (Vj1,-05k), j = 1,...,n. Then t,(UAV) =
tr(Un A1 Vir + UiaAaVar) = tr(AnVinUnn + AVorUis) = Y| Gi0itsg.
Since viuy < 1, Yo vpuy < kand ap > -+ > ag > --- > ap, we have
o AV < Zle a;; with equality holds if and only if v;us; = 1 for
i < k and vj.u. = 0 for i > k. Hence we have v;, = ul, and u,ul, = 1.
Now U =W ® X; and V = W! @ X; where W € Oy, X1,Xs € O,,_;, and

detW = detX; = detX,. If detWW = detX; = detX; = —1, then we have
B = ((WDl) D (XlDQ))A((WDl)t D (DQXQ)) where D1 = Ik—l ® —1 and
Do=—-1®1,_j_1. O
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Thompson [9] gave the following result on characterizing the diagonal ele-
ments of O(A).

Proposition 3.2. [9] A vector d = (di,...,d,) is the diagonal of a matriz
A € R™™ with singular values s1 > 81 > -+ > s, if and only if d lies in the
convex hull of those vectors (£84(1), .-, £84(n)) with an even number (possibly
zero) of negative signs and arbitrary permutation o.

For matrices A, B € R™"*", the following result by Miranda and Thompson
[8] can be regarded as a characterization of the extreme values of O(A) under
the linear map X +—— tr(BX).

Proposition 3.3. [8] Let A,B € R™ " have singular values s1(A) > --- >
sn(A) and s1(B) > --- > s,(B) respectively. Then

n—1

pmax tr(BUAV) = 1 3i(A)s;(B) + (sign det(AB))sy(A)s,(B).

i

Theorem 3.4. Let A = diag(as,...,an—1,%a,) where ay > -+ > a, > 0 and
P=pil,,® - ®prl,, wherep; >--->pp >0 andny +---+ng =n. Then

(i) if px >0,

U Ur U, € SO
R N T R E e S

- "

(i) if pr, =0,
U Ui U; € SO,,.
Gp(A) = "-U A ".Ut ci=1, .k — 1,
k—1 k—1
U v U,V € SO,

In both cases, Gp(A) is path connected.

Proof. (2) Obvious. (C). We assume that A = A;@®--- P A where A; € R %™,
We have r(P,A) = d(P)'d(A) = S pitrA;. Let U,V € SO, such that
tr(PUAV) = (P, A) = d(P)!d(UAV). Write

Bii Bz -+ Big

By1 DBy -+ DBy
UAV =B = . .

Brpi Bra -+ B

where B;; € R"*" . We have tr(PUAV) = tr(PB) = ZlepitrBu‘- We
shall show that trB;; = trA; for all ¢ whenever p; > 0. By Proposition 3.2,
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d(B) = > a;s; where a; > 0, 3 o; = 1 and s; are vector of (£a,(1), ..., £lo(n))s
o is a permutation on {1,...,n} and the number of negative signs is even (odd,
respectively) if detA > 0 (< 0, respectively). If k¥ = 1, then P = pyI, and
the proof is trivial. Now consider & > 1, hence p; > 0. We first show that
trBy; = trA;. Note that trBy; < trA; holds if and only if at least one of the
following cases hold:

(1) there exists ¢; such that the first n, elements of s;, contain —a; where
J < na

(2) there exists ¢; such that the first n; elements of s;, contain +a; where
j >nj.

