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Abstract

Under certain mild conditions, some limit theorems for functionals of two independent Gaus-
sian processes are obtained. The results apply to general Gaussian processes including frac-
tional Brownian motion, sub-fractional Brownian motion and bi-fractional Brownian motion.
A new and interesting phenomenon is that, in comparison with the results for fractional Brown-
ian motion, extra randomness appears in the limiting distributions for Gaussian processes with
nonstationary increments, say sub-fractional Brownian motion and bi-fractional Brownian. The
results are obtained based on the method of moments, in which Fourier analysis, the chaining
argument introduced in [11] and a paring technique are employed.
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1 Introduction

Let {X; = (X/,...,X{),t >0} be a d-dimensional Gaussian process with component processes
being independent copies of a 1-dimensional centered Gaussian process. We assume that there
exist some a3 > 0 and H € (0,1) such that Var (X}) = a2 for all t > 0. Some well known
Gaussian processes possessing this property, say Brownian motions (Bms), fractional Brownian
motions (fBms), sub-fractional Brownian motions (sub-fBms) and bi-fractional Brownian motions
(bi-fBms). Let X be an independent copy of X. When X and X are fBms, we know that the
intersection local time of X and X does not exist if Hd = 2 ([10, 15]), and this is called the critical
case. If X and X are fBms with H < 1/2, the following convergence in law was obtained in [2].

Theorem 1.1 Suppose Hd = 2 and f is a real-valued bounded measurable function on R¢ with
Jra If@)]|z|° dz < oo for some B> 0. Then, for any ty and ty >0,
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with B(+,-) being the Beta function, and N is a real-valued standard normal random variable.

In this paper, we consider the asymptotic behavior of

1 ent1 ent2 "
h(n)/o /0 f(Xy — Xy) dudv (1.1)

as n tends to 400, under certain mild conditions.

The random variables in (1.1) appear in the study of occupation times for the Gaussian random
field X, — )Zv and their corresponding derivatives, see [4, 6, 10, 13, 15] and the references therein.
It is of interest to find a normalization function h(n) with proper growing speed as n tends to
infinity, so that (1.1) converges to a non-trivial distribution. It turns out that the choice of h(n)
depends on [pa f(z)dz. That is, when [g4 f(x)dz # 0 which corresponds to the first-order limit
law, one may choose h(n) = n; when [g. f(z)dz = 0 which corresponds to the second-order limit
law, one needs to choose a normalization function h(n) = /n with slower growing speed.

To obtain the desired limit theorems for (1.1), we make the following assumptions on the
Gaussian process X:

(A1) There exist constants y; > 1, a1 > 0 and nonnegative decreasing functions ¢; ;(¢) on [0, 1/71]
with lir% ¢1,i(e) =0, for i = 1,2, such that
E—

0 <t (a1 = dr1(h/t)) < Var(X/jy, — Xp) < 27 (a1 + ¢12(h/1))
for all h € [0,t/71].

(A2) There exist constants 72 > 1, ag > 0 and nonnegative decreasing functions ¢ ;(¢) on [0, 1/72]
with lir% ¢2,i(e) =0, for i = 1,2, such that
e—

0 < h*(ag = g1 (h/t)) < Var(X[yy, — X{) < B (a2 + ¢22(h/t))
for all h € [0,t/72].

(B) Given m > 1, there exists a positive constant x depending on m, such that for any 0 = s <
$1 < -+ < sy and z; € R% 1 < i< m, we have

m m
Var(in (X, — Xsi_1)> > HZ \:Ui|2(si — si_l)QH.
i=1 i=1

(C1) For any 0 < t] <ty < t3 <ty < oo and 7y > 1, there exists a nonnegative decreasing function
B1(7y) with Vli_)rglo B1(7y) = 0 such that, if ﬁ—ﬁ < % or ﬁ—ﬁ > ~, then

‘E (Xt14 - tha) (Xt12 - th1)’ < pi (7) |:E (Xt14 - Xt13)2 +E (Xt12 - Xt11)2:| ’
where At; =t; —t;_1 for i = 2,3, 4.

(C2) For any 0 < t1 < ta < t3 < t4 < oo and v > 1, there exists a nonnegative decreasing function
. . _ o At 1 At 1
Ba2(7) with 7lgr;o B2(7) = 0 such that, if 52 < - and Fz! < =, then

[E (2, - X4,) (X — XA)| < B(0) [E (XL - X0)° +E (X}, - x2)*].



Remark 1.2 Note that the stationary increment property was used to obtain the limit laws for
functionals of fBm or fBms in the previous literatures [2, 11, 12, 16]. In this work, we do not
require the stationary increment property, but instead assume some weaker conditions (A1) and
(A2). Assumption (B) characterizes the nondeterminism property of X, and it is satisfied if, for
instance, X 1is self-similar and has the local nondeterminism property. Assumption (C1) is required
in Theorem 1.3 (first-order limit law) and Theorem 1.4 (second-order limit law), while Assumption
(C2) is only needed in Theorem 1.4.

The following are the main results of this paper.

Theorem 1.3 Under the assumptions (Al), (A2), (B) and (C1), we further suppose that Hd = 2
and f is a real-valued bounded measurable function on RY with [ |f(2)||z]’ dz < oo for some
B8 > 0. Then, for any t1 and ty > 0,
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as n tends to infinity, where
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with B(-,-) being the Beta function, Zy is a positive random variable with parameter A > 0 and

E[Z7] = %TT—X‘)) for all m € N, ZA is an independent copy of Zx, N is a real-valued standard
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normal random variable independent of Z
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In this paper, the Fourier transform is given by, when f € L'(R9),

~

FO = Ffla)eds,
Rd

where ¢ = /—1.

Theorem 1.4 Under the assumptions in Theorem 1.3, we further assume that [ga f(z)dx =0
and (C2). Then, for any t; and ty > 0,
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as n tends to infinity, where
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with T'(-) being the Gamma function, and 1 is another real-valued standard normal random variable
independent of N, Z . 4 and Z

(22)4 (22)1°

As a byproduct, using similar arguments as in the proofs of Theorems 1.3 and 1.4, we can easily
obtain the following results.



Theorem 1.5 Under the assumptions (Al), (A2), (B) and (C1), we further suppose that Hd = 1
and f is a real-valued bounded measurable function on RY with [gq|f(z)||z|? dz < oo for some
B> 0. Then, for anyt >0,

1
/ F(Xy) du 55 (7(1 £(z) dx) Z .. 4 Z(t)
(2mag)2 JRA (51)?
as n tends to infinity, where Zy is a positive random variable with parameter X > 0 and E[Z"] =
F(m—M for allm € N, Z(t) is defined in [16] and is independent on

m!D(A

M\@.
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Theorem 1.6 Under the assumptions in Theorem 1.5, we further assume that fRd flx)dx =0
and (C2). Then, for anyt > 0,

f/ F(X du—>\/Df’dZ 420

as n tends to infinity, where

_ dr(¢ -

with T'(+) being the Gamma function, and n is another real-valued standard normal random variable
independent of Z(t) and Z(2 4

a1

Remark 1.7 For all X > 0, the distribution of Zy is uniquely determined by its moments E [Z]'] =
%—é_? € N (see, e.g., [5]). In particular, Zy follows the Beta(\, 1 — \) distribution when
Ae(0,1).

When a1 = ag, for example in the fBm case, A = 1 and it is easy to see Z1 = 1 a.s., and this
is consistent with the known results in [2, 11, 12, 16]. When oy # «o, for example in the sub-fBm
or bi-fBm case, A # 1 and Zy is a non-trivial random variable. Heuristically speaking, the loss of
stationarity of increments introduces new random phenomenon in the limit laws.

