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§1. Introduction and motivation
Starting with Hwang-Mok [HM98], a program of study on uniruled projective
manifolds from a differential-geometric perspective was launched based on the
geometry of their varieties of minimal rational tangents (VMRTs). To explain the
latter notion, fixing an ample line bundle L on a uniruled projective manifold X we
introduced the notion of a minimal rational curve, by which we mean a free rational
curve onX of minimal degree with respect to L among all free rational curves onX.
Denoting by Chow(X) the Chow space of X and by Chow♯(X) its normalization,
a minimal rational component K on X is a nonsingular Zariski dense open subset
of some irreducible component Q of Chow♯(X) such that each member of Q is a
rational 1-cycle and such that K ⊂ Q is precisely the subset consisting of minimal
rational curves. The VMRT of a uniruled projective manifold (X,K) equipped with
a minimal rational component, denoted by Cx(X) ⊂ PTx(X) at a general point
x ∈ X, is the collection of projectivizations of vectors tangent to minimal rational
curves passing through x. It is our perspective that, given (X,K), the underlying
VMRT structure π : C (X) → X is a rich geometric object which encodes a lot of
the information aboutX as a projective manifold. (For a reference to the early part
of the theory we refer the reader to Hwang-Mok [HM99]). Assuming furthermore
that X is of Picard number 1 and that the Gauss map of Cx(X) ⊂ PTx(X) is
immersive at a general smooth point, we proved in Hwang-Mok [HM01] a general
result called the Cartan-Fubini Extension Theorem ascertaining that X is uniquely
determined as a projective manifold by π|U : C (X)|U → U for any nonempty
connected open subset U of X in the complex topology. In other words, given
Fano manifolds (X,K) and (X ′,K′) of Picard number 1 equipped with minimal
rational components, nonempty connected open subsets U ⊂ X and U ′ ⊂ X ′, and

a biholomorphic map f : U
∼=−→ U ′ such that [df ](C (X)|U) = C (X ′)|U ′ , we proved

that f extends to a global biholomorphism F : X
∼=−→ X ′.

The study of π : C (X) → X, C (X) ⊂ PT (X) as a fibered subspace of PT (X)
leads to a rich geometric theory, especially when Cx(X) ⊂ PTx(X) are mutually
projectively equivalent to each other as x varies over general points of X. In
the latter case Hwang [Hw10] [Hw12] [Hw15] studied the Cartanian geometry of
isotrivial families of VMRTs and obtained quite a number of rigidity results notably
concerning the flatness of the VMRT structure, where one works primarily with the
geometric structure defined on connected open subsets in the complex topology. On
the other hand, when we fix a uniruled projective manifold (X,K), we have the class
of projective subvarieties ofX uniruled byK. Especially, restricting π : C (X) → X
to some appropriate connected open subset W ⊂ X and considering a submanifold
S ⊂ W such that the intersection Cx(S) := Cx(X) ∩ PTx(S) for x ∈ U defines a
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sub-VMRT structure (cf.Mok-Zhang [MZ17, §5]), the study of S ⊂ W ⊂ X may
be regarded as an analogue of the study of Riemannian submanifolds of a given
Riemannian manifold. Here, a principal rigidity problem is the characterization
of special uniruled projective subvarieties Z ⊂ X among S ⊂ W ⊂ X on which
the sub-VMRT structure ϖ : C (S) → S is in some precise sense modeled on(
Cx(Z) ⊂ Cx(X)

)
. Classical examples of such a rigidity problem include the

question of characterizing Grassmann submanifolds of Grassmann manifolds, in
which Z := G(r, s) ⊂ G(p, q) =: X, where r ≤ p, s ≤ q,min(r, s) ≥ 2, and
G(r, s) ⊂ G(p, q) is the obvious inclusion map. In such examples for rational
homogeneous spaces X = G/P of Picard number 1, realizing X as a projective
submanifold by means of the first canonical embedding, Z ⊂ X is a special smooth
linear section uniruled by projective lines, and C (Z) = C (X) ∩ PT (Z) underlies
the VMRT structure of Z equipped with the uniruling by projective lines of X
lying on Z.

When X = G/P is Hermitian symmetric, and Z ⊂ X is a smooth Schubert
cycle, the problem of recognizing Z ⊂ X from the isomorphism class of its tangent
spaces modulo G-action is a crucial step in determining whether Z ⊂ X is Schur
rigid in the sense that for any integer r ≥ 1, any algebraic cycle homologous to rZ
is necessarily a sum γ1Z + · · · + γrZ, γk ∈ G for 1 ≤ k ≤ r, and the problem on
Schur rigidity for smooth Schubert cycles was solved in special cases by Walters
[Wa97] and Bryant [Br01] and in general by Hong [Ho07]. The same problem for
singular Schubert cycles in case the ambient space is a Grassmannian was treated
by Hong [Ho05] and the general case where X is an irreducible Hermitian sym-
metric space of the compact type is settled by Robles-The [RT12]. In the cited
works crucial to the proofs are algebraic results ascertaining the vanishing of cer-
tain cohomology groups defined in terms of Lie algebras. From the perspective
of the theory of VMRTs it is natural to consider the relevant recognition prob-
lem as a differential-geometric problem. In this vein Hong-Mok [Ho10] extended
Cartan-Fubini Extension Theorem to the non-equidimensional situation for germs
f : (Z, z0) → (X;x0) of VMRT-respecting maps under the hypotheses that a gen-
eral point [α] of [df ](Cz(Z)) ⊂ Cf(z)(X) is a smooth point and that a certain non-
degeneracy condition on the second fundamental form of Cx(X) ⊂ PTx(X) at [α] is
satisfied. When the rational homogeneous space X of Picard number 1 is defined
by a marked Dynkin diagram (D(g), γ) and Z ⊂ X is defined by a marked Dynkin
sub-diagram (D(g0), γ0) of (D(g), γ), applying non-equidimensional Cartan-Fubini
extension Hong-Mok [HoM10] proved that f extends to a standard embedding in
the case where Z is nonlinear and the marking is at a long simple root (cf. also Mok
[Mo08a] for the case of the Grassmannian). The same problem for the maximal
linear case and for the case of markings at a short simple root were settled by
Hong-Park [HoP11]. Using the geometric theory of VMRTs, Hong-Mok [HoM13]
settled the problem on homological rigidity (i.e., the special case of Schur rigidity
with the restriction r = 1) for smooth Schubert cycles Z ⊂ X. In Mok-Zhang
[MZ17] we defined admissible pairs (X0, X) of rational homogeneous spaces of Pi-
card number 1 and the notion of rigid pairs (X0, X) among them, and introduced
the general theory of sub-VMRT structures on uniruled projective manifolds. Es-
pecially, when X0 ⊂ X is nonlinear and (X0, X) is of sub-diagram type we proved
rigidity of the pair (X0, X) in the sense that X0 ⊂ X can be recognized by the
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isomorphism class of tangent subspaces Tx(X0) modulo the action of Aut(X).

In this article, by way of the examination of a special class of singular Schu-
bert cycles on irreducible Hermitian symmetric spaces of the compact type, we
explore the application of the general theory of sub-VMRT structures of Mok-
Zhang [MZ17] to rigidity problems. Specifically we consider germs of complex
submanifolds modeled on full cones of minimal rational curves irreducible Her-
mitian symmetric spaces X of rank ≥ 2 other than Lagrangian Grassmannians.
Here by a full cone of minimal rational curves we mean the union V = V(x) of
minimal rational curves emanating from a point x ∈ X, noting that the associated
sub-VMRT structures ϖ : C (S) → S have singular and possibly reducible fibers.
For these Schubert cycles V ⊂ X we apply the methods and results of [MZ17] to
study sub-VMRT structures ϖ : C (S) → S on complex submanifolds S ⊂ W of
connected open subsets W ⊂ X in the complex topology. Since the problem of
Schur rigidity on possibly singular Schubert cycles Z ⊂ X has been completely
settled in Robles-The [RT12] in the case where X is an irreducible Hermitian sym-
metric space of the compact type, our focus is rather on the methodology, proving
results by means of checking nondegeneracy conditions arising from the theory of
sub-VMRT structures, a method that is potentially applicable to rational homo-
geneous spaces and horospherical varieties of Picard number 1. It can be checked
from [RT12] that with the exception of the case where X is the hyperquadric Qn,
n ≥ 3, or the rank-2 Grassmann manifold G(2, q), q ≥ 2, Schur rigidity holds
for any full cone V = V(x) ⊂ X of minimal rational curves (including the La-
grangian Grassmannian). We are interested in general in the Recognition Problem
for Schubert cycles on rational homogeneous spaces of Picard number 1 and, by
way of illustration, we will show that in the special cases considered in the current
article, methods of [MZ17] apply to prove results of linear saturation and algebraic-
ity of S ⊂ W modeled on V ⊂ X, and that, under the additional assumption that
the sub-VMRT structure on S ⊂ W is intrinsically flat, it remains the case that
S is linearly saturated and algebraic (as a germ) for the cases of the hyperquadric
and rank-2 Grassmannians.

