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Abstract. We introduce a new class of representations of the cohomologi-
cal Hall algebras of Kontsevich and Soibelman, which we call cohomological

Hall modules (CoHM). These representations are constructed from self-dual
representations of a quiver with contravariant involution and can be seen as a

mathematical model for the space of BPS states in orientifold string theory. We

use the CoHM to define a generalization of cohomological Donaldson-Thomas
theory of quivers from structure group GLn to On and Sp2n. We prove the inte-

grality conjecture for orientifold Donaldson-Thomas invariants of σ-symmetric

quivers and formulate precise conjectures regarding the geometric meaning of
these invariants and their relationship to the structure of the CoHM. The con-

jectures are proved for zero and one loop quivers and the affine Dynkin quiver

of type Ã1. We also describe the CoHM of finite type quivers by constructing
explicit Poincaré-Birkhoff-Witt type bases of these representations.
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Introduction

Motivation. Motivated by the Donaldson-Thomas theory of three dimensional
Calabi-Yau categories, Kontsevich and Soibelman introduced in [23] the cohomolog-
ical Hall algebra (CoHA) of a quiver with potential. We briefly recall the connection
between the CoHA and Donaldson-Thomas theory, leaving details to Section 2. For
simplicity we assume that the potential is zero and that the quiver Q is symmetric.
Let Λ+

Q be the monoid of dimension vectors of Q. Denote by VectZ the category

of Z-graded rational vector spaces and by D(VectZ)Λ+
Q

the category of Λ+
Q-graded

objects of the unbounded derived category D(VectZ). The CoHA is defined to be
the shifted direct sum of cohomology groups of stacks of representations of Q,

HQ =
⊕
d∈Λ+

Q

H•(Md){χ(d, d)/2} ∈ Dlb(VectZ)Λ+
Q

where χ is the Euler form of Q and the Z-grading is the Hodge theoretic weight
grading. A natural correspondence diagram of stacks makes HQ into an associative
algebra object of the full subcategory Dlb(VectZ)Λ+

Q
⊂ D(VectZ)Λ+

Q
of objects with

finite dimensional Λ+
Q×Z-homogeneous summands. There exists an object V prim

Q ∈
Dlb(VectZ)Λ+

Q
such that

[Sym(V prim
Q ⊗Q[u])] = [HQ] ∈ K0(Dlb(VectZ)Λ+

Q
). (1)

Here u is an indeterminant of degree (0, 2) ∈ Λ+
Q × Z and Sym(V ) is the free

supercommutative algebra on V , the Z2-grading induced by the Z-grading. The
motivic Donaldson-Thomas invariant of Q is defined to be

ΩQ,d = [V prim
Q,d ] ∈ K0(Dlb(VectZ)).

The integrality conjecture [22], [19] states that in fact

ΩQ,d ∈ im
(
K0(Db(VectZ))→ K0(Dlb(VectZ))

)
.

A proof of this conjecture for quivers with potential was given in [23, Theorem 10].
However, positivity of motivic Donaldson-Thomas invariants was not proven.

While the definition of ΩQ involves only the graded dimensions of HQ, it is
natural to expect that an understanding of the algebra structure of HQ may lead
to additional insights. Not unrelated, the algebra HQ has physical significance: it
is a model for the algebra of closed oriented BPS states of a quantum field theory
or string theory with extended supersymmetry [17], [23]. In this direction, Efimov

constructed [12] a subobject V prim
Q ⊗Q[u] ⊂ HQ, with V prim

Q having finite dimensional

Λ+
Q-homogeneous summands, such that the canonical map

Sym(V prim
Q ⊗Q[u])→ HQ (2)

is an algebra isomorphism. Upon passing to Grothendieck rings this confirms the

integrality and positivity conjectures. The subobject V prim
Q is a cohomologically

refined Donaldson-Thomas invariant in the sense of [36]. For an arbitrary quiver
with potential W and generic stability θ, it was recently proved in [8] that the slope

µ cohomological Donaldson-Thomas invariant V prim,θ
Q,W,µ can again be constructed as

a subobject of Hθ-ssQ,W,µ and that the analogue of the map (2) is an isomorphism in

Dlb(VectZ)Λ+
Q

(or better, with VectZ replaced by a more refined category). More-

over, the integrality conjecture holds in this more general setting. In this way
Hθ-ssQ,W,µ acquires a Poincaré-Birkhoff-Witt type basis. The results of [8] rely on an

interpretation of V prim,θ
Q,W,µ in terms of intersection cohomology of quiver moduli [27].
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As an application, the structure of Hθ-ssQ,W,µ was used in [6] to give a new proof of
the Kac̆ conjecture.

The representation theory of the CoHA is also relevant to Donaldson-Thomas
theory. Physical arguments suggest that the space of open BPS states in a theory
with defects forms a representation of the BPS algebra [16]. By the work of [4], such
representations are expected to be related to CoHA representations constructed
from stable framed objects [34]. See also [35]. In the case of quiver categories,
framed CoHA representations have been studied in detail [14], [38], [8]. A similar
construction, with framed quiver moduli replaced by Nakajima quiver varieties, was
given in [39].

In this paper we introduce a new class of CoHA representations constructed using
orthogonal and symplectic analogues of quiver representations. While the framing
construction models open BPS states, the constructions used in this paper model
unoriented BPS states in orientifold string theory. From another (related) point of
view, the formalism we consider provides an extension of Donaldson-Thomas theory
from structure group GLn(C) to the classical groups On(C) and Sp2n(C), in the
following sense. If G is a reductive group, then the derived moduli stack of G-bundles
on a Calabi-Yau threefold X has a canonical (−1)-shifted symplectic structure [28,
Corollary 2.6]. The truncation therefore has a symmetric perfect obstruction theory
[28, §3.2] which could be used to define the G-Donaldson-Thomas invariants of X.
The usual Donaldson-Thomas theory arises when G = GLn(C). For orthogonal or
symplectic groups, G-bundles on X are precisely the (frame bundles of) self-dual
objects of the category of vector bundles on X. More generally, we expect the
correct setting for orientifold Donaldson-Thomas theory to be three dimensional
Calabi-Yau categories together with a contravariant duality functor which preserves
the Calabi-Yau pairings [40]. The CoHA representations introduced below, and the
resulting orientifold Donaldson-Thomas invariants, should be seen as an instance
of this theory in the case of quivers.

Main results. Let Q be a quiver with contravariant involution σ. Denote by
Λσ,+Q ⊂ Λ+

Q the submonoid of symmetric dimension vectors. Then Dlb(VectZ)Λσ,+Q

is naturally a left-module category over Dlb(VectZ)Λ+
Q

. After fixing some combina-

torial data, the involution σ induces a contravariant duality on the representation
category RepC(Q). Denote by Mσ

e the stack of representations of dimension vector

e ∈ Λσ,+Q which are symmetrically isomorphic to their duals (henceforth, self-dual)
and set

MQ =
⊕

e∈Λσ,+Q

H•(Mσ
e ){E(e)/2} ∈ Dlb(VectZ)Λσ,+Q

.

The function E : Λ+
Q → Z plays the rôle of the Euler form for self-dual representa-

tions. Write Mσ
d,e for the stack of flags of representations U ⊂M with M self-dual,

U isotropic in M and dimU = d, dimM = d+ σ(d) + e. The correspondence

Md ×Mσ
e ← Mσ

d,e → Mσ
d+σ(d)+e

(U,M//U) ← [ U ⊂M 7→ M

where // is a categorical version of symplectic reduction, can be used to give MQ

the structure of a left HQ-module object in Dlb(VectZ)Λσ,+Q
. See Theorem 3.1. We

call MQ the cohomological Hall module (CoHM). In Theorem 3.3 we prove that
MQ has an explicit combinatorial description as a signed shuffle module, analogous
to the Fĕıgin-Odesskĭı shuffle algebra structure of HQ [23]. This result is crucial for
both the computational and theoretical aspects of the paper.

Suppose for simplicity that Q is σ-symmetric. This condition is stronger than
symmetry of Q but appears naturally when considering quivers with involution. Let
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W prim
Q ⊂ MQ be a minimal generating subobject with respect to the HQ-module

structure and define the orientifold Donaldson-Thomas invariant by

ΩσQ,e = [W prim
Q,e ] ∈ K0(Dlb(VectZ)).

Our first main result is the following.

Theorem A (Theorem 3.4). If Q is σ-symmetric, then the integrality conjecture

holds for MQ. More precisely, for all e ∈ Λσ,+Q we have

ΩσQ,e ∈ im
(
K0(Db(VectZ)) ↪→ K0(Dlb(VectZ))

)
.

The proof is similar to Efimov’s proof [12] of the integrality conjecture forHQ and
relies on the explicit shuffle description ofMQ. Positivity of orientifold Donaldson-
Thomas invariants follows immediately from their definition.

We next focus on the analogue of the map (2). The situation is more complicated
than that of the CoHA sinceMQ is very far from being a free HQ-module. Instead,
we formulate the following conjecture.

Conjecture A (Conjectures 3.6 and 3.8). Let Q be σ-symmetric and assume that

HQ is supercommutative without any twist. There exist Λσ,+Q ×Z-graded subalgebras

HQ(e) ⊂ HQ, e ∈ Λσ,+Q , such that the CoHA action map⊕
e∈Λσ,+Q

HQ(e)�W prim
Q,e

?−→MQ

is an isomorphism in Dlb(VectZ)Λσ,+Q
. Moreover, the restriction to the summand

HQ(e)�W prim
Q,e is a HQ(e)-module isomorphism onto its image.

Each subalgebra HQ(e) is explicitly defined and is, roughly, a free supercommu-
tative algebra on the pure cohomology of an e-dependent Z2-quotient of the stack of
stable quiver representations. Passing to Grothendieck rings, Conjecture A implies
an orientifold analogue of the factorization (1),∑

e∈Λσ,+Q

[HQ(e)] · ΩσQ,e = [MQ] ∈ K0(Dlb(VectZ)Λσ,+Q
).

In this case of loop quivers this equation can be used to compute ΩσQ from ΩQ. In
general, Z2-equivariant refinements of ΩQ are needed to compute ΩσQ.

We also formulate a conjectural geometric interpretation of orientifold Donaldson-
Thomas invariants. Let Mσ,st

e be the moduli space of stable self-dual representations
of dimension vector e and let PH•(Mσ,st

e ) be the pure part of its cohomology.

Conjecture B (Conjecture 3.11). If Q is σ-symmetric, then there is a canonical
isomorphism

W prim
Q,e ' PH

•(Mσ,st
e ){E(e)/2}.

The analogue of Conjecture B for Donaldson-Thomas invariants was proved by
Chen [3]. As initial evidence for Conjecture B, in Proposition 3.10 we construct a

surjection W prim
Q,e � PH•(Mσ,st

e ){E(e)/2}.
In Section 4 we study in detail a number of examples of MQ for σ-symmetric.

The main results can be summarized as follows.

Theorem B (Theorems 4.2, 4.5, 4.8 and 4.11). Conjectures A and B hold for
disjoint union quivers, zero and one loop quivers and the symmetric orientation of
the affine Dynkin quiver of type Ã1.
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In each case we explicitly compute all orientifold Donaldson-Thomas invariants
and describe the module structure of MQ. In contrast to the case of Donaldson-
Thomas invariants, in some of these examples there are already infinitely many
non-zero orientifold Donaldson-Thomas invariants.

In Section 5 we study the CoHM of a finite type quiver with involution. As
these quivers are not σ-symmetric, their CoHM have a rather different structure
than those of σ-symmetric quivers. The non-trivial task is to describe the CoHM
of Dynkin type A quivers.

Theorem C (Theorem 5.8). Let Q be a Dynkin type A quiver with involution. Then
MQ admits two Poincaré-Birkhoff-Witt type bases, each of which is determined by
a simple/indecomposable Poincaré-Birkhoff-Witt type basis of HQ and the set of
simple/indecomposable self-dual representations of Q.

Theorem C categorifies the orientifold quantum dilogarithm identities found in
[41]. To prove Theorem C we develop a modification of Rimányi’s approach to the
study of the CoHA of a finite type quiver [32]. Along the way we prove a number
of results that are of independent interest. For example, in Corollary 5.6 we prove
that Thom polynomials of orbit closures of self-dual quiver representations appear
as structure constants of the CoHM.

In this paper we have made calculations only in the case of zero potential; see
however Section 3.5 for the construction of the critical CoHM. There are also a
number of expected applications which we have not discussed. Perhaps the most
exciting is the connection between the CoHA and the cohomology of character vari-
eties for GLn(C) [7]. It is natural to expect a connection between the corresponding
CoHM and character varieties associated to the groups On(C) and Sp2n(C).

Notation. All cohomology groups have Q coefficients and, unless explicitly men-
tioned otherwise, all tensor products are over Q.

Acknowledgements. The author would like to thank Ben Davison and Sven
Meinhardt for a number of helpful discussions. Parts of this work were completed
while the author was visiting the National Center for Theoretical Sciences at Na-
tional Taiwan University and the Korea Institute for Advanced Study during the
Winter School on Derived Categories and Wall-Crossing. The author would like to
thank Wu-yen Chuang, Michel van Garrel and Bumsig Kim for the invitations.

1. Background material

1.1. Classical groups. We fix some notation regarding the classical groups. Each
such group Gn is the automorphism group of a pair (Vn, 〈·, ·〉) consisting of a finite
dimensional complex vector space with nondegenerate bilinear form.

(1) Types Bn and Dn. Let Vn = C2n+1 with basis x1, . . . , xn, w, y1, . . . , yn in
type Bn and Vn = C2n with basis x1, . . . , xn, y1, . . . , yn in type Dn. Define
a symmetric bilinear form in this basis by 〈xi, yj〉 = δi,j , and 〈w,w〉 = 1
in type Bn, all other pairings being zero. Then Gn is the orthogonal group
O2n+1(C) or O2n(C). It is important in what follows that we use the full
orthogonal group and not the special orthogonal group.

(2) Type Cn. Let Vn = C2n with basis x1, . . . , xn, y1, . . . , yn and skew-symmetric
bilinear form determined by 〈xi, yj〉 = δi,j , all other pairings between basis
vectors being zero. Then Gn is the symplectic group Sp2n(C).

Consider the maximal torus

Tn = {diag(t1, . . . , tn, (1), t−1
1 , . . . , t−1

n ) | ti ∈ C×} ⊂ Gn,



6 MATTHEW B. YOUNG

omitting the middle 1 except in type Bn. For each 1 ≤ i ≤ n define a character
ei : Tn → C× by t 7→ ti. Then the positive roots are

Type Bn : ∆ = {ei ± ej | 1 ≤ i < j ≤ n} t {ei | 1 ≤ i ≤ n}
Type Cn : ∆ = {ei ± ej | 1 ≤ i < j ≤ n} t {2ei | 1 ≤ i ≤ n}
Type Dn : ∆ = {ei ± ej | 1 ≤ i < j ≤ n}.

The Weyl groups WGn = NGn(Tn)/Tn are

WO2n+1
' (Zn2 oSn)× Z2, WSp2n

' Zn2 oSn, WO2n
' Zn2 oSn

with Sn the symmetric group on n letters.

1.2. Quiver representations. Let Q be a quiver with finite sets of nodes Q0 and
arrows Q1. Write α : i→ j for an arrow α with tail i and head j. Let RepC(Q) be
the hereditary abelian category of finite dimensional complex representations of Q.
Objects of RepC(Q) are pairs (U, u), often denoted by just U , where U =

⊕
i∈Q0

Ui

is a finite dimensional Q0-graded complex vector space and u = {Ui
uα−−→ Uj}i α−→j∈Q1

is a collection of linear maps. Let Λ+
Q = Z≥0Q0 be the abelian monoid dimension

vectors. Set also ΛQ = ZQ0.
The Euler form of RepC(Q) is

χ(U, V ) = dimC Hom(U, V )− dimC Ext1(U, V ).

It descends to a bilinear form on ΛQ which has the explicit expression

χ(d, d′) =
∑
i∈Q0

did
′
i −

∑
i
α−→j∈Q1

did
′
j .

For each d ∈ Λ+
Q let Rd =

⊕
i
α−→j

HomC(Cdi ,Cdj ). The algebraic group GLd =∏
i∈Q0

GLdi(C) acts linearly on Rd by change of basis. The GLd-orbits of Rd are in
bijection with the isomorphism classes of representations of dimension vector d.

1.3. Self-dual quiver representations. For a detailed discussion of self-dual
quiver representations see [10], [42, §3.2].

An involution σ of a quiver Q is a pair of involutions

σ : Q0 → Q0, σ : Q1 → Q1

such that

(i) if i
α−→ j ∈ Q1, then σ(j)

σ(α)−−−→ σ(i) ∈ Q1, and

(ii) if i
α−→ σ(i) ∈ Q1, then α = σ(α).

Given an involution, let ΛσQ be the subgroup of fixed points of the induced involution

σ : ΛQ → ΛQ. Set also Λσ,+Q = Λ+
Q ∩ ΛσQ. The group homomorphism

H : ΛQ → ΛσQ, d 7→ d+ σ(d)

makes ΛσQ into a ΛQ-module.