Remark 1.8 Since f is bounded, one can always assume B < 1. Moreover, the assumptzon on f
also implies that f € LP(RY) for any p > 1. When fRd 2)dz =0, |f(O)] = (&) = F(0)] < cal€]®

for any « € |0, B8], which yields the finiteness of |gq f 2|¢|=4d¢ by Plancherel theorem.
R

Remark 1.9 When X and X are independent copies of a d-dimensional fBm, denoting ps(z) =
Lp(2) where p(z) = (2m)~Y2e~ 1212 Theorem 1.3 provides the exploding rate of
£ 3

LB = [ [ p(Bl ~ Blduds
0 0

as € — 0 in the critical case Hd = 2 (see, Theorem 1 in [10] and Remark 3.2 in [15]). Indeed,
using the self-similarity of fBms and change of variables, one can get that f(;f fOT pe(BY — B dudv

has the same distribution as fgeil/H foTail/H p(BH — Ef)dudv, which by Theorem 1.3 explodes at

the rate of loge™! as e tends to zero.



Remark 1.10 In fact, using similar arguments as in the proof of Lemma 5.2,

— 4 1 )22~ de +0067§T2H r>2
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Moreover, comparing Theorem 1.4 with Theorem 4 in [3], one may obtain the following equality
[ F@Pal e =22 [ [ f)sw)iog ]~ yldsdy
R4 R4 /R4
for all functions f in C°(R*) with [ga f(z)dz = 0.

Limit theorems for functionals of two independent Brownian motions and their extensions were
obtained in the 1980s, see [7, 8, 3] and references therein. However, the corresponding results
for fBms were not much since then. There are two main reasons. One is that the general fBm
is neither a Markov process nor a semimartingale. This means that methods working for Bms
probably fail for fBms. The other is that the role played by the second fBm in the limit laws is not
well understood. Recently, Nualart and Xu in [12] proved central limit theorems for functionals of
two independent d-dimensional fractional Brownian motions in the case Hd < 2. After that, Bi
and Xu in [2] showed the first-order limit law in the critical case Hd = 2 with H < 1/2, but it does
not include the interesting case d = 3 which may have physical relevance. The contribution of this
paper is that, in the case Hd = 2, for more general Gaussian processes other than just fBms, we
obtain the first-order limit law and the second-order limit law in Theorem 1.3 and Theorem 1.4,
respectively.

Compared with the previous proofs of limit laws for fBms, we encounter some new challenges
due to the lack of stationary increments property and short range dependence property, both of
which played critical roles in deriving limit laws for fBms with H < 1/2. Moreover, the second
Gaussian process causes a big trouble when proving the convergence of even moments. Thanks
to the methodologies developed in the recent papers [12, 2, 16] and the introduction of some new
ideas, especially the pairing technique, these issues are solved eventually.

To conclude the introduction, we briefly mention some of the innovations in this paper.

First of all, we do not assume the stationary increment property for our Gaussian processes.
Instead, we propose two increment properties (A1) and (A2), which only concern the increment
on a time interval whose length is significantly larger/smaller than the preceding interval. So our
results cover several well-known Gaussian processes besides fBms. A surprising observation is that,
compared with stationary increments, non-stationary increments cause extra random phenomena
(see Remark 1.7).

Secondly, we characterize the type of increments of Gaussian processes that contribute to the
moments of the limiting distribution in the case Hd = 2. Roughly speaking, only increments on
intervals with uncomparable lengths contribute in the first-order limit law. As for the second-
order limit law, some increments on intervals far away also contribute. The characterization of the
increments in the first-order limit law is given in Assumption (C1), which is weaker than the one
in Lemma 2.3 of [16] for fBm with Hurst index H < 1/2. The characterization of the increments
in the second-order limit law, in addition to Assumption (C1), is given in Assumption (C2), which
enables us to obtain the standard Gaussian random variable 1 in Theorem 1.4. Assumptions (C1)
and (C2) are satisfied by fBms, sub-fBms and bi-fBms, see Lemmas 2.4, 2.5 and 2.6.



Thirdly, the role played by the second Gaussian process in the second-order limit law in the
case Hd = 2 is clearly revealed. For fBms with Hd < 2, the role played by the second fBm was
explained in Lemma 3.2 and (3.22) of [12]. It turns out that the second Gaussian process plays a
similar role as the second fBm does in [12]. However, noting that the method used in [12] cannot
be applied directly here, we develop a new methodology, in which the key idea is to pair the second
Gaussian process with the first one in a proper manner (see Step 3 and Step 4 in the proof
of Proposition 4.5 for details). Moreover, this kind of paring technique indicates the relationship
between the first-order limit law and the corresponding second-order limit law. We believe that
our methodologies also work well for a variety of functionals and multiparameter processes. For
instance, one may use them to extend results in [3] to multiple independent Gaussian processes.
In particular, the paring technique developed here could be used to obtain a functional version of
the central limit theorem proved in [12] and extension to more general Gaussian processes should
also be available. This should be discussed in another paper.

The paper is outlined in the following way. After some preliminaries in Section 2, Section 3
is devoted to the proof of Theorem 1.3 and Section 4 to the proof of Theorem 1.4, based on the
method of moments, Fourier transform, the chaining argument introduced in [11] and a paring
technique.

Throughout this paper, if not mentioned otherwise, the letter ¢, with or without a subscript,
denotes a generic positive finite constant whose exact value is independent of n and may change
from line to line. Moreover, we use x - y to denote the usual inner product in R¢ and B(0,r) the
ball in R? centered at the origin with radius r.

2 Preliminaries

Let {Xt = (X} .., XDt > ()} be a d-dimensional centered Gaussian process defined on some
probability space (2, F, P). The components of X are independent copies of a 1-dimensional
centered Gaussian process. In this paper, we always assume that H = 2/d € (0,1) and that

Var (X}) = aqt?# | for all t >0, (2.1)

where a1 > 0 is a constant that appears in Assumption (A1). This is a rather weak condition that
is satisfied by a variety of Gaussian processes. In particular, it is straightforward to validate the
following Gaussian processes.

Example 2.1 X} is a 1-dimensional fBm, of which the covariance function is

1
E(X!Xx}) = §(t2H + 21— |t — s|?H).

Example 2.2 X} is a 1-dimensional sub-fBm, of which the covariance function is

1
E(X,}X;) =¢2H 4 2H 5[(75 + S)2H + |t — s|2H].

Example 2.3 X} is a 1-dimensional bi-fBm, of which the covariance function is
E(X1XD) = 2752 4+ ) |t — 57K

where H € (0,1), K € (0,1] and HK = 2/d.



It is easy to see that Assumptions (A1) and (A2) are satisfied by fBm with

ar = =1, ¢11(e) = p12(e) = Pp2,1(e) = P22(e) = 0.

Using Taylor expansion, one can show that Assumptions (Al) and (A2) are satisfied by sub-fBm
with

a1 =2-22H71 an =1, ¢11(e) = d12(e) = c1 | o 1(e) = poa(e) = cpe?

and by bi-fBms with
a1 =1, ay=2"% 611(c) = d12(c) = c3"E . 9g1(e) = Poa(e) = ey 2K,

Note that the constant «; in (2.1) coincide with oy appearing in Assumption (A1). Moreover, {Bm,
sub-fBm and bi-fBm satisfy Assumption (B) due to their self-similarity and local nondeterminism
property, see [1, 14, 9].

In the sequel, we will show that Assumptions (C1) and (C2) are satisfied by fBm, sub-fBm, and
bi-fBm.

Lemma 2.4 Assumptions (C1) and (C2) are satisfied by fBms.

Proof. Let B be a 1-dimensional fBm with Hurst index H. Assumption (C1) follows easily from

[E(Br = Bi;) (Br, — Biy)| < (Ata)"(At2)"
< LH [(At4)2H + (Atg)QH]

-2

1
— — [E (B - BEY? +E (B - BfT)].

)

We next show that Assumption (C2) is satisfied by fBm. Note that ﬁ—g < % and 2—;‘3‘ < %
Then, by mean value theorem,

|E (B — B\ (Bl — BI)| = |(Ata + Aty + Ato)* + (At5)*7 — (Aty + Aty)* — (Aty + Aty)?|
= H|2H — 1|Aty(Atz + A)* 7210, Aty — G2 Aty + Aty
< Aty(Atz 4+ A)2H72(Aty + Aty)
< 2(At3)*172[(Aty)? + (Aty)?]