On top of providing examples for illustration, the set of full cones of minimal
rational curves V is also important for the study of holomorphic isometries of com-
plex unit balls into irreducible bounded symmetric domains. In fact, taking Ω ⊂ X
to be the Hermitian symmetric space of the noncompact type dual to X and em-
bedded in X by means of the Borel embedding, and taking q ∈ ∂Ω to be a regular
boundary point, the author has proven in [Mo16a] that V (q) := V(q) ∩ Ω is the
image of a holomorphic isometric embedding of the complex hyperbolic space form
into Ω equipped with a canonical Kähler-Einstein metric, and Recognition Prob-
lem for V ⊂ X enters into the picture in the uniqueness question for holomorphic
isometric embedding of the complex unit ball of maximal admissible dimension. In
conjunction with results of the current article, the Recognition Problem for V ⊂ X
has been settled by differential-geometric means by Mok-Yang [MY17] by way of
the Thickening Lemma of Mok-Zhang [MZ17, Proposition 6.1] and a process of re-
construction analogous to that in Mok [Mo08a] and Hong-Mok [HoM10] [HoM13].
We believe that the theory of sub-VMRT structures on uniruled projective mani-
folds, beyond its applicability to the study of uniruled projective subvarieties, also
provides a useful link for the study of transcendental problems such as those on
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bounded symmetric domains. For the explanation of this perspective we refer the
reader to Mok [Mo16b] on the theory of geometric structures and sub-structures.

§2. Background materials and results
We provide here a number of basic definitions and results taken from Mok-Zhang
[MZ17] necessary for the current article. Let (X,K) be a uniruled projective mani-
fold equipped with a minimal rational component, K ⊂ Q be the compactification
of K by the normalization of some Chow component of X, B ⊂ X be the bad locus
of (X,K), i.e., the minimal subset ofX outside of which every member ofQ passing
through x must necessarily belong to K, and π : C (X) → X, C (X) ⊂ PT (X −B)
be the VMRT structure of (X,K). We denote by B′ ⊃ B the minimal subset
outside of which the tangent map is a birational finite morphism (cf.Mok-Zhang
[MZ17,§5]) and call B the enhanced bad locus of (X,K). Let W ⊂ X − B′ be a
connected open subset in the complex topology, S ⊂ W be a complex submanifold,
and define C (S) := C (X)∩PT (S). We have the following definition of sub-VMRT
structures given in Mok-Zhang [MZ17, Definition 5.1].

Definition 2.1 We say that ϖ := π|C (S) : C (S) → S is a sub-VMRT structure on
(X,K) if and only if (a) the restriction of ϖ to each irreducible component of C (S)
is surjective, and (b) at a general point x ∈ S and for any irreducible component
Γx of Cx(S), we have Γx ̸⊂ Sing(Cx(X)).

Next we will need to consider pairs consisting of VMRTs and their linear sec-
tions. We introduce the notion of proper pairs of projective subvarieties, as follows
(cf.Mok-Zhang [MZ17, Definition 5.2]).

Definition 2.2. Let V be a Euclidean space and A ⊂ P(V ) be an irreducible
subvariety. We say that (B,A) is a proper pair if and only if B is a linear section
of A, and for each irreducible component Γ of B, Γ ̸⊂ Sing(A).

Note that for a uniruled projective manifold X and a complex submanifold
S ⊂ W ⊂ X−B′ inheriting a sub-VMRT structure ϖ : C (S) → S as in Definition
2.1, at a general point x ∈ S, (Cx(S),Cx(X)) is a proper pair of subvarieties.
We introduce next two nondegeneracy conditions in terms of second fundamental
forms of VMRTs. They concern nondegeneracy for mappings and nondegeneracy
for substructures. For the formulation recall that for a finite-dimensional vector
space V and for a subset Z ⊂ P(V ), denoting by λ : V −{0} → P(V ) the canonical
projection we write Z̃ := λ−1(Z) ⊂ V −{0} for the affinization of Z. The following
two definitions are adaptations of Mok-Zhang [MZ17, Definition 5.3].

Definition 2.3. Let V be a finite-dimensional vector space, E ( V be a vector
subspace and (B,A) be a proper pair of projective subvarieties in P(V ), B :=
A ∩ P(E) ⊂ A ⊂ P(V ) . Assume that A is irreducible. Let ξ ∈ B̃ be a smooth
point of both Ã and B̃ , and let σ : S2Tξ(Ã) → V/Tξ(Ã) be the second fundamental

form of Ã in V with respect to the Euclidean flat connection on V . We say that
(B,A) is nondegenerate for mappings if and only if for each irreducible component
Γ of B and for a general point χ ∈ Γ, we have{

η ∈ Tχ(Ã) : σ(η, ξ) = 0 for any ξ ∈ Tχ(B̃)
}
= Cχ .

Definition 2.4. In the notation of Definition 2.3 write furthermore V ′ ⊂ V for
the linear span of Ã and define E ′ := E∩V ′. Let ν : V/Tξ(Ã) → V/(Tξ(Ã)+E ′) be
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the canonical projection and define τ : S2Tξ(Ã) → V/(Tξ(Ã) +E ′) by τ := ν ◦ σ .
We say that (B,A;E) is nondegenerate for substructures if and only if for each
irreducible component Γ of B and for a general point χ ∈ Γ, we have{

η ∈ Tχ(Ã) : τ(η, ξ) = 0 for any ξ ∈ Tχ(B̃)
}
= Tχ(B̃) .

When E ′ = E ∩ V ′ is the same as the linear span of B̃ we drop the reference
to E, with the understanding that the projection map ν is defined by using the
linear span of B̃ as E ′.

We will use interchangeably the second fundamental form of Ã in V , and the
projective second fundamental form of A in PV , denoting both by σ. More pre-
cisely, for a smooth point χ of A, we have T[χ](V ) ∼= V/Cχ, and, for ξ, η ∈ Tχ(Ã),

ξ′ := ξ + Cχ ∈ V/Cχ, η′ := η + Cχ ∈ V/Cχ, we have σχ : S2Tχ(Ã) → V/Tχ(Ã),

σ[χ] : S2T[χ](A) → T[χ](PV )/T[χ](A) = (V/Cχ)/(Tχ(Ã)/Cχ) ∼= V/Tχ(Ã), and,
identifying the two normal spaces by means of the latter isomorphism, we have
σ[χ](ξ

′, η′) = σχ(ξ, η). The same consideration applies analogously to the vector-

valued quadratic form τχ : S2Tχ(Ã) → V/(Tχ(Ã) + E ′) and its projectivized form

τ[χ] : S
2Tχ(A) → T[χ](PV )/(T[χ](A)+T[χ](P(E ′))) = (V/Cχ)/((Tχ(Ã)+E ′)/Cχ) ∼=

V/(Tχ(Ã) + E ′), and we have τ[χ](ξ
′, η′) = τχ(ξ, η).

For the study of rigidity properties of sub-VMRT structures, on top of non-
degeneracy conditions formulated in terms of second fundamental forms, we also
need a condition regarding the intersection Cx(S) := Cx(X)∩PTx(S), to be called
Condition (T), as follows (cf. [MZ17, Definition 5.4]).

Definition 2.5. Let ϖ : C (S) → S, C (S) := C (X) ∩ PT (S), be a sub-
VMRT structure on S ⊂ W ⊂ X−B′ as in Definition 2.1. For a point x ∈ S,
and [α] ∈ Reg(Cx(S)) ∩ Reg(Cx(X)), we say that (Cx(S), [α]), or equivalently

(C̃x(S), α), satisfies Condition (T) if and only if Tα(C̃x(S)) = Tα(C̃x(X))∩Tx(S).

We say that ϖ : C (S) → S satisfies Condition (T) at x if and only if (C̃x(S), [α])
satisfies Condition (T) for a general point [α] of each irreducible component of
Reg(Cx(S)) ∩ Reg(Cx(X)). We say that ϖ : C (S) → S satisfies Condition (T) if
and only if it satisfies the condition at a general point x ∈ S.

