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ABSTRACT. We introduce a new class of representations of the cohomologi-
cal Hall algebras of Kontsevich and Soibelman, which we call cohomological
Hall modules (CoHM). These representations are constructed from self-dual
representations of a quiver with contravariant involution and can be seen as a
mathematical model for the space of BPS states in orientifold string theory. We
use the CoHM to define a generalization of cohomological Donaldson-Thomas
theory of quivers from structure group GL,, to O, and Sp,,,. We prove the inte-
grality conjecture for orientifold Donaldson-Thomas invariants of o-symmetric
quivers and formulate precise conjectures regarding the geometric meaning of
these invariants and their relationship to the structure of the CoHM. The con-
jectures are proved for zero and one loop quivers and the affine Dynkin quiver
of type A;. We also describe the CoHM of finite type quivers by constructing
explicit Poincaré-Birkhoff-Witt type bases of these representations.

Thomas theory. Orientifolds.
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INTRODUCTION

Motivation. Motivated by the Donaldson-Thomas theory of three dimensional
Calabi-Yau categories, Kontsevich and Soibelman introduced in [23] the cohomolog-
ical Hall algebra (CoHA) of a quiver with potential. We briefly recall the connection
between the CoHA and Donaldson-Thomas theory, leaving details to Section[2] For
simplicity we assume that the potential is zero and that the quiver @) is symmetric.
Let Ag be the monoid of dimension vectors of ). Denote by Vecty the category
of Z-graded rational vector spaces and by D(Vecty) A the category of Ag—graded

objects of the unbounded derived category D(Vectz). The CoHA is defined to be
the shifted direct sum of cohomology groups of stacks of representations of @,

Ho= D H (Ma){x(d.d)/2} € D"(Vectz) s
deA

where x is the Euler form of ) and the Z-grading is the Hodge theoretic weight
grading. A natural correspondence diagram of stacks makes Hq into an associative
algebra object of the full subcategory le(VGCtZ)AZS C D(Veth)Ag of objects with

finite dimensional Ag x Z-homogeneous summands. There exists an object VQpﬁm €
D”’(Veth)A5 such that

[Sym(VE™ @ Qlul)] = [Ho] € Ko(D"(Vectz) ). (1)

Here w is an indeterminant of degree (0,2) € Ag x Z and Sym(V) is the free
supercommutative algebra on V, the Zs-grading induced by the Z-grading. The
motivic Donaldson-Thomas invariant of () is defined to be

Q. = VBT € Ko(D"(Vecty)).
The integrality conjecture [22], [19] states that in fact
Qo,q € im (Ko(D"(Vectz)) — Ko(D'"(Vectz))) .

A proof of this conjecture for quivers with potential was given in [23], Theorem 10].
However, positivity of motivic Donaldson-Thomas invariants was not proven.

While the definition of {2g involves only the graded dimensions of Hg, it is
natural to expect that an understanding of the algebra structure of Hg may lead
to additional insights. Not unrelated, the algebra Hg has physical significance: it
is a model for the algebra of closed oriented BPS states of a quantum field theory
or string theory with extended supersymmetry [17], [23]. In this direction, Efimov
constructed [12] a subobject V5" ®@Q[u] C Hq, with V)" having finite dimensional
Ag—homogeneous summands, such that the canonical map

Sym(VE™ @ Q[u)) — He (2)

is an algebra isomorphism. Upon passing to Grothendieck rings this confirms the
integrality and positivity conjectures. The subobject VQprim is a cohomologically
refined Donaldson-Thomas invariant in the sense of [36]. For an arbitrary quiver
with potential W and generic stability 6, it was recently proved in [§] that the slope

1t cohomological Donaldson-Thomas invariant VQp"V"{}’Z can again be constructed as

a subobject of ’Hgs‘;}, ., and that the analogue of the map is an isomorphism in
D' (Vecty) A (or better, with Vectz replaced by a more refined category). More-
over, the integrality conjecture holds in this more general setting. In this way

'H%SVSV ., acquires a Poincaré-Birkhoff-Witt type basis. The results of [§] rely on an

interpretation of VQP”V”{}ﬁ in terms of intersection cohomology of quiver moduli [27].
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As an application, the structure of ’H%‘fﬁ,’ , was used in [6] to give a new proof of
the Kac conjecture.

The representation theory of the CoHA is also relevant to Donaldson-Thomas
theory. Physical arguments suggest that the space of open BPS states in a theory
with defects forms a representation of the BPS algebra [16]. By the work of [4], such
representations are expected to be related to CoHA representations constructed
from stable framed objects [34]. See also [35]. In the case of quiver categories,
framed CoHA representations have been studied in detail [14], [38], [§]. A similar
construction, with framed quiver moduli replaced by Nakajima quiver varieties, was
given in [39].

In this paper we introduce a new class of CoHA representations constructed using
orthogonal and symplectic analogues of quiver representations. While the framing
construction models open BPS states, the constructions used in this paper model
unoriented BPS states in orientifold string theory. From another (related) point of
view, the formalism we consider provides an extension of Donaldson-Thomas theory
from structure group GL,(C) to the classical groups O, (C) and Sp,, (C), in the
following sense. If G is a reductive group, then the derived moduli stack of G-bundles
on a Calabi-Yau threefold X has a canonical (—1)-shifted symplectic structure [28|
Corollary 2.6]. The truncation therefore has a symmetric perfect obstruction theory
[28, §3.2] which could be used to define the G-Donaldson-Thomas invariants of X.
The usual Donaldson-Thomas theory arises when G = GL,,(C). For orthogonal or
symplectic groups, G-bundles on X are precisely the (frame bundles of) self-dual
objects of the category of vector bundles on X. More generally, we expect the
correct setting for orientifold Donaldson-Thomas theory to be three dimensional
Calabi-Yau categories together with a contravariant duality functor which preserves
the Calabi-Yau pairings [40]. The CoHA representations introduced below, and the
resulting orientifold Donaldson-Thomas invariants, should be seen as an instance
of this theory in the case of quivers.

Main results. Let (Q be a quiver with contravariant involution o. Denote by
A8+ C Azg the submonoid of symmetric dimension vectors. Then D' (Vectz) 0.+
Q

is naturally a left-module category over D' (Vectz) A+ After fixing some combina-
torial data, the involution ¢ induces a contravariant duality on the representation
category Repc(Q). Denote by MY the stack of representations of dimension vector
ec Ag+ which are symmetrically isomorphic to their duals (henceforth, self-dual)
and set

Mg= P H*(MI){E(e)/2} € le(veth)Ay.

o,+
eEAQ

The function & : A5 — Z plays the role of the Euler form for self-dual representa-
tions. Write Mg , for the stack of flags of representations U C M with M self-dual,
U isotropic in M and dimU = d, dim M = d + o(d) + e. The correspondence

MdXMg A Mg,e - Mgl‘-‘ro(d)-‘re
(U,M//U) ~— UcCcM —~ M

where / is a categorical version of symplectic reduction, can be used to give Mg
the structure of a left Hg-module object in le(Veth)Ag+. See Theorem We

call Mg the cohomological Hall module (CoHM). In Theorem we prove that
M has an explicit combinatorial description as a signed shuffle module, analogous
to the Feigin-Odesskif shuffle algebra structure of H¢g [23]. This result is crucial for
both the computational and theoretical aspects of the paper.

Suppose for simplicity that @ is o-symmetric. This condition is stronger than
symmetry of @ but appears naturally when considering quivers with involution. Let
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ngm C Mg be a minimal generating subobject with respect to the Hg-module
structure and define the orientifold Donaldson-Thomas invariant by

9.0 = WM € Ko(D"(Vectz)).
Our first main result is the following.

Theorem A (Theorem [3.4). If Q is o-symmetric, then the integrality conjecture
holds for Mqg. More precisely, for all e € AZ—V)’+ we have

QF . € im (Ko(D"(Vectz)) < Ko(D'"(Vectz))).

The proof is similar to Efimov’s proof [12] of the integrality conjecture for H¢ and
relies on the explicit shuffle description of M. Positivity of orientifold Donaldson-
Thomas invariants follows immediately from their definition.

We next focus on the analogue of the map . The situation is more complicated
than that of the CoHA since Mg is very far from being a free Hg-module. Instead,
we formulate the following conjecture.

Conjecture A (Conjectures and 3.8)). Let Q be o-symmetric and assume that
Hq is supercommutative without any twist. There exist AC’Q’+ X Z-graded subalgebras

Hole) CHg, e Ag+, such that the CoHA action map

P Hole) RWET 5 Mg

o,+
eEAQ

is an isomorphism in le(Veth)An.+. Moreover, the restriction to the summand
: Q
Hole) RWET is a He(e)-module isomorphism onto its image.

Each subalgebra Hq(e) is explicitly defined and is, roughly, a free supercommu-
tative algebra on the pure cohomology of an e-dependent Zs-quotient of the stack of
stable quiver representations. Passing to Grothendieck rings, Conjecture [A] implies
an orientifold analogue of the factorization ,

> [Ho(e)l -9, = [Mq] € Ko(D"(Vectz) yz.+).

o,+
eGAQ

In this case of loop quivers this equation can be used to compute 2g, from 2. In
general, Zs-equivariant refinements of {2 are needed to compute €27,

We also formulate a conjectural geometric interpretation of orientifold Donaldson-
Thomas invariants. Let 995! be the moduli space of stable self-dual representations
of dimension vector e and let PH*(9MZ*") be the pure part of its cohomology.

Conjecture B (Conjecture [3.11)). If Q is o-symmetric, then there is a canonical
isomorphism

WER =~ PH*(MZ*){E(e)/2}.

The analogue of Conjecture |Bf for Donaldson-Thomas invariants was proved by
Chen [3]. As initial evidence for Conjecture [B] in Proposition we construct a
surjection W2'™ — PH®* (M) {E(e)/2}.

In Section [4| we study in detail a number of examples of Mg for o-symmetric.
The main results can be summarized as follows.

Theorem B (Theorems and [4.11)). Conjectures [A] and [B hold for

disjoint union quivers, zero and one loop quivers and the symmetric orientation of
the affine Dynkin quiver of type Aj.



DT THEORY WITH CLASSICAL STRUCTURE GROUPS 5

In each case we explicitly compute all orientifold Donaldson-Thomas invariants
and describe the module structure of Mg. In contrast to the case of Donaldson-
Thomas invariants, in some of these examples there are already infinitely many
non-zero orientifold Donaldson-Thomas invariants.

In Section [p| we study the CoHM of a finite type quiver with involution. As
these quivers are not o-symmetric, their CoHM have a rather different structure
than those of o-symmetric quivers. The non-trivial task is to describe the CoHM
of Dynkin type A quivers.

Theorem C (Theorem. Let Q be a Dynkin type A quiver with involution. Then
Mg admits two Poincaré-Birkhoff-Witt type bases, each of which is determined by
a simple/indecomposable Poincaré-Birkhoff-Witt type basis of Hg and the set of
sitmple/indecomposable self-dual representations of Q.

Theorem [C] categorifies the orientifold quantum dilogarithm identities found in
[41]. To prove Theorem |[C| we develop a modification of Riményi’s approach to the
study of the CoHA of a finite type quiver [32]. Along the way we prove a number
of results that are of independent interest. For example, in Corollary we prove
that Thom polynomials of orbit closures of self-dual quiver representations appear
as structure constants of the CoHM.

In this paper we have made calculations only in the case of zero potential; see
however Section 3.5 for the construction of the critical CoHM. There are also a
number of expected applications which we have not discussed. Perhaps the most
exciting is the connection between the CoHA and the cohomology of character vari-
eties for GL,,(C) [7]. It is natural to expect a connection between the corresponding
CoHM and character varieties associated to the groups O, (C) and Sp,,, (C).

Notation. All cohomology groups have Q coefficients and, unless explicitly men-
tioned otherwise, all tensor products are over Q.

Acknowledgements. The author would like to thank Ben Davison and Sven
Meinhardt for a number of helpful discussions. Parts of this work were completed
while the author was visiting the National Center for Theoretical Sciences at Na-
tional Taiwan University and the Korea Institute for Advanced Study during the
Winter School on Derived Categories and Wall-Crossing. The author would like to
thank Wu-yen Chuang, Michel van Garrel and Bumsig Kim for the invitations.

1. BACKGROUND MATERIAL

1.1. Classical groups. We fix some notation regarding the classical groups. Each
such group G, is the automorphism group of a pair (V,, (-, -)) consisting of a finite
dimensional complex vector space with nondegenerate bilinear form.

(1) Types B, and D,,. Let V,, = C?>"*! with basis x1,...,%n, W, y1,-..,Yn in
type B,, and V;,, = C?" with basis 1,...,%n, y1,...,Yn in type D,,. Define
a symmetric bilinear form in this basis by (z;,y;) = d;, and (w,w) =1
in type B, all other pairings being zero. Then G, is the orthogonal group
02,+1(C) or Og,(C). It is important in what follows that we use the full
orthogonal group and not the special orthogonal group.

(2) Type C,. Let V,, = C?" with basis z1,...,%pn, %1, - - -, Y and skew-symmetric
bilinear form determined by (z;,y;) = J; ;, all other pairings between basis
vectors being zero. Then G, is the symplectic group Sp,,, (C).

Consider the maximal torus

T, = {diag(t1,... ,tn, (1), 7%, ..., t;1) | t; € C*} C G,
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omitting the middle 1 except in type B,. For each 1 < i < n define a character
e;: T, = C* by t — t;. Then the positive roots are
Type B, : A={e;te;j|1<i<j<n}uU{e;|1<i<n}
Type Cp: A={e;te;|[1<i<j<niuU{2e,|1<i<n}
Type D, : A={e;te; |1<i<j<n}
The Weyl groups Wg, = Ng, (T,)/T,, are
W02n+1 =~ (Zg X Gn) X ZQ; Wspgn =~ Zg X 6"7 WOQn = Zg X &,

with G,, the symmetric group on n letters.