2
,YQ_QH [(At2)2H + (At4)2H]
2
= o [B (B~ BE) +E (B - Bl))’

<

where 01,02 € (0,1) and A is a proper constant between Aty + 01 Aty and O Aty.
This completes the proof. [

Lemma 2.5 Assumptions (C1) and (C2) are satisfied by sub-fBms.

Proof. If X} is a 1-dimensional sub-fBm, then

(2=22) A1)t — )T <E (X} - XD? < (2-227)v1)(t—s)*M.

S
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Using similar arguments as for fBms, one can check that Assumption (C1) is satisfied by sub-fBms.
Now we verify Assumption (C2). Let B be a 1-dimensional fBm with Hurst index H. Then

E (X[, — X\ )(X) — X)) =2 [(t1+t2)*7 + (ta + t3)*7 — (t2 + ta)* — (t1 + t3)°7]

+E (Bl — B (B[l - Bf)). (2.2)

N

By Lemma 2.4, it suffices to show that the first term on the right-hand side of (2.2), i.e

1
I:= 5 [(tl + t4)2H + (tz + t3)2H — (tz + t4)2H — (tl + t3)2H] ,

satisfies Assumption (C2). Clearly I =0 if H = 1/2. Now we consider the case H # 1/2.
Note that ﬁ—g < % and ﬁ—i;‘; < % If H<1/2,

1I] < < [(t1 + ta)® — (t1 + t3)*7]
(A )QH 1At4
(

’7At4)2H 1At4

IN A
m ml\DM—*

H
= Aty
,yl QH( )
H 1 1)\2 1 132
,7172H [E (Xt4 o th) +E (Xt2 o Xt1) ] ’

IN

where we use the property of concave function in the first inequality and
E (X} — X)) > (t —5)*

when H < 1/2 in the last inequality.
If H > 1/2, mean value theorem yields that

I— % (281 + Aty + Aty + ALPH + (2801 + 285 + Aty)*"

— (2At; + 20ty + Atz 4+ Aty)?H — (24t + Aty + Ats)?H
= HAt[(2At1 + Aty + Atz + 01)2H 71 — (2At; 4+ Aty + Aty + Aty + 65)27 71
= H(1 — 2H)At2(2At + Aty + Aty + 03)*772(02 — 01 + Aty),
where 01,05 € (0, Ate) and 63 is between ¢ and Aty + 6. This implies that
1| < (2At + Aty + Atz)*72(Aty + Aty) Aty
< 2(At3) 2 [(Ato)? + (Atg)?]

< 2
= /_}/2_

= [(At)* T + (Aty)?]

2
<
— (2 _ 22H—1),Y2—2H

2 2
B (X, - X4)* + B (X, - x})°].
where we use the property of convex function in the first inequality and
E (X! —X)?>@2— 227t — )M

when H > 1/2 in the last inequality. The proof is completed. ]



Lemma 2.6 Assumptions (C1) and (C2) are satisfied by bi-fBms.

Proof. If X} is a 1-dimensional bi-fBm, then (¢t — s)?#% < E (X} — Xsl)2 < 21K — 5PHE gee
[17]. As for fBms, it is easy to see that Assumption (C1) is satisfied by bi-fBms. Let B7E be a
1-dimensional fBm with Hurst index HK.

For any 0 < t; < to < t3 < t4 < 00, we denote s; = t?H for i =1,2,3,4. Then
E (X;, — Xp,)(Xy, — X1,) =275 [(s1+ 83)" + (52 + 50)% — (514 50)" — (52 + 53)"]
+ 2! FE (BI* — BIF)(BJI* — B{I™). (2.3)
By Lemma 2.4, it suffices to show that the first term on the right-hand side of (2.3) satisfies
Assumptions (C2). Define
=275 [(s1 +83)" + (s2+5)% — (51 + 80)" — (52 + 53)]

K K

— 9K [(Atl)w (At + Aty + AtB)QH} yo K [(Atl £ AL 4 (At + Aty + Aty + Aug”f}
K K

oK [(Atl)w + (At + Aty + Aty + At4)2H} 9K [(Atl F AL 4 (At + Aty + At3)2H]
Recall the condition 2—2 < % and ﬁ—i‘; < % It H<1/2,

|1 < {(Atl + Aty + Atz + Atg)?H — (At + Aty + Atg)ZH] “
< (2H)K(Aty + Aty + Atg)PH-DE (ALK
< (,YAt4)(2H71)K(At4)K
< ACH-DK [E (x} — th3)2 +E (XL — Xt11)2} 7
where we use the property of concave function in the first inequality.
If H =1/2, by mean value theorem,
I =2"K[2A8 + Aty + At3]5 + 27K[2AL) 4+ 24ty 4+ Atz + Aty]E
— 27 K[2AL + Aty + Ats + At]K — 27K[2AL + 2At, + Atg]E
= 27K K [(2At + 2At + Aty + 01)5 71 — (248 + Aty + Aty + 62) 5] Aty
=2 KK (K —1)(2At; + Aty + Atz + 03)572)(Aty + 01 — 03) Aty,
where 01,02 € (0, Aty) and 03 is between Aty + 61 and 6.
This shows that
< (Aty) 2 [(At2)? + (Ata)?]
< | (AL T2 (AL)? + (YAL) 2 (At)?]
72 [B (x4, - X4)7 +E (- X))
If H > 1/2, mean value theorem implies that
I =27KK[(Aty + Aty + Atz + Atg)* T — (Aty + Aty + Atz)?H]
x [[(At + Ato)* T+ 0,571 — [(At)* + 6571
= 2K KHAty (At + Aty + Aty + 06)*7 7 [[(Aty + Atg)? 4+ 04571 — [(At1)*7 + 65"
= 2K KH(K — 1) Aty (At + Aty + Atz + 06)2F (At + Atg)?H — (A1) + 04 — 05)05 2,



where 04,05 € ((Aty + Aty + At3)?H7 (At + Aty + Atz + Aty)?1), 06 € (0, Aty), and 07 is between
(Aty + Atg)?H + 60, and (At)?H + 5.

Therefore,
11| < Atg(Aty 4 Aty + Atz + Atg) 2 7H(AL 4 Ato) ! — (A1) 40, — 05)052
< AH[(Aty)? + (Atg)?2)(Aty + Aty + Ats + Aty) PV (AL + Aty + Atg)2HE=2)

where we use the facts that |0y — 05| < (Aty + Ats + Atz + Aty)?7 — (Aty + Aty + At3)?H,
07 > (Aty + Aty + At3)? and K € (0,1] in the last inequality.

Since Aty < %At;;, Aty < %Atg and H > 1/2,

A
1] < 4[(At2)? + (Ats)?(Aty + Aty + Atg + f)2<2H—1>(At1 + Aty + Atg)2HE=2)

IN

2(2H-1)
4 (1 + 7) [(At2)? + (Aty)?) (At + Aty + Atg)H—2+H2H(K=2)

6[(At2)? + (Atg)?] (At + At + Atz)2HE=2
672HK72[(At2)2HK + (At4)2HK]

_ 2 2
16v2752 B (X}, - XL)° +E (X}, - X},)°]

IN

1
1

IN

IN

This completes the proof. [

3 Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. Some ideas will be borrowed from the proof of Theorem
1.1 in [2], in which the stationary increment property of fBm played a crucial role. Noting that
the stationary increment property is not assumed in this article, new ideas would be introduced to
obtain the desired limit law. For the sake of clarity, we will spell out all the details.

For any t; > 0 and t5 > 0, define

ntq nty

e e "
Bt t2) :/ / F(Xo — X) dudo.
0 0
The following result shows that the limiting distribution of %Fn(tl, t2) depends on t1 A ta.