The following two results are the principal results of Mok-Zhang [MZ17] rel-
evant to the current article which are adaptations of [MZ17, Theorem 1.4] and
[MZ17, Main Theorem 2]. In the notation of the preceding paragraphs recall that
ϖ := π

∣∣
C (S)

, and ϖ : C (S) → S is a sub-VMRT structure.

Theorem 2.1. Suppose the VMRT structure ϖ : C (S) → S on S ⊂ W ⊂
X −B′ satisfies Condition (T). Assume furthermore that for a general point x on
S and for each of the irreducible components Γk,x of Cx(S), 1 ≤ k ≤ m, the pair
(Γk,x,Cx(X)) is nondegenerate for substructures. Then, S is rationally saturated
with respect to (X,K).

By the concluding sentence of Theorem 2.1 we mean that for any minimal
rational curve ℓ belonging to K such that ℓ is tangent to S at some point x ∈ ℓ∩S,
the germ (ℓ; x) of holomorphic curve must lie on (S;x). When the ambient uniruled
projective X is of Picard number 1 (and hence Fano) and uniruled by lines, i.e., by
minimal rational curves whose homology classes are generators of H2(X,Z) ∼= Z,
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we have in [MZ17, Main Theorem 2] the following algebraicity result for germs of
sub-VMRT structures on X.

Theorem 2.2. In Theorem 2.1 suppose furthermore that (X,K) is a projective
manifold of Picard number 1 uniruled by lines and that the distribution D on
S defined by Dx := Span(C̃x(S)) is bracket generating. Then, there exists an
irreducible subvariety Z ⊂ X such that S ⊂ Z and such that dim(Z) = dim(S).

Note that the bracket-generating condition on D is trivially satisfied whenever
Cx(S) ⊂ PTx(S) is linearly nondegenerate at a general point x ∈ S. When (X,K)
is a Fano manifold equipped with a uniruling by lines, a rationally saturated sub-
VMRT structure S on X is said to be linearly saturated.

§3. Sub-VMRTs structures modeled on full cones of minimal rational
curves in the Hermitian symmetric case
We discuss here some examples on which Main Theorem 2 and its proof apply
to show that sub-VMRT structures modeled on them are algebraic, possibly un-
der additional assumptions. These are subvarieties with isolated singularities of
irreducible Hermitian symmetric spaces of the compact type. They are examples
of singular Schubert cycles for which methods of VMRT geometry especially sub-
VMRT structures apply to study rigidity problems in the spirit of Mok [Mo08a],
Hong-Mok [HoM10] [HoM13] and Mok-Zhang [MZ17], and they are also partic-
ularly interesting in view of their relation to holomorphic isometries in Kähler
geometry as in Mok [Mo16a]. We will see from these examples that in case nonde-
generacy of substructures fails, it may still happen that underlying complex sub-
manifolds S ⊂ W of sub-VMRT structures arising from VMRT-respecting maps
remain always linearly saturated and algebraic as germs of manifolds.

Let (X,K) be an irreducible Hermitian symmetric space of the compact type of
rank ≥ 2, equipped with the uniruling by projective lines. Write X = G/P , where
G is the identity component of the group Aut(X) of biholomorphic automorphisms
and P ⊂ G is a parabolic subgroup. Let x ∈ X and denote by V(x) the union of
minimal rational curves passing through x. Under the natural action of G, V(x) is
fixed by γ ∈ G if and only if γ ∈ P , from which it follows that V(x) is a Schubert
cycle. At a point y ∈ V(x) distinct from x let ℓ be the projective line joining x and
y, Ty(ℓ) := Cα and consider Cy(V(x)) := PTy(V(x))∩Cy(X). We may assume that
x and y lie on a Harish-Chandra coordinate chart so that Ty and Tx are identified by
parallel transport with respect to the Euclidean flat connection. Hence, also Cy(X)
and Cx(X) are identified with each other. Then, ξ ∈ Cy(V(x)) if and only if there
exists a projective line ℓ′ on V(x) passing through y such that Ty(ℓ

′) = Cξ. For [ξ] ̸=
[αy] this occurs if and only if there exists a projective plane Π containing y such that
Ty(Π) = Cαy+Cξ. We have Ty(V(x)) = Pαy since Harish-Chandra coordinates are
privileged coordinates (cf.Mok-Zhang [MZ17, Definition 2.1]). Thus, Cy(V(x)) :=
P(Pαy) ∩ Cy(X). The pairs (Cy(V(x),Cy(X)) are thus constant along ℓ − {x} in
the Harish-Chandra coordinate chart, hence the pairs

(
Cy(V(x)) ⊂ Cy(X)

)
are

projectively equivalent to each other for y ∈ V(x) − {x}. When X = GIII(n, n)
are Lagrangian Grassmannians of rank n ≥ 2, Cy(V(x)) = {[αy]} is a single point.
At 0 ∈ X, let [α] ∈ C0(X) and define S[α] := P(Pα) ∩ C0(X). For X ̸∼= GIII(n, n)
we consider now sub-VMRT structures modeled on (V(x), X), i.e., on the pair
(S[α],C0(X)) for any [α] ∈ C0(X), and examine the question whether a sub-
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VMRT structure ϖ : C (S) → S modeled on (S[α],C0(X)) is necessarily linearly
saturated. As a preparation we prove

Lemma 3.1. Let X be an irreducible Hermitian symmetric space of rank ≥
2 not biholomorphic to a Lagrangian Grassmannian, 0 ∈ X, and [α] ∈ C0(X).
Then, S[α] ⊂ P(Pα) is the cone with vertex [α] over a projective variety J ⊂
PT[α](P(Pα)) = P(Pα/Cα) = PT[α](C0(X)) which is the VMRT of C0(X), i.e.,
J = C[α](C0(X)).

Proof Note that also the 3-dimensional hyperquadric Q3 is excluded as it is
biholomorphic to the Lagrangian Grassmannian of rank 2. To prove the lemma
observe that C0(X) admits at [α] a quadratic expansion (cf. Hwang-Mok [HM99,
(4.2)]). More precisely, writing T0(X) = Cα ⊕ Hα ⊕ Nα, where Cα ⊕ Hα = Pα,
there exists a quadratic vector-valued symmetric bilinear form τ on T[α](C0(X)) =
Pα/Cα ∼= Hα, τ : S2Hα → Nα, such that, identifying PT0(X) as the Zariski
closure of Hα ⊕ Nα, C0(X) is the Zariski closure of the graph of φ : Hα → Nα

given by φ(ξ) = τ(ξ, ξ). Thus, Hα ∩ C[α](X) is the union of complex lines Cξ
satisfying τ(ξ, ξ) = 0, and its Zariski closure S[α] is the union of projective lines
Λ on P(Pα/Cα) passing through [α]. Hence, S[α] is the cone with vertex [α] over
J = C[α](C0(X)) ⊂ PT[α](C0(X)) = P(Pα/Cα), as desired. �

Since C[α](C0(X)) ⊂ PT[α](C0(X)) is nonlinear and homogeneous, the second
fundamental form on C[α](C0(X)) has trivial kernels. From the description of S[α]

as a cone of projective lines over C[α](C0(X)) we have readily

Corollary 3.1. Denoting by ζ the second fundamental form of S[α] ⊂ P(Pα) at a
smooth point [β] ∈ S[α], we have Ker(ζ[β]( · , T[β](S[α]))) = T[β](Λ), where Λ is the
projective line on S[α] containing [α] and [β].

For the parabolic subgroup P at 0 ∈ X, let Q = Q(α) ⊂ P be the subgroup
which fixes [α] ∈ PT0(X). Let J ⊂ Q be a Levi factor, J ⊂ KC. Since J fixes [α] it
acts on V := T[α](P(Pα)). By examining the VMRTs, which are irreducible Hermi-
tian symmetric spaces of the compact type except in the case of the Grassmannian,
it follows that the action of J on V is irreducible excepting the Grassmannians
G(p, q) with p, q ≥ 2, where C[α](G(p, q)) = ς(Pp−1×Pq−1) for the Segre embedding
ς, in which case V splits into the direct sum of two irreducible components. For
the latter cases writing T0(G(p, q)) = U0 ⊗ V0, α = u ⊗ v, C[α](C0(G(p, q))) is the
disjoint union of a copy of Pp−2 and a copy of Pq−2, S[α] = P(U0⊗Cv)∪P(Cu⊗V0),
the two irreducible components intersecting at one point [α] = [u ⊗ v], and obvi-
ously S[α] is linearly nondegenerate in P(Pα), Pα = U0⊗Cv⊕Cu⊗V0. For X being
considered other than a Grassmannian of rank ≥ 2, S[α] ⊂ P(Pα) is necessarily
linearly nondegenerate by the irreducibility of V under the action of J .