A duality structure on (Q, σ) is a pair of functions

s : Q0 → {±1}, τ : Q1 → {±1}

such that s is σ-invariant and τατσ(α) = sisj for every arrow i
α−→ j. Given a

duality structure we define an exact contravariant functor S : RepC(Q)→ RepC(Q)
as follows. At the level of objects S is given by

S(U)i = U∨σ(i), S(u)α = ταu
∨
σ(α).

Here (−)∨ = HomC(−,C) is the linear duality functor on the category of finite
dimensional complex vector spaces. If φ : U → U ′ is a morphism, then S(φ) :
S(U ′) → S(U) has components S(φ)i = φ∨σ(i). Setting ΘU = ⊕i∈Q0

si · evUi , with
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evV the canonical evaluation isomorphism from a finite dimensional vector space V
to its double dual V ∨∨, defines an isomorphism of functors Θ : 1Rep(Q)

∼−→ S2 which
satisfies S(ΘU )ΘS(U) = 1S(U). The triple (RepC(Q), S,Θ) is therefore an abelian
category with duality in the sense of [1].

A self-dual representation is a pair (M,ψM ) consisting of a representation M and

an isomorphism ψM : M
∼−→ S(M) which satisfies S(ψM )ΘM = ψM . Geometrically,

a self-dual representation is a representation M together with a nondegenerate
bilinear form 〈·, ·〉 such that

(i) Mi and Mj are orthogonal unless i = σ(j),
(ii) the restriction of 〈·, ·〉 to Mi +Mσ(i) satisfies 〈x, x′〉 = si〈x′, x〉, and

(iii) for all arrows i
α−→ j the structure maps of M satisfy

〈mαx, x
′〉 − τα〈x,mσ(α)x

′〉 = 0, x ∈Mi, x
′ ∈Mσ(j). (3)

Fix a partition Q0 = Q−0 tQσ0 tQ
+
0 such that Qσ0 consists of the nodes fixed by

σ and σ(Q−0 ) = Q+
0 . Similarly, fix a partition Q1 = Q−1 tQσ1 tQ

+
1 .

Let e ∈ Λσ,+Q with ei even for all i ∈ Qσ0 with si = −1. The trivial representation

of dimension vector e admits a self-dual structure 〈·, ·〉 which is unique up to Q0-
graded isometry. Denote by Rσe ⊂ Re the linear subspace of representations whose
structure maps satisfy equation (3) with respect to 〈·, ·〉. There is an isomorphism

Rσe '
⊕

i
α−→j∈Q+

1

HomC(Cei ,Cej )⊕
⊕

i
α−→σ(i)∈Qσ1

Bilsiτα(Cei)

where Bilε(Cei) denotes the vector space of symmetric (ε = 1) or skew-symmetric
(ε = −1) bilinear forms on Cei . The subgroup Gσe ⊂ GLe which preserves 〈·, ·〉 is

Gσe '
∏
i∈Q+

0

GLei(C)×
∏
i∈Qσ0

Gsiei

where

Gsiei =

{
Spei(C), if si = −1
Oei(C), if si = 1.

The group Gσe acts linearly on Rσe with orbits in bijection with isometry classes of
self-dual representations of dimension vector e.

Let M be a self-dual representation with isotropic subrepresentation U ⊂ M .
Then the orthogonal complement U⊥ ⊂ M is a subrepresentation which contains
U and the quotient M//U = U⊥/U inherits a canonical self-dual structure.

Example. Let U ∈ RepC(Q). The hyperbolic representation H(U) is the self-dual

structure on U ⊕ S(U) given by ψH(U) =
(

0 1S(U)

ΘU 0

)
. /

For any U ∈ RepC(Q), the pair (S,Θ) determines a linear Z2-action on Exti(S(U), U).
Write Exti(S(U), U)±S for the subspace of (anti-)invariants and define

E(U) = dimC Hom(S(U), U)−S − dimC Ext1(S(U), U)S .

It was proved in [42, Proposition 3.3] that E(U) depends only on the dimension
vector of U and that the resulting function E : ΛQ → Z is given by

E(d) =
∑
i∈Qσ0

di(di − si)
2

+
∑
i∈Q+

0

dσ(i)di−

∑
σ(i)

α−→i∈Qσ1

di(di + ταsi)

2
−

∑
i
α−→j∈Q+

1

dσ(i)dj . (4)



8 MATTHEW B. YOUNG

The function E satisfies the identity

E(d+ d′) = E(d) + E(d′) + χ(σ(d), d′), d, d′ ∈ ΛQ. (5)

Following [22], to each quiver we associate a quantum torus T̂Q = Q(q
1
2 )[[Λ+

Q]],

the Q(q
1
2 )-vector space with topological basis {td | d ∈ Λ+

Q} and multiplication

td · td
′

= q
1
2 (χ(d,d′)−χ(d′,d))td+d′ .

As in [41, §4.1], for a fixed duality structure we will also consider the vector space

ŜQ = Q(q
1
2 )[[Λσ,+Q ]] with topological basis {ξe | e ∈ Λσ,+Q }. The formula

td ? ξe = q
1
2 (χ(d,e)−χ(e,d)+E(σ(d))−E(d))ξH(d)+e

gives ŜQ the structure of a left T̂Q-module.
Finally, we recall how the theory of stability of quiver representations [21] can

be adapted to the self-dual setting. For details see [41, §3]. A stability θ ∈
HomZ(ΛQ,Z) is called σ-compatible if it satisfies σ∗θ = −θ. Fix a σ-compatible
stability θ. A self-dual representation M is called σ-semistable if µ(U) ≤ µ(M) for
all non-zero isotropic subrepresentations U ⊂M ; if this inequality is strict then M

is called σ-stable. Here µ(U) = θ(dimU)
dimU is the slope of U . The slope of a self-dual

representation is necessarily zero.
The moduli space of σ-semistable self-dual representations of dimension vector

e is the θ-linearized geometric invariant theory quotient Mσ,θ
e = Rσe //θG

σ
e . It pa-

rameterizes S-equivalence classes of σ-semistable representations. There is an open
subvariety Mσ,θ-st

e ⊂ Mσ,θ
e parameterizing isometry classes of σ-stable representa-

tions. In general, Mσ,θ-st
e is an orbifold. A σ-stable representation M can be written

uniquely as an orthogonal direct sum M =
⊕k

i=1Mi, where Mi are pairwise non-
isometric self-dual representations which are stable as ordinary representations [41,
Proposition 3.5]. In this case AutS(M) ' Zk2 . If k = 1, then M is called regularly

σ-stable and gives a smooth point of Mσ,θ-st
e . By convention we set Mσ,θ-st

0 = pt.

Remark. The bounded derived category of the Ginzburg dg algebra associated to
Q, denoted Db

fd(ΓQ-mod), is a three dimensional triangulated Calabi-Yau category

for which RepC(Q) is the heart of a bounded t-structure [15]. A duality struc-
ture on Q induces a triangulated duality structure on Db(ΓQ-mod) which, up to a
sign, preserves the Calabi-Yau pairing. This gives an abstract version of the three
dimensional Calabi-Yau orientifolds considered in the string theory literature.

1.4. Equivariant cohomology. Fix an integer n > 0. If N > n, then the variety
M∗N,n of complex N ×n matrices of rank n is 2(N −n)-connected and carries a free

right action of GLn. The quotients M∗N,n → M∗N,n/GLn form an injective system

{EN → BN}N>n of finite dimensional approximations by varieties to the universal
GLn-bundle EGLn → BGLn. More generally, if G is a linear algebraic group with a
closed embedding G ↪→ GLn, then {EN → EN/G}N>n approximates EG→ BG. If
H ⊂ G is a closed subgroup, then the canonical morphism BH→ BG is a fibration
with fibre G/H.

Suppose that G acts on a variety X. Then the G-equivariant cohomology of X
is defined to be

H•G(X) = lim
←−

H•(X ×G EN ;Q). (6)

Here H•(−;Q) denotes singular cohomology with rational coefficients.
We write H•G for H•G(pt). If TGLn ⊂ GLn denotes the diagonal maximal torus,

then there are ring isomorphisms

H•GLn ' H
•(BTGLn)WGLn ' Q[x1, . . . , xn]Sn .
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Similarly, if Gn is a classical group of type Bn, Cn or Dn, then the inclusion
Tn ↪→ Gn induces ring isomorphisms

H•Gn ' H
•(BTn)WGn ' Q[z2

1 , . . . , z
2
n]Sn . (7)

Here it is essential that Gn is the full orthogonal group in type Dn. The generators
xi, zi have cohomological degree two.

We record the following results for later use.

Lemma 1.1.

(1) Let φ : GLn → GLn be the automorphism φ(g) = (g−1)t. The induced map
(Bφ)∗ : H•GLn

→ H•GLn
is given by

(Bφ)∗f(x1, . . . , xn) = f(−x1, . . . ,−xn).

(2) Let h : GLn ↪→ Gn be the hyperbolic embedding. The induced map (Bh)∗ :
H•Gn → H•GLn

is given by (Bh)∗zi = xi.
(3) Let ι : Gn ↪→ GL2n+ε be the embedding arising from the description of Gn

given in Section 1.1, where ε = 1 in type Bn and ε = 0 otherwise. Under
the identification

H•GL2n+ε
' Q[x1, . . . , xn, y1, . . . , yn, (w)]S2n+ε

the induced map (Bι)∗ : H•GL2n+ε
→ H•Gn is given by

(Bι)∗xi = zi, (Bι)∗yi = −zi, (Bι)∗w = 0.

Finally, recall that H•G(X) (and the compactly supported variant H•c,G(X)) has

a canonical mixed Hodge structure [9]. The pure part of H•G(X) is

PH•G(X) =
⊕
k≥0

WkH
k
G(X)

where 0 = W−1 ⊂W0 ⊂ · · · ⊂W2k = Hk
G(X) is the weight filtration.

2. Cohomological Hall algebras

2.1. Definition of the CoHA. We recall some material from [23, §2].
Fix a quiver Q. Let VectZ be the abelian category of finite dimensional Z-graded

rational vector spaces. Write Dlb(VectZ) ⊂ D(VectZ) for the full subcategory of
objects whose cohomological and Z degrees are bounded from below. Let also
Dlb(VectZ)Λ+

Q
be the category whose objects are Λ+

Q-graded objects of Dlb(VectZ)

with finite dimensional Λ+
Q × Z-homogeneous summands and whose morphisms

preserve the Λ+
Q × Z-grading. Define a monoidal product �tw on Dlb(VectZ)Λ+

Q
by⊕

d∈Λ+
Q

Ud �tw
⊕
d∈Λ+

Q

Vd =
⊕
d∈Λ+

Q

( ⊕
d=d′+d′′

Ud′ ⊗ Vd′′
)
{(χ(d′, d′′)− χ(d′′, d′))/2}.

Here { 1
2} denotes tensor product with the one dimensional vector space of cohomo-

logical and Z degree −1.
Let d′, d′′ ∈ Λ+

Q and put d = d′+d′′. Write Cd′ ⊂ Cd for the Q0-graded subspace

spanned by the first d′ coordinate directions. Let Rd′,d′′ ⊂ Rd be the subspace of

representations which preserve Cd′ and let GLd′,d′′ ⊂ GLd be the parabolic subgroup

which preserves Cd′ . The cohomological Hall algebra (henceforth CoHA) of Q is

HQ =
⊕
d∈Λ+

Q

H•GLd(Rd){χ(d, d)/2} ∈ Dlb(VectZ)Λ+
Q
.
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The Z-grading is the Hodge theoretic weight grading and coincides with the coho-
mological degree by purity. Define a multiplication HQ�twHQ → HQ by requiring
its restriction to HQ,d′ �tw HQ,d′′ to be the composition

H•GLd′
(Rd′)⊗H•GLd′′

(Rd′′)
∼−→ H•GLd′×GLd′′

(Rd′ ×Rd′′)
∼−→

H•GLd′,d′′
(Rd′,d′′)→ H•GLd′,d′′

(Rd){(2∆1)/2} → H•GLd(Rd){(2∆1 + 2∆2)/2},

where for ease of notation the degree shifts in HQ,d and �tw are omitted. The maps
in the composition are defined using the morphisms

Rd′ ×Rd′′
π
� Rd′,d′′

i
↪→ Rd, GLd′ × GLd′′

p
� GLd′,d′′

j
↪→ GLd. (8)

The first map in the CoHA multiplication is the Künneth map, the second is in-
duced by the homotopy equivalences π and p, the third is the pushforward along the
GLd′,d′′ -equivariant inclusion i and the last is the pushforward along the fundamen-
tal class of GLd/GLd′,d′′ . The degree shift is ∆1 + ∆2 = −χ(d′, d′′). It is shown in
[23, Theorem 1] that this product gives HQ the structure of an associative algebra
object in Dlb(VectZ)Λ+

Q
.

The CoHA product can be written explicitly using localization in equivari-
ant cohomology. To do so, identify HQ,d with the vector space of polynomi-
als in variables {xi,1, . . . , xi,di}i∈Q0

which are invariant under the Weyl group
WGLd ' Sd =

∏
i∈Q0

Sdi . The product of f1 ∈ HQ,d′ and f2 ∈ HQ,d′′ will be

viewed as a polynomial in {xi,1, . . . , xi,di}i∈Q0
by identifying x′i,k and x′′i,k with xi,k

and xi,d′i+k, respectively. Let shd′,d′′ ⊂ Sd be the set of 2-shuffles of type (d′, d′′),

that is, elements {πi}i∈Q0 ∈ Sd which satisfy

πi(1) < · · · < πi(d
′
i), πi(d

′
i + 1) < · · · < πi(di), i ∈ Q0.

Then shd′,d′′ acts on polynomials in {xi,1, . . . , xi,di}i∈Q0
via the action of Sd.

Theorem 2.1 ([23, Theorem 2]). The CoHA product of f1 ∈ HQ,d′ and f2 ∈ HQ,d′′
is given by

f1 · f2 =
∑

π∈shd′,d′′

π

f1(x′)f2(x′′)

∏
i
α−→j∈Q1

∏d′′j
b=1

∏d′i
a=1

(
x′′j,b − x′i,a

)
∏
i∈Q0

∏d′′i
b=1

∏d′i
a=1

(
x′′i,b − x′i,a

)
 .

The motivic DT series of Q is the class of HQ in the Grothendieck ring of
Dlb(VectZ)Λ+

Q
,

AQ(q
1
2 , t) =

∑
(d,k)∈Λ+

Q×Z

dimQHQ,(d,k)(−q
1
2 )ktd ∈ Z[[q

1
2 ,Λ+

Q]].

It can be written explicitly as

AQ(q
1
2 , t) =

∑
d∈Λ+

Q

(−q 1
2 )χ(d,d)∏

i∈Q0

∏di
j=1(1− qj)

td.

The series AQ is naturally viewed as an element of the quantum torus T̂Q since
the product in the latter agrees with the product induced by �tw. Passing from
motivic DT series to motivic DT invariants is most easily explained in the case of
symmetric quivers. We do this in the next section.
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2.2. The CoHA of a symmetric quiver. A quiver is called symmetric if its
Euler form is a symmetric bilinear form. Throughout this section we assume that
Q is symmetric. In this case �tw reduces to the standard symmetric monoidal
product � on Dlb(VectZ)Λ+

Q
and HQ can be considered as a Λ+

Q×Z-graded algebra.

Define a Z2-grading on HQ by the reduction modulo two of the shifted cohomo-
logical degree. If the Euler form satisfies

χ(d, d′) ≡ χ(d, d)χ(d′, d′) mod 2 (9)

for all d, d′ ∈ Λ+
Q, then HQ is a supercommutative algebra. Writing aij for the

number of arrows from i to j, equation (9) holds if and only if

aij ≡ (1 + aii)(1 + ajj) mod 2

for all i, j ∈ Q0 with i 6= j. If the Euler form does not satisfy equation (9), then the
CoHA multiplication can be twisted by a sign so as to make HQ supercommutative
[23, §2.6]. Since all (connected) symmetric quivers studied in this paper satisfy
equation (9) we do not recall this twist here.

Write Sym(V ) for the free supercommutative algebra generated by a Λ+
Q × Z-

graded vector space V . The following result was conjectured by Kontsevich and
Soibelman [23, Conjecture 1] and proved by Efimov.

Theorem 2.2 ([12, Theorem 1.1]). Let Q be a symmetric quiver and let u be a
formal variable of degree (0, 2). Then there exists a Λ+

Q × Z-graded rational vector

space of the form VQ = V prim
Q ⊗Q[u] such that, with its supercommutative structure,

HQ ' Sym(VQ). Moreover, each Λ+
Q-homogeneous summand

V prim
Q,d ⊂ V

prim
Q , d ∈ Λ+

Q

is finite dimensional.

If we do not use the supercommutative twist, then instead HQ ' Sym(VQ)
only as objects of Dlb(VectZ)Λ+

Q
. The second part of Theorem 2.2, known as the

integrality conjecture [22], asserts that V prim
Q defines an element of Db(VectZ)Λ+

Q
,

the full subcategory of D(VectZ)Λ+
Q

consisting of objects whose Λ+
Q-homogeneous

components lie in Db(VectZ).