Lemma 3.1 .
lim —E [’Fn(tl,tg) — Fn(tl Nio,t1 A tg)‘] =0.

n—o0o N

Proof. Without loss of generality, we can assume t; < t9 and then obtain

nty

E [’Fn(tl,tg) — Fn(tlytl)H < % E [/(;e /e:tl ’f(Xu — )?v)‘ dudU]

1 e
< =
nJo
ntq

1 e +oo 3
d/z/d|f($)|da:/ /f w2 du dv
a;" nJR 0 ent1

1

—5 [ |f(2)]dz,
ofli/gn /Rd
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ntq

/+°°/ ]f(w)|(a1u2H + 04102H)7% dx du dv
e R4

ntq
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IN



where in the second inequality we use the fact that the probability density function of X, — X, is
d
less than (27)~92(au*? + aqv*)~2. This gives the desired result. ]

Now we only need to consider the limiting distribution of %Fn(m t) for t > 0. For simplicity of
notation, we write £, (t) for 1 F,(¢,¢). Using Fourier transform, F,(t) can be rewritten as

E.(t) = (2771)dn /Oe"t /Oe"t - flz) exp (—w: (X — )A(:U)> dx dudv.

Let

Gn(t) = / / / exp . Xu—)?v dx dudv.
dn |z|<1 ( )>

We show that F,(t) and Gy, (t) have the same limiting distribution.

Lemma 3.2
lim E [|F(t) — Gn(t)]] = 0.

n—oo
Proof. We first observe that

Fo(t) — Gu(t) = Jna(t) + Jn2(t) + Jns(t) + Jna(t),

where

Jna(t) = / F(Xy — X)) dudv,
[Oent]Q [1 ent

Tnal®) = G / / / eXp -(Xu—f(v)) dz du dv,

n lz|>1
n —1z - (Xu — Xy)) dedudv,
Jn,3(t) n/ / /x|<1 0)) exp( v - ( )) x du dv

O ~
Jna(t) = (X — X dx du dv.
7174( ) (2 )dn /0 ent]2—[1,ent]? /x|<l P ( ! U)) ranar

Since f is bounded and integrable,

ElJa (0] <+ sup |f(z |/ / du dv

N zeRd

1 ent
—i—n</ |da:// (aqu?® + aq0? )_%dudv

< (s @i+ [ 1)),

lim E[|J,(t )\ ]=0

n—oo

Now it suffices to show

for i = 2,3, 4.

11



When i = 2,

“Jn?

Ry
|{l‘1|>1 |I2|>1

2
X </ exp ( - fVar (2 Xyy + 21 - )) du> dx
1 ent]Q

/ / / F@) | F @)1 s <upor <o)
ems]4 |l"1|>1 \w2\>1

X exp <2Var (2 Xuy + 71 - Xuy) — QVar (x2 - Xy, + 21 - Xv1)> dx du dv,

where in the last inequality we use the Cauchy-Schwarz inequality.

By Assumption (B),

Ent2<01/ / / N _k 2 . 12H . 12H
Wha@P) < [ [ Tl e (=5 (e = P+ e = )
d

X exp (—g (|$1 + 932|2(U%H + U%H))) x du dv

C ~ . 4
< ([ Rl tan) ([ i L i)
" lz2>1 [1,ent]2

c
<3
n

Y
where the second inequality follows from integrating w.r.t to z1,us,v2 and Lemma 5.1, and the
last inequality is due to Lemma 5.3.

When i = 3, using inequality |f(ac) - J?(O)] < cg|z|?, Assumption (B) and Lemmas 5.1 and 5.3,
we can obtain that

Cy4
E [l ns(t)) < & / / / 1211712211y <y oy on}
n [1,6"@4 |z1|<1 J|x2|<1

1 -
x exp |~ Var (22 - (Xuy — Xop) + 21+ (Xuy — ))) d du v

/ i . /| ol esp (=5 (P =+ ez = 0 )

X exp <—§ (Jz1 + 22| (ui + o7 ))> dz du dv

S e tan) ([ et i)
n lz2]<1 [1,ent]2

Ce

n

l\D

| /\

IN

IN

12



When ¢ = 4, using similar arguments as ¢ = 2 and ¢ = 3, we can get

C7
E[’Jn,4(t)|2] S / / / 1 w1 <ug,v1 <v
n? (0,1]2x[1,ent]2 Jz1|<1 J|22|<1 {msuz,vsva}

1 ~ ~
X exp (—Var (X2 (Xuy — Xuy) + 21 - (Xuy — le))> dx du dv

C
“ [ e (= (ol = ) o (o= )
[0,1]2x[1,emt]2 J|z1|<1 J|z2|<1

X exp (—5 (Jz1 + 22| (ui + o7 ))) dz du dv

| /\

nt

e 2
< 6—82 </ exp (—E|xl2u2H> du> dz
= Jizl<1 \Jo 2

<2
n
This concludes the proof. [

For the simplicity of notation, we set

= 1/ / / exp (—LLIT (X — )Z})) dx du dv. (3.1)
nJo 0 B(0,1)

~

Note that

So the limiting distribution of Gy,(t) can be easily deduced from that of Gy (t).
We next give the limiting distribution of G, ().

Proposition 3.3 Assume the same conditions as in Theorem 1.3. Then, for anyt > 0,

MOR LS Teak Z o g V?

CTZ) 4 (4 4)tZ<

ey

2)

]

a1

as n tends to infinity, where B(-

) zs the Beta functzon Zy 1s a positive random variable with
parameter X > 0 and E [Z}'] = m

D

for all m € N, ZA is an independent copy of Zx, N is a

real-valued standard normal mndom vamable independent of Z) and Z>\.

Proof. The proof is split into five steps for easier reading.

Step 1. We first show tightness. Let I”, be the m-th moment of G,,(¢). Then

. 1 1 m 2
Lo = nm B™(0,1) </[0,ent]m exp ( B §Var (;xz ' XUZ)> du) -

Define

1 m
I,(x) = /Dm exp ( — §Var (;xz . Xul>> du

I (z) = / exp < - %Var (ixa(i) : Xul)> du
m i=1

13
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for any o € £, where &, is the set consisting of all permutations of {1,2,--- ,m} and
Dp={0<u < <up<e™}.

Then

m!
I =— / I, (x) I7 (x) dx.
X [, @@

O'Ee@m
Applying Cauchy-Schwarz inequality and Assumption (B),

L < % </Bm(0,1) (In(x))Q dm) - < /Bm(o,l) (Iﬁ(x))2dx> v

cEDPm
12
_ (m) / (In(2))? da
n™  Jpm,1)

< (7:,!,32/3771(071) (/Dm eXp<— ;(;‘Zxﬂz(ui - U¢—1)2H)>du> zdx.

=1 j=i
Fori=1,2--- ,m, we make the change of variables
m
Y = ij and w; = u; — Uj—1 (3.3)
j=i

with the convention ug = 0 and then obtain

2
(m!)z/ / < K (e 2 2H
I <-— exp| — = lyi|“w; dw | dy
’I’Lm B’"L(O7m) [O’ent]m 2 ( Zz; >
2 m
—op (2 ([ e (<P )
1 Jiys|<mentit \Jo 2
C1 —d
<y (2 [ 1A ) dys
(n |y1|<menHt< >

S Cm,H,t7 (34)

where the second inequality follows from Lemma 5.1, and ¢, g is a finite positive constant de-
pending only on m, H and t.

Step 2. We show that I}, is asymptotically equal to I}, . defined in (3.5) as n — oo.

For any positive constant v > 1, let

Iy (x) = /D exp ( — %Var <§:xl . Xuz)> du
.y i=1

and
m

I (r) = /D exp ( — %Var (Zxa(i) Xul>> du,
m,y

i=1
where

Dy~ = Dy, — U {Aw/'y < Ay, < fyAug}

1<k#0<m

14



and Auy = up — up_1 with the convention ug = 0.

Set

Z /B z) I (z)dx. (3.5)

oe] ™(0,1)
Then

L, I, = % Z /B [(In(z) = Iny(2) I (2) + (I (x) — I} (2)) Iny(2)] dx

ocEPm m(o,l)

2m' ( )
/ 1) In(2) — Iny(2)) I (z)] dz.

