
REMARK ON THE PAPER
“ON PRODUCTS OF FOURIER COEFFICIENTS OF CUSP FORMS”

YUK-KAM LAU, YINGNAN WANG, DEYU ZHANG

ABSTRACT. Let a(n) be the Fourier coefficient of a holomorphic cusp form on some
discrete subgroup of SL2(R). This note is to refine a recent result of Hofmann and
Kohnen on the non-positive (and non-negative resp.) product of a(n)a(n + r) for a
fixed positive integer r.

1. INTRODUCTION

Let Γ be a subgroup of SL2(R). Assume as in [2] that

(i) Γ is a finitely generated Fuchsian group of the first kind,
(ii) −I ∈ Γ where I is the identity,

(iii) Γ contains
(

1 b
1

)
exactly if b is an integer.

Conditions (ii) and (iii) may be formulated as: Γ has a cusp at i∞ and its stabilizer

Γi∞ is generated by ±
(

1 1
1

)
.

Let k > 2 be any even integer. Write Sk(Γ) for the space of all elliptic cusp forms
of weight k on Γ (with trivial multiplier system). Throughout, a cusp form is tacitly
assumed to be holomorphic. Suppose all the coefficients of f in its Fourier expansion
at i∞ are real. In [2], Hofmann and Kohnen showed the infinitude of non-vanishing
terms in the sequence {af (n)af (n + r)}n≥1. Moreover, when Γ is a congruence sub-
group, they showed that the sequence has infinitely many non-negative (resp. non-
positive) terms, i.e. for ε = + or − respectively,

(1.1) Cεf,r(x) := #{n ∈ [1, x] : ε af (n)af (n+ r) ≥ 0} → ∞

as x → ∞, where #{· · · } denotes the cardinality of the set {· · · }. It is also pointed
out that (1.1) holds for more general, but still restricted as in [5], subgroups Γ; in
particular, it requires the discrete subgroups Γ (considered here) that have a cusp at 0.

This note aims at some refinement: First we show that (1.1) will hold when Γ

satisfies merely Conditions (i)-(iii). Second we give a quantitative version for the case
of congruence subgroups – a lower bound for C±f,r(x).
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Theorem 1.1. Suppose Γ satisfies Conditions (i)-(iii) and f is a cusp form of even integral
weight k > 2 on Γ whose Fourier coefficients are all real. For any r ∈ N, we have
C±f,r(x)→∞ as x→∞.

Theorem 1.2. Let Γ be a congruence subgroup and f a cusp form of even integral weight
k > 2 on Γ. Suppose all the Fourier coefficients of f are real. There exist positive constants
c1 = c1(f, r) and x1 = x1(f, r) such that for all x ≥ x1,

af (n1)af (n1 + r) ≥ 0 and af (n2)af (n2 + r) ≤ 0

for some integers n1, n2 ∈ (x, x + c1x
1/2]. In particular, we have C±f,r(x) �f,r x

1/2 for all
x ≥ x1.

Remark 1.1. 1. Compared with [2, Theorem 2], the condition on Γ there is relaxed in
Theorem 1.1 while an explicit lower bound is given in Theorem 1.2 (for congruence
subgroup Γ).

2. Both results are derived, similarly to the argument in [2], via counting the sign
changes of af (n) in arithmetic progressions A = Aa,r where

(1.2) Aa,r := {n ∈ N : n ≡ a mod r}

for r ∈ N and a ∈ Z. However we detect the sign-changes in ways different than the
method in [5] (used in [2]).

3. In Theorem 1.2, f is not necessarily a Hecke eigenform or primitive form. The
Fourier coefficients of a primitive form are multiplicative. Recently Matomäki and
Radziwill [8] obtained very strong results on sign-changes via their theory on multi-
plicative functions. Hence it is plausible to get a lower bound much better than x1/2

for primitive forms.

4. Our results hold for maass cusp forms (of weight 0 and trivial multiplier system)
with real coefficients. In view of the proof (in Section 4), the analogue of Theorem 1.2
is clear while for Theorem 1.1, one may apply [9, Theorem 5.1], the pointwise bound
a(n)� |n|2/5+ε in [10, Corollary 1] and [4, (8.23)] instead (cf. Section 2).

2. PROOF OF THEOREM 1.1

Let f 6= 0 be given as in Theorem 1.1. By [1, Theorem 2] and its Corollary, we have
af (n)� n(k−1)/2+1/3 and ∑

n≤x

af (n)2 ∼ Cfx
k as x→∞

where Cf > 0 is a constant depending on f . Thus, there exists 1 ≤ a ≤ r such that

(2.1)
∑

x/2<n≤x
n≡amod r

|af (n)| �f,r x
k/2+1/6.
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On the other hand, from [3, Corollary 5.4], it follows that for any 1 ≤ b ≤ r,∑
n≤x

n≡bmod r

af (n)� xk/2 log 2x.

Hence for all large x, there are u, v ∈ (x, 2x]∩Aa,r for some a such that af (u)af (v) < 0,
and consequently af (n)af (n+r) ≤ 0 for some n ∈ (x, 2x]∩Aa,r, implying the infinitude
of non-positive af (n)af (n+ r).

Suppose af (n)af (n + r) < 0 for all n. Then af (n)af (n + 2r) > 0 for all n which
contradicts to the last assertion with 2r in place of r. This completes the proof.