1.2. Quiver representations. Let @ be a quiver with finite sets of nodes @y and
arrows Q1. Write a: 4 — j for an arrow « with tail ¢ and head j. Let Repg(Q) be
the hereditary abelian category of finite dimensional complex representations of Q.
Objects of Repc(Q) are pairs (U, u), often denoted by just U, where U = B, Ui
is a finite dimensional Qg-graded complex vector space and v = {U; Loy Uj}i 2o
is a collection of linear maps. Let Ag = Z>0Qo be the abelian monoid dimension
vectors. Set also Ag = ZQo.
The Euler form of Repq(Q) is
x(U, V) = dime¢ Hom(U, V) — dim¢ Ext' (U, V).

It descends to a bilinear form on Ag which has the explicit expression

x(d,d)= > did;— Y did;.
i€Qo i=jeQ
For each d € Ag let Ry = @iiﬁ Homge(C%,C%). The algebraic group GLg =
[licq, GLa; (C) acts linearly on Ry by change of basis. The GLg-orbits of Ry are in
bijection with the isomorphism classes of representations of dimension vector d.

1.3. Self-dual quiver representations. For a detailed discussion of self-dual
quiver representations see [10], [42] §3.2].
An involution o of a quiver @ is a pair of involutions

o : Qo — Qo, o:Q1— G
such that
(i) ifi % j€Q, then o(j) 2% o(i) € Qy, and
(ii) if i = o (i) € Q1, then a = o(a).
Given an involution, let Ag) be the subgroup of fixed points of the induced involution
o:Ag = Ag. Set also A”Q’Jr = Aa N Ag. The group homomorphism
H:Ag — A, d— d+o(d)
makes A into a Ag-module.
A duality structure on (Q, o) is a pair of functions

$:Qo — {£1}, T:Q1 — {£1}

such that s is o-invariant and 7,7,() = s;s; for every arrow i 2 j. Given a
duality structure we define an exact contravariant functor S : Repg(Q) — Repe(Q)
as follows. At the level of objects S is given by

S(U)Z = U(Y(’L)’ S(u)a = TaUZ(Q).
Here (—)¥ = Homg(—,C) is the linear duality functor on the category of finite

dimensional complex vector spaces. If ¢ : U — U’ is a morphism, then S(¢) :
S(U") — S(U) has components S(¢); = ¢Z(i). Setting Oy = ®iecq, i - €vy,, with
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evy the canonical evaluation isomorphism from a finite dimensional vector space V'
to its double dual VvV, defines an isomorphism of functors © : Igep(q) = 82 which
satisfies S(Oy)Ogw) = 1sw). The triple (Repc(Q), S, ©) is therefore an abelian
category with duality in the sense of [I].

A self-dual representation is a pair (M, 1ps) consisting of a representation M and
an isomorphism s : M =+ S(M) which satisfies S(¢31)Onr = ¥as. Geometrically,
a self-dual representation is a representation M together with a nondegenerate
bilinear form (-,-) such that

(i) M; and M, are orthogonal unless i = o(j),
(ii) the restriction of (-,-) to M; + M, ;) satisfies (x,2") = s;(z’, ), and
(iii) for all arrows i < j the structure maps of M satisfy
(max, ') — To(x, mya)a’) =0, x € M;, &' € My (3)

Fix a partition Qo = Qy L QF U Qg such that QF consists of the nodes fixed by
o and 0(Qy) = Qg . Similarly, fix a partition Q1 = Q7 UQJ U Q7.

Let e € ASJF with e; even for all ¢ € QF with s, = —1. The trivial representation
of dimension vector e admits a self-dual structure (-, -) which is unique up to Qo-
graded isometry. Denote by RZ C R, the linear subspace of representations whose
structure maps satisfy equation with respect to (-,-). There is an isomorphism

RI~ P Home(C™,C)o P Bl ™=(C*)
i*jeQt i=Fo(i)eQf
where Bil®(C®) denotes the vector space of symmetric (¢ = 1) or skew-symmetric
(e = —1) bilinear forms on C%. The subgroup G¢ C GL. which preserves (-, ) is

G2~ [] GL..(C)x ] ez
i€Qy 1€Qgf

where

G — { Sp.,(C), if s =1
€i 0., (C), ifs; =1
The group GJ acts linearly on R? with orbits in bijection with isometry classes of
self-dual representations of dimension vector e.

Let M be a self-dual representation with isotropic subrepresentation U C M.
Then the orthogonal complement U+ C M is a subrepresentation which contains
U and the quotient M /U = U+ /U inherits a canonical self-dual structure.
Example. Let U € Repp(Q). The hyperbolic representation H(U) is the self-dual

structure on U @ S(U) given by ¢y = <@OU lséU) ) <

For any U € Repc(Q), the pair (5, ©) determines a linear Zs-action on Ext'(S(U),U).
Write Ext"(S(U), U)** for the subspace of (anti-)invariants and define

E(U) = dim¢ Hom(S(U),U)™® — dim¢ Ext'(S(U),U)".

It was proved in [42 Proposition 3.3] that £(U) depends only on the dimension
vector of U and that the resulting function £ : Ag — Z is given by

di(d; — s;)
E(d) = Z — Z doiydi—
1€Qg ieQf

di(d; + 7o 8
) Al rass) J;TS)— Y dodi (4)

o (i) HEQT iZjeQf
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The function £ satisfies the identity
E(d+d)=E(d)+E(d) + x(o(d),d), d,d € Ag. (5)

Following [22], to each quiver we associate a quantum torus Tg = Q(q%)[[Ag]],
the Q(q%)-vector space with topological basis {t? | d € Ag} and multiplication

p g = O (' d))

As in [41] §4.1], for a fixed duality structure we will also consider the vector space
Sg = Q(q%)[[AgQ’+]] with topological basis {£¢ | e € A‘TQ’+}. The formula

1 4 £¢ = g O(de)~x(e.d)+E(o(d)~E(d) H(d)+e

gives SQ the structure of a left TQ—module.

Finally, we recall how the theory of stability of quiver representations [21] can
be adapted to the self-dual setting. For details see [4I §3]. A stability 6 €
Homy(Ag,Z) is called o-compatible if it satisfies 0" = —6. Fix a o-compatible
stability 8. A self-dual representation M is called o-semistable if u(U) < u(M) for
all non-zero isotropic subrepresentations U C M; if this inequality is strict then M
is called o-stable. Here p(U) = % is the slope of U. The slope of a self-dual
representation is necessarily zero.

The moduli space of o-semistable self-dual representations of dimension vector
e is the f-linearized geometric invariant theory quotient 9MZ? = RJ/,GZ. It pa-
rameterizes S-equivalence classes of o-semistable representations. There is an open
subvariety 7%=t € MY parameterizing isometry classes of o-stable representa-
tions. In general, 9MZ%-5! is an orbifold. A o-stable representation M can be written
uniquely as an orthogonal direct sum M = @le M;, where M; are pairwise non-
isometric self-dual representations which are stable as ordinary representations [41]
Proposition 3.5]. In this case Autg(M) ~ Z&. If k = 1, then M is called regularly
o-stable and gives a smooth point of 97-5t. By convention we set img’f"“ = pt.
Remark. The bounded derived category of the Ginzburg dg algebra associated to
@, denoted D? 4(Tg-mod), is a three dimensional triangulated Calabi-Yau category
for which Repg(Q) is the heart of a bounded t-structure [I5]. A duality struc-
ture on @ induces a triangulated duality structure on Db(FQ—mod) which, up to a
sign, preserves the Calabi-Yau pairing. This gives an abstract version of the three
dimensional Calabi-Yau orientifolds considered in the string theory literature.

1.4. Equivariant cohomology. Fix an integer n > 0. If N > n, then the variety
M3, ,, of complex N x n matrices of rank n is 2(N —n)-connected and carries a free
right action of GL,,. The quotients My, — MY, /GL,, form an injective system
{En — BN} N>n of finite dimensional approximations by varieties to the universal
GL,-bundle EGL,, — BGL,,. More generally, if G is a linear algebraic group with a
closed embedding G < GL,,, then {Exy — En/G}n>n, approximates EG — BG. If
H C G is a closed subgroup, then the canonical morphism BH — BG is a fibration
with fibre G/H.

Suppose that G acts on a variety X. Then the G-equivariant cohomology of X
is defined to be

HE(X) = lim H*(X x6 Ex: Q). (6)

Here H*(—; Q) denotes singular cohomology with rational coefficients.
We write HE for Hg(pt). If Tg, C GL, denotes the diagonal maximal torus,
then there are ring isomorphisms

HEL” = H.<BTGL")WGL" = Q[‘Th v 7"L‘TL]6”'
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Similarly, if G, is a classical group of type B,, C, or D,, then the inclusion
T, — G,, induces ring isomorphisms

HE ~ H*(BT,)"Ver ~Q[z{,...,22]°". (7)

rn

Here it is essential that G,, is the full orthogonal group in type D,,. The generators
x;, z; have cohomological degree two.
We record the following results for later use.

Lemma 1.1.
(1) Let ¢ : GL,, — GL,, be the automorphism ¢(g) = (9~1)t. The induced map
(Bg)* : HE  — Hg s given by
(Bo) f(@1,...,x0) = f(=21,..., —Tp).
(2) Let h: GL,, < G,, be the hyperbolic embedding. The induced map (Bh)* :
HE — HE s given by (Bh)*z; = ;.
(8) Let i : G,, — Glay4e be the embedding arising from the description of Gy,

given in Section [1.1], where e = 1 in type B, and € = 0 otherwise. Under
the identification

H&L%% ~Qlr1,.  Tny Y1y Yn, (w)]GZ"Jre
the induced map (Bi)* : Hg, . — HE is given by
(Bu)*z; = z;, (Bu)*y; = —z;, (Bu)*w = 0.
Finally, recall that HZ(X) (and the compactly supported variant H? (X)) has
a canonical mixed Hodge structure [9]. The pure part of HZ(X) is
PHE(X) = @ WeHE(X)
k>0

where 0 =W_1 C Wy C --- C Wy, = Hé(X) is the weight filtration.

2. COHOMOLOGICAL HALL ALGEBRAS

2.1. Definition of the CoHA. We recall some material from [23 §2].

Fix a quiver ). Let Vecty, be the abelian category of finite dimensional Z-graded
rational vector spaces. Write D!*(Vectz) C D(Vectz) for the full subcategory of
objects whose cohomological and Z degrees are bounded from below. Let also
le(Veth)l\c+2 be the category whose objects are Ag—graded objects of D' (Vecty)
with finite dimensional Azg X Z-homogeneous summands and whose morphisms
preserve the AZS x Z-grading. Define a monoidal product K™ on D' (Vectz) A by

DuE Bvi= D ( D U@ Ve ) {(dd) —x(dd))/2}

+ + + d=d'+d"
deAy, deAy, deAy, +

Here {3} denotes tensor product with the one dimensional vector space of cohomo-
logical and Z degree —1.

Let d',d" € AZS and put d = d’' +d”. Write C¥ c C? for the Qo-graded subspace
spanned by the first d’ coordinate directions. Let Ry 4+ C Ry be the subspace of
representations which preserve C% and let GLa .4 C GLg be the parabolic subgroup
which preserves C%. The cohomological Hall algebra (henceforth CoHA) of @ is

Ho = €D HéL,(Ra){x(d,d)/2} € D" (Vects) ;.
deAg
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The Z-grading is the Hodge theoretic weight grading and coincides with the coho-
mological degree by purity. Define a multiplication Ho X™ Ho — Hg by requiring
its restriction to Hg,¢ X™ Hg ¢ to be the composition

H&Ld/ (Rd,) ® H&Ld// (Rd”) l> H&Ld/ XGLdI/ (Rd/ X Rd”) ;
He, o (Barar) = He, ,, (Ra){(241)/2) = He, (Ra){(2A1 + 249)/2},

arr L

where for ease of notation the degree shifts in Hg 4 and K™ are omitted. The maps
in the composition are defined using the morphisms

Ry x Ry «TL Rd’,d” ‘i> Rd7 GLd/ X GLd// «p— GLd/’d// i) GLd (8)

The first map in the CoHA multiplication is the Kiinneth map, the second is in-
duced by the homotopy equivalences 7w and p, the third is the pushforward along the
GLg 4-equivariant inclusion ¢ and the last is the pushforward along the fundamen-
tal class of GLy/GLg 4. The degree shift is Ay + Ay = —x(d’,d”). It is shown in
[23] Theorem 1] that this product gives H¢ the structure of an associative algebra
object in le(Veth)Ag.

The CoHA product can be written explicitly using localization in equivari-
ant cohomology. To do so, identify Hg g with the vector space of polynomi-
als in variables {x;1,...,%i4, }icg, Which are invariant under the Weyl group
Wer, ~ 64 = Hier G4, The product of fi € How and fo € Hg g will be
viewed as a polynomial in {x; 1, ...,2; 4, }ieq, by identifying z; ; and z}, with z;
and x; 4y, respectively. Let shy 4 C &4 be the set of 2-shuffles of type (d',d"),
that is, elements {mi}icq, € 64 which satisfy

7Tl(1) <<'/Tz(d;); Wl(d;-f—l) < - <7Tl(dl), ZGQO
Then sb, 4 acts on polynomials in {z;1,...,%; 4, }ieq, Via the action of & .

Theorem 2.1 ([23, Theorem 2]). The CoHA product of f1 € Ho.ar and fo € Hg.ar
is given by
H Hd;, Hd; (xllb — )
i b=11la=1 7 i,a
fi-fa= Z m | (@) f2(a") = F—" I /
TEsh g g [Ticq, ITp: Tlats (xi,b - xi,a)

The motivic DT series of ) is the class of Hg in the Grothendieck ring of
D”’(Veth)A5 ,

Ag(g®,t)= Y dimgHg ak(—q?) ! € Z[g?, Af].
(d,k)EALXZ

It can be written explicitly as

Aglg?,t) =Y

den; HiGQO Hj:1(1 - ¢)

(—q2)X(@d)

e,

The series Ag is naturally viewed as an element of the quantum torus TQ since
the product in the latter agrees with the product induced by X*. Passing from
motivic DT series to motivic DT invariants is most easily explained in the case of
symmetric quivers. We do this in the next section.
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2.2. The CoHA of a symmetric quiver. A quiver is called symmetric if its
Euler form is a symmetric bilinear form. Throughout this section we assume that
Q is symmetric. In this case X™ reduces to the standard symmetric monoidal
product X on D' (Vectz) A and Hq can be considered as a Azg x Z-graded algebra.