Definition. The motivic Donaldson-Thomas invariant of a symmetric quiver Q is

the class of V prim
Q in the Grothendieck ring of Db(VectZ)Λ+

Q
,

ΩQ(q
1
2 , t) =

∑
(d,k)∈Λ+

Q×Z

dimQ V
prim
Q,(d,k)(−q

1
2 )ktd ∈ Z[q

1
2 , q−

1
2 ][[Λ+

Q]].

For symmetric quivers the parity-twisted Hilbert-Poincaré series of HQ coincides
with AQ. Using this observation, Theorem 2.2 implies that AQ can be written as
a product of q-Pochhammer symbols (t; q)∞ =

∏
i≥0(1− qit).

Corollary 2.3 ([12, Corollary 4.1]). Let Q be a symmetric quiver. Then

AQ(q
1
2 , t) =

∏
(d,k)∈Λ+

Q×Z

(q
k
2 td; q)

−ΩQ,(d,k)
∞

where ΩQ,(d,k) is the coefficient of q
k
2 td in ΩQ.

The factorization of Corollary 2.3 is often used as the definition of ΩQ, in which

case a priori ΩQ ∈ Q(q
1
2 )[[Λ+

Q]]. Theorem 2.2 provides a conceptual reason for
the existence of such factorizations and proves integrality as well as positivity,
ΩQ(−q 1

2 , t) ∈ Z≥0[q
1
2 , q−

1
2 ][[Λ+

Q]].
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Finally, we recall a geometric interpretation of ΩQ. Let Mst
d be the stack of

stable representations of dimension vector d with respect to the trivial stability.
The map to the coarse moduli space Mst

d → Mst
d is a C×-gerbe and induces an

isomorphism of mixed Hodge structures H•(Mst
d ) ' H•(Mst

d )⊗Q[u].

Theorem 2.4 ([3, Theorem 2.2]). Let Q be the double of a quiver. For each d ∈ Λ+
Q,

the restriction H•GLd
(Rd) → H•(Mst

d ) induces an isomorphism of Z-graded vector

spaces V prim
Q,d

∼−→ PH•−χ(d,d)(Mst
d ).

For more general geometric interpretations of ΩQ see [18], [27].

3. Cohomological Hall modules

We introduce the cohomological Hall module of a quiver with duality structure,
describe some of its basic properties and formulate the main conjectures regarding
its structure.

3.1. Definition of the CoHM. Fix a quiver with involution (Q, σ) and duality
structure (s, τ). Let Dlb(VectZ)Λσ,+Q

⊂ Dlb(VectZ)Λ+
Q

be the full subcategory of

Λσ,+Q -graded objects. Equation (5) shows thatDlb(VectZ)Λσ,+Q
becomes a left module

category for (Dlb(VectZ)Λ+
Q
,�tw) via⊕

d∈Λ+
Q

Ud �S-tw
⊕

e∈Λσ,+Q

Xe =
⊕

e∈Λσ,+Q

( ⊕
e=H(d′)+e′′

Ud′ ⊗Xe′′
)
{ε(d′, e′′)/2}

where
ε(d, e) = χ(d, e)− χ(e, d) + E(σ(d))− E(d).

Let d ∈ Λ+
Q and e ∈ Λσ,+Q with ei even for all i ∈ Qσ0 with si = −1. The

subspace Rσd,e ⊂ RσH(d)+e of self-dual structure maps on the orthogonal direct sum

H(Cd)⊕ Ce which preserve the canonical Q0-graded isotropic subspace Cd can be
identified with the subspace of

Rd ⊕Rσe ⊕
⊕
i
α−→j

HomC(Cei ,Cdj )⊕
⊕
i
α−→j

HomC((Cdσ(i))∨,Cdj )

whose final component {mα} ∈
⊕

i
α−→j

HomC((Cdσ(i))∨,Cdj ) satisfies ΘCdjmα =

−ταm∨σ(α). Let also Gσd,e ⊂ GσH(d)+e be the parabolic subgroup which preserves Cd.
The cohomological Hall module (henceforth CoHM) is

MQ =
⊕

e∈Λσ,+Q

H•Gσe (Rσe ){E(e)/2} ∈ Dlb(VectZ)Λσ,+Q
.

Define ? : HQ �S-twMQ →MQ so that its restriction to HQ,d �S-twMQ,e is

H•GLd(Rd)⊗H•Gσe (Rσe )
∼−→ H•GLd×Gσe

(Rd ×Rσe )→ H•Gσd,e(R
σ
d,e)→

H•Gσd,e(R
σ
H(d)+e){2δ1/2} → H•Gσ

H(d)+e
(RσH(d)+e){(2δ1 + 2δ2)/2},

where again the degree shifts inHQ,d,MQ,e and�S-tw are omitted. The maps in the
composition are defined analogously to those appearing in the CoHA multiplication,
where the maps (8) are replaced by

Rd ×Rσe
π
� Rσd,e

i
↪→ RσH(d)+e, GLd × Gσe

p
� Gσd,e

j
↪→ GσH(d)+e.

The degree shifts are

δ1 = dimCR
σ
H(d)+e − dimCR

σ
d,e, δ2 = −dimC GσH(d)+e − dimC Gσd,e.

A direct calculation shows that δ1 + δ2 = −χ(d, e)− E(σ(d)).
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Theorem 3.1. The ? action gives MQ the structure of a left HQ-module object in
Dlb(VectZ)Λσ,+Q

.

Proof. The commutative diagram used to prove associativity of the CoHA multipli-
cation in [23, §2.3] has a natural modification in the self-dual setting, obtained by
requiring that the structure maps and isometry groups preserve multi-step isotropic
flags. This modified commutative diagram establishes the HQ-module structure of
MQ. �

Remark. While there are versions of HQ andMQ defined using cohomology with
integer coefficients, the results of this paper require rational coefficients.

Let W(Q) be the abelian group defined by the exact sequence

Λ+
Q

H−→ Λσ,+Q
ν−→W(Q)→ 0.

Explicitly, W(Q) '
∏
i∈Qσ0

Z2 with ν sending a dimension vector to its parities at

Qσ0 . The following result is immediate.

Proposition 3.2. For each w ∈W(Q) the subspace

M(w)
Q =

⊕
{e∈Λσ,+Q |ν(e)=w}

MQ,e ⊂MQ

is a HQ-submodule. Moreover, MQ =
⊕

w∈W(Q)M
(w)
Q as HQ-modules.

Remark. The module M(w)
Q is zero unless si = 1 for all i ∈ Qσ0 with wi 6= 0.

The motivic orientifold DT series of Q is the class of MQ in the Grothendieck
ring of Dlb(VectZ)Λσ,+Q

,

AσQ(q
1
2 , ξ) =

∑
(e,l)∈Λσ,+Q ×Z

dimQMQ,(e,l)(−q
1
2 )lξe ∈ Z[[q

1
2 ,Λσ,+Q ]].

Using the Gσe -equivariant contractibility of Rσe and the isomorphisms(7) we compute

AσQ =
∑

e∈Λσ,+Q

(−q 1
2 )E(e)∏

i∈Q+
0

∏ei
j=1(1− qj)

∏
i∈Qσ0

∏b ei2 c
j=1 (1− q2j)

ξe. (10)

We will view AσQ as an element of the T̂Q-module ŜQ.

Also inspired by orientifold DT theory, in [41] a different generating series was
attached to a quiver with duality structure. Given a finite field Fq of odd char-
acteristic, the E-weighted generating series1 of the number of Fq-rational points of
stacks of self-dual representations is

AσQ,Fq (ξ) =
∑
M

(−q 1
2 )E(dimM)

#AutS(M)
ξdimM .

The sum runs over isometry classes of self-dual representations and AutS(−) de-
notes the isometry group. Comparing equation (10) and [41, Proposition 4.2] shows

that AσQ(q−
1
2 , ξ) = AQ,Fq (ξ). Hence the cohomological and finite field approaches

to orientifold DT theory are consistent.

1We have renormalized the integration map from [41] to match the conventions of this paper. The

series AσQ,Fq was denoted by AσQ in [41].
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3.2. The CoHM as a signed shuffle module. In this section we derive an
explicit combinatorial expression for the action of HQ on MQ.

Using the isomorphism (7), for each e ∈ Λσ,+Q we identify MQ,e with the vector
space of polynomials in the variables

{zi,1, . . . , zi,ei}i∈Q+
0
, {z2

i,1, . . . , z
2
i,b ei2 c

}i∈Qσ0

which are invariant under the group
∏
i∈Q+

0
Sei ×

∏
i∈Qσ0

Sb ei2 c. We also identify

polynomials in the variables

{x′i,1, . . . , x′i,di}i∈Q0 , and {z′′i,1, . . . , z′′i,ei}i∈Q+
0
, {z′′i,1, . . . , z′′i,b ei2 c}i∈Qσ0

with polynomials in the variables

{zi,1, . . . , zi,di+ei+dσ(i)
}i∈Q+

0
, {zi,1, . . . , zi,di+b ei2 c}i∈Qσ0 (11)

via

x′i,j 7→ zi,j , z′′i,j 7→ zi,di+j , x′σ(i),j 7→ −zi,di+ei+j , i ∈ Q+
0

and

x′i,j 7→ zi,j , z′′i,j 7→ zi,di+j , i ∈ Qσ0 .
The minus sign arises from the minus sign in the first part of Lemma 1.1.

Given m,n, p ∈ Z≥0 let shm,n,p ⊂ Sm+n+p be the set of 3-shuffles of type

(m,n, p). Define the set of σ-shuffles of type (d, e) ∈ Λ+
Q × Λσ,+Q by

shσd,e =
∏
i∈Q+

0

shdi,ei,dσ(i)
×
∏
i∈Qσ0

(
Zdi2 × shdi,di+b ei2 c

)
.

There is a natural action of shσd,e on the vector space of polynomials in the variables
(11), the shuffle factors acting as usual and the Z2 factors acting by multiplication
by −1 on the first di elements of {zi,1, . . . , zi,di+b ei2 c}i∈Qσ0 .

For each i ∈ Q0 define εi : ΛQ → {0, 1} by e 7→ ei mod 2. Write ≤t for < if
t = −1 and ≤ if t = +1.

Theorem 3.3. Let f ∈ HQ,d and g ∈MQ,e. Then

f ? g =
∑

π∈shσd,e

π

(
f(x′)g(z′′)

∏
α∈Q+

1 tQσ1
Vα(x′, z′′)∏

i∈Q+
0 tQσ0

Di(x′, z′′)

)

where the factors of the denominator are

Di =

ei∏
k=1

di∏
l=1

(z′′i,k − x′i,l)
dσ(i)∏
m=1

di∏
l=1

(−x′σ(i),m − x
′
i,l)

dσ(i)∏
m=1

ei∏
k=1

(−x′σ(i),m − z
′′
i,k)

if i ∈ Q+
0 and

Di = g(x′i,1, . . . , x
′
i,di)

∏
1≤k<l≤di

(x′i,k + x′i,l)

di∏
l=1

b ei2 c∏
k=1

(x′2i,l − z′′2i,k)

with

g(x′i,1, . . . , x
′
i,di) =


∏di
l=1 x

′
i,l, if Gsi2di+ei is type Bdi+b ei2 c∏di

l=1 2x′i,l, if Gsi2di+ei is type Cdi+b ei2 c
1, if Gsi2di+ei is type Ddi+b

ei
2 c

if i ∈ Qσ0 and the factors of the numerator are defined as follows:
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• If i
α−→ j ∈ Q+

1 , then Vα = Ṽ (i)
α Ṽ (j)

α

dσ(j)∏
m=1

di∏
l=1

(−x′σ(j),m − x
′
i,l) where

Ṽ (i)
α =



dσ(j)∏
m=1

ei∏
k=1

(−x′σ(j),m − z
′′
i,k), if i 6∈ Qσ0

dσ(j)∏
m=1

b ei2 c∏
k=1

(x′2σ(j),m − z
′′2
i,k)

dσ(j)∏
m=1

(−x′σ(j),m)εi(e), if i ∈ Qσ0

and

Ṽ (j)
α =



ej∏
k=1

di∏
l=1

(z′′j,k − x′i,l), if j 6∈ Qσ0

di∏
l=1

b
ej
2 c∏

k=1

(x′2i,l − z′′2j,k)

di∏
l=1

(−x′i,l)εj(e), if j ∈ Qσ0 .

• If σ(i)
α−→ i ∈ Qσ1 , then Vα = Ṽα

∏
1≤j≤siταk≤dσ(i)

(−x′σ(i),j − x
′
σ(i),k) where

Ṽα =



ei∏
k=1

dσ(i)∏
l=1

(z′′i,k − x′σ(i),l), if i 6∈ Qσ0

dσ(i)∏
l=1

b ei2 c∏
k=1

(x′2σ(i),l − z
′′2
i,k)

dσ(i)∏
l=1

(−x′σ(i),l)
εi(e), if i ∈ Qσ0 .

Proof. Similar to [23, §2.4], we regard f and g as classes in H•(BGLd×BGσe ) and let
EuGσd,e

(NRσ
H(d)+e

/Rσd,e
) be the Gσd,e-equivariant Euler class of the fibre of the normal

bundle to Rσd,e ⊂ RσH(d)+e at the origin. Then

f ? g =

∫
[Gσ
H(d)+e

/Gσd,e]

f · g · EuGσd,e
(NRσ

H(d)+e
/Rσd,e

)

where [GσH(d)+e/G
σ
d,e] is the GσH(d)+e-equivariant fundamental class of GσH(d)+e/G

σ
d,e,

the fibre of BGσd,e → BGσH(d)+e. We will compute this integral by equivariant

localization with respect to the action of the maximal torus T = TH(d)+e ⊂ GσH(d)+e.

Let U ∈ Rd and N ∈ RσH(d)+e. An inclusion U ↪→ N is isotropic if and only if

we have an commutative diagram of the form

Ui (U⊥)i Ni

Uj (U⊥)j Nj

uα nα i
α−→ j ∈ Q1. (12)

We first compute the equivariant Euler class of the tangent space at a T-fixed
point of GσH(d)+e/G

σ
d,e. The inclusions of diagram (12) lead to the identification

GσH(d)+e/G
σ
d,e '

∏
i∈Q+

0

Fl(di, ei, dσ(i))×
∏
i∈Qσ0

IGrsi(di, 2di + ei)

where Fl(a, b, c) is the variety of flags of the form Ca ⊂ Ca+b ⊂ Ca+b+c and IGrs(a, b)
is the variety of a-dimensional isotropic subspaces of a b-dimensional orthogonal
(s = 1) or symplectic (s = −1) vector space. The T-fixed points of Fl(di, ei, dσ(i))
are two-step coordinate flags and are labelled by disjoint pairs of increasing se-
quences in {1, . . . , di + ei + dσ(i)} of the form

π = {a1 < · · · < adi ; b1 < · · · < bei}.
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Such pairs are in bijection with shdi,ei,dσ(i)
. The T-character of the tangent space

to a flag Ui ⊂ (U⊥)i ⊂ Ni is the product of the following factors:

HomC(Ui, (N//U)i)  
ei∏
k=1

di∏
l=1

(z′′i,k − x′i,l)

HomC(Ui, U
∨
σ(i))  

dσ(i)∏
m=1

di∏
l=1

(−x′σ(i),m − x
′
i,l)

HomC((N//U)i, U
∨
σ(i))  

dσ(i)∏
m=1

ei∏
k=1

(−x′σ(i),m − z
′′
i,k).

The T-fixed points of IGrsi(di, 2di + ei) are isotropic coordinate planes and are in

bijection with Zdi2 × shdi,di+b ei2 c via

Zdi2 × shdi,di+b ei2 c 3 (p, π) 7→ spanC{vπ(1),p(1), . . . , vπ(di),p(di)}

where, in the notation of Section 1.1,

vi,p =

{
xi, if p = 1
yi, if p = −1.

The T-character of the tangent space at a fixed point is the product of the positive
roots of Gsi2di+ei are not in the corresponding parabolic Lie subalgebra; see Section
1.1 for conventions. These calculations gives the denominators Di as stated.

Next we compute the restriction of EuGσd,e
(NRσ

H(d)+e
/Rσd,e

) to a T-fixed point.

From the vertical arrows of diagram (12) we see that the contribution Vα of α ∈ Q+
1

to EuGσd,e
(NRσ

H(d)+e
/Rσd,e

) is the product of the following T-weights:

HomC(Ui, (N//U)j) 



ej∏
k=1

di∏
l=1

(z′′j,k − x′i,l), if j 6∈ Qσ0

b
ej
2 c∏

k=1

di∏
l=1

(−z′′2j,k + x′2i,l)

di∏
l=1

(−x′i,l)εj(e), if j ∈ Qσ0

and

HomC(Ui, U
∨
σ(j)) 

dσ(j)∏
m=1

di∏
l=1

(−x′σ(j),m − x
′
i,l)

and

HomC((N//U)i, U
∨
σ(j)) 



dσ(j)∏
m=1

ei∏
k=1

(−x′σ(j),m − z
′′
i,k), if i 6∈ Qσ0

dσ(j)∏
m=1

b ei2 c∏
k=1

(x′2σ(j),m − z
′′2
i,k)

dσ(j)∏
m=1

(−x′σ(j),m)εi(e), if i ∈ Qσ0 .