§4 Algebraicity of germs of sub-VMRT structures modeled on certain
full cones of minimal rational curves
We consider now sub-VMRT structures ϖ : C (S) → S of the VMRT structure
π : C (X) → X on X where

(
Cx(S) ⊂ Cx(X)

)
is projectively equivalent to

(
S[α] ⊂

C0(X)
)
. Recall that X is irreducible and of rank ≥ 2, and X ̸∼= GIII(n, n), n ≥ 2.

We have

Theorem 4.1. The proper pair of projective subvarieties (S[α],C0(X)) of PT0(X)
is nondegenerate for substructures, excepting in the cases of hyperquadrics Qn,
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n ≥ 3, and of Grassmannians G(2, q), q ≥ 2, where nondegeneracy for substruc-
tures fails. Excluding those cases, any locally closed complex submanifold S ⊂ X
inheriting a sub-VMRT structure ϖ : C (S) → S with fibers

(
Cx(S) ⊂ Cx(X)

)
projectively equivalent to

(
S[α] ⊂ C0(X)

)
is linearly saturated, i.e., it is uniruled

by open subsets of projective lines. Moreover, there exists a subvariety Z ⊂ X such
that S ⊂ Z and dim(Z) = dim(S).

In the sequel for brevity we will say that S is algebraic as a germ of submanifold
(at any point x ∈ S) whenever there exists an irreducible subvariety Z ⊂ X such
that S ⊂ Z and dim(Z) = dim(S). For the proof of Theorem 4.1 we will study
the symmetric bilinear form τ[β] : S

2T[β](C0(X)) → T[β](PT0(X))
/
(T[β](C0(X)) +

T[β]P(Pα)) for the pair
(
S[α] ⊂ C0(X)

)
at a smooth point [β] ∈ S[α], τ[β] :=

ν[β] ◦ σ[β], following Definition 2.4. We prove first of all the following result related
to Corollary 3.1.

Proposition 4.1. Denoting by σ[β] : S
2T[β](C0(X)) → T[β](PT0(X))

/
(T[β](C0(X))

the second fundamental form at [β] ∈ Reg(S[α]), and by Λ ⊂ S[α] the projective
line containing [α] and [β], we have Ker(σ[β]( · , T[β](S[α]))) = T[β](Λ).

We will give a differential-geometric proof of Proposition 4.1 basing on a char-
acterization of projective submanifolds with parallel second fundamental form. On
PN denote by θ the Fubini-Study metric. We have

Theorem 4.2 (Nakagawa-Takagi [NT76]). A linearly nondegenerate Kähler pro-
jective submanifold (M, θ|M) ↪→ (PN , θ) has parallel second fundamental form
σ : S2TM → TPN |M/TM if and only if M is biholomorphic to a Hermitian symmet-
ric space (S, g) of the compact type of rank ≤ 2 and (M, θ|M) is either the image
of S under a holomorphic isometric minimal embedding, or S is a projective space
and M is its image under the Veronese embedding.

Note here that there is the projective second fundamental form σ, which is a
holomorphic bundle homomorphism, and there is also the second fundamental form
σ′ with respect to the Riemannian connection of the Kähler manifold (PT0(X), θ).
If we regard σ′ as taking values in the holomorphic normal bundle TPN |M/TM (in
place of the orthogonal complement of TM in TPN |M , then σ′ agrees with σ. Here
and in the sequel we use the same symbol σ for the two second fundamental forms,
noting that parallelism is always defined in terms of the Riemannian connection.
The relevance of Theorem 4.2 to VMRT geometry lies in the fact that the set
of linearly nondegenerate projective manifolds with parallel second fundamental
form is in one-to-one correspondence with the set of projective submanifolds given
by VMRTs of irreducible Hermitian symmetric spaces X of the compact type, as
given in Mok [Mo89, Appendix III.2].

Proof of Proposition 4.1 C0(X) ⊂ PT0(X) is the VMRT of an irreducible
Hermitian symmetric space of the compact type. C0(X) is itself a Hermitian sym-
metric space of rank 2 and C0(X) ⊂ PT0(X) is the minimal embedding, which is a
holomorphic isometric embedding into (PT0(X), θ) for some choice of Fubini-Study
metric θ. (C0(X), θ|C0(X)) is of nonnegative holomorphic bisectional curvature.

C0(X) ⊂ PT0(X) is a homogeneous projective submanifold uniruled by pro-
jective lines. For [β] ∈ Reg(S[α]), Λ := Λ(α, β) := P(Cα + Cβ) is a minimal
rational curve on C0(X), hence a standard rational curve. Let T (C0(X))|Λ ∼=
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O(2) ⊕ (O(1))a ⊕ Ob be the Grothendieck splitting over Λ, dim(S[α]) = 1 + a.
Denoting by Q(Λ) = O(2) ⊕ (O(1))a ⊂ T (C0(X))|Λ the positive part, we have
T[β](S[α]) = Q[β](Λ), the fiber of Q(Λ) at [β]. Moreover, we have

Lemma 4.1. Equipping C0(X) ⊂ PT0(X) with θ|C0(X), for the projective line
Λ ⊂ C0(X), Q(Λ) ⊂ T (C0(X))|Λ is a parallel vector subbundle.

Proof T ∗(C0(X))|Λ ∼= O(−2)⊕ (O(−1))a⊕Ob, and Ob ⊂ T ∗(C0(X))|Λ is a trivial
bundle equipped by restriction with a Hermitian metric of nonpositive curvature
in the sense of Griffiths, hence must be parallel due to monotonicity of curvatures
(cf.Mok [Mo89, (3.2)]). Thus, Q(Λ) ⊂ T (C0(X))|Λ, being the annihilator of Ob ⊂
T ∗(C0(X))|Λ must also be parallel, as desired. �
Proof of Proposition 4.1 cont. Recalling that S[α] = C0(X)∩P(Pα) ⊂ C0(X)
is a linear section smooth at [β], we have Ker(σ[β]( · , T[β](S[α]))) ∩ T[β](S[α]) =
Ker(ζ[β](·, T[β](S[α]))) = T[β](Λ), by Corollary 3.1. Suppose Ker(σ[β](·, T[β](S[α]))) ̸=
T[β](Λ). Since T[β](S[α]) = Q[β](Λ), there exists η ∈ T[β](C0(X)) − Q[β](Λ) such
that σ[β](η,Q[β](Λ)) = 0. For [γ] ∈ Λ define U[γ] := Ker(σ[γ]( · , Q[γ](Λ))) ⊂
T[γ](C0(X)). Since Q(Λ) ⊂ T (C0(X))|Λ is a parallel subbundle by Lemma 3.2,
and σ is parallel with respect to (PT0(X), θ) by Nakagawa-Takagi [NT76] (The-
orem 4.2 here), it follows that U ⊂ T (C0(X))|Λ is a parallel subbundle. By
Corollary 3.1 we have U ∩ Q(Λ) = T (Λ), hence U = T (Λ) ⊕ V for some paral-
lel subbundle V ⊂ T (C0(X))|Λ transversal to Q(Λ), so that V ∼= Oc for some
integer c, 1 ≤ c ≤ b. Hence σ[β] induces a parallel bundle homomorphism
φ : V ⊗ (T (C0(X))|Λ

/
Q(Λ)) → (T (PT0(X))

/
T (C0(X)))|Λ := N . Now from

Grothendieck splitting T (C0(X))|Λ
/
Q(Λ) ∼= Ob, while the normal bundle N , being

a quotient bundle of T (PT0(X))|Λ ∼= O(2)⊕O(1)n−2, is necessarily a direct sum of
positive line bundles over Λ. By comparing degrees the parallel bundle homomor-
phism φ : Oc⊗Ob → N must necessarily be 0. In particular, σ[β](η, ξ) = 0 for any
ξ ∈ T[β](C0(X)), contradicting the standard fact that Ker(σ[β]( · , T[β](C0(X)))) = 0
on the homogeneous nonlinear submanifold C0(X) ⊂ PT0(X), proving Proposition
4.1. �
Remark By the process of reconstructing S by adjunction of minimal rational
curves following Mok [Mo08a], and Hong-Mok [HoM10] [HoM13]) it can be es-
tablished that Z = γ(V) for some γ ∈ Aut(X). The arguments will be given in
Mok-Yang [MY17] in the proof of uniqueness results of holomorphic isometric em-
beddings of the complex unit ball of maximal admissible dimension into irreducible
bounded symmetric domains of rank ≥ 2..