Define a Zo-grading on H¢ by the reduction modulo two of the shifted cohomo-
logical degree. If the Euler form satisfies

x(d,d) = x(d, d)x(d,d) mod 2 (9)
for all d,d’ € AZS, then H¢ is a supercommutative algebra. Writing a;; for the
number of arrows from i to j, equation @ holds if and only if

a;; = (1+ai)(1+aj;) mod 2

for all 4, j € Qo with ¢ # j. If the Euler form does not satisfy equation @, then the
CoHA multiplication can be twisted by a sign so as to make H¢ supercommutative
[23, §2.6]. Since all (connected) symmetric quivers studied in this paper satisfy
equation @D we do not recall this twist here.

Write Sym(V) for the free supercommutative algebra generated by a Aa X Z-
graded vector space V. The following result was conjectured by Kontsevich and
Soibelman [23, Conjecture 1] and proved by Efimov.

Theorem 2.2 ([12, Theorem 1.1]). Let Q be a symmetric quiver and let u be a
formal variable of degree (0,2). Then there exists a Ag X Z-graded rational vector

space of the form Vg = VQprim ®Qlu] such that, with its supercommutative structure,
Ho ~ Sym(Vy). Moreover, each Aa -homogeneous summand

Ve C VR deAd
is finite dimensional.

If we do not use the supercommutative twist, then instead Hg =~ Sym(Vp)
only as objects of D' (Vectz) A The second part of Theorem known as the

integrality conjecture [22], asserts that Vgim defines an element of D®(Vectz) G
the full subcategory of D(Vectz) Af consisting of objects whose Ag—homogeneous

components lie in D(Vectz).

Definition. The motivic Donaldson-Thomas invariant of a symmetric quiver Q) is
the class of V5™ in the Grothendieck ring of Db(Veth)Ag,

1 . i 1\ k.,d 1 _1
le*, )= D, dimgVEG, (—¢*)"t" € Zlg*, g *][A]-
(d,k)EAL XZ
For symmetric quivers the parity-twisted Hilbert-Poincaré series of Hg coincides

with Ag. Using this observation, Theorem implies that Ag can be written as
a product of g-Pochhammer symbols (¢;¢)s = Hizo(l —q't).

Corollary 2.3 ([12] Corollary 4.1]). Let Q be a symmetric quiver. Then

Aoty = I (@t
(d,k)EAL XZ
where Qg (a.x) s the coefficient of qgtd in Qg.

The factorization of Corollary is often used as the definition of {}q, in which

case a priori Qg € Q(q%)[[Ag]]. Theorem H provides a conceptual reason for
the existence of such factorizations and proves integrality as well as positivity,

Q(—q2,t) € Zzola?, ¢~ *][AS].
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Finally, we recall a geometric interpretation of Q¢g. Let M3 be the stack of
stable representations of dimension vector d with respect to the trivial stability.
The map to the coarse moduli space M5 — M5 is a C*-gerbe and induces an
isomorphism of mixed Hodge structures H*(M3') ~ H*(M5') @ Q[u].

Theorem 2.4 ([3, Theorem 2.2]). Let Q be the double of a quiver. For eachd € A},
the restriction Hg (Ra) — H*(M5!) induces an isomorphism of Z-graded vector
spaces Vg? = PHe—X(dd) (st

For more general geometric interpretations of Qg see [18], [27].

3. COHOMOLOGICAL HALL MODULES

We introduce the cohomological Hall module of a quiver with duality structure,
describe some of its basic properties and formulate the main conjectures regarding
its structure.

3.1. Definition of the CoHM. Fix a quiver with involution (@, o) and duality
structure (s,7). Let le(Veth)Ay C D”’(Veth)Ag be the full subcategory of

A8+—graded objects. Equation (5] shows that D' (Vecty) Ag* becomes a left module
category for (D' (Vecty) A+,®t‘”) via

PDuss P x=P ( B Urox){ed )2

deArd, eeAZ T eeAGt  e=H(d)+e”

where
e(d,e) = x(d,e) — x(e,d) + E(o(d)) — £(d).
Let d € Ag and e € A8+ with e; even for all i € QF with s; = —1. The
subspace Rg . C Rf; ), . of self-dual structure maps on the orthogonal direct sum

H(C?) @ C¢ which preserve the canonical Qg-graded isotropic subspace C? can be
identified with the subspace of

Ry & RZ & @ Home(C*,C%) & @ Home((C*®)Y,C%)
i) i)
whose final component {m,} € @iim Homg((C%®)V,C%) satisfies Opa;ma =

m(\j/(a). Let also Gj , C G%(d)+e be the parabolic subgroup which preserves C?.
The cohomological Hall module (henceforth CoHM) is

Mg = P He (R)){E(e)/2} € le(Veth)AoQ,+.
eGAc’Q’+
Define x : Hg K¥™ Mg — Mo so that its restriction to Heg g 5™ Mg . is
HE,(Ra) ® HE (RY) = HE  wcq (Ra x RY) — Hg, (Rg.) =
Heg (Ri(ayre){201/2} = Heg | (Rfpaype){(201 +202)/2},

where again the degree shifts in H 4, Mg . and K™ are omitted. The maps in the
composition are defined analogously to those appearing in the CoHA multiplication,
where the maps are replaced by

H(d)+e

Rax RS & RGeS Rygrer Olax 67 & GG Ghas
The degree shifts are
o1 = dime Ry (g4, — dime RG ., 62 = —dimg Gy (g) 4 — dime G .
A direct calculation shows that §; + d; = —x(d, e) — E(o(d)).
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Theorem 3.1. The x action gives Mg the structure of a left Hg-module object in
D”’(Veth)Aa+ .

Proof. The commutative diagram used to prove associativity of the CoHA multipli-
cation in [23], §2.3] has a natural modification in the self-dual setting, obtained by
requiring that the structure maps and isometry groups preserve multi-step isotropic
flags. This modified commutative diagram establishes the #g-module structure of

M. O

Remark. While there are versions of Hg and Mg defined using cohomology with
integer coefficients, the results of this paper require rational coefficients.

Let W(Q) be the abelian group defined by the exact sequence
H o, v
AL = AGT B W(Q) — 0.
Explicitly, W(Q) ~ Hing Zo with v sending a dimension vector to its parities at
Q7. The following result is immediate.
Proposition 3.2. For each w € W(Q) the subspace
(w)
My = b Mg C Mg
{eeAG T v(e)=w}

is a Hq-submodule. Moreover, Mq = @,,cw(o) ./\/18)) as Hg-modules.

Remark. The module Mgv) is zero unless s; = 1 for all ¢ € Qf with w; # 0.
The motivic orientifold DT series of @) is the class of M in the Grothendieck
ring of D”’(Veth)Ag+,
o, 1 . 1. ¢ 10
A9(q%,6) = Y dimg Mg en(—¢2)'€" € Z[g2, AGT].
(e.)EAG T xZ
Using the GZ-equivariant contractibility of R and the isomorphisms we compute

- Y b
eeAL ™t HieQa' H;izl(l - qj) Hing H}le (1- q2j)

£°. (10)

We will view A7) as an element of the Tg-module Sg.

Also inspired by orientifold DT theory, in [41] a different generating series was
attached to a quiver with duality structure. Given a finite field F, of odd char-
acteristic, the £-weighted generating seriesﬂ of the number of [F -rational points of
stacks of self-dual representations is

A (é—) Z (_q%)g(dimM) é—dimM
Q,Fq - — #AutS(M> ’
The sum runs over isometry classes of self-dual representations and Autg(—) de-
notes the isometry group. Comparing equation and [41], Proposition 4.2] shows
that AP (q*%,f) = Agr,(&). Hence the cohomological and finite field approaches
to orientifold DT theory are consistent.

IWe have renormalized the integration map from [41] to match the conventions of this paper. The
series A7) p  was denoted by AZ in [41].
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3.2. The CoHM as a signed shuffle module. In this section we derive an
explicit combinatorial expression for the action of Hg on Mg.

Using the isomorphism , for each e € A‘TQ’Jr we identify Mg . with the vector
space of polynomials in the variables

2 2
ity Zieidicqrs  Zi 0% 4 bieqg

which are invariant under the group HieQ(T S, X Hing S|z j. We also identify
polynomials in the variables

! ! " 12 " "
{21, w4, ieqo, and {2]y,..., 2/, ieqt {2, Ay Yieqg

with polynomials in the variables

{21, Ziditeitda ) Yicgt {zi15- 20,45 iegg (11)
via
/ " / . +
Ty i 2 Zij 7 Zidits To(i),j ™ ~Ziditeitis i€ Qg
and
A 1 . o
Ty 57 Zig, Zi 5 ©F Ziditj i€ Qg.

The minus sign arises from the minus sign in the first part of Lemma [T}
Given m,n,p € Z>o let sb,,,, C Spinyp be the set of 3-shuffles of type

(m,n,p). Define the set of o-shuffles of type (d,e) € AZS X AUQ’Jr by

d;
5[)376 = H shdi,ei,dg(i) X H (Z2 xsbdi,dr‘rL%J) .
icQf 1€Qf

There is a natural action of shJ a4, on the vector space of polynomials in the variables
. the shuffie factors acting as usual and the Zs factors acting by multiplication
by —1 on the first d; elements of {z 1,..., z,di+L71J}2€Qo

For each i € Qo define ¢; : Ag — {0,1} by e — e; mod 2. Write <; for < if
t=—1and <if t = +1.

Theorem 3.3. Let f € Hgq and g € Mq,.. Then

. , I HQEQTUQT Va (:1:’,2;//)
f*g - Z ™ (f(x )g(z ) HiGQOJruQ‘O’ Di(J?/,ZN)

wEsb;e

where the factors of the denominator are

ei d; do(iy ds do(i) e
_ " / S
D; = TTTLG = o4 TT T m =t 1 =200 =200
k=11=1 m=11=1 m=1 k=1
ifi € Qf and

d; L%J

_ ’ ’ / "2

D =g(@iq,--- %54,) H (@35 + 27y H o — 2i%)
1<k<i<d; =1 k:l

with
d; ; i ;
Hl:l x;,h if G;di-i-ei is type BdHrL%IJ
d; i CSi ;
9@y, wia) = T, 225, if G e, 05 type Cyy 5|
1, if oy, 1o, 18 type Dy, y1=)

if i € QF and the factors of the numerator are defined as follows:
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do(j) d;
o Ifi % jeQf, then V, = VIOV H H(—x;(j)ym — ;) where
m=11=1
do(5) e;
H H(_‘Tir(j),m -2k, if i € QF
) _ ) m=1k=1
Va do(j) [ 3] do(j)
(@Zgym — #0) T] (2t m)™, ificQf
m=1 k=1 m=1
and
ej d;
(2] — i), if j & QF
g _ ) k=tiz
Vo' =9 w19 0
(Iﬁ - ﬁ) (*I;,l)gj(e)a if j € QF-
I=1 k=1 =1

o Ifo(i) & icQf, then V, =V, Hlﬁjésimkﬁda<i)(7$:7(i),j — z;(i%k) where

e; do(i)
T TG =00, ifigQq
Vo = Z:<1') llz'lJ do (i)
o (i P) o (i
H H @2y — 2%) H (*zé(i),z)ei(e)v if i € QF.
=1 k=1 =1

Proof. Similar to [23] §2.4], we regard f and g as classes in H*(BGLyx BG?) and let
Eugsy e(NR%(d)+ /R E) be the nge-equivariant Euler class of the fibre of the normal

bundle to R, C R”H(d)+e at the origin. Then

fag= /[G f-g- E”GZ,E(NR‘ZIMHE/RZ@)

?J(dHe/Gg,e]
where [Gg; ;) ./GG ] Is the GF; ;| -equivariant fundamental class of G, /G .,
the fibre of BGj, — BG;I( d)ter We will compute this integral by equivariant
localization with respect to the action of the maximal torus T = T (g)4.. C G;I(d)ﬂ.
Let U € Rg and N € R;’{(dHE. An inclusion U < N is isotropic if and only if
we have an commutative diagram of the form

Uy —— (Uh);, — N;

Uq

Uj —— (U+); — N;

We first compute the equivariant Euler class of the tangent space at a T-fixed
point of GF; ;. /Gg..- The inclusions of diagram lead to the identification

Chrayre/Ghe = [T Flldiseirdogy) x [] 16r% (di, 2d; + €;)
i€Qy 1€Qg
where Fl(a, b, ) is the variety of flags of the form C* ¢ Co+® ¢ Co*+b+¢ and IGr®(a, b)
is the variety of a-dimensional isotropic subspaces of a b-dimensional orthogonal
(s = 1) or symplectic (s = —1) vector space. The T-fixed points of FI(d;, e;, dy(;))
are two-step coordinate flags and are labelled by disjoint pairs of increasing se-
quences in {1,...,d; 4+ e; + dy(;)} of the form

m={a1 <---<ag; b < <bg}

i
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Such pairs are in bijection with 5bd,:,ei,dc,<i)- The T-character of the tangent space
to a flag U; C (U+); C N; is the product of the following factors:

€4 di
Homc (U;, (NJU);)  ~ H H(Z:Ik - x;l)
k=11=1
doi) d;
Home (Ui, U;y)  ~ (=T ym — i)
m=1[=1
do(i) e
Home ((N/U);, U:;/(z‘)) ~ (_l‘;(i),m - z;/k)
m=1k=1

The T-fixed points of IGr®(d;, 2d; + e;) are isotropic coordinate planes and are in
bijection with Z3* x 54, a, 415 Via

d;
Ly X 8hg, q,1 1% 2 (p,7) = spanc{vr(1)p(1); - -+ Vr(ds)p(di) b
where, in the notation of Section [I.1
- Zi, if p= 1
Vip = yi, ifp=-—1.