Similarly, the contribution Vα of σ(j)
α−→ j ∈ Qσ1 is the product of the T-weights

HomC(Uσ(j), (N//U)j) 



ej∏
k=1

dσ(j)∏
m=1

(z′′j,k − x′σ(j),m), if j 6∈ Qσ0

b
ej
2 c∏

k=1

dσ(j)∏
m=1

(−z′′2j,k + x′2σ(j),m)

dσ(j)∏
m=1

(−x′σ(j),m)εj(e), if j ∈ Qσ0 .
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and

HomC(Uσ(j), U
∨
σ(j)) 

∏
1≤m≤±k≤dσ(j)

(−x′σ(j),m − x
′
σ(j),k).

There is no separate contribution from HomC((N//U)j , U
∨
σ(j)); the symmetry of nα

requires that these elements be dual to those of HomC(Uσ(j), (N//U)j). �

3.3. The CoHM of a σ-symmetric quiver. In Section 2.2 we saw that the
abstract structure of the cohomological Hall algebra of a symmetric quiver is rel-
atively simple. In general, we do not know if the supercommutative twist of the
multiplication in HQ can be lifted to MQ. Hence we will consider HQ with its
standard (possibly non-supercommutative) multiplication. In the self-dual setting
it is natural to impose the following stronger notion of symmetry.

Definition. A quiver with involution and duality structure is called σ-symmetric
if it is symmetric and E(d) = E(σ(d)) for all d ∈ ΛQ.

Using equation (4) we find that a symmetric quiver is σ-symmetric if and only if∑
σ(i)

α−→i∈Qσ1

τα =
∑

i
α−→σ(i)∈Qσ1

τα, ∀ i ∈ Q0. (13)

Here, in contrast to all other places in the paper, the sums run over arrows with
fixed initial and final vertices.

If Q is σ-symmetric, then �S-tw reduces to the Dlb(VectZ)Λ+
Q

-module structure

defined using only the ΛQ-module structure of ΛσQ. Somewhat abusively, we denote

this by �. In particular, MQ is a Λσ,+Q × Z-graded HQ-module.
Let HQ,+ be the augmentation ideal of HQ.

Definition. The cohomological orientifold Donaldson-Thomas invariant of a σ-
symmetric quiver Q is the Λσ,+Q × Z-graded vector space

W prim
Q =MQ/(HQ,+ ?MQ).

By picking a vector space splitting we will view W prim
Q as a subspace of MQ.

The next result asserts that the orientifold analogue of the integrality conjecture
holds. For its proof we choose the partition Q1 = Q+

1 t Qσ1 t Q
−
1 such that a

configuration

i
α−→ j = σ(j)

σ(α)−−−→ σ(i)

in Q implies that i ∈ Q+
0 if and only if α ∈ Q+

1 . This can always be achieved by
permuting elements of Q+

1 tQ
−
1 .

Theorem 3.4. Let Q be a σ-symmetric quiver. Then each Λσ,+Q -homogeneous
summand

W prim
Q,e ⊂W

prim
Q , e ∈ Λσ,+Q

is finite dimensional.

Proof. We modify the argument of [12, §3]. Define

XQ,d = Q[xi,j | i ∈ Q0, 1 ≤ j ≤ di], d ∈ Λ+
Q

and

ZQ,e = Q[zi,j | i ∈ Q+
0 , 1 ≤ j ≤ ei]⊗Q[zi,j | i ∈ Qσ0 , 1 ≤ j ≤ bei

2
c], e ∈ Λσ,+Q

both of which we consider as Z-graded polynomial algebras with generators in
degree two. The Weyl groups WGLd and WGσe act on XQ,d and ZQ,e, respectively,
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and up to constant degree shifts we obtain Z-graded vector space isomorphisms

HQ,d ' X
WGLd

Q,d and MQ,e ' Z
WGσe

Q,e . Denote by

Kσd′,e′′(x′, z′′) =

∏
α∈Q+

1 tQσ1
Vα(x′, z′′)∏

i∈Q+
0 tQσ0

Di(x′, z′′)

the kernel from Theorem 3.3 and let ZlocQ,e be the localization of ZQ,e at the de-

nominators of Kσd′,e′′ , for all (d′, e′′) ∈ Λ+
Q × Λσ,+Q satisfying H(d′) + e′′ = e and

d′ 6= 0.
Let LQ,e ⊂ ZlocQ,e be the smallest WGσe -stable ZQ,e-submodule such that Kσd′,e′′ ∈

LQ,e for all (d′, e′′) ∈ Λ+
Q × Λσ,+Q as above. We claim that MQ,e = W prim

Q,e ⊕ L
WGσe

Q,e

or, equivalently, that L
WGσe

Q,e is the image of the CoHA action map⊕
(d′,e′′)∈Λ+

Q×Λσ,+Q
H(d′)+e′′=e, d′ 6=0

HQ,d′ �MQ,e′′
?−→MQ,e. (14)

To see this, first note that L
WGσe

Q,e is Q-linearly spanned by WGσe -symmetrizations of
functions of the form

f(x′)g(z′′)Kσd′,e′′(x′, z′′), f ∈ XQ,d′ , g ∈ ZQ,e′′ . (15)

It follows that the image of the map (14) is contained in L
WGσe

Q,e . For the reverse

inclusion, suppose we are given an element of the form (15). By symmetrizing
with respect to WGLd′ and WGσ

e′′
, both of which are subgroups of WGσe , we may

assume that f ∈ HQ,d′ and g ∈ MQ,e′′ . Then, up to a non-zero constant, the
WGσe -symmetrization of fgKσd′,e′′ is f ? g.

Hence, we must show that L
WGσe

Q,e ⊂MQ,e has finite codimension. Adding a loop
at each node, with duality structure τ = −1 for nodes in Qσ0 , does not decrease
the ideal LQ,e. By adding loops we can therefore avoid localizing ZQ,e. In this

case MQ,e/L
WGσe

Q,e ↪→ ZQ,e/LQ,e and it suffices to show that LQ,e ⊂ ZQ,e has finite

codimension. Interpret ZQ,e as the algebra of functions on the affine space QD,
where

D =
∑
i∈Q+

0

ei +
∑
i∈Qσ0

bei
2
c,

and suppose that z ∈ QD satisfies h(z) = 0 for all h ∈ LQ,e. We claim that z = 0.
Suppose to the contrary that z 6= 0. By using the action of WGσe we will write
z = {~zi}i∈Q+

0 tQσ0
as

~zi = (x′i,1, . . . , x
′
i,d′i

, z′′i,1, . . . , z
′′
i,e′′i

,−x′σ(i),1, . . . ,−x
′
σ(i),d′

σ(i)
), i ∈ Q+

0

and
~zi = (x′i,1, . . . , x

′
i,d′i

, z′′i,1, . . . , z
′′
i,b

e′′
i
2 c

), i ∈ Qσ0

for some d′ 6= 0 so that Kσd′,e′′(x′, z′′) 6= 0, giving a contradiction.

Define z′′ to be the collection of vanishing coordinates of z and let x be what
remains. By assumption x 6= 0. Up to the action of WGσe , we need to write x as
{(~x′i,−~x′σ(i))}i∈Q+

0
t {~x′i}i∈Qσ0 so that Kσd′,e′′(x′, z′′) 6= 0, which by Theorem 3.3 is

equivalent to the following conditions2:

(i)
∏dσ(i)

m=1

∏di
l=1(−x′σ(i),m − x

′
i,l) 6= 0 if i ∈ Q+

0 .

2Because signs are included in the definition of x′ we do not need to make additional sign substi-
tutions in these equations.



DT THEORY WITH CLASSICAL STRUCTURE GROUPS 19

(ii)
∏
l≤k<l≤di(x

′
i,k + x′i,l) 6= 0 if i ∈ Qσ0 .

(iii)
∏dσ(j)

m=1

∏di
l=1(−x′σ(j),m − x

′
i,l) 6= 0 if i

α−→ j ∈ Q+
1 .

(iv)
∏

1≤j≤k≤dσ(i)
(−x′σ(i),j − x

′
σ(i),k) 6= 0 if σ(i)

σ−→ i ∈ Qσ1 .

These conditions can be satisfied as follows. For each i ∈ Q+
0 by using permuta-

tions ensure that the x′i and −x′σ(i) coordinates have no common values. Then (i)

holds. For each i ∈ Qσ0 act by the sign change subgroup at i to ensure that the
x′i coordinates contain no ± pairs, that is, pairs (a,−a) for some a ∈ Q. Then
(ii) holds. It is easy to see that (i) and (ii) imply (iv). By our choice of partition
Q1 = Q+

1 tQσ1 tQ
−
1 , condition (iii) can be broken into three cases:

(1) Both i, j are in Qσ0 . Use the sign change subgroups to ensure that there are
no ± pairs among all Qσ0 variables.

(2) Neither i nor j is in Qσ0 . Use the symmetric groups to ensure that there are
no ± pairs among all Q+

0 (and hence Q−0 ) variables and no common values
among the Q+

0 (and hence Q−0 ) variables.
(3) One of i, j is in Q+

0 and one is in Qσ0 . Use the sign change subgroups to
ensure that there are no ± pairs among all Qσ0 and Q+

0 variables.

This completes the proof. �

Definition. The motivic orientifold Donaldson-Thomas invariant of a σ-symmetric
quiver Q is

ΩσQ(q
1
2 , ξ) =

∑
(e,l)∈Λσ,+Q ×Z

dimQW
prim
Q,(e,l)(−q

1
2 )lξe ∈ Z[q

1
2 , q−

1
2 ][[Λσ,+Q ]].

More precisely, the invariant ΩσQ, like ΩQ of Section 2.2, is defined for the trivial
stability condition. Theorem 3.4 implies that numerical orientifold DT invariants
can be defined as the q

1
2 7→ 1 specialization of ΩσQ(q

1
2 , ξ). In the orientifold setting

there is no need to remove from W prim
Q an infinite factor of the form Q[u]. This

reflects the isomorphism between the rational cohomologies of the moduli stack and
moduli space of σ-stable representations; see Lemma 3.9 below.

We now turn to a more detailed study of the module structure of MQ. Our
goal is to formulate a conjectural analogue for MQ of the freeness of the CoHA
of a symmetric quiver. To begin, observe that a duality structure on an arbitrary
quiver induces linear isomorphisms Rd → Rσ(d) which are equivariant with respect
to the isomorphisms

GLd → GLσ(d), {gi}i∈Q0 7→ {(g−1
σ(i))

t}i∈Q0 . (16)

Contravariance of the functor S : RepC(Q) → RepC(Q) implies that these maps
define an algebra anti-involution SH : HQ → HQ. Explicitly, using equation (16)
and the first part of Lemma 1.1 we have

SH(f)({xi,j}i∈Q0, 1≤j≤dσ(i)
) = f({x̃i,j}i∈Q0, 1≤j≤di)|x̃i,j=−xσ(i),j

(17)

for all f ∈ HQ,d.

Proposition 3.5. Let Q be a σ-symmetric quiver. For all f ∈ HQ,d and g ∈MQ,e

the equality

SH(f) ? g = (−1)χ(e,d)+E(d)f ? g

holds.

Proof. Let $ ∈ shσd,e be the signed shuffle defined by the maps of ordered sets

[di] t [ei] t [dσ(i)] 7→ [dσ(i)] t [ei] t [di], i ∈ Q+
0
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and

[di] t
[
bei

2
c
]
7→ [−di] t

[
bei

2
c
]
, i ∈ Qσ0 .

Here [n] = {z1, . . . , zn}. Precomposition with $ defines a bijection shσσ(d),e → shσd,e.

Moreover, using equation (17) we see that, after identifying variables as in Section
3.2, the polynomials f and SH(f) differ exactly by $. It is clear that $ fixes g.

We claim that

$(Kσσ(d),e) = (−1)χ(e,d)+E(d)Kσd,e, d ∈ Λ+
Q, e ∈ Λσ,+Q . (18)

To prove this we use the explicit form of Kσd,e from Theorem 3.3. Applying $

to a factor Di, i ∈ Qσ0 , results in multiplication by (−1)di+
di(di−1)

2 in types B

and C and (−1)
di(di−1)

2 in type D. If instead i ∈ Q+
0 , then the result is multi-

plication by (−1)eidi+didσ(i)+eidσ(i) . The action of $ on the denominator of Kσd,e
therefore results in multiplication by (−1)χQ0

(e,d)+EQ0
(d), the subscripts indicating

that only summands of χ and E associated to nodes are included. The action of

$ on a factor Vα is multiplication by (−1)didσ(j)+eidσ(j)+diej for i
α−→ j ∈ Q+

1 and

by (−1)eidσ(i)+
dσ(i)(dσ(i)+ταsi)

2 for σ(i)
α−→ i ∈ Qσ1 . Using equation (13) we conclude

that the sign change of the numerator is (−1)χQ1
(e,d)+EQ1

(d). Equation (18) follows.
We now compute

SH(f) ? g =
∑

π∈shσ
σ(d),e

π(S(f)gKσσ(d),e)

=
∑

π∈shσ
σ(d),e

π($(f)gKσσ(d),e)

= (−1)χ(e,d)+E(d)
∑

π∈shσ
σ(d),e

π ◦$(fgKσd,e)

= (−1)χ(e,d)+E(d)
∑

π′∈shσd,e

π′(fgKσd,e)

= (−1)χ(e,d)+E(d)f ? g,

finishing the proof. �

Since SH is an anti-involution the image of the CoHA multiplication map

HQ,+ �HQ,+ → HQ

is stable under SH. It follows that VQ inherits the structure of a Z2-representation.

In fact, VQ = V prim
Q ⊗Q[u] as Z2-representations with SH sending u to −u as follows

from the first part of Lemma 1.1. Interpreting V prim
Q geometrically as in Theorem

2.4 or [27], the Z2-representation agrees with that induced by the Z2-action on⊔
d∈Λ+

Q
Mst
d .

Motivated by Proposition 3.5, for fixed e ∈ Λσ,+Q define a twisted Z2-representation
on HQ by

f 7→ (−1)χ(e,d)+E(d)SH(f), f ∈ HQ,d.

As representations VQ = VQ,perm ⊕ VQ,fix where

VQ,perm =
⊕
d∈Λ+

Q

d6=σ(d)

VQ,d, VQ,fix =
⊕

d∈Λσ,+Q

VQ,d.
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The subrepresentation VQ,perm is a direct sum of permutation representations and
so can be written (non-canonically) as

VQ,perm = VQ,+ ⊕ VQ,− (19)

for some Λ+
Q×Z-graded subspaces VQ,+, VQ,− which are permuted by the Z2-action.

Define a Λ+
Q × Z-graded vector space by

VQ(e) = VQ,+ ⊕ (VQ,fix)(Z2,e)

where (−)(Z2,e) denotes Z2-coinvariants. By identifying invariants and coinvariants
we regard VQ(e) as a subspace of VQ.

Conjecture 3.6. Let Q be a σ-symmetric quiver. Then the CoHA action map⊕
e∈Λσ,+Q

Sym(VQ(e))�W prim
Q,e

?−→MQ

is an isomorphism in Dlb(VectZ)Λσ,+Q
.

When HQ is supercommutative without any twist (see Section 2.2) there is a
refinement of Conjecture 3.6 which partially describes the module structure ofMQ.
We require the following basic result.

Lemma 3.7. Let Q be a σ-symmetric quiver. If HQ is supercommutative, then the
Z2-grading of MQ defined by the reduction modulo two of the shifted cohomological
degree makes MQ is a super HQ-module.

Proof. First observe that for an arbitrary quiver with involution the equality

χ(d, d′) = χ(σ(d′), σ(d)), d, d′ ∈ ΛQ (20)

holds. In the σ-symmetric case, the parity of elements of HQ,(d,k) ?MQ,(e,l) is
E(H(d) + e). Modulo two we have

E(H(d) + e) ≡ E(d) + E(σ(d)) + χ(d, d) + E(e) + χ(d, e) + χ(σ(d), e)

≡ E(d) + E(σ(d)) + χ(d, d) + E(e) + χ(d, e) + χ(d, e)

≡ E(d) + E(σ(d)) + χ(d, d) + E(e)

≡ χ(d, d) + E(e).

The first equality follows by using equation (5) twice, the second from equation (20),
the third from symmetry of Q and the last from σ-symmetry of Q. Since χ(d, d) +
E(e) is the sum of the parities of HQ,(d,k) and MQ,(e,l) the lemma follows. �

Consider V prim
Q as a Λσ,+Q × Z-graded Z2-representation by setting

Ṽ prim
Q,e =

⊕
d∈Λ+

Q

H(d)=e

V prim
Q,d , e ∈ Λσ,+Q .

Using Proposition 3.5 we see that if g ∈ MQ,e, then HQ ? g ⊂ HQ is naturally a

module over the Λσ,+Q × Z-graded supercommutative algebra

HQ(e) = Sym((ṼQ)(Z2,e)). (21)

The strengthened form of Conjecture 3.6 reads as follows.

Conjecture 3.8. Let Q be a σ-symmetric quiver and assume that HQ is super-
commutative. Then the CoHA action map⊕

e∈Λσ,+Q

HQ(e)�W prim
Q,e

?−→MQ
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is an isomorphism in Dlb(VectZ)Λσ,+Q
. Moreover, the restriction to the summand

HQ(e)�W prim
Q,e is a HQ(e)-module isomorphism onto its image.