06]

Using Cauchy-Schwarz inequality and then inequality (3.4),

1 1/2
0<I;, —-I ., < cl< / (In(z) — L~ (2))? dx) . (3.6)
Bm(0,1)

Note that

[ o)~ Do) do
B™(0,1)

:/Bm(o,1) (/Dm_Dmexp<— Var(i ixj Xo. 1)>>du>2d:):

=1 J=t

K 2 2H
< exp| — = Y| w; dw) dy, 3.7
/Bm(o,m) </m_Dm,7 ( 2 ;' i > (3.7)

where in the last inequality we use the change of variables in (3.3) and Assumption (B).

Noting that

Dy, — Dy = Dmﬂ ( U {we/y <wi < ’ng}),

1<k#0<m
we obtain by Lemmas 5.1 and 5.3,

/ (In(2) — Ins (2))? da
B™(0,1)

< n™” 2/ / (/
1<k:;£€<m lye|<m J |ye|<m

= ¢y nm- 2 /
1<k;£€<m ly|<m Jye|<m

Ywg P 2
/ exp <—§ (lyPwi™ + \ZMQQU%H)) dwy, d’wz) dyy dye

we /Y
/ /sz /’YTe

we /v J T/
X exp (—f (|yk.]2 (wzH (

ZH) + !ye|2 H ngH))> dwy, dri, dwp d1p dyg dyy

+ Tk
YWwe 'YTZ d _4d
<cs3 n™" / / / / (wif + 7)) 2 (1 A (wih + 7y 2 )dwk dry, dwy dry
1<k7éé<m we/y I e/
_d
<C4Z In~)n™" / / 1/\ +752H) Q)dwgdw
<ecs (ln v, (3.8)

15



where 2 is from the estimation

ent  nent m—2
/ / / exp(— v ly|? (w4 v*1Y))dudvdy < cgn™ 2
lyl<mJo  Jo 2

and In~y is due to Lemma 5.2.

Combining inequalities (3.6), (3.7) and (3.8) gives

In~y

0L, — T, <ery/ = (3.9)
Step 3. We establish the relationships among Imw 4(a,b) in (3.16), I}, (a1,az2) in (3.10),
Jm~alar,a2) in (3.11) and J7, | (a1, az2) in (3.12), Wthh are given in (3.14)-(3.15) and (3.24)-

(3.26).

For any aq,as > 0, define
I (a1, a92) = / /
0'6] Bm (0 al) [0 a2ent 2m
2
x exp< Z!%!Q M Z ‘ Zya — Yoy ‘ U?H>dudvdy, (3.10)
=1 jJ=t
Tialove =252 [ |
ae@ (0,a1) J[0,a2emt)2™ —Op,
2
X exp ( Z R Z ‘ Zyg — Yo (j)+1 v?H)dudv dy (3.11)
=1 j=1
and
T =i 5 [
JE,@ (0,a1) J[0,a2ent]2m
2
X exp( Z\yZ\Q 21 Z ’ Zyau ‘ fo> du dv dy, (3.12)
=1 j=t
where
Om~ = U {uz/'y<uk < yug or vg/y < vk <7vg}
1<k£l<m
and

B(0,a1) = {yz' eERY: |yl <ar,i=1,2,- m} - U {!yj!/’r <yl < ”y\yj\}- (3.13)

1<igj<m

Using similar arguments as in obtaining (3.9), we get

In
0<% (a1,a2) — I% - 1 (a1, a9) < csy/ 77 (3.14)

16



and

Iny

0 S J%(al,ag) — JZ'%%Q((M, az) < Cg (3.15)

—
For any a,b > 0 and 01,09 € £,,, we define

m
I . / / eXp(—bZIyz‘IQIE(X1 X5 ) >
0633 (0,a) Y D,y X D~ ;

=1

m m 2
X exp ( - bz ‘ ny’(j) - yo(j)_H‘ E (Xi - X;i_l)2> drdsdy, (3.16)

=1 j=1

|
(abal,ag m Z /

06] Bm

m
2 1 1 2
(0,a) /5%%6;;27 exp ( - bz lyi|“E (X, — X)) )

i=1

m 2
X exp ( — bz ‘ > o) - ya(j)ﬂ‘ E(X. - X;“)2> drdsdy  (3.17)
i=1 j=i

and
|
L7 (ab) = / / exp< Yo (i P20, )
ST aezym B7(0.0) /O 3 (5)%0m Z‘ KO
m m 2
xexp(—Z) Z y(,(j)—y(,(j)H‘ ’Uf_ii))dudvdy,

=1 j=09(i)

where

~ ATy
(Oka ZArz<e 0<Ara()<ﬂwithAn:m—nf1f0rizl,---,m—l
=1 v

and

m
6m,fy(b): {Zui<b€nt,0<uz‘< @ for ’L:l’ 77/,7}_1}
Y

=1

It is easy to see that

Tn 7’}’(0“ b) = Z ng,y(@a ba 01, 02) (318)

01,00€EPm,

and

\ m
CCCES DY M o (- Lo )
Y ( ) nm c, (0,a) Oy (b) X O, (b) ; ’ 1oy ) Tor(e; (1)
=1 ’ Jj=t

o (S5
Z /""Oa/ S (B)X O (b) ( Z

ae Pm
X exp ( Z ‘ Z Yolj) — ‘ZU?H> du dv dy (3.19)

=1 j=

m

2
X exp Yo(j) = Yo(h) +1‘ UZQH> du dv dy

17



for all 01,09 € Pp,.

Now we compare T:w(a, b, 01, 09) with T:L,;’C;lm (a,b). We take the following notations:

ai(y) = a1 — ¢1,1(v), a;(7) = a1+ ¢12(7),
az(v) = a2 — ¢2.1(7), ay(7) = az + ¢2.2(v),
a(y) = ai(y) Aaz(y), a(y) = a1 () Vas(y). (3.20)

For ~y sufficiently large in comparison with 77 and 2, we can use Assumptions (A1)-(A2) to get
upper and lower bounds for E (X} — X )? and E(X] — X! )%*in T:L,W(a, b,01,02), which are
constant multiples of (r; — r;_1)?H =: uZZH and (s; — 5;_1)% =: U?H, respectively. For the lower
bound case, the constants in front of u?# and v?# are @;(7) or @z(y) depending on the ratio of
u;/Ti—1 or v;/s;_1, respectively. For the upper bound case, the constants in front of u?H and U?H

are o () or as(7y) depending on the ratio of u;/r;—1 or v;/s;_1, respectively.
Using lower bounds for E (X} — X} )? and E(X} — X! )?in (3.17), then applying change
of variables to u; = r; — r;_1 and v; = s; — s;_1, we have

_md

T (a,b,01,00) < b™% (@ (7))~ $171Ho2D @y () =5 Onlonltm—loaD T2 (o (4(y))om), (3.21)

)

where

|01| = #{uk’ < ’I"k_l/’}/ P Ugy (3) < uo‘1(i+1)/’7 for ¢ = L2, ,m-— 1}7
loo| = #{vr < sk-1/7 1 Von(i) < Vou(it1)/y for i=1,2,--+ m—1}. (3.22)

On the other hand, recalling J7, . |(a1,a2) defined in (3.11) and noting that O, (b) is one of
the m! partitions of

(o< 1 i)
=1

we have

g (an), (3.23)

1 n =n,o1,0
adma(a,b/m) < (ab) < (mh)2 ™7

I
(m!) "

Next, by (3.18), (3.19), (3.21) and (3.23), we obtain

I (ab< Y b—";d(al(v))—i(m—lmlm—l@l)(QZ(V))—Z(ImIJrIaz)(m1!)2 m(a, (ba(y))2m)

01,02€EPm

= (baa(r)) % H((ff;)‘#(i—l))] (ml,> n 1 (a (b(y)) )
m +

Li=1 1y
iy | GO
= (baz(y))” 2 F((gig;)%) | (m!)2 m;y,l(av(a(')’))QH)

. _1-\ m -+ EQ('Y)
] pac

; mya(a, (ba(y))>m), (3.24)

where the first equality follows from Lemma 5.6.