The T-character of the tangent space at a fixed point is the product of the positive
roots of G‘;d? te, are not in the corresponding parabolic Lie subalgebra; see Section
for conventions. These calculations gives the denominators D; as stated.

Next we compute the restriction of Eugg (NR%(dHe/RZ,E) to a T-fixed point.

From the vertical arrows of diagram we see that the contribution V,, of a € Q7
to Eugg e(NR?}(dH /Rg ) is the product of the following T-weights:

H H(Zélak - xé,l)7 lfj g Qg
Homc (U;, (NJU);) ~ lfe:;zzl

<1 d d;
(=23 +27) (—fg,z)sj(e)a if j € QF
k=1 I=1 =1
and
do(j) d;
Home (U, U:(j)) ~ H H(_x;(j),m - xé,z)
m=11=1
and
do(j) e;

1T TG0 Gym — 200), £id 08
Home ((NJU)i, Uy ;) ~ m=1k=1

do(jy LZ] ds(5)
2 2 ; .
(@5(j)m = %ik) H (=25 j)m)° © ifieQg.
m=1 k=1 m=1

H H (27 = To () m)s if j ¢ QF

k=1m=1
HOHI(C(UU(]‘), (N//U)]) ~ L%lj do(j) ds(5)

(72‘;/36 + x:f(]),m) H (7xi7(j),m)€j(e)7 lfj € Qg

k=1 m=1 m=1
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and
Home(Us (), Us(i)) > TT  (CahGym = 2oy 0)-
1<m< 4 k<d,(j)
There is no separate contribution from Homc((N/U);,Uy|;)); the symmetry of nq
requires that these elements be dual to those of Homc(Us(jy, (NJU);). O

3.3. The CoHM of a o-symmetric quiver. In Section [2.2] we saw that the
abstract structure of the cohomological Hall algebra of a symmetric quiver is rel-
atively simple. In general, we do not know if the supercommutative twist of the
multiplication in Hqg can be lifted to Mg. Hence we will consider Hg with its
standard (possibly non-supercommutative) multiplication. In the self-dual setting
it is natural to impose the following stronger notion of symmetry.

Definition. A quiver with involution and duality structure is called o-symmetric
if it is symmetric and £(d) = E(o(d)) for alld € Ag.

Using equation we find that a symmetric quiver is o-symmetric if and only if

Yo ta= Y T, VieQ. (13)
o(i)—ieQg i—>a(i)eQ]
Here, in contrast to all other places in the paper, the sums run over arrows with

fixed initial and final vertices.
If Q is o-symmetric, then K™ reduces to the D! (Vecty) G -module structure

defined using only the Ag-module structure of A7). Somewhat abusively, we denote
this by M. In particular, Mg is a A8+ x Z-graded Hg-module.
Let Hqg, + be the augmentation ideal of Hg.

Definition. The cohomological orientifold Donaldson-Thomas invariant of a o-
symmetric quiver Q is the AZQ’JF X Z-graded vector space

W™ = Mg/ (Hq+* Mg).

By picking a vector space splitting we will view ngm as a subspace of Mg.
The next result asserts that the orientifold analogue of the integrality conjecture
holds. For its proof we choose the partition @ = Q7 U Qf U Q] such that a
configuration
i %5 =o() 2% o)
in @ implies that i € Qa' if and only if o € Q7. This can always be achieved by
permuting elements of QT U@y

Theorem 3.4. Let QQ be a o-symmetric quiver. Then each A8+—h0mogeneous
summand

prim prim o,+
Woe CWo s e €Ay
is finite dimensional.
Proof. We modify the argument of [I2] §3]. Define
X0a=Qlz;; i€ Qo 1<y <di], dEAE
and

. . . o . € o,
Zge=Qlzijli€eQf, 1<j<e]®Qlzi;|ieQf, 1<j< L;J]y e€AGH

both of which we consider as Z-graded polynomial algebras with generators in
degree two. The Weyl groups WgL, and Wg. act on Xq, 4 and Zg ., respectively,
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and up to constant degree shifts we obtain Z-graded vector space isomorphisms
Ho,a ~ Xg)gd and Mg . ~ Zg/;g. Denote by

Halequ Va(a',2")

HieQJruQa Di(a',2")

the kernel from Theorem |3.3| and let ZloC be the localization of Zg . at the de-
nominators of Kg, ., for all (d,e") e Aa X Ag+ satisfying H(d') + ¢” = e and

d #0.
Let Lg.. C l"c be the smallest Weg-stable Zg .-submodule such that K, .., €

Kg/’e// (flf/, Z//> =

Lg,e for all (d, ”) € szé AZT as above. We claim that Mg . = p”m ® Lg/G;
or, equivalently, that LQ ig is the image of the CoHA action map
D Hoa W Mqer = Mge. (14)

(&) eAExAGT
H(d')+e"=e, d'#0
. Wee . . . .
To see this, first note that LQ)G; is Q-linearly spanned by Wgs-symmetrizations of
functions of the form

f@)g(Z")KG on (@', 2"),  feXqu, g€ Zger (15)

It follows that the image of the map is contained in LGeg. For the reverse
inclusion, suppose we are given an element of the form By symmetrizing
with respect to WgL,, and Wge , both of which are subgroups of Wg., we may
assume that f € Hg g and gee Mgqg.er. Then, up to a non-zero constant, the
Wes -symmetrization of fgng,ﬁ/, is fxg.

Hence, we must show that LQ ; C Mg . has finite codimension. Adding a loop
at each node, with duality structure 7 = —1 for nodes in QF, does not decrease
the ideal Lg .. By adding loops we can therefore avoid localizing Zg .. In this
case Mde/Lg/ff — Zg../Lg,. and it suffices to show that Lg . C Zg . has finite
codimension. Interpret Zg . as the algebra of functions on the affine space QP

where o
(3
P= Y ar Y1)
i€Qg 1€QF
and suppose that z € @D satisfies h(z) = 0 for all h € Lg .. We claim that z = 0.
Suppose to the contrary that z # 0. By using the action of Wg, we will write

2 =1{Zi}icqfuqg 3
5 / / 1 1" / / - +
Zi; = ($i717 . 7Ii,d;7zi,l7 ey Zi,e;" _l‘o'(i),l’ ey —:Cg(i%d;(i)), 1€ QO
and

- / " " . o
zi—(xiﬁl,..wxi’dé,zi’l,...7ziLQQ,J), i€ Q]
L=

for some d’ # 0 so that KF, .. (2',2") # 0, giving a contradiction.

Define z” to be the collection of vanishing coordinates of z and let = be what
remains. By assumption z # 0. Up to the action of Wgs, we need to write x as
{(@, =2, )k et U {2} }ieqg so that Kg, . (', 2") # 0, which by Theorem is

equivalent to the followmg COHdlthl’lEﬂ:
(i) Hrr(;(q 1= 1( ;(i),m —xy,) #0ifi € Q7.

2Because signs are included in the definition of 2’ we do not need to make additional sign substi-
tutions in these equations.
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(1) Th<per<a, (@ip +a7,) #0if i € QF.

de(; i e e O

(i) TTor) TIy (= gy — 75) #2086 = j € Q.

(V) Tlicjenzd, o, (“Thg),; — Togyw) # 0 if o(i) Zi€ Q.

These conditions can be satisfied as follows. For each i € Qar by using permuta-
tions ensure that the zj and —x/ () coordinates have no common values. Then (1)
holds. For each i € Qf act by the sign change subgroup at ¢ to ensure that the
x coordinates contain no + pairs, that is, pairs (a, —a) for some a € Q. Then
(ii) holds. It is easy to see that (i) and (ii) imply (iv). By our choice of partition
Q1 = Qf UQJ UQT, condition (iii) can be broken into three cases:

(1) Both 4,7 are in QF. Use the sign change subgroups to ensure that there are
no =+ pairs among all Qf variables.

(2) Neither ¢ nor j is in QF. Use the symmetric groups to ensure that there are
no + pairs among all Qar (and hence @ ) variables and no common values
among the QF (and hence Q) variables.

(3) One of 4,7 is in QF and one is in QF. Use the sign change subgroups to
ensure that there are no + pairs among all QF and Qg variables.

This completes the proof. O

Definition. The motivic orientifold Donaldson-Thomas invariant of a o-symmetric
quiver @) is

o/ 1 : rim ERNp 1 1o
09z, = Y dimgWT (=4?)'€° € Z[q7,q *][AGT].
(e,)eAGT %2

More precisely, the invariant 17), like 3¢ of Section @ is defined for the trivial
stability condition. Theorem [3.4] implies that numerical orientifold DT invariants
can be defined as the g2 s 1 specialization of Q3 (q%,f). In the orientifold setting
there is no need to remove from W§™ an infinite factor of the form Q[u]. This
reflects the isomorphism between the rational cohomologies of the moduli stack and
moduli space of o-stable representations; see Lemma below.

We now turn to a more detailed study of the module structure of Mg. Our
goal is to formulate a conjectural analogue for Mg of the freeness of the CoHA
of a symmetric quiver. To begin, observe that a duality structure on an arbitrary
quiver induces linear isomorphisms R4 — Ry (q) which are equivariant with respect
to the isomorphisms

GLg — GLa(d)v {gi}iEQo = {(g;(li))t}iEQo' (16)

Contravariance of the functor S : Repc(Q) — Repe(Q) implies that these maps
define an algebra anti-involution Sy : Hg — Hg. Explicitly, using equation
and the first part of Lemma we have

Su(H{wij}icqo 1<i<dy ) = F({Fis}ieqo, 1<i<d) 70 =—a0 ), (17)
for all f € Hg,a-

Proposition 3.5. Let Q) be a o-symmetric quiver. For all f € Hg q and g € Mq,c
the equality

Su(f) g = (~1XEDHED f o g
holds.
Proof. Let @ € shg . be the signed shuffle defined by the maps of ordered sets

[di] U [e] U [do() = [doy] Ules] U [di], i€ Qf
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and
€ €; . -
U S) - Fau[1), i as
Here [n] = {21, ..., 2,}. Precomposition with @ defines a bijection 5hg(d),e — shg .-

Moreover, using equation we see that, after identifying variables as in Section
the polynomials f and Sy(f) differ exactly by w. It is clear that w fixes g.
We claim that

, ,+
D(KG(gy,) = (—D)XEDFEDKT — deAf, e e AGT, (18)
To prove this we use the explicit form of K7, from Theorem Applying w
to a factor D;, ¢ € Qf, results in multiplication by (—l)di‘*‘di(dﬁ_l) in types B

d;(d;—1)

and C and (1)~ = in type D. If instead i € Qf, then the result is multi-
plication by (—1)¢ditdidayteiday  The action of w on the denominator of K,

therefore results in multiplication by (—1)XQ0(e’d)““g%(d)7 the subscripts indicating
that only summands of x and £ associated to nodes are included. The action of
@ on a factor V,, is multiplication by (—1)%detteidoihtdics for § %5 j € QF and
d_c(d_ Tas;
by (—1)6idﬂi)+% for o(i) % i € Q7. Using equation we conclude
that the sign change of the numerator is (—1)X@:1(&:)+€a1 () Equation follows.
We now compute

Su(f)xg = Z m(S(F)9Kg(ay,e)

WGﬁhg(d)’e

= Y @9k

7r€5hg<d)ye

= (F)XEDHE@ N wow(feKy.)

weshg(d%e

= (—1eDTED N 1K)
rr’eshgye

- (_1)x(evd)+5(d)f * g,
finishing the proof. (]

Since Sy is an anti-involution the image of the CoHA multiplication map
Ho+ WHo+ — He

is stable under Sy,. It follows that Vg inherits the structure of a Zs-representation.
In fact, Vo = V5™ ®Q[u] as Zo-representations with Sy, sending u to —u as follows

from the first part of Lemma Interpreting VQprim geometrically as in Theorem
or [27], the Zs-representation agrees with that induced by the Zs-action on

UdeAg Emgt'
Motivated by Proposition@ for fixed e € AZQ’JF define a twisted Zs-representation
on Hg by
o (MDD Sy (), feHga.

As representations Vg = Vg perm ® Vg fix Where
VQ,perm = @ VQ.d; Vo fix = @ VQ.d-

+ o+
derd deAy
d#o(d)
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The subrepresentation Vg perm is a direct sum of permutation representations and
so can be written (non-canonically) as

VQperm = Vo, + ® Vo, (19)

for some Ag x Z-graded subspaces Vg 4+, Vo,— which are permuted by the Zs-action.
Define a AE x Z-graded vector space by

Va(e) =Va,+ ® (Vo fix) (Zs.e)

where (—)(z,,e) denotes Zs-coinvariants. By identifying invariants and coinvariants
we regard Vg (e) as a subspace of V.

Conjecture 3.6. Let QQ be a o-symmetric quiver. Then the CoHA action map
P sym(Vole) RWET & Mg
eeAg™
is an isomorphism in le(V€CtZ)A5’+‘
When Hq is supercommutative without any twist (see Section [2.2)) there is a

refinement of Conjecture Which partially describes the module structure of M.
We require the following basic result.

Lemma 3.7. Let Q be a o-symmetric quiver. If Hq is supercommutative, then the
Zsy-grading of Mg defined by the reduction modulo two of the shifted cohomological
degree makes Mg is a super Hg-module.