We will verify some instances of Conjecture 3.8 in Section 4.

Remark. A duality structure induces an involution of the stack Mst =
⊔
d∈Λ+

Q
Mst

d

and H•(Mst/Z2) ' H•(Mst)Z2 as mixed Hodge structures. The algebra HQ(e) is

not Sym(PH•(Mst/Z2)), but is instead Sym(PH•(Mst)(Z2,e)) where we use the
non-geometric e-twisted Z2-action.

Conjectures 3.6 and 3.8 lead to factorizations of orientifold DT series in terms of
orientifold DT invariants and equivariant refinements of DT invariants, analogous
to the factorization of Corollary 2.3. To explain this, we first work in the setting of
Conjecture 3.8.

Definition. Let e′ ∈ Λσ,+Q . The Z2-equivariant motivic Donaldson-Thomas invari-

ant is the class of Ṽ prim
Q in the Λσ,+Q × Z-graded representation ring of Z2:

Ω̃Q =
∑

(e,k)∈Λσ,+Q ×Z

(
dimQ (Ṽ prim

Q,(e,k))
+ + dimQ (Ṽ prim

Q,(e,k))
−η
)

(−q 1
2 )kξe

∈ Q(q
1
2 )[[Λσ,+Q ]][η]/(η2 − 1).

Here (−)± denotes the subspace of (anti-)invariants for the e′-twisted Z2-action.

For ease of notation we do not indicate the e′-dependence of Ω̃Q. Since the

character of Q[u] is 1+qη
1−q2 we find that the Grothendieck class of (ṼQ)(Z2,e) is

1

1− q2

∑
(e,k)∈Λσ,+Q ×Z

(Ω̃+
Q,(e,k) + Ω̃−Q,(e,k)q)q

k
2 ξe.

It follows that the parity-twisted Hilbert-Poincaré series of HQ(e′) is

AQ(e′) =
∏

(e,k)∈Λσ,+Q ×Z
λ∈{±}

(q
k
2 +δ−1,λξe; q2)

−Ω̃λQ,(e,k)
∞ ∈ Q(q

1
2 )[[Λσ,+Q ]].

Assuming Conjecture 3.8 holds, we see that

AσQ =
∑

e∈Λσ,+Q

AQ(e) · ΩσQ,eξe, (22)

interpreted as an equality in ŜQ with its commutative multiplication. Equation (22)
uniquely determines ΩσQ from AσQ and the Z2-equivariant motivic DT invariants.

In the setting of Conjecture 3.6, note that as operators on ŜQ we have AQ(e)· =
[Sym(VQ(e))]?. In particular, the right hand side is independent of the splitting
(19). Hence Conjecture 3.6 also implies equation (22).

3.4. Orientifold Donaldson-Thomas invariants and Hodge theory. We con-
tinue to assume that Q is σ-symmetric. In this section we describe a connection

between W prim
Q and the Hodge theory of

⊔
e∈Λσ,+Q

Mσ,st
e . We use the trivial stabil-

ity, θ = 0, for which a self-dual representation is σ-stable if and only if it has no
non-trivial isotropic subrepresentations.

We begin with a simple lemma.

Lemma 3.9. Let e ∈ Λσ,+Q .
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(1) The canonical map

H•(Mσ,st
e )→ H•Gσe (Rσ,ste ) (23)

is an isomorphism of mixed Hodge structures.
(2) For each k ≥ 0 the subspace Wk−1H

k(Mσ-st
e ) is trivial.

Proof. Since H•Gσe (Rσ,ste ) is isomorphic to the cohomology of the Deligne-Mumford

stack [Rσ,ste /Gσe ] and [Rσ,ste /Gσe ] → Mσ,st
e is a coarse moduli space, the map (23)

is a graded vector space isomorphism [11, Theorem 4.40]. To prove that (23) is a
morphism of mixed Hodge structures, observe that the morphisms

Rσ,ste ×Gσe EN →Mσ,st
e , (24)

in the notation of Section 1.4, approximate the morphism

Rσ,ste ×Gσe EGσe → Rσ,ste /Gσe = Mσ,st
e .

The maps in cohomology induced by (24) are morphisms of mixed Hodge structures.
Passing to the limit finishes the proof of the first part of the lemma.

Since Mσ,st
e is an orbifold the second part follows from [9, Théorèm 8.2.4 (iv)]. �

The next result gives a partial analogue of Theorem 2.4.

Proposition 3.10. Let Q be a σ-symmetric quiver. For each e ∈ Λσ,+Q the compo-

sition H•Gσe (Rσe )→ H•Gσe (Rσ,ste ) ' H•(Mσ,st
e ) factors through a surjective morphism

W prim
Q,e → PH•−E(e)(Mσ,st

e ).

Proof. As the argument is similar to [3], we will be brief. Poincaré duality for
smooth Artin stacks gives a perfect pairing

H•Gσe (Rσe )⊗H−2E(e)−•
c,Gσe

(Rσe )→ Q(−E(e)).

Here we have used that dimC[Rσe /G
σ
e ] = −E(e). By [9, Théorème 9.1.1] the mixed

Hodge structure on Hi
Gσe

(Rσe ) ' Hi(BGσe ) is pure of weight i. Hence Hi
c,Gσe

(Rσe ) is

pure of weight i.
Consider the long exact sequence associated to the pair (Rσ,ste , Rσe \Rσ,ste ):

· · · → Hi−1
c,Gσe

(Rσe \Rσ,ste )→ Hi
c,Gσe

(Rσ,ste )→ Hi
c,Gσe

(Rσe )→ Hi
c,Gσe

(Rσe \Rσ,ste )→ · · ·

Since the weights of Hi−1
c,Gσe

(Rσe \Rσ,ste ) are bounded above by i − 1, the restriction

PHi
c,Gσe

(Rσ,ste ) → Hi
c,Gσe

(Rσe ) is an injection. By duality, Hi
Gσe

(Rσe ) → PHi
Gσe

(Rσ,ste )

is a surjection.
Next, a straightforward modification of the proof of [3, Lemma 2.1] shows that

for each e ∈ Λσ,+Q the composition of the CoHA action map⊕
(d′,e′)∈Λ+

Q×Λσ,+Q
H(d′)+e′=e, d′ 6=0

HQ,d′ �MQ,e′
?−→MQ,e = H

•−E(e)
Gσe

(Rσe )

with the restriction

H•Gσe (Rσe )→ H•Gσe (Rσ,ste ) ' H•(Mσ,st
e )

is zero. The last isomorphism follows from the first part of Lemma 3.9. Com-

bined with the previous paragraph, this implies that the restriction W prim
Q,e →

PH•−E(e)(Mσ,st
e ) is surjective. �
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The proof of injectivity in Theorem 2.4 uses a cohomological interpretation of
ΩQ due to Hausel, Letellier and Rodriguez-Villegas [18] which relies on the smooth-
ness of Nakajima quiver varieties. As there are no smooth analogues of Nakajima
varieties for self-dual representations, it is not clear how to adapt the proof from
[3]. In any case, it is natural to make the following conjecture.

Conjecture 3.11. The surjection W prim
Q,e � PH•−E(e)(Mσ,st

e ) is an isomorphism.

We will confirm some instances of Conjecture 3.11 in Section 4.

In view of results of [27] it is also natural to conjecture that W prim
Q computes the

intersection cohomology of the closure of Mσ,st
e ⊂Mσ,ss

e :

W prim
Q,e ' IC

•−E(e)(Mσ,st
e ).

This can be verified in all examples in which Conjecture 3.11 is verified below.

3.5. The critical semistable CoHM. We explain how to generalize Section 3.1
to define the CoHM in the presence of a stability and a potential.

Fix a stability θ and a potential W ∈ CQ/[CQ,CQ]. Let d′, d′′ ∈ Λ+
Q and set

d = d′ + d′′. Let Rθ-ssd ⊂ Rd be the open subvariety of semistable representations
and define Rθ-ssd′,d′′ = Rd′,d′′∩Rθ-ssd . The canonically defined trace functions tr(W )d :

Rθ-ssd → C and tr(W )d′,d′′ : Rθ-ssd′,d′′ → C are invariant under the actions of GLd and

GLd′,d′′ , respectively. Recall that the full subcategory of RepC(Q) consisting of the
zero object and all semistable representations of fixed slope is abelian. Using this
fact, if µ(d′) = µ(d′′), then upon restriction of the maps (8) we get

Rθ-ssd′ ×Rθ-ssd′′
π
� Rθ-ssd′,d′′

i
↪→ Rθ-ssd .

The trace functions pull back along these maps according to

π∗ (tr(W )d′ � tr(W )d′′) = tr(W )d′,d′′ = i∗tr(W )d.

Let ϕtr(W )dQRθ-ssd
∈ Db

c(R
θ-ss
d ) be the sheaf of vanishing cycles of tr(W )d. See

[20] for background. We abbreviate ϕtr(W )dQRθ-ssd
to ϕtr(W )d . The slope µ semistable

critical CoHA [23, §7] has underlying Q-vector space3 the direct sum of the duals
of compactly supported equivariant cohomology with coefficients in the sheaf of
vanishing cycles,

Hθ-ssQ,W,µ =
⊕

{d∈Λ+
Q|µ(d)=µ}

H•c,GLd(Rθ-ssd , ϕtr(W )d)∨{χ(d, d)/2}.

As in Section 1.4, these cohomology groups are defined by a limiting procedure. An
associative product onHθ-ssQ,W,µ is defined via a pull-push procedure as in Section 2.1;

see [23, §7], [5, §3.2] for details. The GLd-equivariant open inclusions Rθ-ssd ↪→ Rd
induce an algebra homomorphism HθQ,W,µ → Hθ-ssQ,W,µ. Here HθQ,W,µ ⊂ HQ,W is the
subalgebra associated to the submonoid of dimension vectors of slope µ.

Suppose now that Q has an involution and duality structure. Assume that θ is
σ-compatible. We say that a potential W is S-compatible if its associated trace
functions are invariant under the isomorphisms Rd

∼−→ Rσ(d). The self-dual trace

functions tr(W )σe : Rσ,θ-sse → C and tr(W )σd′,e′ : Rσ,θ-ssd′,e′ → C are invariant under
Gσe and Gσd′,e′ , respectively.

We need the following simple observation.

3In fact, the underlying object of Hθ-ss
Q,W,µ has the structure of a monodromic mixed Hodge module,

but we will not use this in this paper.
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Lemma 3.12. Let X be a complex manifold and f : X → C a holomorphic func-
tion. For any c ∈ R>0 there is a canonical isomorphism of vanishing cycle functors
ϕf ' ϕcf . In particular, ϕfQX ' ϕcfQX .

The next result defines the critical semistable CoHM.

Proposition 3.13. Let θ be a σ-compatible stability and W a S-compatible poten-
tial. Then

Mθ-ss
Q,W =

⊕
e∈Λσ,+Q

H•c,Gσe (Rσ,θ-sse , ϕtr(W )σe
)∨{E(e)/2}

has a natural Hθ-ssQ,W,0-module structure defined via a pull-push procedure. Moreover,

the map MQ,W →Mθ-ss
Q,W induced by the Gσe -equivariant open inclusions Rσ,θ-sse ↪→

Rσe is a module homomorphism over HθQ,W,0 → Hθ-ssQ,W,0.

Proof. We need the following simple result. Let U ⊂ N be an isotropic subrepre-
sentation and assume that U is semistable of slope zero and N//U is σ-semistable.
Then N is also σ-semistable. Indeed, we have short exact sequences in RepC(Q):

0→ U → U⊥ → N//U → 0, 0→ U⊥ → N → S(U)→ 0.

Since N//U is σ-semistable it is semistable [41, Proposition 3.2]. Then U⊥ is
semistable of slope zero, implying that that N is semistable and hence σ-semistable.

Using this observation, for each d ∈ Λ+
Q of slope zero and e ∈ Λσ,+Q we obtain

well-defined morphisms

Rθ-ssd ×Rσ,θ-sse

π
� Rσ,θ-ssd,e

i
↪→ Rσ,θ-ssH(d)+e

for which

i∗tr(W )σH(d)+e = tr(W )σd,e = π∗ (2 tr(W )d � tr(W )σe ) .

Lemma 3.12 followed by the Thom-Sebastiani isomorphism [26] gives

H•c,GLd(Rθ-ssd , ϕtr(W )d)∨ ⊗H•c,Gσe (Rσ,θ-sse , ϕtr(W )σe
)∨
∼−→

H•c,GLd×Gσe
(Rθ-ssd ×Rσ,θ-sse , ϕ2tr(W )d�tr(W )σe

)∨.

From this point on the construction of the Hθ-ssQ,W,0-module structure of Mθ-ss
Q,W is

the natural common generalization of [23, §7] and Section 3.1.
The second statement follows from the fact that the diagram

Rσ,θ-ssd,e
Rσd,e

Rθ-ssd ×Rσ,θ-sse Rd ×Rσe

is Cartesian which in turn follows from the first paragraph of the proof. �

When W = 0 and Q is σ-symmetric set

W prim,θ
Q =Mθ-ss

Q /(Hθ-ssQ,µ=0,+ ?Mθ-ss
Q ).

As in Section 3.3 we expect that Mθ-ss
Q is a direct sum of free modules over subal-

gebras of Hθ-ssQ,µ0, leading to an identity in ŜQ of form

Aσ,θ-ssQ =
∑

e∈Λσ,+Q

Aθ-ssQ,0 (e) · Ωσ,θQ,eξ
e. (25)
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If equation (25) indeed holds, then orientifold DT invariants are independent of θ.
Indeed, this follows from the wall-crossing formula [41, Theorem 4.5]

AσQ =
∏

µ∈Q>0

Aθ-ssQ,µ ? A
σ,θ-ss
Q . (26)

This should be compared with the fact that DT invariants of symmetric quivers are
independent of stability.

To end this section we briefly describe the expected general structure ofMQ,W .
Let (Q,W ) be an arbitrary quiver with potential and generic stability θ. Motivated
by the existence and uniqueness of Harder-Narasimhan filtrations, in [23, §5.2] (see
also [4, §8.1]) it was asked if there exist algebra embeddings Hθ-ssQ,W,µ ↪→ HQ,W such
that slope ordered CoHA multiplication

←
�

tw

µ∈QHθ-ssQ,W,µ → HQ,W
is an isomorphism in Dlb(VectZ)Λ+

Q
. Moreover, each factor Hθ-ssQ,W,µ is expected to

be the universal enveloping algebra of a Lie superalgebra structure on V prim,θ
Q,W,µ⊗Q[u]

whose definition involves only the stack of semistable representations of slope µ.
In this way HQ,W obtains a Poincaré-Birkhoff-Witt (PBW) type basis. See [8] for

results in this direction. Conjecturally, V prim,θ
Q,W can be interpreted as the space of

closed oriented single-particle BPS states.
Consider now the orientifold setting and assume that θ is σ-compatible. Every

self-dual representation M has a unique self-dual Harder-Narasimhan filtration [41,
Proposition 3.3], that is, an isotropic filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂M
such that U1/U0, . . . , Ur/Ur−1 are semistable with strictly decreasing positive slopes
and M//Ur is zero or σ-semistable. It is therefore natural to ask for a Hθ-ssQ,W,0-

module4 embedding Mθ-ss
Q,W ↪→MQ,W such that the CoHA action

←
�

tw

µ∈Q>0
Hθ-ssQ,W,µ �

S-twMθ-ss
Q,W →MQ,W (27)

deifnes an isomorphism in Dlb(VectZ)Λσ,+Q
. Together with the natural extension

of Conjecture 3.6 to Mθ-ss
Q,W , an isomorphism of the form (27) would determine a

PBW type basis ofMQ,W in terms of W prim,θ
Q,W and the PBW bases of Hθ-ssQ,W,µ>0 and

Hθ-ssQ,W,0. Conjecturally, W prim,θ
Q,W can be interpreted as the space of single-particle

BPS states of the orientifolded theory. Decompositions similar to (27) occur in
physical definitions of unoriented BPS invariants [33], [37].

4. Symmetric examples

We study a number of examples and illustrate some instances of the conjectures
from Section 3.

4.1. Disjoint union quivers. Let Q and Q′ be quivers. Their disjoint union
Q tQ′ is the quiver with nodes Q0 tQ′0 and arrows Q1 tQ′1. The opposite Qop is

the quiver with nodes Q0 and an arrow j
αop−−→ i for each arrow i

α−→ j ∈ Q1.

Lemma 4.1. There are canonical algebra isomorphisms

HQtQ′ ' HQ ⊗HQ′ , HQop ' HopQ
where HopQ is the algebra opposite to HQ.