3. PRELIMINARIES FOR THEOREM 1.2

Define for M,N ∈ N,

Γ0(M,N) =

{(
a b
c d

)
∈ SL2(Z) : M |c, N |b

}
,

Γ(M,N) =

{(
a b
c d

)
∈ Γ0(M,N) : a ≡ d ≡ 1 (mod [M,N ])

}
where [M,N ] denotes the least common multiple of M and N .† Then Γ0(M, 1) =

Γ0(M), Γ(M, 1) = Γ1(M) and Γ(M,M) = Γ(M) of the usual notation. Recall a sub-
group Γ of SL2(Z) is a congruence subgroup of level N if Γ(N) ⊆ Γ for some N ∈ N.

Also we write

n(x) =

(
1 x

1

)
and W =

(
−1

1

)
.

For any γ =

(
a b
c d

)
∈ GL2(R) and any function g, define

g
∣∣
γ
(z) =

(
cz + d√

det γ

)−k
g(γz) where γz =

az + b

cz + d
.

Lemma 3.1. (i) Suppose f ∈ Sk(G(M,N)) where G(M,N) = Γ0(M,N) or Γ(M,N).
We have f

∣∣
W
∈ Sk(G(N,M)).

(ii) If f ∈ Sk(Γ(M,N)) and r ∈ N, then f |n(Nu
r ) is a cusp form on Γ(Mr2, N) for any

u (mod r).

(iii) Let 1A be the characteristic function on A = Aa,r (cf. (1.2)). The twist

f ⊗ 1A(z) :=
∑
n≥1

af (n)1A(n)e(nz/N)

is a cusp form on Γ(Mr2, N).

Proof. (i) Let γ =

(
a b
c d

)
. Then WγW−1 =

(
d −c
−b a

)
. So WγW−1 ∈ G(M,N) if γ is

belonged to G(N,M).

†In [7], the product MN is used instead of the least common multiple.
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(ii) For any γ =

(
a b
c d

)
∈ Γ(Mr2, N),(

1 Nu/r
1

)(
a b
c d

)(
1 −Nu/r

1

)
=

(
a+N cu

r
b+Nud−a

r
−N cNu2

r2

c d− cNu
r

)
which is in Γ(M,N) as a ≡ d ≡ 1 mod [Mr2, N ] and c ≡ 0 mod Mr2. Thus, f |n(Nu/r)γ =

f |n(Nu/r). Our assertion follows readily.

(iii) It is a direct consequence from (ii) and the fact

f ⊗ 1A(z) =
1

r

∑
umod r

e

(
−au
r

)
f

∣∣∣∣
n(Nu

r )
.

�

Any cusp form f on Γ(M,N) has a Fourier expansion at i∞,

f(z) =
∑
n≥1

af (n)e(nz/N)

where e(x) = e2πix. Moreover its associated L-function

L(s, f) :=
∑
n≥1

af (n)

n(k−1)/2n
−s

is entire and satisfies a functional equation.

Lemma 3.2. Suppose f ∈ Sk(Γ(M,N)) and let g = f
∣∣
W

. Then(
N

2π

)s
Γ(s+

k − 1

2
)L(s, f) = ik

(
M

N

) k−1
2
(
M

2π

)1−s

Γ(1− s+
k − 1

2
)L(1− s, g).

Proof. For sufficiently large <e s, we have∫ ∞
0

f(it)ts+(k−1)/2 dt

t
=

(
N

2π

)s+(k−1)/2

Γ(s+
k − 1

2
)L(s, f).

The cuspidality of f ensures the absolute convergence of the integral for all s ∈ C.

Write g(z) =
∑

n≥1 ag(n)e(nz/M) for g = f |W ∈ Sk(Γ(N,M)) by Lemma 3.1 (i).
With a change of variable t into 1/t, it is apparent that∫ ∞

0

f(
−1

it
)t−(s+(k−1)/2) dt

t
=

∫ ∞
0

(it)kf
∣∣
W

(it)t−(s+(k−1)/2) dt

t

= ik
∑
n≥1

ag(n)

∫ ∞
0

e−2πnt/M t1−s+(k−1)/2 dt

t

= ik
(
M

2π

)1−s+(k−1)/2

Γ(1− s+
k − 1

2
)L(1− s, g),

yielding the functional equation. �
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4. PROOF OF THEOREM 1.2

Let us assume more generally f ∈ Sk(Γ(M,N)). Write A = Aa,r for any given
0 ≤ a<r. Lemma 3.1 (iii) implies F := f ⊗ 1A ∈ Sk(Γ(Mr2, N)), thus its L-function
L(s, F ) is entire and satisfies a functional equation with gamma factors. Separating
into the two cases of F = 0 or not, the following proposition follows from [6, Remark
2 (iii)] with an = aF (n)/n(k−1)/2.

Proposition 4.1. There exist positive constants c0 = c0(F ) and x0 = x0(F ) such that
aF (u)aF (v)≤0 for some u, v ∈ (x, x+ c0x

1/2] for all x ≥ x0.

Arguing as before, we apply the proposition with a = 0. There exist constants c0
and x0 such that for all x ≥ x0, af (n)af (n + `) ≤ 0 for some n ∈ (x, x + c0x

1/2] ∩ A0,`

(` = r or 2r). If af (n)af (n + r) < 0 for all n ∈ A0,r ∩ (x, x + c0x
1/2], then all af (n)

with n ∈ A0,2r ∩ (x, x + c0x
1/2] are nonzero and have the same sign, contradicting to

Proposition 4.1 for f ⊗ 1A0,2r . Now we are done.
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