Proof. First observe that for an arbitrary quiver with involution the equality
X(da d,) = X(O—(d/)a U(d))v d, d e AQ (20)

holds. In the o-symmetric case, the parity of elements of Heq (ax) * M@, () is
E(H(d) + €). Modulo two we have

E(H(d)+e) = E(d)+E(a(d) + x(d,d) + E(e) + x(d,e) + x(a(d),e)
= E(d)+E(o(d) + x(d,d) +E(e) + x(d,e) + x(d, e)
= £(d)+E(o(d)) + x(d,d) + E(e

x(d,d) + E(e).

The first equality follows by using equation (5 twice, the second from equation ,
the third from symmetry of @ and the last from o-symmetry of Q. Since x(d,d) +
&(e) is the sum of the parities of He (4,1 and Mg, (e,;) the lemma follows. O

Consider Vgim as a A8+ x Z-graded Zs-representation by setting

Crprim prim o,+
Vel = @ VT, eeAp’
deAf
H(d)=e
Using Proposition @ we see that if g € Mg ., then Hg x g C Hg is naturally a
module over the Ag X Z-graded supercommutative algebra

Hele) = Sym((Vo) z,e))- (21)

The strengthened form of Conjecture [3.6] reads as follows.

Conjecture 3.8. Let Q be a o-symmetric quiver and assume that Hqg is super-
commutative. Then the CoHA action map

*

@ HQ (e) X ngm — MQ

e
SGAZ)’Jr
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s an isomorphism in le(Veth)AoQ,+. Moreover, the restriction to the summand
Ho(e) ¥ ng? is a Hg(e)-module isomorphism onto its image.
We will verify some instances of Conjecture in Section

Remark. A duality structure induces an involution of the stack Mt = | | dens M

and H®*(M®!/Z3) ~ H®*(M**)%2 as mixed Hodge structures. The algebra Hq(e) is
not Sym(PH®(M>!/Z5)), but is instead Sym(PH®*(M?*)?2:¢)) where we use the
non-geometric e-twisted Zs-action.

Conjectures[3.6] and [3:8] lead to factorizations of orientifold DT series in terms of
orientifold DT invariants and equivariant refinements of DT invariants, analogous
to the factorization of Corollary 2.3] To explain this, we first work in the setting of
Conjecture [3.8]

Definition. Lete’ € A8+. The Zo-equivariant motivic Donaldson-Thomas invari-
ant is the class of varim in the Ag+ x Z-graded representation ring of Zo:
~ . ~ pri . ~ pri _ 1k
Oo= Y (dimo (7)) +dimo (73, n)(-ah) '
(e.k)EAG T XZ

1 o
€ Q(g?)[AG )/ (n* — 1).
Here (—)F denotes the subspace of (anti-)invariants for the €' -twisted Za-action.

For ease of notation we do not indicate the ¢/-dependence of Qq. Since the
character of Q[u] is 1% we find that the Grothendieck class of (Vg)(z,.e) is
1—q Q) (Z2,e)

1 O+ O— ke
1— ¢ Y O w0 en D E"
(e;k)EAG T XZ

It follows that the parity-twisted Hilbert-Poincaré series of Hq(e') is

e
Ay =TI @) ceh)Ag Tl
(e;k)EAG T XZ
Ae{t}
Assuming Conjecture [3.8] holds, we see that
Ap= Y Agle)-0.£°, (22)
eEAUQ’+

interpreted as an equality in SQ with its commutative multiplication. Equation
uniquely determines Q) from A7, and the Zy-equivariant motivic DT invariants.
In the setting of Conjecture note that as operators on SQ we have Ag(e)- =

[Sym(Vg(e))]*. In particular, the right hand side is independent of the splitting
(19). Hence Conjecture also implies equation .

3.4. Orientifold Donaldson-Thomas invariants and Hodge theory. We con-
tinue to assume that @ is o-symmetric. In this section we describe a connection
between W5 and the Hodge theory of | |, A M5t We use the trivial stabil-

ity, # = 0, for which a self-dual representation is o-stable if and only if it has no
non-trivial isotropic subrepresentations.
We begin with a simple lemma.

Lemma 3.9. Lete € Ag"’.
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(1) The canonical map
H*(MZ*") — He, (RT) (23)

18 an isomorphism of mired Hodge structures.
(2) For each k > 0 the subspace Wy,_1 HF(IMI5Y) is trivial.

Proof. Since Hég (R3*%) is isomorphic to the cohomology of the Deligne-Mumford
stack [RZ*'/GZ| and [RZ*'/GZ] — M5t is a coarse moduli space, the map
is a graded vector space isomorphism [IT, Theorem 4.40]. To prove that is a
morphism of mixed Hodge structures, observe that the morphisms

R7t gy Ey — MO, (24)
in the notation of Section approximate the morphism
RO™ xgr EGI — RO /GI = M7,

The maps in cohomology induced by are morphisms of mixed Hodge structures.
Passing to the limit finishes the proof of the first part of the lemma.
Since MM2>*! is an orbifold the second part follows from [9, Théorem 8.2.4 (iv)]. O

The next result gives a partial analogue of Theorem [2.4]

Proposition 3.10. Let Q be a o-symmetric quiver. For each e € AUQ’Jr the compo-
sition He, (R7) — HE, (RZ*") ~ H*(IMI*') factors through a surjective morphism

W — PH*=¢() (m2=").

Proof. As the argument is similar to [3], we will be brief. Poincaré duality for
smooth Artin stacks gives a perfect pairing

° o —2E(e)—e o
HE, (R7) ® H_ ;7" (RT) — Q(—£(e)).
Here we have used that dimc[R?/G?] = —&(e). By [9, Théoréme 9.1.1] the mixed
Hodge structure on H¢, (R7) ~ H'(BG?) is pure of weight i. Hence H! g, (R?) is

pure of weight 1.
Consider the long exact sequence associated to the pair (R, R7\ R7*!):

co = HUGL(RI\RS®) — Hl o (RT™) — H! g, (R7) = Hi o (RI\RT®) — -+

Since the weights of HfGlg (RZ\RS-*") are bounded above by i — 1, the restriction
PH! ., (RZ*") — H! ., (R?) is an injection. By duality, H¢, (R?) — PHE, (RS*Y)
is a éu?jection. e ’ ‘

Next, a straightforward modification of the proof of [3] Lemma 2.1] shows that
for each e € A‘é’+ the composition of the CoHA action map

e—E(e
@ Ho,a KMq,er 5 Mq.e = HGg (P)(Rg)
(d’,e')eAngg+
H(d')+e'=e, d'#0
with the restriction

HE, (R7) — HEg (RT') ~ H*(MP™)

is zero. The last isomorphism follows from the first part of Lemma Com-
bined with the previous paragraph, this implies that the restriction W5 —

,€

PH*=¢() (M) is surjective. =
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The proof of injectivity in Theorem uses a cohomological interpretation of
Qg due to Hausel, Letellier and Rodriguez-Villegas [I8] which relies on the smooth-
ness of Nakajima quiver varieties. As there are no smooth analogues of Nakajima
varieties for self-dual representations, it is not clear how to adapt the proof from
[B]. In any case, it is natural to make the following conjecture.

Conjecture 3.11. The surjection ngg‘ — PH*=€()(IMT5Y) is an isomorphism.

We will confirm some instances of Conjecture in Section _
In view of results of [27] it is also natural to conjecture that W5'™ computes the
intersection cohomology of the closure of 9MMZ:$t C IMNI>55:

WE o~ JC*E (M),
This can be verified in all examples in which Conjecture [3.11]is verified below.

3.5. The critical semistable CoHM. We explain how to generalize Section
to define the CoHM in the presence of a stability and a potential.

Fix a stability 6 and a potential W € CQ/[CQ,CQ]. Let d',d" € Ag and set
d=d +d". Let RY** C R, be the open subvariety of semistable representations
and define RY,%5, = Ry av R **. The canonically defined trace functions tr(W)g :
RZ‘SS — C and tr(W)gr g : RZ?fj,, — C are invariant under the actions of GL; and
GLg g7, respectively. Recall that the full subcategory of Repg(Q) consisting of the
zero object and all semistable representations of fixed slope is abelian. Using this
fact, if pu(d") = u(d"), then upon restriction of the maps we get

RY# x RO & RS, <& Ry,
The trace functions pull back along these maps according to
" (tI‘(W)d/ H tI‘(W)d//) = tr(W)d/d// = i*tr(W)d.

Let puw),Qre-s= € DY(RY**) be the sheaf of vanishing cycles of tr(W),. See
[20] for background. We abbreviate gptr(w)dQRgss to ¢ (w),- The slope j semistable
critical CoHA [23], §7] has underlying Q-vector spaceﬂ the direct sum of the duals
of compactly supported equivariant cohomology with coefficients in the sheaf of
vanishing cycles,

Mo, = D Hlo, (BT oum),) {x(d d)/2}.
{derdn(d)=u}

As in Section[T.4] these cohomology groups are defined by a limiting procedure. An
associative product on ’H%SVSV 18 defined via a pull-push procedure as in Section
see [23] §7], [5, §3.2] for details. The GLg4-equivariant open inclusions R%** < R,
induce an algebra homomorphism ’H%’Wy# — ngfﬁm. Here H%’W’H C Hq,w is the
subalgebra associated to the submonoid of dimension vectors of slope u.

Suppose now that @ has an involution and duality structure. Assume that 6 is
o-compatible. We say that a potential W is S-compatible if its associated trace
functions are invariant under the isomorphisms Ry — R;(q)- The self-dual trace
functions tr(W)2 : RZ%* — C and tr(W)g o Rgz?e',ss — C are invariant under
GZ and Gg, ./, respectively.

We need the following simple observation.

3In fact, the underlying object of HQQ'SVSV " has the structure of a monodromic mixed Hodge module,
but we will not use this in this paper.
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Lemma 3.12. Let X be a complex manifold and f : X — C a holomorphic func-
tion. For any c € Ryq there is a canonical isomorphism of vanishing cycle functors
@5 >~ @er. In particular, orQx ~ @crQx.

The next result defines the critical semistable CoHM.

Proposition 3.13. Let 6 be a o-compatible stability and W a S-compatible poten-
tial. Then

z?s‘fV = @ P -Ssagotr(W)g)v{g(e)/Q}
e€AY o+

has a natural Hgf‘ﬁ,’o-module structure defined via a pull-push procedure. Moreover,

the map Mg w — M%%ﬁv induced by the G -equivariant open inclusions RT%-5% —
RY is a module homomorphism over H%,W,O — H%;ﬁ/,o-
Proof. We need the following simple result. Let U C N be an isotropic subrepre-

sentation and assume that U is semistable of slope zero and N//U is o-semistable.
Then N is also o-semistable. Indeed, we have short exact sequences in Rep(Q):

0-U—U+— NJU -0, 0—-U+—=N—=SU)—O0.

Since NJU is o-semistable it is semistable [4I, Proposition 3.2]. Then U~ is
semistable of slope zero, implying that that IV is semistable and hence o-semistable.

Using this observation, for each d € Ag of slope zero and e € A8+ we obtain
well-defined morphisms

i Ro’@ss

0-ss 0,0-ss [ po,0-ss
RY#s x Roos & Ry e

for which
(W) 5 (aye = tr(W)ge = 7 (2tr(W)g B tr(W)7) .
Lemma followed by the Thom-Sebastiani isomorphism [26] gives

~

He L, (RT®*, orwy,)’ ® H o (RZ%, Paw)z)’ —
H? o1 yxer (RTS X REY™, Gorew) B w)s ) -

From this point on the construction of the 7—[9 Sv,o-module structure of M‘9 is
the natural common generalization of [23], §7] and Section
The second statement follows from the fact that the dlagram

0,0-55 o
» SN
Rd,e Rdae

| |

0- ,0- o
RdssXRg SS(—>R(1XR6

is Cartesian which in turn follows from the first paragraph of the proof. U

When W = 0 and @Q is o-symmetric set
W™ = MG (M M),

As in Section we expect that Mgss is a direct sum of free modules over subal-

0-ss

gebras of Hg%l, leading to an identity in SQ of form

Ag@—sb _ Z AO s*s QUG ge (25)

EGAC’Jr
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If equation indeed holds, then orientifold DT invariants are independent of 6.
Indeed, this follows from the wall-crossing formula [41, Theorem 4.5]
o= I Aau~a5"" (26)
rEQ>o
This should be compared with the fact that DT invariants of symmetric quivers are
independent of stability.

To end this section we briefly describe the expected general structure of Mg w .
Let (@, W) be an arbitrary quiver with potential and generic stability 6. Motivated
by the existence and uniqueness of Harder-Narasimhan filtrations, in [23] §5.2] (see
also [4, §8.1]) it was asked if there exist algebra embeddings H% %, < Hq,w such
that slope ordered CoHA multiplication

+—tw
M, Hgfﬁ/’# — How

is an isomorphism in D' (Vectz) A+ - Moreover, each factor HGQ'SVSV . 1s expected to
P W,

be the universal enveloping algebra of a Lie superalgebra structure on VQPHV"‘}Z ®Qu]
whose definition involves only the stack of semistable representations of slope pu.
In this way Hg w obtains a Poincaré-Birkhofl-Witt (PBW) type basis. See [8] for
results in this direction. Conjecturally, VthiV"{}’a can be interpreted as the space of
closed oriented single-particle BPS states.

Consider now the orientifold setting and assume that 6 is o-compatible. Every
self-dual representation M has a unique self-dual Harder-Narasimhan filtration [41]
Proposition 3.3], that is, an isotropic filtration

0=UycU;cCc---cU.CM

such that Uy /Uy, ..., U, /U,_; are semistable with strictly decreasing positive slopes
and M //U, is zero or o-semistable. It is therefore natural to ask for a H%‘fﬁ,’o—

moduleﬁ embedding MQQS‘;QV — Mg w such that the CoHA action

+—tw

0- S- 0-

¥e0.s Hoiv, B MGSy = Maw (27)

deifnes an isomorphism in D'*(Vectz),o.+. Together with the natural extension
Q

of Conjecture W to MZ?SVSV, an isomorphism of the form would determine a
PBW type basis of Mg w in terms of Wg’;‘v’e and the PBW bases of H5 %}, - and
HE S5 0- Conjecturally, Wg'{,nv’e can be interpreted as the space of single-particle
BPS states of the orientifolded theory. Decompositions similar to occur in
physical definitions of unoriented BPS invariants [33], [37].