To apply Theorem 2.1 and Theorem 2.2 we need to check Condition (T) as
defined in Mok-Zhang [MZ17, Definition 5.4] and recalled here in Definition 2.5 for
the pair (S[α],C0(X)). We have

Proposition 4.2 Let X be an irreducible Hermitian symmetric space of the com-
pact type and of rank ≥ 2 not biholomorphic to a Lagrangian Grassmannian.
Then (S[α],C0(X)) satisfies Condition (T). More precisely, for any nonzero vector

β ∈ S̃[α], [β] ̸= [α], Tβ(S̃[α]) = Tβ(C̃0(X)) ∩ T0(V) = Pβ ∩ Pα.

Proof Equivalently, under the hypothesis of the proposition we are going to show
that T[β](S[α]) = T[β](C0(X)) ∩ T[β](PT0(V)), which is the same as (Pβ ∩ Pα)/Cβ.
Clearly, [β] is a smooth point of S[α] and T[β](S[α]) = T[β](C0(X) ∩ PT0(V)) ⊂
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T[β](C0(X)) ∩ T[β]PT0(V) = (Pβ ∩ Pα)/Cβ. Recall that Λ ⊂ PT0(X) denotes the
projective line containing both [α] and [β]. Let γ ∈ T0(X) be a nonzero vector
such that (γ + Cβ)/Cβ ∈ (Pβ ∩ Pα)/Cβ. We have to prove that (γ + Cβ)/Cβ is
tangent to S[α]. When γ ∈ Cα + Cβ, (γ + Cβ)/Cβ is tangent to Λ at [β] and
a fortiori tangent to S[α], and it remains to consider the case where α, β and γ
are linearly independent. Let Π be the projective 2-plane on PT0(X) spanned by
[α], [β] and [γ]. We have Λ ⊂ Π and Π is tangent to C0(X) both at [α] and at [β],
and our task is to prove that Π is tangent to S[α] at [β]. For this purpose it is
sufficient to prove that Π is tangent to S[α] along Λ− {[α]} ⊂ Reg(S[α]).

Recall from Theorem 4.2 (by Nakagawa-Takagi [NT76]) that the second funda-
mental form σ := σC0(X)|PT0(X) with respect to the Kähler manifold (PT0(X), θ) is
holomorphic and parallel. In particular, σ|Λ : S2T (C0(X))|Λ → NC0(X)|PT0(X)|Λ =
N is holomorphic and parallel. Moreover, σ is surjective since C0(X) ⊂ PT0(X)
is linearly nondegenerate and it is the closure of the graph of a vector-valued
holomorphic quadratic form in terms of Harish-Chandra coordinates. Write E :=
Ker(σ|Λ) ⊂ S2T (C0(X))|Λ. By the parallelism of σ, E ⊂ S2T (C0(X))|Λ is a parallel
subbundle, hence there is a holomorphic direct sum decomposition S2T (C0(X))|Λ =
E ⊕ F , F = E⊥, and N ∼= F . From the Grothendieck decomposition we have
T (C0(X))|Λ ∼= O(2) ⊕ O(1)a ⊕ Ob, and it follows that N is a direct sum of non-
negative holomorphic line bundles of degree ≤ 2. Observe that for any [δ] ∈ Λ
distinct from [α], and for any ξ ∈ T[δ](Λ) and η ∈ T[δ](S[α]), we have σ[δ](ξ, η) = 0
(which is the easier part of Proposition 4.1). Note that NΛ|Π ∼= O(1). Let now
τ ∈ Γ(Λ, NΛ|Π) be a nonzero section vanishing at some point [δ] ∈ Λ other than
[α] and [β]. Then τ induces a holomorphic section τ ♭ ∈ Γ(Λ, N) which vanishes at
the three distinct points [α], [β] and [δ]. Hence, τ ♭ ≡ 0 since N is a direct sum of
holomorphic line bundles of degree ≤ 2. The proof of Proposition 4.2 is complete.
�
Remark In the proof actually N is a quotient bundle of NΛ|PT0(X), which is a
direct sum of O(1), hence ample, and it follows that N is a direct sum of positive
holomorphic line bundles of degrees 1 or 2.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 In the notation of Definition 1.4, for a smooth point
[β] on S[α], we have τ[β] = ν[β] ◦ σ[β], where ν[β] : T0(PT0(X))

/
T[β](C0(X)) →

T0(PT0(X))
/
(T[β](C0(X)) + T[β](S[α])) is the canonical projection, T[β](P(Pα)) ∼=

Pα/Cβ. It remains to check whether Ker(τ[β]( · , T[β](P(Pα))) ⊂ T[β](S[α]) holds.
Using notation as in §3 and noting that in the Hermitian symmetric case we have
g = g−1⊕g0⊕g1, for a root ρ ∈ Φ+ we define Ψρ := {λ ∈ Φ+ : ρ−λ ∈ Φ}. We may
take α = Eµ, where µ ∈ Φ+ is the highest root. Recall that P ⊂ G is the parabolic
subgroup at 0 ∈ X so that X = G/P , and Q(α) ⊂ P is the subgroup which fixes
Cα. Since X is not biholomorphic to a Lagrangian Grassmannian, there exists
ν ∈ Ψµ such that the projective line Λ := P(CEµ+CEν) ⊂ PT0(X) lies on C0(X),
which is the case if and only if ν ∈ Ψµ is a long root. If X is not biholomorphic to
a Grassmannian, then the space of lines Λ ⊂ C0(X) passing through [α] is given
by C[α](C0(X)), which is itself an irreducible Hermitian symmetric space of the
compact type on which Q(α) acts transitively. We may therefore take β = Eν ,
so that µ, ν ∈ Φ+ are long roots, ν ∈ Ψµ, µ ∈ Ψν . In the case where X is the
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Grassmannian G(p, q), p, q ≥ 2, taking α = Eµ, S[α] is the union of two projective
subspaces of dimension p−1 resp. q−1 intersecting at [α], and we have to consider
[β] ̸= [α] belonging to either of them. In both cases, modulo the action of Q(α)
clearly we may take β = Eν for some root ν ∈ Φ+.

We take now α = Eµ and β = Eν , [β] ∈ S[α] being a smooth point. We have
T[β](C0(X)) = Pβ/Cβ. Identifying Pβ/Cβ as the orthogonal complement of β in Pβ,
T[β](C0(X)) = Span

{
Eρ : ρ ∈ Ψν

}
, while T[β](S[α]) = (Pα ∩ Pβ)/Cβ = Span

{
Eρ :

ρ ∈ (Ψν ∩Ψµ)∪{µ}
}
. As in the proof of Mok-Zhang [MZ17, Lemma 3.4], to show

that (C[β](S[α]),C[β](C0(X))) is nondegenerate for substructures, it suffices to check
that for any root vector Eπ, π ∈ Ψν − ((Ψν ∩Ψµ)∪ {µ}) = Ψν − (Ψµ ∪ {µ}), there
must exist ω ∈ (Ψν∩Ψµ)∪{µ} such that τ[β](Eπ, Eω) ̸= 0. By Proposition 4.1, there
exists ω ∈ (Ψν ∩Ψµ) ∪ {µ} such that σ[β](Eπ, Eω) ̸= 0, i.e., λ := π + ω − ν ∈ Φ+.
We have τ[β](Eπ, Eω) ̸= 0 if and only if Eλ mod Cβ /∈ T[β](P(Pα)) ∼= Pα

/
Cβ,

i.e., λ /∈ Ψµ ∪ {µ}. Now λ(Hµ) = π(Hµ) + ω(Hµ) − ν(Hµ). From Grothendieck
splitting over minimal rational curves ℓ on X we see that µ(Hµ) = 2, ρ(Hµ) = 1
for ρ ∈ Ψµ and ρ(Hµ) = 0 for ρ /∈ Ψµ ∪ {µ}. (Thus, π(Hµ) = 0.) We know that
ω ∈ (Ψν∩Ψµ)∪{µ}. In case ω = µ we have λ(Hµ) = 1 so that τ[β](Eπ, Eω) = 0. On
the other hand, when ω, ν ∈ Ψµ we have λ(Hµ) = 0, in which case λ /∈ Ψµ ∪ {µ},
so that τ[β](Eπ, Eω) ̸= 0. We conclude therefore that Eπ /∈ Ker(τ[β]( · , T[β](S[α])))
whenever dim(σ[β](Eπ, T[β](S[α]))) ≥ 2.