4More precisely, we should restrict to subalgebras of Hθ-ss
Q,W,0 as above.
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Proof. The isomorphism HQtQ′
∼−→ HQ ⊗ HQ′ is the pullback along the isomor-

phisms

Rd(Q)×Rd′(Q′)
∼−→ R(d,d′)(Q tQ′)

while HQop
∼−→ HopQ is the pullback along the isomorphisms Rd(Q)

∼−→ Rd(Q
op)

sending a representation to its transpose. �

The quiver Qt = QtQop has a canonical involution σ which swaps the nodes and
arrows of Q and Qop. Fix a compatible duality structure. Representations of Qt

are of the form U1 ⊕ S(U2) for unique U1, U2 ∈ RepC(Q). Self-dual representations

have U1 = U2. The resulting isomorphism Rd
∼−→ RσH(d), d ∈ Λ+

Q, is equivariant

with respect to GLd
∼−→ GσH(d). Let MQt

∼−→ HQ be the associated vector space

isomorphism. Lemma 4.1 implies thatMQt is a HQ ⊗HopQ -module. Similarly, HQ
is a HQ ⊗HopQ -module, the regular left HQ-bimodule.

Theorem 4.2. The map MQt → HQ is an isomorphism of HQ ⊗HopQ -modules.

Proof. The action of f1 ⊗ f3 ∈ HQ ⊗HopQ on f2 ∈ HQ is f1 · f2 · f3 ∈ HQ, which is

in turn the image of f1⊗ f2⊗ f3 under the composition (degree shifts are omitted)

H•GLd1
(Rd1)⊗H•GLd2

(Rd2)⊗H•GLd3
(Rd3)→ H•GLd1,d2,d3

(Rd1,d2,d3)

→ H•GLd1+d2+d3
(Rd1+d2+d3

).

The isomorphism Rd ' RσH(d) identifies Rσd1+σ(d2),H(d3) ⊂ RσH(d1+d2+d3) with the

subspace Rd1,d3,d2
⊂ Rd1+d2+d3

preserving the Q0-graded flag

Cd1 ⊂ (Cσ(d2))⊥ ∩ Cd1+d2+d3 ⊂ Cd1+d2+d3

and identifies Gσd1+σ(d2),H(d3) ⊂ GσH(d1+d2+d3) with GLd1,d3,d2
⊂ GLd1+d2+d3

. Using

these identifications we find that (f1 ⊗ f3) ? f2 is equal to f1 · f2 · f3. That the

isomorphism MQt
∼−→ HQ respects the gradings follows from the equality

EQt(U1 ⊕ S(U2)) = χQ(U2, U1), U1, U2 ∈ RepC(Q), (28)

which is easily verified. �

Remark. The natural generalization of Theorem 4.2 to the critical semistable
CoHM holds as well. The proof is similar.

Corollary 4.3. Conjectures 3.8 and 3.11 hold for Qt.

Proof. Equation (28) implies that Qt is σ-symmetric if Q is symmetric. Consider
HQ with its twisted supercommutative product. Theorems 2.2 and 4.2 give

HQt ' HQ ⊗HopQ ' Sym
((
V prim
Q ⊕ S(V prim

Q )
)
⊗Q[u]

)
.

Lift the supercommutative twist of HQ by takingMQt to be the regular super HQ-
bimodule. Then MQt is a rank one free module with basis 1σ0 ∈ MQt,0 over the

subalgebra of HQt generated by v+S(v) with v ∈ V prim
Q ⊗Q[u]. Hence Conjecture

3.8 holds. Since Qt has no σ-stable representations Conjecture 3.11 also holds. �

Similarly, MQt is a rank one free module over HQ ⊂ HQt . This module struc-
ture is the PBW factorization (27) associated to a σ-compatible stability on Qt

whose restriction to Λ+
Q ⊂ Λ+

Qt is positive.
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4.2. Zero and one loop quivers. Let Lm be the quiver with one node and m ≥ 0
loops. It is symmetric and its CoHA is supercommutative without any twist. If
f1 ∈ HLm,d′ and f2 ∈ HLm,d′′ , then

f1 · f2 =
∑

π∈shd′,d′′

π
(
f1(x′1, . . . , x

′
d′)f2(x′′1 , . . . , x

′′
d′′)

d′′∏
l=1

d′∏
k=1

(x′′l − x′k)m−1
)
.

The (unique) involution of Lm fixes the node and arrows. Hence Lm is σ-
symmetric. A duality structure is determined by signs s and τ1, . . . , τm. Suppose
that τ+ of the latter are positive and τ− = m − τ+ are negative. When s = 1
Proposition 3.2 gives MLm =MB

Lm
⊕MD

Lm
with summands spanned by odd and

even dimensional self-dual representations, respectively. When s = −1 write MC
Lm

for MLm . Applying Theorem 3.3 to f ∈ HLm,d and g ∈MLm,e gives

f ? g = 2(τs− 1−s
2 )d

∑
π∈shσd,e

π

[
f(x1, . . . , xd)g(z1, . . . , zb ee c)×

d∏
i=1

x
N(s,τ)
i

( ∏
1≤i<j≤d

(xi + xj)

d∏
i=1

b e2 c∏
j=1

(x2
i − z2

j )
)m−1

]
where

N(s, τ) =

 2τ+ + τ− − 1, in type B
τ− − 1, in type C
τ+, in type D.

Using this we obtain the following degree (0, 0) or (1, 0) isomorphisms:

(i) If τ+ = 0, then MB
Lm
'MC

Lm
.

(ii) If τ+ = τ− − 1, then MC
Lm
'MD

Lm
.

(iii) If m = 1 then MD
L1
'MB

L1
.

(29)

As the cases m ≤ 1 serve as building blocks for more complicated examples, we
now study these in detail.

4.2.1. Zero loops. Let m = 0. The CoHA HL0
is a free supercommutative algebra

generated by the odd variables xi ∈ HL0,1, i ≥ 0, of degree (1, 2i + 1) [23, §2.5].
Explicitly, if i = (id, . . . , i1) is a strictly decreasing partition, then

xi1 · · ·xid = si−δd .

Here sλ is the Schur polynomial associated to a partition λ and δr = (r−1, . . . , 1, 0).

In particular, V prim
L0

= Q · 11 = Q(1,1).

The first isomorphism of (29) implies MB
L0
' MC

L0
, so we consider only MB

L0

and MD
L0

. Given f ∈ Q[x1, . . . , xd] let f̃(x1, . . . , xd) = f(x2
1, . . . , x

2
d).

Lemma 4.4. Let i be a strictly decreasing partition of length d.

(1) Type B: If all ij are odd, then si−δd ? 1σ0 = 2ds̃ i−1
2 −δd

.

(2) Type D: If all ij are even, then si−δd ? 1σ0 = 2ds̃ i
2−δd

.

Proof. Consider type B and proceed by induction on d. If i ≥ 1 is odd, then

(xi ? 1σ0 )(z) = zi(z)−1 + (−z)i(−z)−1 = 2(z2)
i−1

2 = 2s̃( i−1
2 )(z).

This confirms the case d = 1. Assuming the lemma holds for partitions of length
d− 1, we find that xi1 · · ·xid ? 1σ0 = xi1 ? (xi2 · · ·xid ? 1σ0 ) is equal to

2d
d∑
p=1

zi1−1
p∏d

j=1
j 6=p

(z2
j − z2

p)
s̃ i′−1

2 −δd−1
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where i′ = (id, . . . , i2). A direct calculation shows that this coincides with 2ds̃ i−1
2 −δd

.

The proof in type D is similar and is omitted. �

Remark. By Proposition 3.5, if i is not purely odd/even, then si−δr annihilates

MB/D
L0

. A similar statement holds for ML1
below.

Let HevenL0
, HoddL0

be the subalgebras generated by {x2i}i≥0, {x2i+1}i≥0, respec-

tively. Equivalently, HevenL0
= Sym(Q(1,1)⊗Q[u2]) andHoddL0

= Sym(Q(1,1)⊗uQ[u2]).
These are the subalgebras defined in equation (21); they are independent of e.

Theorem 4.5.

(1) MB
L0

is a free HoddL0
-module with basis 1σ1 ∈MB

L0,1
.

(2) MD
L0

is a free HevenL0
-module with basis 1σ0 ∈MD

L0,0
.

Proof. The map i 7→ i−1
2 is a bijection between the set of strictly decreasing purely

odd partitions of length d and the set of strictly decreasing partitions of length d.
Since the Schur functions s̃i′−δd parameterized by the former set are an additive
basis ofMB

L0,2d+1 ' Q[z2
1 , . . . , z

2
d]Sd , the statement in type B follows from Lemma

4.4.
In type D use instead the bijection i 7→ i

2 between the set of strictly decreasing
purely even and the set of strictly decreasing partitions. �

Corollary 4.6. The motivic orientifold DT invariants of L0 are

ΩBL0
= ξ, ΩCL0

= 1, ΩDL0
= 1.

Conjectures 3.8 and 3.11 hold for L0.

Proof. The calculation of the orientifold DT invariants and the validity of Conjec-
ture 3.8 follow from Theorem 4.5. Conjecture 3.11 follows from the isomorphisms

Msp,st
2e = ∅, e ≥ 1, Mo,st

e =

{
pt, if e = 1,
∅, if e ≥ 2,

the superscripts sp and o indicating type C or types B or D, respectively. �

4.2.2. One loop. Let m = 1. The CoHA HL1 is a free supercommutative algebra
generated by even variables xi ∈ HL1,1, i ≥ 0, of degree (1, 2i) [23, §2.5]. Explicitly,

xi1 · · ·xid = N(i)mi

where mi is the monomial symmetric polynomial and N(i) =
∏
k≥0 #{j ≥ 1 | ij =

k}!. Hence V prim
L1

= Q · 11 = Q(1,0).

The isomorphisms (29) giveMB
L1
'MC

L1
'MD

L1
if τ = −1 andMB

L1
'MD

L1
if

τ = 1. So we consider only MB
L1

if τ = −1 and MC,D
L1

if τ = 1.

Lemma 4.7. Let i be a partition of length d.

(1) Type B, τ = −1: If i is purely even, then mi ? 1σ0 = 2dm̃ i
2
.

(2) Type C, τ = 1: If i is purely odd, then mi ? 1σ0 = 2dm̃ i−1
2

.

(3) Type D, τ = 1: If i is purely odd, then mi ?1σ2e = 2dm̃( i+1
2 ,0e), where (i,0e)

denotes the length d+ e partition obtained by appending e zeros to i.

Proof. The proof is similar to that of Lemma 4.4 and so is omitted. �

Let HevenL1
= Sym(Q(1,0) ⊗Q[u2]) and HoddL1

= Sym(Q(1,0) ⊗ uQ[u2]).

Theorem 4.8.

(1) If τ = −1, then MB
L1

is a free HevenL1
-module with basis 1σ0 ∈MB

L1,1
.

(2) If τ = 1, then MC
L1

is a free HoddL1
-module with basis 1σ0 ∈MC

L1,0
.
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(3) If τ = 1, then MD
L1

is a free HoddL1
-module with basis 1σ2e ∈MD

L1,2e
, e ≥ 0.

Proof. The proof is similar to that of Theorem 4.5, using Lemma 4.7 instead of
Lemma 4.4. �

Corollary 4.9. The motivic orientifold DT invariants of L1 are

τ = −1 : ΩBL1
= ξ, ΩCL1

= 1, ΩDL1
= 1

and

τ = 1 : ΩBL1
=

q−
1
2 ξ

1− q−1ξ2
, ΩCL1

= 1, ΩDL1
=

1

1− q−1ξ2
.

Conjectures 3.8 and 3.11 hold for L1.

Proof. The calculation of the orientifold DT invariants and the validity of Conjec-
ture 3.8 follow from Theorem 4.8. For τ = −1 we find

Msp,st
2e = ∅, e ≥ 1, Mo,st

e =

{
pt, if e = 1,
∅, if e ≥ 2.

while for τ = −1 we find Msp,st
2e = ∅ and

Mo
e = Symme×e//Oe ' Syme C, Mo,st

e = SymeC\∆, e ≥ 1.

Here Symme×e is the variety of symmetric e × e matrices and ∆ is the big diag-
onal consisting of unordered n-tuples of points of C not all of which are distinct.
Conjecture 3.11 is now immediate except in the last case, where it reads

PH0(Mo,st
e ) ' Q(0), PHk(Mo,st

e ) = 0 if e, k ≥ 1.

In this case the claim follows from the isomorphism of mixed Hodge structures
H•(SymeC\∆) ' H•(C\{0}). �

4.2.3. Higher loops. When m ≥ 2 the situation is more complicated as neither HLm
norMLm is finitely generated. However, Conjecture 3.8 can be made quite explicit
and can be used to give a numerical method to compute orientifold DT invariants.
We have

χ(e, d) + E(d) ≡ dδB + E(d) mod 2

where δB is one in type B zero otherwise. Then HQ(e) depends only on the type
and not e. Write H◦Q for HQ(e). Each CoHA summand HLm,(d,k) is isotypical as a
Z2-representation and the Z2-equivariant DT invariants are

Ω̃+
2d,k =

{
Ωd,k, if dδB + E(d) + k−(1−m)d2

2 ≡ 0 mod 2

0, if dδB + E(d) + k−(1−m)d2

2 ≡ 1 mod 2

and

Ω̃−2d,k =

{
0, if dδB + E(d) + k−(1−m)d2

2 ≡ 0 mod 2

Ωd,k, if dδB + E(d) + k−(1−m)d2

2 ≡ 1 mod 2.

Conjecture 3.8 states thatMLm is a free module over H◦Q. Equation (22) becomes

AσLm = A◦Lm · Ω
σ
Lm .

Since ΩLm have been computed by Reineke [31, Theorem 6.8] and AσLm is given
explicitly by equation (10), this gives a way to compute ΩσLm .

Example. For m = 2 we have

ΩL2
= −q− 1

2 t+ q−2t2 − q− 9
2 t3 + (q−6 + q−8)t4 +O(t5).

When τ = −1 the Z2-equivariant DT invariants are

Ω̃+
L2

= −q− 9
2 ξ6 + (q−6 + q−8)ξ8 +O(ξ10), Ω̃−L2

= −q− 1
2 ξ2 + q−2ξ4 +O(ξ10)
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and equation (22) predicts

ΩBL2
= ξ − q− 3

2 ξ3 + (q−5 + q−3)ξ5 − (q−
21
2 + q−

17
2 + 2q−

13
2 + q−

9
2 )ξ7 +

(q−18 + q−16 + 2q−14 + 3q−12 + 4q−10 + 3q−8 + q−6)ξ9 +O(ξ11).

Up to Λσ,+Q -degree five the generators of MB
L2

can be taken to be 1σ1 ,1
σ
3 , 1σ5 and

z2
1 + z2

2 . /

Example. For m = 3 we have

ΩL2 = −q− 1
2 t+ q−2t2 − q− 9

2 t3 + (q−6 + q−8)t4 +O(t5).

When τ = 1 the Z2-equivariant DT invariants are

Ω̃+
L3

= q−4ξ4 + q−6ξ6 + (q−8 + 2q−10 + 2q−12 + q−14 + q−16)ξ8 +O(ξ10)

and

Ω̃−L3
= q−1ξ2 + (q−7 + q−9)ξ6 + (q−9 + q−11 + q−13)ξ8 +O(ξ10)

and equation (22) predicts

ΩDL3,0 = 1, ΩDL3,2 = q−4 + q−2, ΩDL3,4 = q−12 + q−10 + 2q−8 + 2q−6 + q−4

and

ΩDL3,6 = q−24 + q−22 + 2q−20 + 3q−18 + 4q−16 + 5q−14 + 6q−12 + 6q−10 + 4q−8 + q−6

and

ΩDL3,8 = q−40 + q−38 + 2q−36 + 3q−34 + 5q−32 + 6q−30 + 9q−28 + 11q−26 + 14q−24 +

16q−22 + 19q−20 + 20q−18 + 21q−16 + 19q−14 + 14q−12 + 6q−10 + q−8.

/

4.3. Symmetric Ã1 quiver. Let Q be the following affine Dynkin quiver,

1 2

α

β

The CoHA HQ is supercommutative without any twist. The product of f1 ∈ HQ,d′
and f2 ∈ HQ,d′′ is

f1 · f2 =
∑

π∈shd′,d′′

π
(
f1(x′1, . . . , x

′
d′1
, y′1, . . . , y

′
d′2

)f2(x′′1 , . . . , x
′′
d′′1
, y′′1 , . . . , y

′′
d′′2

)×

∏d′′2
j=1

∏d′1
i=1(y′′j − x′i)

∏d′′1
j=1

∏d′2
i=1(x′′j − y′i)∏d′′1

i=1

∏d′1
j=1(x′′i − x′j)

∏d′′2
i=1

∏d′2
j=1(y′′i − y′j)

)
.

A representation of Q of dimension vector (d1, d2) consists of a pair of matrices

A ∈ Matd2×d1 , B ∈ Matd1×d2 .

For stability θ = (1,−1) the semistable representations are

(i) the direct sums of simples S⊕k1 , k ≥ 1, having slope 1,

(ii) the direct sums of simples S⊕k2 , k ≥ 1, having slope −1, and
(iii) the pairs (A,B) ∈ GLd(C)×Matd×d, d ≥ 1, having slope 0.