4. SYMMETRIC EXAMPLES

We study a number of examples and illustrate some instances of the conjectures
from Section [Bl

4.1. Disjoint union quivers. Let Q and Q' be quivers. Their disjoint union
QU Q' is the quiver with nodes Qo U Qf and arrows Q1 U Q). The opposite Q°P is

the quiver with nodes @)y and an arrow j o7, i for each arrow i % je Q.
Lemma 4.1. There are canonical algebra isomorphisms

Houg ~ Ho ® Hey, Haqor ~ 'H?Qp
where Hy is the algebra opposite to Hq.

4More precisely, we should restrict to subalgebras of ’H%‘SVSVO as above.
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Proof. The isomorphism Hqugr — Hg @ He is the pullback along the isomor-
phisms
R4(Q) x Rar(Q') = Ra,an(QUQ)

while Hgor = H¢y is the pullback along the isomorphisms R4(Q) = Ra(Q)
sending a representation to its transpose. O

The quiver Q- = QUQ°P has a canonical involution o which swaps the nodes and
arrows of @ and Q°P. Fix a compatible duality structure. Representations of Q"
are of the form U; @ S(Us) for unique Uy, Us € Repp(Q). Self-dual representations
have U; = U,. The resulting isomorphism R; —» R?{( ) de AZS’ is equivariant
with respect to GLg — Gl Let Mqu =+ Hg be the associated vector space
isomorphism. Lemma implies that Mqu is a Hq ® H¢y-module. Similarly, He
is a Hq ® H¢y-module, the regular left Ho-bimodule.

Theorem 4.2. The map Mqu — Hq is an isomorphism of Hq ® Hy -modules.

Proof. The action of fi ® f3 € Ho ® H¢) on f2 € Hg is fi - fa- fs € Hq, which is
in turn the image of f; ® fo ® f3 under the composition (degree shifts are omitted)
I{(.;Ld1 (Rdl) Y }IELUZ2 (Rd2) ® HC.-;Ld3 (Rdg) — I—IéLdl,dQ,d3 (Rdhdz,ds)
- H(EL,11+42+43 (Rd1+d2+d3)

The isomorphism Ry ~ R;I(d) identifies Rgl+o(d2)7H(d3) C R‘I’{(d1+d2+d3) with the
subspace Ry, ds,d, C Rd,+ds+ds Preserving the Qo-graded flag

Ccd C (Ca(dz))i A Cd1t+dz2tds C Cdrtdztds
and identifies G7 | 1) pr(ds) € CFr(dy+datds) Wit Gld,,ds,de C Gla,+dy4ds- Using

these identifications we find that (f; ® f3) * f2 is equal to f1 - fa - f3. That the
isomorphism Mqgu = H respects the gradings follows from the equality

Equ(U1 ® S(U2)) = xq(U2,U1), U1, Uz € Repe(Q), (28)
which is easily verified. U

Remark. The natural generalization of Theorem to the critical semistable
CoHM holds as well. The proof is similar.

Corollary 4.3. Conjectures and hold for Q.

Proof. Equation implies that Q" is o-symmetric if @) is symmetric. Consider
He with its twisted supercommutative product. Theorems [2.2] and [4.2] give

Hou ~Hgo ® HOQP ~ Sym((VCSrim 2] S(VQprim)) & Q[u])

Lift the supercommutative twist of H¢g by taking Mgu to be the regular super Hg-
bimodule. Then Mgu is a rank one free module with basis 1§ € Mqgu o over the
subalgebra of Hqu generated by v+ S(v) with v € Vgim ® Q[u]. Hence Conjecture
[3.8 holds. Since @ has no o-stable representations Conjecture also holds. O

Similarly, Mgu is a rank one free module over Hg C Hgu. This module struc-
ture is the PBW factorization associated to a o-compatible stability on QY
whose restriction to Aa C AL, is positive.
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4.2. Zero and one loop quivers. Let L,, be the quiver with one node and m > 0
loops. It is symmetric and its CoHA is supercommutative without any twist. If
fi€®Hr,, « and fo € Hr, 4, then

d" d

fi-fo= Z W(fl(l‘/l,.. By Y € P HH — )

mESh g g 1=1k=1

The (unique) involution of L,, fixes the node and arrows. Hence L, is o-

symmetric. A duality structure is determined by signs s and 7,...,7,. Suppose
that 7, of the latter are positive and 7~ = m — 74 are negative. When s =1
Proposition gives M, = Mfm &) Mfm with summands spanned by odd and
even dimensional self-dual representations, respectively. When s = —1 write Mg

for My,,. Applying Theorem [3.3|to f € Hp,, 4 and g € My, . gives

f*g = 2(7—3_%%1 Z W[f(xla"'7xd)g(217"'7ZLZJ)X

weshyg .
d d L3] me1l
H%N(S’T)( H (z; + z5) HHm —z; ) ]
i=1 1<i<j<d i=1j=1
where
27y +7- —1, intype B
N(s,7)=< 7 —1, in type C

T+, in type D.
Using this we obtain the following degree (0,0) or (1,0) isomorphisms:
(i) If 7 = 0, then MP ~ M§ .
(i) f 7y =7 — 1, then MCBN ML . (29)
(iii) If m = 1 then ./\/ID ~ M7 .
As the cases m < 1 serve as building blocks for more complicated examples, we
now study these in detail.

4.2.1. Zero loops. Let m = 0. The CoHA Hp, is a free supercommutative algebra
generated by the odd variables z € Hp, 1, i > 0, of degree (1,2i + 1) [23, §2.5].

Explicitly, if i = (i4,...,41) is a strictly decreasing partition, then
gl =g 5q-
Here s, is the Schur polynomial associated to a partition A and §, = (r—1,...,1,0).

In particular, stm =Q -1, =Q,1)-
The first isomorphism of implie~s M~ M(LJO, so we consider only M7

and M?O. Given f € Q[z1,...,zq] let f(z1,...,xq) = f(2%,...,23).
Lemma 4.4. Let i be a strictly decreasing partition of length d.

(1) Type B: If alli; are odd, then s;_s, * 1§ = 2d§%76d.

(2) Type D: If all i; are even, then sj_s, * 1§ = 2d§%_5d.
Proof. Consider type B and proceed by induction on d. If ¢ > 1 is odd, then

("% 1§)(2) = 2'(2) 7" + (—2)1(—2)Th = 2(27) T = 2521 (2).

This confirms the case d = 1. Assuming the lemma holds for partitions of length
d—1, we find that 2% - - 2% % 1 = 2% % (22 .- 2% % 17) is equal to
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where i’ = (ig,...,i2). A direct calculation shows that this coincides with 2d§i%1_5d.
The proof in type D is similar and is omitted. (]

Remark. By Proposition if i is not purely odd/even, then s;_s.  annihilates
M]LBO/D. A similar statement holds for M, below.

Let HE™, H%C(l)d be the subalgebras generated by {?};>0, {#%T1},;>0, respec-
tively. Equivalently, H{"" = Sym((@(l’l)®@[u2]) and H"L%d = Sym((@(l’l)@u(@[uQ]).
These are the subalgebras defined in equation (21); they are independent of e.

Theorem 4.5.
(1) MZ, is a free H3'-module with basis 17 € M, ;.
(2) Mfo is a free HE " -module with basis 1§ € MEO)O'

Proof. The map i — igl is a bijection between the set of strictly decreasing purely

odd partitions of length d and the set of strictly decreasing partitions of length d.
Since the Schur functions §y_s5, parameterized by the former set are an additive
basis of M§0,2d+1 ~ Q[z3,..., zﬁ]ed, the statement in type B follows from Lemma
44

In type D use instead the bijection i — % between the set of strictly decreasing
purely even and the set of strictly decreasing partitions. O

Corollary 4.6. The motivic orientifold DT invariants of Ly are
0P, =¢  QF =1,  QF =
Conjectures [3.8 and [3.11] hold for L.

Proof. The calculation of the orientifold DT invariants and the validity of Conjec-
ture [3.8] follow from Theorem Conjecture follows from the isomorphisms

sp,st _ > 0,5t _ pt, ife=1,
My =2, ex1, M { o, ife>2,
the superscripts sp and o indicating type C or types B or D, respectively. O

4.2.2. One loop. Let m = 1. The CoHA Hp, is a free supercommutative algebra
generated by even variables z € Hp, 1, > 0, of degree (1,2i) [23, §2.5]. Explicitly,
-zt = N(i)ymy
where m; is the monomial symmetric polynomial and N(i) = [[, s, #{j > 1|4; =

k}!. Hence VLpIim =Q 11 = Q-
The isomorphisms give Mfl ~ ./\/lg1 ~ ./\/l?1 if r=—1 and ./\/lB1 ~ ./\/llL)1 if

7 =1. So we consider only M7 if 7 = —1 and Mg’lD ifr=1
Lemma 4.7. Let i be a partition of length d.

(1) Type B, 7 = —1: Ifi is purely even, then m; x 1§ = 2%m s .

(2) Type C, T =1: Ifi is purely odd, then m;x 1§ = 2%ms_1.

2
(3) Type D, T =1: Ifi is purely odd, then m;*15, = Qdﬁ%(% 0¢)’ where (i,0°)
denotes the length d + e partition obtained by appending e zeros to i.

e

Proof. The proof is similar to that of Lemma [£.4] and so is omitted. O
Let HE®" = Sym(Q1,0) ® Q[u?]) and ’HZ‘id = Sym(Q(1,0) ® uQu?]).
Theorem 4.8.

(1) If = —1, then Mfl is a free H " -module with basis 1§ € bel.
(2) If T =1, then ./\/lg1 is a free H9-module with basis 1§ € Mgho.
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(3) If 7 =1, then MP is a free H9™-module with basis 13, € Mfl,zy e>0.

Proof. The proof is similar to that of Theorem [4.5] using Lemma [4.7] instead of

Lemma [£.4 O
Corollary 4.9. The motivic orientifold DT invariants of L1 are
r=-1: Qf =¢ Qf =1, Q=1
and
1
1. B _ 42§ c _ D _ 1
T=1: QLlfl_q_lé.Qa QLli ) QLlil_q—lé'Q.

Conjectures and hold for L.

Proof. The calculation of the orientifold DT invariants and the validity of Conjec-
ture follow from Theorem [£.8 For 7 = —1 we find
ife=1,

if e > 2.

,st ,st pt
m;zs = g’ 6 Z 17 mzs = { @7
b

while for 7 = —1 we find M5P*" = @ and
M = Symm, . /O, ~ Sym®C, Mt = Sym® C\A, e > 1.
Here Symm,, . is the variety of symmetric e x e matrices and A is the big diag-

onal consisting of unordered n-tuples of points of C not all of which are distinct.
Conjecture [3.11] is now immediate except in the last case, where it reads

PHO(OM*) ~ Q(0), PHF(MSH) =0 ife, k> 1.

In this case the claim follows from the isomorphism of mixed Hodge structures
H*(Sym® C\A) ~ H*(C\{0}). O

4.2.3. Higher loops. When m > 2 the situation is more complicated as neither Hy,
nor My,  is finitely generated. However, Conjecture can be made quite explicit
and can be used to give a numerical method to compute orientifold DT invariants.
We have

x(e,d)+&(d) =dép + E(d) mod 2
where dp is one in type B zero otherwise. Then Hg(e) depends only on the type
and not e. Write Hp) for Hg(e). BEach CoHA summand Hy, (a) is isotypical as a
Zo-representation and the Zs-equivariant DT invariants are

—(1—m 2

o+ ) Qax ifdop+E(d)+ b=Qom)d®
2d,k . b (12 m)d?
0,  ifdip+E(d)+ T

0 mod 2
1 mod 2

and ,
G- _ 0 ifdp+ &)+ M =0 mod 2
2d,k — . k—(1—m)d® _
dek, lf d(sB‘i’g(d)‘Ff:l mod 2
Conjecture states that My, is a free module over H¢,. Equation becomes
AL, =41, 9L,
Since €2, have been computed by Reineke [31, Theorem 6.8] and A7 is given
explicitly by equation , this gives a way to compute 27 .
Example. For m = 2 we have
Qp, = —q 2t +q 22 —q 3 + (¢ O+ ¢ Ot + 0().
When 7 = —1 the Zs-equivariant DT invariants are

Of = —q 2+ (P + g+ 0(E0),  Qp =-—q 2 +q 2+ 0(E)
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and equation predicts
OF, = - @+ @+ (T +q T 4277+ B+
(7 4+ ¢ 4+ 271 4 3¢712 1 49710 1+ 3¢5 4+ ¢6)¢% + O(eM).
Up to AZ?’Jr—degree five the generators of M, can be taken to be 17,14, 1¢ and
22 + 22 <
Example. For m = 3 we have
Qp, = —q 2t+q 22— ¢ 8+ (¢ + ¢+ 0.
When 7 = 1 the Zs-equivariant DT invariants are
st =gt g0 (g8 2070 2712 4 M 4 g 16)e8 4 O(€19)
and
O, = '+ (@ +qa )+ (@ P+ M+ P)E+0(E)
and equation predicts

0P o=1,  QL,=q¢'+q¢> QL .=q¢"+q¢ " +20+2¢+¢*
and
QLS q_24+q_22+2q_20+3q_18+4q_16+5q_14+6q_12+6q_10+4q_8+q_6
and
95378 M0 g 33 582 60 4 0g S 4 11g 20 4 142 +
160722 +19¢~ 2 + 2008 + 21416 4+ 19~ 4+ 142 + 64710 + ¢ 5.
<