Denote by s(X) the minimum of dim(σ[β](Eπ, T[β](C0(X)))) as π ranges over
Ψν , which is independent of the choice of [β] ∈ Reg(S[α]) by homogeneity. Note
that σ[β](Eπ1 , Eπ2) = 0 whenever π1, π2 ∈ Ψν − (Ψµ ∪ {µ}) as (π1 + π2 − ν)(Hµ) =
−1 < 0, so that σ[β](Eπ, T[β](S[α])) = σ[β](Eπ, T[β](C0(X)) = s(X). Writing X(E6)
for the 16-dimensional Hermitian symmetric space of the compact type of type
E6, and X(E7) for the 27-dimensional one of type E7, a straightforward checking
gives s(G(p, q)) = min(p − 1, q − 1) (p, q ≥ 2), s(GII(n, n)) = n − 3 (n ≥ 4,
noting that GII(4, 4) ∼= Q6), s(Qn) = 1 (n ≥ 3), s(X(E6)) = 3, s(X(E7)) = 5,
showing that τ[β](Eπ, T[β](S[α])) ̸= 0 for any π ∈ Ψν with the exception of X = Qn,
n ≥ 3, and X = G(2, q), q ≥ 2. Thus, excluding the latter cases (S[α],C0(X)) is
nondegenerate for substructures.

When X = Qn, n ≥ 3, we have ν[β] ≡ 0 since Pβ + T[β](S[α]) = T[β](PT0(X)).
When X is G(2, q), q ≥ 2, where s(G(2, q)) = 1, σ[β](Eπ, Eµ) ̸= 0 also indeed
occurs in the preceding arguments, so that Ker(τ[β]( · , T[β](S[α]))) ) T[β](S[α]). In
both cases (S[α],C0(X)) fails to be nondegenerate for substructures. �
Remarks

(a) By computing holomorphic bisectional curvatures on (C0(X), θ|C0(X)), con-
ceptually s(X) is the minimum of the number of flat direct summands in the
Grothendieck splitting of T (C0(X)) over a projective line Λ ⊂ C0(X).

(b) For the proof of Theorem 4.1 instead of the parallelism of σ one can also use
the combinatorial argument as above. We gave the proof exploiting splitting types
as the latter is more geometric and of independent interest.

(c) Robles-The [RT12] and Robles [Ro13] have completely determined the set of
Schubert cycles on irreducible Hermitian symmetric spaces of the compact type
which are Schur rigid. In [RT12] the authors used cohomological methods due to
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Kostant [Ko63]. In the cases where the desired vanishing of cohomological groups
fails, it was established in [Ro13] that the underlying Schubert cycle is flexible.
More precisely, it was established in [Ro13, Theorem 4.1] that there are irreducible
(projective algebraic) integral varieties of the associated Schubert system which
are not translates of the given Schubert cycle. An integral variety of the associ-
ated Schubert system is precisely a subvariety where the isomorphism classes of
tangent spaces at smooth points are equivalent to those at smooth points of the
corresponding Schubert cycle under the action of automorphisms of the ambient
Hermitian symmetric space. In particular, [Ro13] applies to the cases V = Vexc of
the full cones of minimal rational tangents of hyperquadrics and rank-2 Grassman-
nians, which are the exceptional cases excluded in the statement of Theorem 4.1,
to show that there exist projective algebraic subvarieties of X which are integral
subvarieties S of the Schubert differential systems associated to the Schubert cycle
Vexc, which implies that, writing Cx(S) := Cx(X) ∩ PTx(S),

(
Cx(S) ⊂ Cx(X)

)
is

projectively equivalent to
(
S[α] ⊂ C0(X)

)
at a general smooth point x ∈ S. It is

however not clear how the construction there leads to transcendental sub-VMRT
structures modeled on to

(
S[α] ⊂ C0(X)

)
(equivalently modeled on

(
V ⊂ X

)
). In

an indirect way, by the method of reconstruction of V by parallel transport along
minimal rational curves (Mok-Yang [MY17]), linear saturation of the smooth locus
Reg(S) of S would imply that S is γ(V) for some γ ∈ Aut(X), hence the relevant
examples of [Ro13] for V = Vexc must fail to be linearly saturated.

In §6 we will construct examples of transcendental integral varieties of the
Schubert differential system associated to Vexc in the cases where the ambient
space X is the hyperquadric Qn of dimension n ≥ 4.

§5 Intrinsically flat sub-VMRT structures modeled on certain full cones
of minimal rational curves
In the statement of Theorem 4.1, (Sα,C0(X)) fails to be nondegenerate for sub-
structures in the case where X is either a hyperquadric Qn, n ≥ 3 or a rank-2
Grassmannian G(2, q), q ≥ 2. We will show that for certain sub-VMRT structures
ϖ : C (S) → S modeled on

(
Sα ⊂ C0(X)

)
, S remains linearly saturated and alge-

braic as a germ of submanifold at any point x ∈ S. Let (Z,H) and (X,K) be unir-
uled projective manifolds equipped with minimal rational components. Denote by
C (Z) ⊂ PT (Z) resp.C (X) ⊂ PT (X) the VMRT structures of (Z,H) resp. (X,K).
Let A ⊂ Z resp.B ⊂ X be the bad locus of (Z,H) resp. (X,K), W ⊂ X−B be
an open subset, S ⊂ W be a complex submanifold such that S = f(U) for some
holomorphic embedding f : U → X−B from a connected open subset U ⊂ Z− A
which respects VMRTs at a general point of U . Defining C (S) = C (X) ∩ PT (S),
assume that the canonical projection ϖ : C (S) → S is a sub-VMRT structure in
the sense of Definition 2.1. By the proofs of Hong-Mok [HoM10, Proposition 2.1],
Hong-Park [HoP11, Proposition 2.3] and Mok-Zhang [MZ17, Proposition 5.2] here,
it remains the case that S is linearly saturated with respect to (X,K) under the
weaker assumption (†) Ker(σ[χ]( · , T[χ](C (S)) ⊂ T[χ](C (S))) at a general point [χ]
of any irreducible component of Cx(S) for a general point x ∈ S, where the second
fundamental form σ[χ] is used in place of τ[χ] = ν[χ] ◦ σ[χ]. Following [HoP11] and
relating to the notion of substructures in this article we will say that ϖ : C (S) → S
is weakly nondegenerate for substructures whenever (†) holds.
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Note that the condition (†) depends only on S and (Z,H) disappears from
the definition of weak nondegeneracy for substructures. The assumption that S
arises from a map allows one to make use of Hessians ∇2f in place of τ = ν ◦
σ, i.e., without taking quotients modulo T (S), and this explains why a weaker
nondegeneracy condition is sufficient for proving linear saturation. In place of a
uniruled projective manifold (X,K) the notions and proofs go through even in
the case when Z has singularities, provided that we consider a ‘minimal rational
component’H on Z such that a general member ofH is a standard minimal rational
curve on Z lying on Reg(Z). This is the case when (X,K) stands for an irreducible
Hermitian symmetric space of rank ≥ 2 other than a Lagrangian Grassmannian,
Z = V stands for a full cone of minimal rational curves on X, and H resp.K stands
for the space of projective lines lying on V respX. We will refer to πZ : C (Z) → Z
thus obtained as a generalized VMRT-structure. Such a structure is said to be
flat whenever there exist local holomorphic coordinates with respect to which the
generalized VMRTs C (Z) form a constant family. If ϖ : C (S) → S arises as the
image of a generalized VMRT structure under a VMRT-respecting map, we call it
an intrinsically flat sub-VMRT structure. We have

Lemma 5.1. For the cone V := V(x) ⊂ X of minimal rational curves at some
x ∈ X, the generalized VMRT-structure πV : C (V) → V is intrinsically flat.