18



Similarly, for the lower bound of TZW (a,b), we have

Lo@dz 3 4% () Hm oy ) Heo)
01,02 T:n ) 1
=b W[H(am e 1>a2<v>-i)] o (o (ba() 2 /m)
=1
e [T @917 N
— (bay(7)~% 20 n (4, (ba(y)) 7 fm)
B A2 I
D+ (20)$)]
= (bay(7))"F () n o a(a, (ba(y) 7 m).
B - B

Finally in this step, we provide the relationship between I, | in (3.5) and 1,

When ~ is large enough, Assumption (C1) yields

,0(7)),

2+ mpBi(7y) with Bi(y) given in Assumption (C1).

Tm,’y(l/mab(f)/» < I?n,'y < Tm,'y(Tn‘
where b(7) = 3 —mp1(v) and b(v) =

Step 4. We obtain estimates for I7,. For positive numbers ay, ag, b1 and by, define

UE@ / 0 al /[Oa2ent]2m

X exp(—b1z:|yz|2 2H—bgz sup |y]|2 2H>dudvdy

R (CLl,CLQ,bl,bQ

=1
and
R (al,GQ,bl,bQ / /
063” Bm(0,a1) J[0,azent]2m
m
X exp <—blZ|yz|2 2H—bgz sup ]y]|2 )dudvdy,
=1
where
={o(i), - ,o(m)}A{o(i) + 1 m) + 1}
with A being the symmetric difference operator for two sets.
Using similar arguments for obtaining (3.9), we get
In~vy

Ry, (a1, a2,b1,b2) — Ry, (a1, a2,b1,b2) < cio

n

Note that when + is sufficiently large, for (yq,- -

Zya

j =1

>y

JEA?

(L—m/v) sup Iyy\ < = Yo(j)+1 < (1+m/y) sup lyjl.

JEA;

19

~(a,b) in

;Ym) in the set BJ'(0,1) defined in (3.13),

a, (ba(y)) 27 /m)

(3.25)

(3.16).

(3.26)

(3.27)

(3.28)



Thanks to (3.9), (3.14), (3.15), (3.24), (3.25), (3.26) and (3.28), we get that, when ~ is sufficiently
large,

: My e | D+ (2SN | o
Im <cin T_'_ (b(7>a2(7)) 2 - mlr((g?gg)%) - J ,7,2(m (b(V)a(V))QH)
- Ty
Ny [T (2O
< ey — + (b(y)a@(y)” 2 _ mlf((ifgg)i) | R} (m, (b(y)a(v))z7,1,1—m/7)
and
. iy L [Tm+ 2O T N
In 2 =iz == + (b(1)ax(7)) 2 _ mlr(@?g;)%) _ my,2(1/ms (b(v)a(y))2d /m)
- Lo
M~y | TOn 4 (2EDD| N
> —C12 7"‘(@(7)@2(7)) 2 _ m'F((i?g;)%) _ Rm,ﬂy(l/m’(b(’Y)Q('Y))QH/mvlvl+m/7)
- i
finy e [TOn+ (D] .
> —cig\[ =+ (b(V)as(7) _ m!F((jjg;)i) _ R}, (1/m, (b(7)a(v))27 /m, 1,1+ m/y),

where we use (3.27) in the last inequalities.

Step 5. We obtain the limit of I"
in (3.1). Using Lemma 3.4 in [2],

which is also the limit of the m-th moment of G, (t) defined

ms

md d,12
= | I'(m Q233 — 1
imsw, < (2) W i sup lim sup Ry . (5 1,1 = m
.- T
(2>"5 L(m+(52)4) <2tmr2(j)>
=|— y (2m — )N
a2 mll((22)1) | r(42)
d d,q2
2\ [T+ (39T (d,d d\" g
_( 2) e <4B<4,4)> (2m — 1)t
and
md d. 12
2 [ T(m+(82)4 1
lim inf I, > ((i) M lim inf lim inf Ry, (1/m, (5(7)e(7))?# /m, 1,1 4+ m/7)
d 1 d :2
<2 )Tg D(m +(52)4) (2t7T2F (44 )>m
=|— y (2m — )Nl
a miT((22)%) | N(%2)
dr d. 72
_(2m\F (Dt G| dpd AN o,
_<az> | miID((22)%) | <4B(4’4)> (2m = R
Therefore,
n_QITdF(m+g—i)%) ggg’” B .
Jim T _<a2> m!F((g‘j)j)] <4 (4a4)> (2m — 1)t




This completes the proof. [

Proof of Theorem 1.3. The desired result follows directly from Lemmas 3.1 and 3.2, equality
(3.2) and Proposition 3.3. [

4 Proof of Theorem 1.4

In this section, we will prove Theorem 1.4. To make notations simpler, we will abuse some notations
from Section 3. We use F,(t1,%2) to denote the left-hand side of (1.2), i.e.,

1 entl entQ _

To obtain the limiting distribution of F},(¢;,t2), we first show that F,(¢1,t2) has the same limiting
distribution as F), defined in (4.1) with ¢ = ¢; A t2, through Lemmas 4.1 and 4.2. Then, we prove
that the m-th moment of F), is asymptotically equal to I in (4.2) by Lemma 4.3. Finally, we
obtain the limit of the m-th moment

m
lim I = E [\/Df,d (t1 A ts) N2 n]

n—o0

in Proposition 4.5 and thus complete the proof of Theorem 1.4.

The following result shows that the limiting distribution of F,,(t1,%2) depends only on t; A to.

Lemma 4.1
lim E [|Fn(t1,t2) — Futy Ao, ty Atg)|| = 0.
n—oo

Proof. This follows easily from the proof of Lemma 3.1. ]

Lemma 4.2 Let

1 ~
In(t) = — f( Xy — Xy) dudv.
" \/’ﬁ [O’ent]Z,[Lent]Z v Y
Then
Jim E{|J, ()] = 0.
Proof. This follows easily from the proof of Lemma 3.2. ]

By Lemmas 4.1 and 4.2, we only need to consider the weak convergence of

1 e
oL
NLOW

for which we will compute the m-th moments of F, for all m € N. Throughout this section, we
will fix the order m of the moment and let & denote the set consisting of all permutations of
{1,2,...,m}.

nt

/6 (X, — X)) dudv, (4.1)
1
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Define
|
IZ@ZE”; / / Hf wi Uu))d“d” (4.2)
nz 060 Dz, m =1

where

D — {ue 1™ ug < - < i, ui+1—uiZn_m,i:1,2,...,m—1}. (4.3)

m

The following lemma indicates that the m-th moment of F), is asymptotically equal to I7,.

Lemma 4.3
lim [E[F]-1|=0.

n—oQ

Proof. Note that

E[F) -1 < UﬁmD . XDme wr = X)) dudo]
m! "
+ oy ;E{/D - an%lﬂlf(xui =~ Koy dudv||,  (4.9)

where D" = {u e, e iu < < um} and
E?n:ﬁ’r?lm{ui-i-l_ui2672mnt7i:1727"'7m_1}-

Since f is bounded, the first term on the right-hand side of (4.4) is less than a constant multiple
of n=%. As for the second term, using Fourier transform, we get

E / f(Xui_j(:vai)dud’U
[D <D" —D"XDm}_[l @
S exp(—fVar Z; - ul)
m)md /Rmd/D xD" —Dnr x Dn. 1;[ Z
xexp(—fVar sz- v())) du dv dzx. (4.5)
For k=1,2,--- ,m—1, set

Dy, = Dy, {uk+1 —ug < n_m}-
Then
m—1
D, x Dy, — Dy xDi C | ((bfn x D, ) (D s x D;)) .
k=1
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Applying Cauchy-Schwarz inequality to the right-hand side of (4.5) on the domains EZL X ﬁzl’ k
and D" ok X D , respectively, we have

/Rmd/D - H\f x;) exp(—fVar sz uz Var ZJ:Z- 0(1)

m,k =1

eXp - *Var i - Xu,) *Val“ z; - Xy, du dv dx
ok 3 5
m 1 m _ m
/md/ H ;) eXP<—§Var(in-Xua(z Var le XU () )dudvdx
R kX Do ke i1 = —

dudv dx

I—J\_/

1
2

/ d/ 7nH’f ;)| eXP<_*VaT Z% uz —*Val" ZJUZ Voi )dudvdx
Rm

kxDmZ 1

[/Rd/ on H‘f xz exp(—;Var(ixi- uz Var Zmz v; )dudvdw]
ma JBT

mk =1 i=1
X / / exp(—IVar(ixi.)?ui)_lVar(ia:i.)Z'vi)) dudvdzx :
Rmd JD,, xD,, 2 i=1 2 i=1

By Fubini’s theorem and Assumption (B),

1
2

m

1 = 1
/Rmd/D" D" eXp(—iVar(in~Xui) —§Var(Z:Ei-Xvi))dudvd:p

i=1
—fV i (Xy, — X)) dadud
/D — /Rmexp ar Zx ))) x du dv

<c H[(u — Ui 1)2H + (v — v 1) ]*%dudv

nt
(/ / r2H 4 g2y =5 5 dr ds)
—2mnt 72mnt

SCgTL 5

where the last inequality follows from Lemma 5.3.