4.3. Symmetric A; quiver. Let Q be the following affine Dynkin quiver,

=

B

The CoHA Hg is supercommutative without any twist. The product of fi € Hg a
and fo € Heg,a is

fl'f2: Z ﬂ-(fl(zllﬂ"'7'rii/l7y/1a"'7y,d’2)f2(x,1/7"'v’r/dl'l"yilw"?y;l,é’)x

ﬂ'GEhd/ydu

T2 T ) — ) T T 0 =)y
Hz 1H] (2 — ) )Hz 11_[_7 1 (Y} _yj) .
A representation of @ of dimension vector (d,ds) consists of a pair of matrices
A € Matg,xq4,, B € Matg, xd,-
For stability § = (1, —1) the semistable representations are

(i) the direct sums of simples S?k, k > 1, having slope 1,
(ii) the direct sums of simples 559’2 k > 1, having slope —1, and
(iii) the pairs (A, B) € GL4(C) x Matgxq, d > 1, having slope 0.
The semistable algebras H% Oi=1 and ’HZ?S: _, are isomorphic to Hr, and embed
canonically as subalgebras of Hqg. On the other hand, the inclusion

Matdxd — GLd((C) X Matdxd, B — (]Idxd7B>
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descends to an isomorphism from the stack of d-dimensional representations of the
one loop quiver L; to the stack of (d, d)-dimensional semistable representations of
@. This induces a graded algebra isomorphism ’H%S,f o =~ Hr, and the map

Vo :Hr, = Hao, zt — ziy°

extends to an algebra embedding. In [14, Proposition 2.4] Franzen proved that the
slope ordered CoHA multiplication

VUGS RHGS_ (WU = Hg, a®b®cr alg(b)e (30)
is an isomorphism of AZS x Z-graded supercommutative algebras. In particular,

VQp”m =Q 1002 Q 11,1 ®Q-1(1)-

Let o be the involution of @) that swaps the nodes and fixes the arrows. Then
dl(dl +S7'a) dg(d2+ST5)

2 ; 2 '
This shows that there are two inequivalent o-symmetric duality structures on (@, o),
say s = 1 and 7 = £1. The structure maps (A4, B) of a self-dual representation
are symmetric if 7 = 1 and skew-symmetric if 7 = —1. If f € Hg (4, 4,) and
g € Mg (e,e); then fx g is equal to

Z W(f(.fCl,...,$d1,y17...,yd2)g(21,...,Ze)x

E(dy,d2) = didy —

réshg.
di e d2 e
Il ComeollllCa-e A1 o= T1 TG om)
1Sjsfz§d1 I=1 k=1 1§jsfm5d2 m=1 k=1
dy e da dy do :
TITT o0 T TL 0 TL T =0
I=1k=1 k=1m=1 I=1m=1

The non-empty subvarieties of semistable self-dual representations are

T=1: R‘(Te@e)‘gg = (Symm,,, N GL.(C)) x Symm,,
and

r=—1: R‘(’QZ 50y = (Skewseae M Gloe(C)) X Skewse s

From this we see that the stack of semistable self-dual representations of @ is
isomorphic to the stack of self-dual representations of L1 with duality structure

(8L1 =T,T, = +1).

The induced map M%‘SS = My, is a module isomorphism over ngifzo = Hr,-

Lemma 4.10. In dimension vector (e,e) € AZ?’+ the kernel of the restriction mor-
phism Mg — Mgss is the image of the CoHA action map

P Ha.@o) B Mg e—de-d) = Mg (c.e)-
d=1

Proof. Let M be a self-dual representation determined by matrices (A4, B). Then
0 C ker A C M is the self-dual Harder-Narasimhan filtration of M. The Harder-
Narasimhan strata of R are therefore the locally closed subsets consisting of self-
dual representations with fixed dimc ker A. The closure of a stratum is thus a
union of strata. Using this observation, [I4, Lemma 2.1] can be applied with only
obvious modifications to complete the proof. In slightly more detail, the methods
of [T4] can be used to prove the present lemma for the Chow theoretic Hall module,
defined similarly to Mg but using equivariant Chow groups instead of equivariant
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cohomology. In the case at hand the (semistable) cohomological and Chow theoretic
Hall modules are isomorphic, as can be verified directly. Hence the lemma also
follows in the cohomological case. (|

We can now describe Mg. Let Mo C Hg be the subalgebra generated by
V5 = (Q . 1(170) ® Q[’LL]) (&) (Q . 1(171) ® UQ[UQ]) C VQ

There is an isomorphism of algebras H¢) ~ H%'flf:l ® HeQ-si,:g ¢ the second factor
being an isomorphic image of HoLffd. The map sending 1§ € My, o to 1‘(’O 0 €
Mg, (0,0) extends to a Hgiffgd—module embedding M$** < M.

Theorem 4.11. The semistable CoHM M?Q'SS s a free Hgfi’:"gd—module with basis
(1) 1§ € Mg 0,0) if T = —1, and
(2) 17, o) E Mg (e,e), €20, if T =1.

Moreover, the CoHA action

*

HES ’IMG™ 5 Mg (31)

is an isomorphism of A8+ X Z-graded H¢y-modules. In particular, Mg is a free

Hy-module and Congjecture holds for Q.

Proof. The first statement follows from Theorem and the H,-module isomor-
phism M%’SS ~ My,.

Turning to the second statement, direct calculation shows that in this case the
restriction map Mg — MQQ'SS is surjective. From this and Lemmawe conclude
that the map is also surjective. The wall-crossing formula (26) for @ reads
AeQ‘if:l * Ag’e'ss = A and implies that the domain and codomain of the map
have the same Hilbert-Poincaré series. Hence the map is an isomorphism. [

Corollary 4.12. The motivic orientifold DT invariants of @ are

and

=1: Q0= —
! QT T ket

Conjecture holds for A;.

Proof. When 7 = —1 the corollary follows immediately from Theorem

When 7 = 1 Theorem shows that (1 — q_%f(l’l))_1 is an upper bound for
Q7. To prove that it is also a lower bound, observe that the cohomological degree
shift of the action of Hg g on Mg . is

(dy — do)? +dy +dg > 0.

From this it follows that 1?6 ey €2 0, must be included as generators of M.

Hence the orientifold DT invariants are as stated.

To verify Conjecture when 7 = 1 we must prove that PH*® (9)?‘(7655)) ~ Q(0).

Note that we take the trivial stability. It is clear that sm‘(’f{) ~ C* and that
there are no other regularly o-stable representations. It follows that zmg’j; ~
Sym® C*\A. Consider the open inclusions

Sym® C*\A AN Sym® C\A < Sym°P*.
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As Sym®P! is a smooth compactification of both Sym®C* and Sym® C, we obtain
a commutative diagram

H*(Sym®P') —— H*(Sym® C\A) H*(Sym® CX\A)

T~ ]

PH*(Sym® C\A) —— PH*(Sym® C*\A)

The surjections follow from [29, Proposition 6.29]. Hence i* is also surjective. Since
PH*(Sym®C\A) ~ Q(0) we also have PH*(Sym® C*\A) ~ Q(0). O

Remarks.
(1) The isomorphism is an instance of the PBW factorization (27).
(2) Let = (1,—1). If 7 = 1, then MT** ~ Sym® C\A and the proof of
Corollary gives i* : PH®*(OM3:%-5t) = PH*(IMMT*t). This is an example
of the lack of wall-crossing for o-symmetric quivers.

5. COHOMOLOGICAL HALL MODULES OF FINITE TYPE QUIVERS

A quiver is called finite type if it has only finitely many indecomposable repre-
sentations up to isomorphism. Gabriel proved that a quiver is finite type if and only
if it is a disjoint union of quivers whose underlying graphs are Dynkin diagrams of
ADE type. The only connected finite type quivers with involution are of type A; all
other finite type quivers with involution are disjoint unions of these and quivers of
the form ADE". By Theorem the CoHM of a quiver of the latter type reduces
to the CoHA of a connected finite type quiver, whose structure will be recalled in
Section [5.1] The problem is therefore to describe the CoHM of a type A quiver.

5.1. Finite type CoHA following Riméanyi. Let () be a connected finite type
quiver. For simplicity we assume that @ is not of type Eg; for Eg see [32, Remark
11.3]. The sets II C A of positive simple and positive roots of @ are in bijection
with the sets of isomorphism classes of simple and indecomposable representations
of @, respectively. Identify A with a subset of Ag using the dimension vector map
and write Ig for the indecomposable representation with dimension vector 8 € A.
Fix a total order 8; < --- < By on A such that Hom(Is,,I,) = 0 = Ext' (I3,, I,)
if i < j. Such an order exists because the Auslander-Reiten quiver I'g is acyclic.
For each 8 € A consider

Hy' = @ HeL,, (Rus){x(nB.nB)/2}
n>0

and

Hy"= = @ HeL,, (Rys){x(nB.nB)/2}

n>0

where R7%s C Ry is the GL,,g-orbit consisting of representations which are isomor-
phic to IE?". Then ’Hg> is a subalgebra of H¢g and the natural Hall product on
’ngl is such that the restriction map p : ’Hégm — Hg>’2 is a surjective algebra
homomorphism. Moreover, Hg>’: ~ Hy, as algebras. Let {#7};>0 be the associ-

ated generators of Hg >’:, as defined in Section Choos a node i(8) € Qo

5This cannot be done in type Es.



DT THEORY WITH CLASSICAL STRUCTURE GROUPS 35

such that dimc(Zg);(5) = 1 and define a section ¢ of p by ¥(z7) = xg(ﬂ). Write

’Hg ) ¢ Hq for the isomorphic image of 1.
The following result is due to Riményi. It was stated for @ of type Ay by
Kontsevich and Soibelman [23] Proposition 2.1].

Theorem 5.1 ([32, Theorem 11.2]). The <-ordered CoHA multiplication maps
T g o )
define isomorphisms in D“’(Veth)Ag.

5.2. Preliminary results for the self-dual case. Let (Q, o) be of Dynkin type
A. Then @ has two inequivalent duality structures: fixing 7 = —1, either s = +1 or
s = —1 corresponding to orthogonal or symplectic representations in the language
of [I0], respectively. In type As, (respectively, As,41) all orthogonal (symplectic)
representations are hyperbolic. In the remaining two cases, henceforth referred to
as non-hyperbolic, the positive roots of ) which are fixed by the involution admit
unique self-dual structures.

To describe Mg we will modify Riményi’s approach to the study of Hqg. Fix
d*=(d',...,d") € (A})", ¢ € AGT and put e = >, H(d") +¢'. Let Gj. ,, C GZ
be the stabilizer of a Qp-graded isotropic flag of C¢ of the form

0=UyCcU,C---CU.CcC®  dimU,/U,_; =d*, dimC®JU, =¢.
Extend U, to a flag of length 2r + 1 by setting Us,_j41 = U,j for k=0,...,r. Let
FIge o» =~ GZ/GF. ., be the corresponding isotropic flag variety.

For each k =1,...,2r + 1 let V; ;. be the tautological vector bundle over Flg.,e/
parameterizing the kth subspace of C® at the node i. The quotient bundle F; j, =
Vik/Vik—1 has rank d¥. The bilinear form on C¢ induces isomorphisms F; j =~
‘F;/(i),Qr +1_p- By duality this gives a chain of vector bundle isomorphisms

Hom(}"i,k, ]:j,l) ~ HOI?(I(]:J»VJ7 ka) ~ Hom(}-a(j)’gr+1,l, fg(i)’2r+1,k)
which induce a linear Zs-action on
= P B  Hom(Fix Fio).

e, LSk<I<2rtl

Denote by G? the subbundle of anti-fixed points.
The following result is motivated by [32, Lemmas 8.1 and 8.2].

Lemma 5.2. Let fr € Ho g, k=1,...,7, and g € Mq . Then

(e fo)xg=n [(H fk<f.,k->> g(f.,o>EuGg<9">]
k=1

where 77 : HS, (FIGe ./) — HE, (pt) is the pushforward to a point and Eugs (G7) is
the G7 -equivariant Euler class of G — Fla /.

Proof. The right-hand side of the desired equality can be computed by localization
with respect to the maximal torus T, C GZ. The T.-fixed points are those appearing
in the proof of (the r-fold iteration of) Theorem As the weights of Eugs (G7)
and Eug,, , (NRZ/RZo ,) at a T.-fixed point agree, the lemma follows. O
o X RZ by
Y7 ={(Us;m) € FIga o/ x RY [ ma(Uix) CUjg, Vi LHieQ, k=1,...,r}.
It has a GZ-equivariant fundamental class
[X7] € HEo (FIGe o x RY) ~ HEo (FlZe /).

Define a GZ-stable subvariety of Flg..
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Lemma 5.3. The equality Eugs (G7) = [£7] holds in HE, (Flge /).
Proof. This can be proved in the same way as [32], Lemma 8.3]. U

The duality structure on Repg(Q) defines an involution of the Auslander-Reiten
quiver T'g, sending an indecomposable I to S(I). This involution preserves the
levels of I'g which, being in type A, are exactly the orbits of Auslander-Reiten
translation. It follows that each level contains at most one fixed point of the duality.

Fix a partition A = A~ LU A% U AT such that A is fixed pointwise by S and
S(A™) = AT. Without loss of generality we assume that 3, < S(3,) for all
Bu € A7 Write A~ = {8y, < -+ < Bu.}.

Lemma 5.4. Every self-dual representation M has a unique isotropic filtration

0=UycU,cCc---cU.CM
OMa; .
such that U; JU;_1 ~ Iﬂuj Toi=1,...,r, and MJJU, ~ ®BueA” Igim“.
Proof. Any self-dual representation M can be written as an orthogonal direct sum
of indecomposable self-dual representations, that is, self-dual representations which
cannot be written as the orthogonal direct sum of two non-trivial self-dual repre-
sentations. In type A this means that M can be written uniquely as

M=EHI,) e P 15 (32)
=1 BuEAT

Setting U; = @;_, I;eu:n“l gives a filtration with the desired properties.