The semistable algebras Hθ-ssQ,µ=1 and Hθ-ssQ,µ=−1 are isomorphic to HL0
and embed

canonically as subalgebras of HQ. On the other hand, the inclusion

Matd×d → GLd(C)×Matd×d, B 7→ (Id×d, B)
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descends to an isomorphism from the stack of d-dimensional representations of the
one loop quiver L1 to the stack of (d, d)-dimensional semistable representations of
Q. This induces a graded algebra isomorphism Hθ-ssQ,µ=0 ' HL1 and the map

Ψ0 : HL1
→ HQ, xi 7→ xiy0

extends to an algebra embedding. In [14, Proposition 2.4] Franzen proved that the
slope ordered CoHA multiplication

Ψ : Hθ-ssQ,µ=1 �Hθ-ssQ,µ=0 �Hθ-ssQ,µ=−1 → HQ, a⊗ b⊗ c 7→ aΨ0(b)c (30)

is an isomorphism of Λ+
Q × Z-graded supercommutative algebras. In particular,

V prim
Q = Q · 1(1,0) ⊕Q · 1(1,1) ⊕Q · 1(0,1).

Let σ be the involution of Q that swaps the nodes and fixes the arrows. Then

E(d1, d2) = d1d2 −
d1(d1 + sτα)

2
− d2(d2 + sτβ)

2
.

This shows that there are two inequivalent σ-symmetric duality structures on (Q, σ),
say s = 1 and τ = ±1. The structure maps (A,B) of a self-dual representation
are symmetric if τ = 1 and skew-symmetric if τ = −1. If f ∈ HQ,(d1,d2) and
g ∈MQ,(e,e), then f ? g is equal to∑
π∈shσd,e

π
(
f(x1, . . . , xd1 , y1, . . . , yd2)g(z1, . . . , ze)×

∏
1≤j≤τ l≤d1

(−xj − xl)
d1∏
l=1

e∏
k=1

(−zk − xl)
∏

1≤j≤τm≤d2

(−yj − ym)

d2∏
m=1

e∏
k=1

(zk − ym)

d1∏
l=1

e∏
k=1

(zk − xl)
e∏

k=1

d2∏
m=1

(−ym − zk)

d1∏
l=1

d2∏
m=1

(−ym − xl)

)
.

The non-empty subvarieties of semistable self-dual representations are

τ = 1 : Rσ,θ-ss(e,e) = (Symme×e ∩ GLe(C))× Symme×e

and
τ = −1 : Rσ,θ-ss(2e,2e) = (Skew2e×2e ∩ GL2e(C))× Skew2e×2e.

From this we see that the stack of semistable self-dual representations of Q is
isomorphic to the stack of self-dual representations of L1 with duality structure

(sL1 = τ, τL1 = +1).

The induced map Mθ-ss
Q

∼−→ML1
is a module isomorphism over Hθ-ssQ,µ=0

∼−→ HL1
.

Lemma 4.10. In dimension vector (e, e) ∈ Λσ,+Q the kernel of the restriction mor-

phism MQ →Mθ-ss
Q is the image of the CoHA action map

e⊕
d=1

HQ,(d,0) �MQ,(e−d,e−d)
?−→MQ,(e,e).

Proof. Let M be a self-dual representation determined by matrices (A,B). Then
0 ⊂ kerA ⊂ M is the self-dual Harder-Narasimhan filtration of M . The Harder-
Narasimhan strata of Rσe are therefore the locally closed subsets consisting of self-
dual representations with fixed dimC kerA. The closure of a stratum is thus a
union of strata. Using this observation, [14, Lemma 2.1] can be applied with only
obvious modifications to complete the proof. In slightly more detail, the methods
of [14] can be used to prove the present lemma for the Chow theoretic Hall module,
defined similarly to MQ but using equivariant Chow groups instead of equivariant
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cohomology. In the case at hand the (semistable) cohomological and Chow theoretic
Hall modules are isomorphic, as can be verified directly. Hence the lemma also
follows in the cohomological case. �

We can now describe MQ. Let H◦Q ⊂ HQ be the subalgebra generated by

V ◦Q =
(
Q · 1(1,0) ⊗Q[u]

)
⊕
(
Q · 1(1,1) ⊗ uQ[u2]

)
⊂ VQ.

There is an isomorphism of algebras H◦Q ' Hθ-ssQ,µ=1 ⊗ H
θ-ss,odd
Q,µ=0 , the second factor

being an isomorphic image of HoddL1
. The map sending 1σ0 ∈ ML1,0 to 1σ(0,0) ∈

MQ,(0,0) extends to a Hθ-ss,oddQ,µ=0 -module embedding Mθ-ss
Q ↪→MQ.

Theorem 4.11. The semistable CoHM Mθ-ss
Q is a free Hθ-ss,oddQ,µ=0 -module with basis

(1) 1σ0 ∈MQ,(0,0) if τ = −1, and
(2) 1σ(e,e) ∈MQ,(e,e), e ≥ 0, if τ = 1.

Moreover, the CoHA action

Hθ-ssQ,µ=1 �Mθ-ss
Q

?−→MQ (31)

is an isomorphism of Λσ,+Q × Z-graded H◦Q-modules. In particular, MQ is a free
H◦Q-module and Conjecture 3.8 holds for Q.

Proof. The first statement follows from Theorem 4.8 and the HL1 -module isomor-
phism Mθ-ss

Q 'ML1
.

Turning to the second statement, direct calculation shows that in this case the
restriction mapMQ →Mθ-ss

Q is surjective. From this and Lemma 4.10 we conclude

that the map (31) is also surjective. The wall-crossing formula (26) for Q reads

Aθ-ssQ,µ=1 ? A
σ,θ-ss
Q = AσQ and implies that the domain and codomain of the map (31)

have the same Hilbert-Poincaré series. Hence the map (31) is an isomorphism. �

Corollary 4.12. The motivic orientifold DT invariants of Q are

τ = −1 : ΩσQ = 1

and

τ = 1 : ΩσQ =
1

1− q− 1
2 ξ(1,1)

.

Conjecture 3.11 holds for Ã1.

Proof. When τ = −1 the corollary follows immediately from Theorem 4.11.
When τ = 1 Theorem 4.11 shows that (1 − q− 1

2 ξ(1,1))−1 is an upper bound for
ΩσQ. To prove that it is also a lower bound, observe that the cohomological degree
shift of the action of HQ,d on MQ,e is

(d1 − d2)2 + d1 + d2 ≥ 0.

From this it follows that 1σ(e,e), e ≥ 0, must be included as generators of MQ.

Hence the orientifold DT invariants are as stated.
To verify Conjecture 3.11 when τ = 1 we must prove that PH•(Mσ,st

(e,e)) ' Q(0).

Note that we take the trivial stability. It is clear that Mσ,st
(1,1) ' C× and that

there are no other regularly σ-stable representations. It follows that Mσ,st
(e,e) '

Syme C×\∆. Consider the open inclusions

Syme C×\∆ i
↪→ Syme C\∆ ↪→ Syme P1.
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As Syme P1 is a smooth compactification of both SymeC× and Syme C, we obtain
a commutative diagram

H•(Syme P1) H•(Syme C\∆) H•(SymeC×\∆)

PH•(Syme C\∆) PH•(SymeC×\∆)
i∗

The surjections follow from [29, Proposition 6.29]. Hence i∗ is also surjective. Since
PH•(SymeC\∆) ' Q(0) we also have PH•(SymeC×\∆) ' Q(0). �

Remarks.

(1) The isomorphism (31) is an instance of the PBW factorization (27).
(2) Let θ = (1,−1). If τ = 1, then Mσ,θ-st

e ' SymeC\∆ and the proof of

Corollary 4.12 gives i∗ : PH•(Mσ,θ-st
e )

∼−→ PH•(Mσ,st
e ). This is an example

of the lack of wall-crossing for σ-symmetric quivers.

5. Cohomological Hall modules of finite type quivers

A quiver is called finite type if it has only finitely many indecomposable repre-
sentations up to isomorphism. Gabriel proved that a quiver is finite type if and only
if it is a disjoint union of quivers whose underlying graphs are Dynkin diagrams of
ADE type. The only connected finite type quivers with involution are of type A; all
other finite type quivers with involution are disjoint unions of these and quivers of
the form ADEt. By Theorem 4.2 the CoHM of a quiver of the latter type reduces
to the CoHA of a connected finite type quiver, whose structure will be recalled in
Section 5.1. The problem is therefore to describe the CoHM of a type A quiver.

5.1. Finite type CoHA following Rimányi. Let Q be a connected finite type
quiver. For simplicity we assume that Q is not of type E8; for E8 see [32, Remark
11.3]. The sets Π ⊂ ∆ of positive simple and positive roots of Q are in bijection
with the sets of isomorphism classes of simple and indecomposable representations
of Q, respectively. Identify ∆ with a subset of Λ+

Q using the dimension vector map
and write Iβ for the indecomposable representation with dimension vector β ∈ ∆.

Fix a total order β1 < · · · < βN on ∆ such that Hom(Iβi , Iβj ) = 0 = Ext1(Iβj , Iβi)
if i < j. Such an order exists because the Auslander-Reiten quiver ΓQ is acyclic.

For each β ∈ ∆ consider

H〈β〉Q =
⊕
n≥0

H•GLnβ (Rnβ){χ(nβ, nβ)/2}

and

H〈β〉,'Q =
⊕
n≥0

H•GLnβ (R'nβ){χ(nβ, nβ)/2}

where R'nβ ⊂ Rnβ is the GLnβ-orbit consisting of representations which are isomor-

phic to I⊕nβ . Then H〈β〉Q is a subalgebra of HQ and the natural Hall product on

H〈β〉,'Q is such that the restriction map ρ : H〈β〉Q → H〈β〉,'Q is a surjective algebra

homomorphism. Moreover, H〈β〉,'Q ' HL0 as algebras. Let {x̃j}j≥0 be the associ-

ated generators of H〈β〉,'Q , as defined in Section 4.2.1. Choose5 a node i(β) ∈ Q0

5This cannot be done in type E8.
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such that dimC(Iβ)i(β) = 1 and define a section ψ of ρ by ψ(x̃j) = xji(β). Write

H(β)
Q ⊂ HQ for the isomorphic image of ψ.
The following result is due to Rimányi. It was stated for Q of type A2 by

Kontsevich and Soibelman [23, Proposition 2.1].

Theorem 5.1 ([32, Theorem 11.2]). The <-ordered CoHA multiplication maps

←−
�

tw

α∈ΠH
(α)
Q → HQ,

−→
�

tw

β∈∆H
(β)
Q → HQ

define isomorphisms in Dlb(VectZ)Λ+
Q

.

5.2. Preliminary results for the self-dual case. Let (Q, σ) be of Dynkin type
A. Then Q has two inequivalent duality structures: fixing τ = −1, either s = +1 or
s = −1 corresponding to orthogonal or symplectic representations in the language
of [10], respectively. In type A2n (respectively, A2n+1) all orthogonal (symplectic)
representations are hyperbolic. In the remaining two cases, henceforth referred to
as non-hyperbolic, the positive roots of Q which are fixed by the involution admit
unique self-dual structures.

To describe MQ we will modify Rimányi’s approach to the study of HQ. Fix

d• = (d1, . . . , dr) ∈ (Λ+
Q)r, e′ ∈ Λσ,+Q and put e =

∑r
i=1H(di) + e′. Let Gσd•,e′ ⊂ Gσe

be the stabilizer of a Q0-graded isotropic flag of Ce of the form

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂ Ce, dimUk/Uk−1 = dk, dimCe//Ur = e′.

Extend U• to a flag of length 2r+ 1 by setting U2r−k+1 = U⊥k for k = 0, . . . , r. Let
Flσd•,e′ ' Gσe /G

σ
d•,e′ be the corresponding isotropic flag variety.

For each k = 1, . . . , 2r + 1 let Vi,k be the tautological vector bundle over Flσd•,e′
parameterizing the kth subspace of Ce at the node i. The quotient bundle Fi,k =
Vi,k/Vi,k−1 has rank dki . The bilinear form on Ce induces isomorphisms Fi,k '
F∨σ(i),2r+1−k. By duality this gives a chain of vector bundle isomorphisms

Hom(Fi,k,Fj,l) ' Hom(F∨j,l,F∨i,k) ' Hom(Fσ(j),2r+1−l,Fσ(i),2r+1−k)

which induce a linear Z2-action on

G =
⊕

i
α−→j∈Q1

⊕
1≤k<l≤2r+1

Hom(Fi,k,Fj,l).

Denote by Gσ the subbundle of anti-fixed points.
The following result is motivated by [32, Lemmas 8.1 and 8.2].

Lemma 5.2. Let fk ∈ HQ,dk , k = 1, . . . , r, and g ∈MQ,e′ . Then

(f1 · · · fr) ? g = πσ∗

[(
r∏

k=1

fk(F•,k)

)
g(F•,0)EuGσe (Gσ)

]
where πσ∗ : H•Gσe (Flσd•,e′) → H•Gσe (pt) is the pushforward to a point and EuGσe (Gσ) is

the Gσe -equivariant Euler class of Gσ → Flσd•,e′ .

Proof. The right-hand side of the desired equality can be computed by localization
with respect to the maximal torus Te ⊂ Gσe . The Te-fixed points are those appearing
in the proof of (the r-fold iteration of) Theorem 3.3. As the weights of EuGσe (Gσ)
and EuGd•,e′ (NRσe /Rσd•,e′

) at a Te-fixed point agree, the lemma follows. �

Define a Gσe -stable subvariety of Flσd•,e′ ×Rσe by

Σσ = {(U•,m) ∈ Flσd•,e′ ×Rσe | mα(Ui,k) ⊂ Uj,k, ∀ i
α−→ j ∈ Q1, k = 1, . . . , r}.

It has a Gσe -equivariant fundamental class

[Σσ] ∈ H•Gσe (Flσd•,e′ ×Rσe ) ' H•Gσe (Flσd•,e′).
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Lemma 5.3. The equality EuGσe (Gσ) = [Σσ] holds in H•Gσe (Flσd•,e′).

Proof. This can be proved in the same way as [32, Lemma 8.3]. �

The duality structure on RepC(Q) defines an involution of the Auslander-Reiten
quiver ΓQ, sending an indecomposable I to S(I). This involution preserves the
levels of ΓQ which, being in type A, are exactly the orbits of Auslander-Reiten
translation. It follows that each level contains at most one fixed point of the duality.

Fix a partition ∆ = ∆− t ∆σ t ∆+ such that ∆σ is fixed pointwise by S and
S(∆−) = ∆+. Without loss of generality we assume that βu < S(βu) for all
βu ∈ ∆−. Write ∆− = {βu1

< · · · < βur}.

Lemma 5.4. Every self-dual representation M has a unique isotropic filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂M

such that Uj/Uj−1 ' I
⊕muj
βuj

, j = 1, . . . , r, and M//Ur '
⊕

βu∈∆σ I
⊕mu
βu

.

Proof. Any self-dual representation M can be written as an orthogonal direct sum
of indecomposable self-dual representations, that is, self-dual representations which
cannot be written as the orthogonal direct sum of two non-trivial self-dual repre-
sentations. In type A this means that M can be written uniquely as

M =

r⊕
l=1

H(Iβul )
⊕mul ⊕

⊕
βu∈∆σ

I⊕muβu
. (32)

Setting Uj =
⊕j

l=1 I
⊕mul
βul

gives a filtration with the desired properties.

Suppose that U ′• ⊂ M is another filtration with the desired properties. By a
standard argument the assumption βu1

< · · · < βur implies that U ′• = U•. So
it suffices to show that there is a unique isotropic embedding Ur ↪→ M . To do
so, first note that Hom(Iβ , Iβ′) = 0 for all β ∈ ∆− and β′ ∈ ∆σ. Indeed, if
Hom(Iβ , Iβ′) 6= 0 then Hom(Iβ′ , S(Iβ)) 6= 0. Hence β > β′ and β′ > S(β), whence
S(β) < β, a contradiction. Using this, it follows that the summand U1 ⊂ Ur must
map isomorphically onto I⊕m1

β1
. While U2 ⊂ Ur could potentially map non-trivially

to S(Iβu1
), this would contradict the condition that U2 be isotropic. Hence U2

must map isomorphically onto I
⊕mu1

βu1
⊕ I⊕mu2

βu2
. Continuing in this way we see that

Ur ↪→M is indeed the canonical isotropic embedding. �

We derive two results using Lemma 5.4. The first is an extension to the self-dual
setting of a theorem of Reineke [30, Theorem 2.2] and appears in the unpublished
thesis of Lovett [24]. For M ∈ Rσe let ησM ⊂ ησM ⊂ Rσe be the Gσe -orbit and Gσe -orbit
closure of M . Elements of ησM are called self-dual degenerations of M .

Theorem 5.5 ([24]). Let M be a self-dual representation. In the notation of
Lemma 5.4 set dj = mjβj, j = 1, . . . , r, and e′ = dimM//Ur. Then the canonical
morphism πσM : Σσ → Rσe is a Gσe -equivariant resolution of ησM .

Proof. When Q is of type A3 the statement is proved in [25, Proposition 2.3]. For
the general case we use a modification of Reineke’s resolution.

It is clear that Σσ is smooth and that πσM is proper and equivariant. We prove
that πσM (Σσ) = ησM . If N ∈ πσM (Σσ), then there is an isotropic filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ N, dimVi/Vi−1 = di.