On the other hand,

/Rmd/ . H‘f (zi)| exp(—;Var(gxi- U(Z) Var Z%. ot )dudvdm

mok XDm i j=1
/n HUf oty ~ Kvggy) dudvy
D ,C><Dm k=1

. : . 12
where Uy is the inverse Fourier transform of | f ‘ .

=(2m)"™ E
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Therefore, combining all the inequalities/equality after (4.5), we have,

m

Hf(XUi U())dudU]

1
m—1 2
/ 11 Uf(Xui—)?Ui)dudv” : (4.6)
D:ln IXDm 1

=1

where the last inequality follows from the boundedness of Uy and the definition of b:m

Using Fourier transform, the boundedness of \(/J;], Assumption (B) and Lemma 5.3, we get that
the right-hand side of (4.6) is less than

m 1 m-l -
c6 M [/D’,leD’,;l /R(mm exp < - §Var ( ; zi - (X, — Xw))) dx du dv]

_ m+1
<crn 2.

=

This gives the desired result. ]

Now we represent I, given in (4.2) using Fourier transform. For ¢ > 0 and o € 2, set

1 m
I (z) = / exp | — =Var xi - Xy,) ) du
t :a ( 2 (; )>
and .
) = [ exn (= V(Y aie Koy,)) o
L3 i=1

where D}, is defined in (4.3). Then by Fourier transform,
0= e 3 [ 170 hate) () @)
m = — i) Int(x) I, () d. )
(2m)d/m)™ & Jrma -5 '

By the preceding lemmas in this section, to prove Theorem 1.4, it suffices to compute lim I7.
n—oo

To do this, we will use Assumption (B) and adapt the chaining argument from [11] to obtain some

estimates in Lemma 4.4, which is crucial to the calculation of lim I in Proposition 4.5. For
n—oo

better readability, we split the rest of this section into four parts.

(I) Symmetrization of |I”,| via Cauchy-Schwarz inequality. In this part, we will obtain an
upper bound for |I7|, see (4.8). To this goal, we will first apply the Cauchy-Schwarz inequality
to the integral in (4.7) and then use Assumption (B) for the variance. Note that this kind of
procedure will be used frequently for similar integrals in the sequel.

For the integral on the right-hand side of (4.7), the Cauchy-Schwarz inequality yields

‘/Rmdnfxl nt(2)I7,(x) dx
<[ mdﬁrﬂxi)r(fm(x))zdx]%[ [ el a

=1

1
2
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Taking into account that [}, | F(x;)| is symmetric in terms of a;s, the second factor on the right-
hand side of the above inequality does not depend on ¢ and hence

‘/Rdefxl nt(@)Iny(2) d /Rde!fxz Lu())’ da.

Substituting this estimate into (4.7) yields

n 7(7”!)2 1 Fla; o)) dz
Tl < o s D 00)

m
Making the change of variables y; = > z; (with the convention y,,+1 = 0), we can write
j=i

/ / H |f (Y = yig)]
R™d JDp xDp,

m =1
xexp(—Var(ZyZ Xu, — Xu,_4 ) —fVar<Zyz- v, — X, 1)>>dudvdy.

Applying Assumption (B) and making the change of variables s; = uy, r1 = v1, 8 = w; — u;—1,
and r; = v; — v;_1, for 2 < i < m, we obtain

/ / | | yz+1
Rmd ent]2m i1
K 2/ 2H 2H
X exp < —5 E_l lyi| = (s;™ + 75 )> dsdrdy. (4.8)

(IT) Chaining argument. In this part, we apply the chaining argument introduced in [11] to
the integral on the right-hand side of (4.8). The main idea is to replace each product f(ygi_l -
yai) f (y2i = y2it1) by f(—y2i) f(y2i) = | f(y2i)|?, noting that, by the assumption [ |f(z)||z|? dx <
oo for some 8 > 0, the differences fA‘(ygi_l —Y2i) — f(—y%) and f(ygl — Y2it+1) — f(ygl) are bounded
by constant multiples of |y2;—1|% and |y2;+1|%, respectively, for any o € [0,/5]. Making these
substitutions for [[;", \f(yz — yi+1) recursively, we get

Tl <

II”\<

H — i)l = 1F(n — v2) — F(—w2) + F(—w2) || F(v2 — y3) — F) + F(w2)|
x| F(ys — ya) — Fl—ya) + F—ya)||F (s — v5) — Flya) + Flya)]| x

és

‘A( — Yiy1) — f((_l)inL%J) + f((_l)inL%J) ,

i=1

i+l

where L%J denotes the integer part of *5= and y,,4+1 = 0 by convention.

Noting that |f(y)| = |f(—y)|, we have

[T 17w =yl <D I,
i=1 k=1

where
— m

~

fk:(H o ) [Pl = ws) = Flpesn )| TT 17 = wi)|

j=1 j=k+1
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fork=1,2,...,m—1, and

m—

m—(H Flwayza 1) | Flam)]

In this way, by (4.8) we obtain the decomposition

‘In 271— md Z k,m>

where

m
m K
Agm=mn"2 / / Ij; exp ( - — E |yl 2 (s2 + T?H)> ds dr dy.
md —m ont]2m 2 0
R [n=m ent] =1

(IIT) Some crucial estimates. We fix a constant A € (0,1/2). The estimation of each term
Agm, for k=1,...,m, is given below.

Lemma 4.4 There exists a positive constant ¢ such that
(i) Agm <cn™, fork=1,2,...,m—1,
(11) Apm < en~3 if m is odd, and Ay, < ¢ if m is even.

Proof. To prove part (i), we first consider the case when k is odd. By the assumption on f, we
can obtain |f(y)| < ca(|y|* A1) for any « € [0, B]. So Ak, is less than a constant multiple of

ﬂ
2

2
wt | / el® TT (asl® + oy sal®) TT 1F o) 2
Rmd ent]2m :ﬁ ]:1
2
K m
X exp ( ~3 Z |yl 2 (s + TZ-QH)) ds dr dy.
=1

Integrating with respect to the y;, s; and r; for ¢ < k — 1 gives, by Lemmas 5.3 and 5.5,

3]
_m—(k=1)
A < cin " / / wel® T (wasl® + o |®)
R(m—k+1)d [n—m,ent]2(m—k+1)

- k+1
j="1t

m
xexp (=5l (37 +17)) ds dr d,
i=k

where ds = dsy - - - dsy,, dr = dry - - - dr,, and dy = dyg - - - dyp,.-
By Lemmas 5.3 and 5.4,

A < cam™ " HUE D) mH0) k[ 222)

= o N5 L5 -1 (g 1) (mHa)
Choosing a small enough such that

m m m—k+1
T e (P ) (mHa) = A
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gives
Ak,m < co n~\ (49)

We next consider the case when k is even. By Assumption (B), A, is less than a constant

multiple of

/R d/[ ]2 ~Yk Hf yk_yk'H yk ’ H ‘f — Yi+1 |
m n—m,ent]2m

i=k+1

H|f(y2g eXP(—*Z!yz ‘H)) ds dr dy.