Proof Let Cn ⊂ X be a Harish-Chandra coordinate chart. Let α ∈ C̃0(X).
Parametrize a neighborhood of [α] ∈ C0(X) by an open holomorphic embedding φ :
U → C0(X) from a neighborhood U of 0 in T[α](C0(X)) by φ(ξ) = α+ξ+O(∥ξ∥2),
where T[α](C0(X)) ∼= Pα/Cα is identified with a complementary linear subspace
Hα ⊂ Pα of Cα. Consider F : C × U → X defined by F (s, ξ) = sφ(ξ) − α =
s(α + ξ + O(∥ξ∥2)) − α. Thus F (0, 0) = −α and F (1, 0) = 0, so that F maps a
neighborhood of (1, 0) in C × Hα biholomorphically onto a neighborhood of 0 in
V(−α), dF (1, 0)

(
a ∂
∂s

+ ξ
)
= aα + ξ. Noting that for any η ∈ Cn the Euclidean

translation Tη(z) := z + η on Cn extends to Φη ∈ Aut(X), for t ≥ 1 we define
Ft : C× tU → X by

Ft(s, ξ) := t(1 + s−1
t
)
(
φ
(
ξ
t

))
− tα = (s− 1 + t)

(
α+ ξ

t
+O

(∥∥ ξ
t

∥∥2))− tα ,

so that F1 ≡ F , Ft(1− t, 0) = −tα, Ft(1, 0) = 0 and dFt(1, 0)
(
a ∂
∂s

+ ξ
)
= aα + ξ.

Ft maps ∆(1; t)× tU biholomorphically onto a neighborhood of 0 in V(−tα),

Ft(s, ξ) = (s− 1)α + s−1+t
t

ξ + s−1+t
t2

O(∥ξ∥2) .

As t → ∞ the holomorphic mappings Ft converge uniformly on compact subsets
of C×Hα to G : C×Hα → Cn given by G(s, ξ) = (s−1)α+ξ. On the other hand,
on X the cones of minimal rational curves V(−tα) ⊂ X converge as subvarieties
to V(∞α0), where ∞α0 is the point at infinity of the projective line ℓ(α, 0) ⊂ X
containing the points α and 0 on Cn ⊂ X. Thus V(∞α0) ∩ Cn ⊂ Cn is the
linear subspace Pα = Cα ⊕Hα. Moreover for any x ∈ Pα we have Cx(V(∞α0)) =
P(Pα)∩Cx(X), which forms a constant family in the Harish-Chandra coordinates,
proving Lemma 5.1. �

By the proof of Theorem 2.2 (which is Mok-Zhang [MZ17, Main Theorem 2]),
to find Z ⊃ S projective, dim(Z) = dim(S), it suffices that S is linearly saturated.
By Proposition 4.1 we have
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Theorem 5.1 In the exceptional cases in Theorem 4.1 of hyperquadrics X = Qn,
n ≥ 4, and of Grassmannians X = G(2, q), q ≥ 2 where (S[α],C0(X)) fails to
be nondegenerate for substructures, (S[α],C0(X)) remains weakly nondegenerate
for mappings. In particular, if S ⊂ X inherits an intrinsically flat sub-VMRT
structure modeled on

(
S[α] ⊂ C0(X)

)
, then S is linearly saturated and there exists

a subvariety Z ⊂ X such that S ⊂ Z and dim(Z) = dim(S).

Remark As for Theorem 4.1, by the process of reconstructing S by adjunction of
minimal rational curves it can be established that Z = γ(V) for some γ ∈ Aut(X).

§6 Examples of non-standard sub-VMRT structures modeled on full
cones of rational curves
In this section we give an elementary construction of examples of transcendental
sub-VMRT structures modeled on the full cone V of minimal rational curves in
the case where the ambient manifold X is a hyperquadric Qn for dimension ≥ 4.
Fix n ≥ 4. Let Cn ⊂ Qn be a Harish-Chandra coordinate chart on which the
holomorphic conformal structure on Cn with Euclidean coordinates (z1, · · · , zn) is
given by the class of holomorphic nondegenerate quadratic forms λ(z)((dz1⊗dz1)+
· · ·+(dzn⊗dzn)), where λ is any nowhere zero holomorphic function on Cn. We are
going to write down explicit examples of transcendental hypersurfaces S ⊂ Cn ⊂
Qn such that S inherits a sub-VMRT structure modeled on (S[α](Q

n) ⊂ C0(Q
n)).

Here [α] ∈ C0(Q
n) ∼= Qn−2 ⊂ PT0(Q

n) ∼= Pn−1, and S[α](Q
n) = C0(Q

n) ∩ P(Pα) is
the singular hyperplane section with the isolated singularity at [α]. We have

Proposition 6.1. Let n,m be positive integers such that n ≥ 4 and 2 ≤ m ≤
n− 2. Let A(z1, · · · , zm) = a1z1 + · · ·+ amzm be a linear function in (z1, · · · , zm)
such that (a1, · · · , am) ̸= 0 and a21 + · · · + a2m = 0. Let (bm+1, · · · , bn) ̸= 0 be
such that b2m+1 + · · · + b2n = 0. Let f : Cn → C be defined by f(z1, · · · , zn) =
eA(z1,··· ,zm) + bm+1zm+1 + · · · + bnzn. Then, for c ∈ C the level set S = {f(z) = c}
is a transcendental smooth hypersurface on Cn ⊂ Qn such that, defining C (S) :=
PT (S)∩C (Qn) and writing ϖ : C (S) → S for the canonical projection, the latter is
a sub-VMRT structure modeled on

(
S[α](Q

n) ⊂ C0(Q
n)
)
which is neither linearly

saturated nor intrinsically flat.

Proof We may assume that bn = −1, hence the level set S = {f(z) = c} is
given by zn = h(z1, · · · , zn−1) = eA(z1,··· ,zm) + bm+1zm+1 + · · · + bn−1zn−1 − c so
that S ⊂ Cn is a transcendental smooth hypersurface. Write q = (dz1 ⊗ dz1) +

· · · + (dzn ⊗ dzn). It induces an isomorphism L : T ∗(Cn)
∼=−→ T (Cn) such that

for any z ∈ Cn, ω ∈ T ∗
z (Cn), ξ ∈ Tz(Cn), we have q(L(ω), ξ) = ω(ξ). Write

p = ∂
∂z1

⊗ ∂
∂z1

+ · · ·+ ∂
∂zn

⊗ ∂
∂zn

. We have df = eA(z1,··· ,zm)(a1dz
1 + · · ·+ amdz

m) +

(bm+1dz
m+1 + · · · + bndz

n), so that p(df(z), df(z)) = eA(z1,··· ,zm)(a21 + · · · + a2m) +
(b2m+1 + · · · + b2n) = 0. Now fix c and let x ∈ S = {f(z) = c}. We have Tx(S) =
Ker(df(x)) ⊂ Tx(Cn). Thus, for η := L(df(x)) and ξ ∈ Tx(Cn) we have q(η, ξ) =
q(L(df(x)), ξ) = df(x)(ξ), and ξ ∈ Tx(S) if and only if q(η, ξ) = 0. On the other
hand, q(η, η) = p(df(x), df(x)) = 0, so that η ∈ Tx(S), and q|Tx(S) is degenerate,
with kernel spanned by η = eA(z1,··· ,zm)(a1

∂
∂z1

+ · · ·+ am
∂

∂zm
) + (bm+1

∂
∂zm+1

+ · · ·+
bn

∂
∂zn

). Hence, Cx(S) = PTx(S) ∩ Cx(X) is the singular hyperplane section of
Cx(X) with the isolated singularity at [η], and ϖ : C (S) → S inherits a sub-
VMRT structure modeled on

(
S[α](Q

n) ⊂ C0(Q
n)
)
. Consider the projective line
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ℓ passing through x = (z1, · · · , zn−1, h(z1, · · · , zn−1)) such that Tx(ℓ) = Cη. From
the explicit description of S one checks readily that in general ℓ ̸⊂ S, so that
S ⊂ Qn is not linearly saturated. Alternatively, linear saturation of S would imply
by the proof of Theorem 2.2 (i.e., proof of Main Theorem 2 of [MZ17]) that S ⊂ Qn

is projective, contradicting with the transcendence of S. Finally, again from the
transcendence of S ⊂ Cn it follows by Theorem 5.1 that ϖ : C (S) → S is not
intrinsically flat, completing the proof of Proposition 5.1. �
Remark Replacing f(z1, · · · , zn) = eA(z1,··· ,zm) + bm+1zm+1 + · · · + bnzn by
g(z1, · · · , zn) = A(z1, · · · , zm)q + bm+1zm+1 + · · · + bnzn for any integer q ≥ 2
by the same arguments we obtain examples of non-standard sub-VMRT structures
modeled on

(
S[α](Q

n) ⊂ C0(Q
n)
)
on nonsingular level sets S = {g(z) = c} ⊂ Cn

which are affine algebraic.