Suppose that U, C M is another filtration with the desired properties. By a
standard argument the assumption §,, < --- < f,, implies that U, = U,. So
it suffices to show that there is a unique isotropic embedding U, — M. To do
so, first note that Hom(Ig,Ig:) = 0 for all § € A~ and ' € A°. Indeed, if
Hom(Ig,Ip) # 0 then Hom(Ig,S(Ig)) # 0. Hence g > " and 8’ > S(8), whence
S(B) < B, a contradiction. Using this, it follows that the summand U; C U, must
map isomorphically onto Ig'iml. While Uy C U, could potentially map non-trivially
to S(I,, ), this would contradict the condition that Uz be isotropic. Hence Uz

must map isomorphically onto I?Zl“l &3] IS?::“"‘. Continuing in this way we see that
U, — M is indeed the canonical isotropic embedding. O

We derive two results using Lemma[5.4] The first is an extension to the self-dual
setting of a theorem of Reineke [30] Theorem 2.2] and appears in the unpublished
thesis of Lovett [24]. For M € R? let n, C 71, C RZ be the GZ-orbit and GZ-orbit
closure of M. Elements of 719, are called self-dual degenerations of M.

Theorem 5.5 ([24]). Let M be a self-dual representation. In the notation of
Lemma set dJ = m;B;, j=1,...,r, and ¢ = dim M JU,. Then the canonical
morphism w§; : X7 = RZ is a G -equivariant resolution of n3;.

Proof. When @ is of type Az the statement is proved in [25] Proposition 2.3]. For
the general case we use a modification of Reineke’s resolution.

It is clear that X7 is smooth and that 7§, is proper and equivariant. We prove
that 7§, (37) =7%,;. If N € n,(X7), then there is an isotropic filtration

0=VWCcV,C---CV,CN, dimV;/V;_; = d'

Since Extl(Ig,Ig) = 0 for all 8 € A, Voigt’s lemma implies that V;/V;_; is a
degeneration of I;em”i. Similarly, Extl(Ig,Ig/) =0 for all 5,58 € A? and N)JV,.

i

is a degeneration of @ﬁueAaIgim“. Applying [30, Lemma 2.3] we conclude that
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N is a degeneration of M. It is proved in [I0, Theorem 2.6] that two self-dual
representations are isometric if and only if they are isomorphic. From this it follows
that in fact N is a self-dual degeneration of M. Hence 1§, C 7$,(X7) C 7%,
implying 7§, (27) = 7%,.
To prove that 7§, is a resolution it remains to show that it restricts to a bijection
over 77;. Consider an arbitrary isotropic filtration
0=UycU, C---CU.CM, dimU;/U;_; = d'.

As above, U;/U;_1 and M /U, are degenerations of I?m“ and @BueA“Igm"a re-
spectively. Since Hom(/g,,I5,) = 0 if i < j we can apply the second part of [30,
Lemma 2.3] to conclude that U; /U;_1 ~ Ig?:?”i and MU, ~ @3, e Igi’”“. Lemma
now implies that U, C M is the canonical filtration. O

We can now prove an analogue of [32, Theorem 10.1].

Corollary 5.6. Let M be a self-dual representation. Then, in the notation of
Lemmal[5.]) the equality

[ﬁ?\l] = (177Lu1 5u1 e lmurﬁur) * 1%ﬁueAO’ My B

holds in Mg.
Proof. Theorem implies that 72[27] = [79;]. The desired equality then follows
from Lemmas [5.2] and 5.3 O

Remark. The class [7%,] € HE. (R?) is the Thom polynomial of the orbit n§, C RZ.
These classes play the role of the quiver polynomials of [2] in the self-dual setting.

Turning to the second application of Lemma [5.4] define putative orientifold DT
invariants Q7 to be one if e € A”Q’+ is a sum of pairwise distinct positive roots,
each of which is the dimension vector of an indecomposable representation which
admits a self-dual structure. Otherwise, set 0 = 0. By convention 2§ = 1. Set
also IIT =IINZ" and II = II N A°. Let h = 0 in the hyperbolic case and h = 1
otherwise. Recall that Ar, (q%ﬂf) = (q%t; @)oo = E4(t) is the quantum dilogarithm.

Theorem 5.7. The identity

-
JIRAGEDIN I qu(q*%”‘t“)*fozﬁeﬂﬁgzﬁeﬂﬁ —

acll+ wCIle aem
—
3 B A ) —1.8 o > =B
[T B s 3 (TLEata i) Tl Bt b)) w05 6o
BEA— TCA° Bern pEm
holds in SQ.

Proof. It is straightforward to construct a o-compatible stability fsmp whose stable
representations are the simple representations and whose order by increasing slope
agrees with <. The existence of unique self-dual Harder-Narasimhan filtrations
gives a factorization of the identity characteristic function in the finite field Hall
module of Q. Applying the Hall module integration map [41] to this factorization
gives the left-hand side of the equality. Lemma [5.4] gives a second factorization of
identity characteristic function, the integral of which is the right-hand side. O

Theorem can also be proved using Kazarian spectral sequences, as in [32]
§6]. The new ingredient is a self-dual version of Voigt’s lemma, stating that the
codimension of 1§, C Ry, is dime Ext' (M, M)®. This can be proved using the
cochain description of Ext! (M, M)? given in [42, Proposition 3.3].
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5.3. Type A CoHM. Let Q be of type A. We begin with an example of rank two.

Example. Consider orthogonal representations of the Ay quiver

— >
1 2

Set Qf = {1}. For f € HQ,(d1,d) and g € Mg (e,e) We have

f*g: Z 7T'(f(xlv"'axdlvyla"'aydz)g(zl7"'726)x

LISEL PR

H1<i<j<d1(_$i — ;) HZ 1 Hdl (26 — z3) )

dz di

[T~ e TLTT-w 0 T TLCo - =

k=11i=1 l=11i=1 m=1 k=1

Since 2’ x 1§ = z* the set {z' x 1J};>0 spans Mg, 1,1)- Let B2 be the non-simple
indecomposable and let v; = 3 € Hqg,1,1) be a generator of ’ng). Then

2y x19 = —(2 29 ) —2—2% v; x18 = (-1 .
@ oh) 21§ =~ + ) T2TR e (A2

Hence {(z° - 27) % 18}i>j spans (21 + 22)Q[z1, 22]°2. To generate the remainder of
Mg, (2,2) = Q21, 22] 2 it suffices to include {v2;41 % 1§ }i>0. In three variables
(2" a7 - ) % 1§ = — (21 + 22) (21 + 23) (22 + 23)S(i.j.k) — 65

which freely generate (2 + 22)(21 + 23)(22 + 23)Q[21, 22, 23]©2. We also have
(xi~yv)*1” = (=1’ zi(zj fzj)(z1+22)(zl+23)f
PO (s —m)(m —zs) (e —zg) TR

(e = ) (o1 + 22)(za + 22) + 24 — Ao + ) (20 +21)|

Using these calculations, direct verification shows that up to AUQ’+-degree (3,3) the
*-action Hgl) Xt ’Hgb)")dd XS 18 — My is an isomorphism in le(Veth)A3+,

where (37 is the simple root associated to 1 € Q. N

These calculations can be generalized as follows. For each 5 € A% consider

ME = @ HE, (Rup){EMmB)/2},  ME= = @ HE, (R7F{EMB)/2}

n>0 n>0

as modules over ’Hg> or ,Hga),:. If I does not admit a self-dual structure, then n

is necessarily even. We have Mg 1 M L, compatibly with Hg 1y L, Where
the duality structure on Lg is sy, = —1 in the hyperbolic case and sy, = 1 in the

Y,

non-hyperbolic case. The structure of ./\/lg is therefore determined by Theorem
There is also a surjective restriction map p? : M g ) M g )= that is a module

homomorphism over p : Hgﬂ — "Hé?m’z. Define a section of p° by

F+l 22041 19 — 1/J( 2141 | .j-2i1+1> * 1%’ in type B
wa . j2i1+1 . 27,l+1 * 10’ — w( 2i1+1 .j2il+1) * 18’ in type C
201 .. 211 * 17 w( 2y, , 211) * 13, in type D.

The map 7 is a module embedding over the restriction of 1 to the appropriate
even/odd subalgebra of ’Hgﬂ’g. Write M(QB) for the image of ¢ in types C' or D
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and write Mg)’+ for the image in type B. In summary, we have a commutative
diagram of module homomorphisms over the corresponding algebra morphisms
wo’

-

%4

07 e
Mg ~— MY —— MP=
(33)
res [Z

Mg,

The map res is a combination of the restrictions from Lemma [1.1
In the non-hyperbolic case, for each subset @ C 7w C A let

(m) _ (8) (8),+
Mg =@My @ @My
Bgm BeT
This is a rank one free module over
HG = RHY @ RHY " He
BEm BeET

with generator ®ge~13. In the hyperbolic case the free ’ng)—module M(QG) is still
defined.

Theorem 5.8. Let (Q,0) be a Dynkin quiver of type A. Then the <-ordered CoHA
action maps

+—tw
N e Hy' RS P 07 MG — Mg (34)
o CrCIIo
and .
—tw
N pen HY B P Q7 MG — Mg (35)
oCrCA°

are isomorphisms in D'*(Vectz) o+
Q

Proof. Consider the map (34). Let f; € H(;j) for a; € II*. Taking into ac-
count the ordering Theorem E gives (f1---fr) x 15 = H;:1 fj, the multiplica-
tion on the right-hand side being polynomial multiplication. Hence the image of
@getﬁ+7-{,g ) [gS-tw 17 under is the symmetric polynomials in Qar variables. In
particular, in type Az, (where Qf = @) the map is an isomorphism. In type

Agny1 the direct sum P o QF - ./\/lg) consists of symmetric polynomials in Qf

variables. Again by Theorem acting on this subspace by @:Etﬁ+7-[(5 ) gives the
remainder of M.

To show that is an isomorphism we proceed as in the proof of [32, Theorem
11.2]. To prove injectivity, fix non-negative integers {m,, } Bu €A~ and {mg, }g,cA--
This determines a self-dual representation M via equation . Define mg(,;) =

my,; for each B,; € A™ and let e = dim M. The isometry group of M is homotopy

equivalent to
T
[T6tm., x I G
Jj=1 Bu€EAT
where Gj¥ is a symplectic group in the hyperbolic case and an orthogonal group
otherwise.
Define sets

Ti kv 1€Qo, k=1,...,|A, v=1,...,my,
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by requiring |7; k| = 1 if dim([lguk )i =1 and 7; ., = @ otherwise, and
TigaU---U 727\A|7muw ={1,...,¢e}

as ordered sets. Let {¢;1,..., €., } be a standard linear basis of C* and let Ay, be

the indecomposable representation of type 3,, spanned by {€; j}icq,,je7 ., Set

[A] Tuy

- DD e

k=1 v=1
Define a self-dual structure on ®? by requiring that
(i) Ak, ® Ag(k),n be hyperbolic if up € A™,
(i) Ak @ Ak»L%Hv be hyperbolic if uy, € A%, v =1,..., Lmé‘kj, and
(iii) Ak,m,, have its canonical self-dual structure if m,, is odd.

Then ®7 and M are isometric self-dual representations. The restriction homomor-
phism

EQUUW?—+anOﬂHf:fP(BAu%ﬂ¢”D
can be computed explicitly using Lemma 1.1} Identifying the groups H, 'L, (R?) and
H*(BAutg(®?)) with appropriately symmetrlc polynomials in variables {Zl ;i and
{0u.v}, respectively, we have

(i) ifi € Qf and j € T; u.v, then

Ouw, ifueAt,
—0Opp, fueA™,

0
Zij Oy, HueA%andj=1,. vauJ’
0

—0uv, if u e A° andj: I_muJ'i_l \_Tquv
0, ifue A and j =m,, is odd
and
(i) if ¢ € QF and j € Tj .y, then

Ouws  if u€ AT,

Zij = —Quﬂ,, if u e A_,
O, ifueA’.

Let f; € 'ngu] NHo, M, Bu, and g, € Mg“). We claim that the image of
(fl XMW ... W fr) S-tw ® Tu (36)

uEAT
under the map . is non-zero. It is enough to verify that its image under the
restriction Hg, (R7) — H*(BAutg(®7)) is non-zero. Since 77 : £ — R is a
resolution of 779, (Theorem . there is a single T.-fixed point above ®7 € RJ.
Hence the restriction of the image of (36]) consists of a single term and is equal to

H fiOis, )05 Ois,,)ma,) H gu(0 ey 0580 m K (2) 20 (37)
uEAT

Here K" "’(z)|z,_,9 is the r-fold iterated kernel of the CoHM with the above sub-
stitutions made. Corollary implies that ("¢ (2)|20 1s equal to the image of
(73] in H*(BAuts(®7)), which in turn is equal to Euyeg(ar)(Nre/ng,). That the
latter class is non-zero can be seen by a modification of the proof of [13, Corollary
3.15], which deals with the ordinary case. Hence is non-zero. This proves that
the restriction of the map to the summand spanned by elements of the form
is injective. This is enough to show that the map itself is injective, since if
the image of two or more elements of the form (36), with different {m,,, } leading to
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the same total dimension vector, were linearly dependent, we can restrict to various
orbits 775 to derive a contradiction.

We can now complete the proof. Together with the first part of the theorem,
Theorem implies the equality of the Hilbert-Poincaré series of the domain and
codomain of the map . Since we have already shown that is injective, it
follows that it is in fact an isomorphism of graded vector spaces. O

The isomorphism is the PBW factorization associated to the stability
Osimp from the proof of Theorem We expect a similar statement for the iso-
morphism , with bsimp replaced by a o-compatible stability findec Whose stable
objects are the indecomposables and whose order by increasing slope is opposite to
<. Without requiring o-compatibility, such a stability is known to exist. In many
cases (e.g. the equioriented case) we can check that it may be chosen o-compatibly.
When 6;n4ec indeed exists, the (stability dependent) numbers Q2 appearing in Theo-
rem are consistent with the natural generalization of Conjecture to Dynkin
quivers.
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