Since Ext1(Iβ , Iβ) = 0 for all β ∈ ∆, Voigt’s lemma implies that Vi/Vi−1 is a

degeneration of I
⊕mui
βui

. Similarly, Ext1(Iβ , Iβ′) = 0 for all β, β′ ∈ ∆σ and N//Vr

is a degeneration of ⊕βu∈∆σI⊕muβu
. Applying [30, Lemma 2.3] we conclude that
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N is a degeneration of M . It is proved in [10, Theorem 2.6] that two self-dual
representations are isometric if and only if they are isomorphic. From this it follows
that in fact N is a self-dual degeneration of M . Hence ησM ⊂ πσM (Σσ) ⊂ ησM ,
implying πσM (Σσ) = ησM .

To prove that πσM is a resolution it remains to show that it restricts to a bijection
over ησM . Consider an arbitrary isotropic filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂M, dimUi/Ui−1 = di.

As above, Ui/Ui−1 and M//Ur are degenerations of I
⊕mui
βui

and ⊕βu∈∆σI⊕muβu
, re-

spectively. Since Hom(Iβi , Iβj ) = 0 if i < j we can apply the second part of [30,

Lemma 2.3] to conclude that Ui/Ui−1 ' I
⊕mui
βui

and M//Ur ' ⊕βu∈∆σI⊕muβu
. Lemma

5.4 now implies that U• ⊂M is the canonical filtration. �

We can now prove an analogue of [32, Theorem 10.1].

Corollary 5.6. Let M be a self-dual representation. Then, in the notation of
Lemma 5.4, the equality

[ησM ] = (1mu1βu1
· · ·1murβur ) ? 1σ∑

βu∈∆σ muβu

holds in MQ.

Proof. Theorem 5.5 implies that πσ∗ [Σσ] = [ησM ]. The desired equality then follows
from Lemmas 5.2 and 5.3. �

Remark. The class [ησM ] ∈ H•Gσe (Rσe ) is the Thom polynomial of the orbit ησM ⊂ Rσe .

These classes play the rôle of the quiver polynomials of [2] in the self-dual setting.

Turning to the second application of Lemma 5.4, define putative orientifold DT
invariants Ωσe to be one if e ∈ Λσ,+Q is a sum of pairwise distinct positive roots,
each of which is the dimension vector of an indecomposable representation which
admits a self-dual structure. Otherwise, set Ωσe = 0. By convention Ωσ0 = 1. Set
also Π+ = Π ∩ I+ and Πσ = Π ∩∆σ. Let h = 0 in the hyperbolic case and h = 1
otherwise. Recall that AL0

(q
1
2 , t) = (q

1
2 t; q)∞ = Eq(t) is the quantum dilogarithm.

Theorem 5.7. The identity
←−∏
α∈Π+

Eq(tα) ?
∑
π⊂Πσ

∏
α∈π

Eq2(q−
1
2 +htα) ? Ωσ∑

β∈π β
ξ
∑
β∈π β =

−→∏
β∈∆−

Eq(tβ) ?
∑
π⊂∆σ

( ∏
β∈π

Eq2(q−
1
2 +htβ) ·

∏
β 6∈π

Eq2(q−
1
2 tβ)

)
? Ωσ∑

β∈π β
ξ
∑
β∈π β

holds in ŜQ.

Proof. It is straightforward to construct a σ-compatible stability θsimp whose stable
representations are the simple representations and whose order by increasing slope
agrees with <. The existence of unique self-dual Harder-Narasimhan filtrations
gives a factorization of the identity characteristic function in the finite field Hall
module of Q. Applying the Hall module integration map [41] to this factorization
gives the left-hand side of the equality. Lemma 5.4 gives a second factorization of
identity characteristic function, the integral of which is the right-hand side. �

Theorem 5.7 can also be proved using Kazarian spectral sequences, as in [32,
§6]. The new ingredient is a self-dual version of Voigt’s lemma, stating that the
codimension of ησM ⊂ RσdimM is dimC Ext1(M,M)S . This can be proved using the

cochain description of Ext1(M,M)S given in [42, Proposition 3.3].
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5.3. Type A CoHM. Let Q be of type A. We begin with an example of rank two.

Example. Consider orthogonal representations of the A2 quiver

1 2

Set Q+
0 = {1}. For f ∈ HQ,(d1,d2) and g ∈MQ,(e,e) we have

f ? g =
∑

π∈shd1,e,d2

π ·
(
f(x1, . . . , xd1 , y1, . . . , yd2)g(z1, . . . , ze)×

∏
1≤i<j≤d1

(−xi − xi)
∏e
k=1

∏d1

i=1(zk − xi)
e∏

k=1

d1∏
i=1

(zk − xi)
d2∏
l=1

d1∏
i=1

(−yl − xi)
d2∏
m=1

e∏
k=1

(−yl − zk)

)
.

Since xi ? 1σ0 = zi the set {xi ? 1σ0}i≥0 spans MQ,(1,1). Let β2 be the non-simple

indecomposable and let νi = yi ∈ HQ,(1,1) be a generator of H(β2)
Q . Then

(xi · xj) ? 1σ0 = −(z1 + z2)
zi1z

j
2 − z

j
1z
i
2

z1 − z2
, νi ? 1σ0 = (−1)i

zi1 − zi2
z1 − z2

.

Hence {(xi · xj) ? 1σ0}i>j spans (z1 + z2)Q[z1, z2]S2 . To generate the remainder of
MQ,(2,2) = Q[z1, z2]S2 it suffices to include {ν2i+1 ? 1σ0}i≥0. In three variables

(xi · xj · xk) ? 1σ0 = −(z1 + z2)(z1 + z3)(z2 + z3)s(i,j,k)−δ3 ,

which freely generate (z1 + z2)(z1 + z3)(z2 + z3)Q[z1, z2, z3]S3 . We also have

(xi · νj) ? 1σ0 =
(−1)j

(z1 − z2)(z1 − z3)(z2 − z3)

[
zi1(zj2 − z

j
3)(z1 + z2)(z1 + z3)−

zi2(zj1 − z
j
3)(z1 + z2)(z3 + z2) + zi3(zj1 − z

j
1)(z1 + z3)(z2 + z3)

]
.

Using these calculations, direct verification shows that up to Λσ,+Q -degree (3, 3) the

?-action H(β1)
Q �tw H(β2),odd

Q �S-tw 1σ0 →MQ is an isomorphism in Dlb(VectZ)Λσ,+Q
,

where β1 is the simple root associated to 1 ∈ Q0. /

These calculations can be generalized as follows. For each β ∈ ∆σ consider

M〈β〉Q =
⊕
n≥0

H•Gσnβ (Rnβ){E(nβ)/2}, M〈β〉,'Q =
⊕
n≥0

H•Gσnβ (Rσ,'nβ ){E(nβ)/2}

as modules over H〈β〉Q or H〈β〉,'Q . If Iβ does not admit a self-dual structure, then n

is necessarily even. We haveM〈β〉,'Q 'ML0
compatibly with H〈β〉,'Q ' HL0

where
the duality structure on L0 is sL0

= −1 in the hyperbolic case and sL0
= 1 in the

non-hyperbolic case. The structure of M〈β〉,'Q is therefore determined by Theorem

4.5. There is also a surjective restriction map ρσ :M〈β〉Q �M〈β〉,'Q that is a module

homomorphism over ρ : H〈β〉Q → H〈β〉,'Q . Define a section of ρσ by

ψσ :


x̃2i1+1 · · · x̃2il+1 ? 1σ1 7→ ψ(x̃2i1+1 · · · x̃2il+1) ? 1σβ , in type B

x̃2i1+1 · · · x̃2il+1 ? 1σ0 7→ ψ(x̃2i1+1 · · · x̃2il+1) ? 1σ0 , in type C
x̃2i1 · · · x̃2il ? 1σ0 7→ ψ(x̃2i1 · · · x̃2il) ? 1σ0 , in type D.

The map ψσ is a module embedding over the restriction of ψ to the appropriate

even/odd subalgebra of H〈β〉,'Q . Write M(β)
Q for the image of ψσ in types C or D
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and write M(β),+
Q for the image in type B. In summary, we have a commutative

diagram of module homomorphisms over the corresponding algebra morphisms

MQ M〈β〉Q M〈β〉,'Q

ML0

ρσ

ψσ

∼res

(33)

The map res is a combination of the restrictions from Lemma 1.1.
In the non-hyperbolic case, for each subset ∅ ⊆ π ⊆ ∆σ let

M(π)
Q =

⊗
β 6∈π

M(β)
Q ⊗

⊗
β∈π

M(β),+
Q .

This is a rank one free module over

H(π)
Q =

⊗
β 6∈π

H(β),odd
Q ⊗

⊗
β∈π

H(β),even
Q ⊂ HQ

with generator ⊗β∈π1σβ . In the hyperbolic case the free H(∅)
Q -module M(∅)

Q is still
defined.

Theorem 5.8. Let (Q, σ) be a Dynkin quiver of type A. Then the <-ordered CoHA
action maps

←−
�

tw

α∈Π+ H(α)
Q �S-tw

⊕
∅⊆π⊆Πσ

Ωσπ · M
(π)
Q −→MQ (34)

and
−→
�

tw

β∈∆− H
(β)
Q �S-tw

⊕
∅⊆π⊆∆σ

Ωσπ · M
(π)
Q −→MQ (35)

are isomorphisms in Dlb(VectZ)Λσ,+Q

Proof. Consider the map (34). Let fj ∈ H
(αj)
Q for αj ∈ Π+. Taking into ac-

count the ordering Theorem 3.3 gives (f1 · · · fr) ? 1σ0 =
∏r
j=1 fj , the multiplica-

tion on the right-hand side being polynomial multiplication. Hence the image of

�←tw
α∈Π+H(α)

Q �S-tw 1σ0 under (34) is the symmetric polynomials in Q+
0 variables. In

particular, in type A2n (where Qσ0 = ∅) the map (34) is an isomorphism. In type

A2n+1 the direct sum
⊕

π⊂Πσ Ωσπ · M
(π)
Q consists of symmetric polynomials in Qσ0

variables. Again by Theorem 3.3, acting on this subspace by �←tw
α∈Π+H(α)

Q gives the
remainder of MQ.

To show that (35) is an isomorphism we proceed as in the proof of [32, Theorem
11.2]. To prove injectivity, fix non-negative integers {muj}βuj∈∆− and {mβu}βu∈∆σ .

This determines a self-dual representation M via equation (32). Define mS(uj) =

muj for each βuj ∈ ∆− and let e = dimM . The isometry group of M is homotopy
equivalent to

r∏
j=1

GLmuj ×
∏

βu∈∆σ

Gsumu

where Gsumu is a symplectic group in the hyperbolic case and an orthogonal group
otherwise.

Define sets

Ti,k,v, i ∈ Q0, k = 1, . . . , |∆|, v = 1, . . . ,muk
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by requiring |Ti,k,v| = 1 if dim(Iβuk )i = 1 and Ti,k,v = ∅ otherwise, and

Ti,1,1 t · · · t Ti,|∆|,mu|∆| = {1, . . . , ei}

as ordered sets. Let {εi,1, . . . , εi,ei} be a standard linear basis of Cei and let Ak,v be
the indecomposable representation of type βuk spanned by {εi,j}i∈Q0,j∈Ti,k,v . Set

Φσ =

|∆|⊕
k=1

muk⊕
v=1

Ak,v.

Define a self-dual structure on Φσ by requiring that

(i) Ak,v ⊕AS(k),v be hyperbolic if uk ∈ ∆−,

(ii) Ak,v ⊕Ak,bmuk2 c+v be hyperbolic if uk ∈ ∆σ, v = 1, . . . , bmuk2 c, and

(iii) Ak,muk have its canonical self-dual structure if muk is odd.

Then Φσ and M are isometric self-dual representations. The restriction homomor-
phism

H•Gσe (Rσe )→ H•Gσe (ησM ) ' H•(BAutS(Φσ))

can be computed explicitly using Lemma 1.1. Identifying the groups H•Gσe (Rσe ) and

H•(BAutS(Φσ)) with appropriately symmetric polynomials in variables {zi,j} and
{θu,v}, respectively, we have

(i) if i ∈ Q+
0 and j ∈ Ti,u,v, then

zi,j 7→


θu,v, if u ∈ ∆+,
−θu,v, if u ∈ ∆−,
θu,v, if u ∈ ∆σ and j = 1, . . . , bmu2 c,
−θu,v, if u ∈ ∆σ and j = bmu2 c+ 1, . . . , 2bmu2 c,

0, if u ∈ ∆σ and j = mu is odd

and
(ii) if i ∈ Qσ0 and j ∈ Ti,u,v, then

zi,j 7→

 θu,v, if u ∈ ∆+,
−θu,v, if u ∈ ∆−,
θu,v, if u ∈ ∆σ.

Let fj ∈ H
(βuj )

Q ∩HQ,mujβuj and gu ∈M(βu)
Q . We claim that the image of

(f1 �
tw · · ·�tw fr)�

S-tw
⊗
u∈∆σ

gu (36)

under the map (35) is non-zero. It is enough to verify that its image under the
restriction H•Gσe (Rσe ) → H•(BAutS(Φσ)) is non-zero. Since πσ : Σσ → Rσe is a

resolution of ησM (Theorem 5.5) there is a single Te-fixed point above Φσ ∈ Rσe .
Hence the restriction of the image of (36) consists of a single term and is equal to

r∏
j=1

fj(θi(βuj ),1, . . . , θi(βuj ),muj
)
∏
u∈∆σ

gu(θi(βu),1, . . . , θi(βu),mu)K(r),σ(z)|z 7→θ. (37)

Here K(r),σ(z)|z 7→θ is the r-fold iterated kernel of the CoHM with the above sub-

stitutions made. Corollary 5.6 implies that K(r),σ(z)|z 7→θ is equal to the image of
[ησM ] in H•(BAutS(Φσ)), which in turn is equal to EuAutS(M)(NRσe /ησM ). That the

latter class is non-zero can be seen by a modification of the proof of [13, Corollary
3.15], which deals with the ordinary case. Hence (37) is non-zero. This proves that
the restriction of the map (35) to the summand spanned by elements of the form
(36) is injective. This is enough to show that the map (35) itself is injective, since if
the image of two or more elements of the form (36), with different {muj} leading to
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the same total dimension vector, were linearly dependent, we can restrict to various
orbits ηM to derive a contradiction.

We can now complete the proof. Together with the first part of the theorem,
Theorem 5.7 implies the equality of the Hilbert-Poincaré series of the domain and
codomain of the map (35). Since we have already shown that (35) is injective, it
follows that it is in fact an isomorphism of graded vector spaces. �

The isomorphism (34) is the PBW factorization (27) associated to the stability
θsimp from the proof of Theorem 5.7. We expect a similar statement for the iso-
morphism (35), with θsimp replaced by a σ-compatible stability θindec whose stable
objects are the indecomposables and whose order by increasing slope is opposite to
<. Without requiring σ-compatibility, such a stability is known to exist. In many
cases (e.g. the equioriented case) we can check that it may be chosen σ-compatibly.
When θindec indeed exists, the (stability dependent) numbers Ωσπ appearing in Theo-
rem 5.8 are consistent with the natural generalization of Conjecture 3.11 to Dynkin
quivers.
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[36] B. Szendrői. Cohomological Donaldson-Thomas theory. arXiv:1503.07349, 2015.
[37] J. Walcher. Evidence for tadpole cancellation in the topological string. Commun. Number

Theory Phys., 3(1):111–172, 2009.
[38] X. Xiao. The double of representations of Cohomological Hall Algebra for A1-quiver.

arXiv:1407.7593, 2014.

[39] Y. Yang and G. Zhao. Cohomological Hall algebra of a preprojective algebra. arXiv:1407.7994,
2014.

[40] M. Young. Categorical aspects of Calabi-Yau orientifolds. Pre-print, 2015.

[41] M. Young. Self-dual quiver moduli and orientifold Donaldson-Thomas invariants. Commun.
Number Theory Phys., 9(3):437–475, 2015.

[42] M. Young. The Hall module of an exact category with duality. J. Algebra, 446:291–322, 2016.

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

E-mail address: myoung@maths.hku.hk

http://www.northeastern.edu/cos/mathematics/wp-content/uploads/sites/11/2015/01/Lovett-Thesis-Abstract-2003.pdf
http://www.northeastern.edu/cos/mathematics/wp-content/uploads/sites/11/2015/01/Lovett-Thesis-Abstract-2003.pdf

	Introduction
	Motivation
	Main results
	Notation
	Acknowledgements

	1. Background material
	1.1. Classical groups
	1.2. Quiver representations
	1.3. Self-dual quiver representations
	1.4. Equivariant cohomology

	2. Cohomological Hall algebras
	2.1. Definition of the CoHA
	2.2. The CoHA of a symmetric quiver

	3. Cohomological Hall modules
	3.1. Definition of the CoHM
	3.2. The CoHM as a signed shuffle module
	3.3. The CoHM of a -symmetric quiver
	3.4. Orientifold Donaldson-Thomas invariants and Hodge theory
	3.5. The critical semistable CoHM

	4. Symmetric examples
	4.1. Disjoint union quivers
	4.2. Zero and one loop quivers
	4.3. Symmetric 1 quiver

	5. Cohomological Hall modules of finite type quivers
	5.1. Finite type CoHA following Rimányi
	5.2. Preliminary results for the self-dual case
	5.3. Type A CoHM

	References