§7 Concluding Remarks
Cohomological methods play an important role in earlier known approaches on
various problems of rigidity concerning Schubert cycles on Hermitian symmetric
spaces of the compact type. By contrast, in the approach stemming from the
geometric theory of uniruled projective manifolds our perspective is to treat rigid-
ity concerning special subvarieties as a problem in differential geometry revolving
around varieties of minimal rational tangents. We note however that there are
links between the cohomological and the differential-geometric methods worthy of
further exploration.

As an example, in the work of Hong [Ho05], in which Schur rigidity is estab-
lished for nonsingular Schubert cycles of irreducible Hermitian symmetric spaces
X = G/P of the compact type, the author made use of the result of Goncharov
[Go87] from the theory of generalized conformal structures on integral varieties of
F -structures, where the cohomology groups concerned are defined on orbits under
the action (of the semisimple part) of P on the Grassmann of k-planes of T0(X).
From our perspective much information is already stored in the VMRT, which is
the highest weight orbit of the semisimple part of P under the isotropy action on
PT0(X). In a certain sense, in place of requiring vanishing results on cohomolog-
ical groups defined on the orbits, we replace them by nondegeneracy conditions
defined from projective geometry, introduced by Hong-Mok [HoM10] for mappings
and by Mok-Zhang [MZ17] for substructures. One may say that our approach is
microlocal in nature, imposing conditions at a general point of the pair consisting
of a VMRT, which in the case of irreducible Hermitian symmetric cases of the
compact type is an orbit in the projectivized tangent space under the isotropy
representation, and a sub-VMRT (which is a linear section of the VMRT) rather
than global conditions on certain projective varieties which are orbits in Grass-
mannians under actions derived from the isotropy representation. In this way we
relax the requirement from global vanishing results to microlocal vanishing results
(on kernels arising from certain quadratic forms).

A general form of the problem for characterizing special subvarieties of uniruled
projective manifolds was formulated as the Recognition Problem in Mok [Mo16b,
Problem 4.5.1]. In a nutshell the theory of sub-VMRT structure leads to an ap-
proach for resolving the Recognition Problem for special subvarieties Σ of Hermi-
tian symmetric spaces of the compact type and more generally those of rational
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homogeneous spaces whenever there exists a projective line lying on the smooth
locus Reg(Σ) of Σ. In cohomological approaches the Recognition Problem is a
problem of integrability of certain geometric substructures. Our approach breaks
the problem down into two steps, the first step being the verification of a microlo-
cal condition implying partial integrability, more precisely the property that the
support of the sub-VMRT structure is linearly saturated. The second step is that
of reconstruction by a finite process of adjunction of minimal rational curves, i.e.,
projective lines. The current article is an an illustration of the first step of our
scheme beyond smooth Schubert cycles by an examination of a very special class
of singular Schubert varieties (which are nonetheless of special interest to Kähler
geometry). The issue of reconstruction by an improvement of the method of ad-
junction of minimal rational curves will be taken up elsewhere. One advantage
of our scheme is that, where applicable, it may lead to results ascertaining lin-
ear saturation when additional intrinsic conditions are imposed on the underlying
complex submanifolds S of sub-VMRT structures, which is illustrated by Theorem
5.1, where linear saturation and algebraicity are proven in the cases excluded by
Theorem 4.1 when S is further assumed to be intrinsically flat.

In another direction, we can study the Recognition Problem modeled on a
family of sub-VMRTs which come from linear sections of Schubert cycles by the
introduction of a quantitative measure of nondegeneracy for substructures, called
p-nondegeneracy, p ≥ 1, where the case p = 1 corresponds to the usual notion of
nondegeneracy for substructures as given in Definition 2.4. In the case at hand,
for sub-VMRT structures modeled on

(
S[α] ⊂ C0(X)

)
in the notation of Theorem

4.1, the optimal value of p is s(X) − 1, where s(X) was listed in the second last
paragraph of the proof of Theorem 4.1. Taking [β] ∈ S[α] distinct from [α], s(X)

is the minimal value of dim
(
σβ(Cη⊗Tβ(S̃[α]))

)
as η varies over nonzero vectors in

Tβ(C̃0(X))−Tβ(S̃[α]), while the minimal value of dim
(
τβ(Cη⊗Tβ(S̃[α]))

)
is equal

to s(X)− 1. Let k be a positive integer so that dim(S[α])− k > 0. Consider the
Grassmannian Gr(n−k, T0(X)) of vector subspaces V ⊂ T0(X) of codimension k in
T0(X), n := dim(X). There is a dense Zariski open subset Φk ⊂ Gr(n− k, T0(X))
such that for every linear subspace V ⊂ T0(X) of codimension k belonging to Φk,
we have (a) P(V ) intersects S[α] in pure codimension k, (b) the intersection is
transversal at a general point of each irreducible component of S[α] ∩ P(V ) and
(c) S[α] ∩ P(V ) is linearly nondegenerate in P(V ). Note that from (b) it follows
that the pair (S[α] ∩ P(V ),C0(X) ∩ P(V )) satisfies Condition (T) in the sense of
Definition 2.5. A member of Φk will be called a Φk-general vector subspace of
T0(X) of codimension k. In analogy to Mok-Zhang [MZ17, Theorem 9.1] we have
the following result Theorem 7.1 on linear saturation and algebraicity for sub-
VMRT structures on X modeled on the family of pairs (S[α]∩P(V ),C0(X)∩P(V ))
for Φk-general vector subspaces V ⊂ T0(X) of codimension k.

For the formulation of the result let X be an irreducible Hermitian symmetric
space of the compact type of rank ≥ 2 not biholomorphic to a Lagrangian Grass-
mannian. Let 0 ∈ X be a reference point and [α] ∈ C0(X) be an arbitrary point.
Let k be a positive integer satisfying k ≤ s(X) − 2. Identify X as a projective
submanifold by means of the first canonical embedding ι : X ↪→ PN . Let Π ⊂ PN

be a projective linear subspace of codimension k such that Z = X ∩Π is a smooth
linear section of codimension k in X. Since Z ⊂ X ⊂ PN is a smooth linear section
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of codimension k, each irreducible component of the set of projective lines on Z
passing through a general point x ∈ Z must be of dimension at least equal to
dim(C0(X))− k > s(X)− k > 2, so that in particular Z is uniruled by projective
lines. Let E ⊂ Z be the bad locus (which is here the same as the enhanced bad
locus) of Z as a projective submanifold uniruled by lines. From the deformation
theory of rational curves the VMRT Cx(Z) of Z as a projective submanifold unir-
uled by lines is of dimension exactly equal to dim(C0(X))− k for x ∈ Z − E. We
have

Theorem 7.1 Suppose W ⊂ Z − E is a nonempty open subset in the complex
topology, and S ⊂ W is a complex submanifold of dimension dim(C0(X)) + 1− k
such that, writing C (Z) := C (X)∩PT (Π)∩PT (Z−E) and C (S) := C (Z)∩PT (S),
the canonical projection ϖ : C (S) → S defines a sub-VMRT structure on S such
that for a general point x ∈ S,

(
Cx(S) ⊂ Cx(Z)

)
is projectively equivalent to(

S[α] ∩P(V ) ⊂ C0(X)∩P(V )
)
for some Φk-general vector subspace V ⊂ T0(X) of

codimension k. Then, S is linearly saturated. Moreover, there exists a subvariety
Z ⊂ X such that S ⊂ Z and dim(Z) = dim(S).

Proof By the proof of Theorem 4.1, (S[α],C0(X)) is (s(X)−1)-nondegenerate for
substructures according to the definition of p-nondegeneracy for substructures in
the preceding paragraphs. The key to the proof of Theorem 7.1 is the observation
that whenever k ≤ s(X) − 2, the pair (S[α] ∩ P(V ),C0(X) ∩ P(V )) remains r-
nondegenerate for r := s(X)−1−k ≥ 1 for a Φk-general vector subspace V ⊂ T0(X)
of codimension k, which follows from Mok-Zhang [MZ17, Proposition 9.1]. By
Theorem 2.1, S is linearly saturated. The last statement follows from Theorem
2.2, completing the proof of Theorem 7.1. �

In order for Theorem 7.1 to be applicable we need to have s(X) ≥ 3, which
rules out the cases of Grassmannians of rank ≤ 3, GII(5, 5) and hyperquadrics.
It is for instance applicable to the Grassmannian X = G(n, n), n ≥ 4, to prove
results of linear saturation and algebraicity for germs of complex submanifolds on
smooth codimension-k linear sections admitting sub-VMRT structures modeled on
Φk-general linear sections of S[α] for 0 < k ≤ n− 3, and to X(E7) for 0 < k ≤ 3.
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