In case (1), we construct 821 from s by multiplying —1 to —a; and arbitrary a,
for some ¢ > ny. If in case (2), then there exists i/ < nj such that +ay will
not be the first n; elements of s;,. In this case, we construct s; from s;, by
interchanging +a; and +a;; and multiplying —1 to both if necessary to have a;
instead of —ay. Replace s;, in ) a;s; by s; to form s. By Proposition 3.2,
there exists B’ € O(A) such that d(B’) = s. We shall have d(P)'d(B) =
d(P) (3" aysg) = d(P)'s + d(P)'(s;, — s;,) < d(P)'s, which contradicts the
assumption on B. Therefore, we have trB;; = trA;. By Lemma 3.1, we have
U=U  ®U; and V = Vlt ® Vo where Uy, V; € SOnl, Vo,Us € SOn_m and
Vi = U;. Apply similar approach for B;; where p; > 0. Hence, if p > 0, we
have U = Uy @ -+ - ® Uy and V = U* where U; € SO,,,, i = 1, ..., k; otherwise
fpy=0,U=U,® U160 and V =U{®---dU}_; ® V' where
U, € SO,,,i=1,..,.k—1, U, V' € SO,, . The path connectedness of Gp(A)
follows from the path connectedness of SO,,, for all i. O

Corollary 3.5. If A € R™*" has n distinct singular values, then L(O(A)) has
convex boundary for all linear maps L : R™*"™ — R2.

Proof. Let P,@Q € R™ "™ be such that L(P,Q;O(A)) = L(O(A)). Then L(O(A))
has convex boundary if for any 6 € [0, 27], the set

{—sinfx + cosOy : (x,y) € L(P,Q;O0(A)), cosbBx +sinby =ry},

where 19 = max{cosfx + sinfy : (z,y) € L(P,Q;O(A))}, is path connected.
For any 6 € [0,27], we define Pj = —sin§P + cos 0Q and Q = cos 0P +sin0Q),
then we have
{=sinfz + cosOy : (z,y) € L(P,Q;O0(A)), cosbzx +sinfy =rp}
= {tr (PRUAV) : U,V € SOy, tr (QuUAV) =1y}
= {tr(PpX) : X € Gg, (A)}

Hence by Theorem 3.4, it is path connected. O

Note that a set M C R? is convex if and only if it is star-shaped and has
convex boundary. Hence by Theorem 2.12 and Corollary 3.5, the following result
is clear.
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Theorem 3.6. Let n > 3. If A € R™*" has n distinct singular values, then
L(O(A)) is convez for all linear maps L : R™*" — R2.

In fact, the condition of distinct singular values in Theorem 3.6 can be
removed by applying the following lemma.

Lemma 3.7. Let L : R™™ — R’ be a linear map. Suppose L(O(A)) is conver
for all A in a dense set S of R"*™. Then L(O(A)) is convex for all A € R"*".

Proof. Suppose that Ag € R™*" such that L(O(Ap)) is not convex. Then there
exist 21, x2 € L(O(Ay)) such that y = 1 (21 +22) ¢ L(O((Ay)). Since L(O(Ay))
is compact, there exists ¢ > 0 such that B(y,¢) := {z € R : |z —y| < €}
has empty intersection with L(O(Ap)). Since S is dense in R™*"™ there exists
A, € S such that for all U,V € SO,

ILUAY) = LWAV)| < 5.

Hence there exist 2,25 € L(O( ¢)) such that ||z} — || < § and [|25 — z2| <
£. By convexity of L(O(A.)), y' = 3(z} + a4) € L(O(A.). We have

< 1 (f + E) -
2\2 2/ 2
By assumption of A, there exists z € L(O(A)) such that ||z — 3| < §. Then

Iz =yl =1z =9)+ @ =l <Ilz=y)+ I -yl <5+ 5 =¢ contra-
dicting the fact that B(y,e) N L(O(4g)) = 0. O

1
Ty + xy) — 5(301 + z2)

1
Iy - ol = 3

Since the set of n x n matrices with n distinct singular values is dense in
R™ " by Lemma 3.7 we have the following result.

Theorem 3.8. Let n > 3. L(O(A)) is convex for all linear maps L : R™*™ —
R? and A € R"<".

From the proof of Corollary 2.12, the convexity of L(O(A)) can be extended
to L(Ol(Al, 7Am)>, 1= 1, 2.

Corollary 3.9. Letn > 3. L(O;(41,...,An)), i = 1,2, is convex for all linear
maps L : (R™™")™ — R? and Ay, ..., A, € R™*",
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