<.
—_

Using similar arguments as in the odd case,

ﬂ
2

Aemsesn™® [l H<|yzj|a+|y2j+1|°‘>
m en m

(1

m— (k 2)+(

’A( i)l )exp( Zlyz H)) ds dr dy

>+ 2)(mHa)+(m—k—Lm;'“J)

.:l\‘

<.
Il
?r’_‘

<ecn~
—cun®- %J71+(Lm77'€j+2)(mHa)'
Choosing a small enough such that

T (P 2)mHa) = -

gives
Apm < can™. (4.10)

Combining (4.9) and (4.10) gives the desired estimates in part (i).
Finally, we show part (ii). If m is odd, by Lemmas 5.3 and 5.5,

m—1
2 m
o m 7 Tl (2 k 12 (2H | ,2H
A =" /R o O T 0 e (= 5 3l 627402 ) oty

j= i=1

| /\

wb [ Pl ep (=l (52 2 s dr i,
Rd [’I’Z ent

/ F ) 19| g
Rd

IN
Q

S
INIE

6

NI

IA

crn
where the last second inequality follows from Lemma 5.5 and the last inequality can follow easily
from Remark 1.8.

If m is even, then by Lemma 5.5,
B

1172 exp(—*Z!yz ‘H))dsdrdy

m m = nii
/:Rmd /[n m ent]2m "

Jj=1
< Cg.
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This completes the proof. [

(IV) Convergence of moments. In this final part, we show the convergence of I, given in
(4.7), and then prove Theorem 1.4. Recall that

n = (G dfm 2 /DD /Rdef )

m

X exp ( — fVar sz Xu; — )ngm))) dx du dv.

Proposition 4.5 If m is odd, then ILm I =0. If m is even, then
2
] (Dyat)™?((m—1)1)%.

Proof. The convergence of odd moments follows easily from Lemma 4.4. So we only need to show
the convergence of even moments, which will be done in five steps.

Step 1. We show that I7, is asymptotically equal to T”mﬁ defined in (4.12). Let
6m = D] N {n2 < Augiq < e”t/m, nl<Augi<n,i=1,2,- --m/2},

where Aug = ug, — ug_1 for k =1,2,--- ,m with the convention ug = 0.

Set

Tn = 27Td\fmzz/o %O /Rdefxl
X exp ( — fVar sz Xu, — )Z'Ucr(i)))) dx du dv.

Then, using similar arguments as in (I) Symmetrization of |I})| via Cauchy-Schwarz in-
equality,

m
I —T | <cin 2 / / | (z:)
Z R™ J D7 x D7~ X Om I;I

cEP Om

X exp ( — §Var (Ziﬂz (X, — )vac(i)))) dudv dz

=1

m
<epn % / / Pl = yis)
R™ J D7 x D7 —0pn XOm 1;[ ' ’

X exp ( Z |ys | [(Au;) My (Avi)QH]) dudv dy.

Thanks to Lemma 4.4,

m/2
. ~s . _m
limsup I}, — I | < czlimsupn™ 2 / o / H|f Yor)|
n—00 n—o0 D%XDTL —OmXOp JRMA 1

X exp ( Z ]yz Auz 2H (Avi)ZHD dy du dv. (4.11)

28



For £=1,2,--- ,m, define
D N{n ™ < Auy <n? or e™/m < Auy < ™}, if £is odd;

D N{n ™ < Auy <nt or n < Auy < e}, otherwise.

Then, by
m
=JEL,
(=1
and the symmetry of u and v in inequality (4.11),

limsup I, — I |

n—oo
m/2
<263;h£n_)sogpn Q/En ey /Rmd H ]f yor )| exp(— —Z]yz [(Aw;) 2 (Avi)zHDdydudv
m/2 1
< 1 —% -= P [(Aw)*H + AQHddd],
642 lygsogp[ /E;Mn /RdeIf yor) 2 exp ( Zly (A + (Avi)*] ) dy du dv

where in the last inequality we use the arguments as in (I) Symmetrization of |I" | via Cauchy-
Schwarz inequality and Lemma 4.4.

When £ is odd, integrating with respect to the y;, u; and v; for all ¢ # ¢ and using Lemmas 5.3
and 5.5,

m/2

lim sup n_gl/ / f Yo )|? exp i AuZ H 4 (Av)?H]) dy dudo
n—oo ET”:l,ZXET’,)]:L,Z Rmd 1;[ | 2 ( Z| ( ) ]>
2

< lim sup 05/ <</ +/ ) exp ( - ﬁ‘yg|2(AUg)2H>dAUg> dyye

n—oo N JRd n—m e"t/m 2
<11msup/ / / exp — —|yg\ [(Aug)?H + (Avg)ZHDdygdAugdAvg

n—oo N n—m

+limsup & / / [ oo (= Pl + (BurP)dys dusd S

n—oo n ent/m ent/m R

< lim sup / / Aw)2H + (Aw)?H)~ g dAuedAvy,

n—oo N

—|—l1msup/ / [(Aug)?H + (Awy)?H)~ & dAupdAvy
6nt/m ent/m

n—oo M

=0,

where in the last equality we use similar arguments as in the proof of Lemma 5.3.
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Similarly, when £ is even, by Lemmas 5.3 and 5.5,

m/2

limsupn?/ / T 17 ()] exp(—fZ\yz [(Au)?H + (sz‘)QHDdydudv
Er o ¥ER . Rmd 5

n—oo

nt 2
< cs lim sup / |f(y£)|2<</ / )exp(—wl (AW)M)dAW) dye
n—oo JRA n—m et /m

n=1 -1
. -~ K
<cptmsw [ f /R TP esp (= Sl l(Au) + (o)) dye dAugd v

n—oo

n—oo

. en nt - K
+ cg hmsup/ / /d |f(yg)]2 exp ( — §’yg|2[(AUg)2H + (A’U[)QH])dyg dAupdAvy
n n R

6'mf ent
. o K
< c1p lim sup/ / /Rd |yg|2 exp ( — 5]yg|2[(Aug)2H + (AU@)QHDdyg dAugdAvy

n—0o0

nt ent
< ¢q1 lim sup/ / [(Aug)?H + (Aw)ﬂ{]*g*a dAugdAvy

n—oo

= 0’
where we use Remark 1.8 to get the third inequality and the proof of Lemma 5.3 in the last equality.
Therefore, lim sup |7, — I%, | = 0. Now for any v > 1, define

n—oo

. m) mo_

bt s i

1 = @i 2 S, S LT

1 “ ~
X exp < — §Var (sz (X, — XUU(i)))) dx du dv, (4.12)
i=1
where

~ ~ Augi_q Augjq . L,
01 =0 m{ > I71 S o for alli,j € {1,2,--- ,m/2} with }
= O { R > o TS o alli e | m/2} withi # j

Then, using similar arguments as in (I) Symmetrization of |I})| via Cauchy-Schwarz in-
equality,

m
T 10 [ <cian™ > f
o mﬁ| - az: /meém@ xO /Rmd 1;[ 17l

X exp ( — fVar sz Xu;, — X, (Z.)))) dx du dv

m

_m
< cizn 2/ / H|f — Yit1)|
OmxOm—03x 07, JRmd ;7

X exp ( - = Z |yl [(Aw;) M (Avi)QHD dy du dv

%
§014n*+013n2/~ o ~/ 1T 17 ()
OmXOm—0%, xOF, Rmdj:1

X exp ( Z \y, [(Auy) M (Avi)QHD dy du dv,
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where we use Lemma 4.4 in the last inequality.

For any odd numbers k,? € {1,2,--- ,m} with k # ¢, define
5;1%1 =OmN {1/~7 < Aug/Aup <7}
Then, by the symmetry of v and v in the above inequality,

m/2

nr /mxom 01, <0, /Rmd I;I i y2j)|? exp < Y Z lyil* [ (Aw;) 2H 4 (Avi)QH]) dy du dv
m/2 m
k#£0 H><Om Rmd =1 z’:l
m/2
_m 2H o
§c15§ n 2/07Mx07 Amdg\f exp(—*Z\yz Aul + (Av;) Ddydudv

Integrating with respect to the u; and v; for ¢ # k, £ and all y;s gives
~% (A + (Avi)*]) dy dud
R 1 L

016/ /nm/n m/n ) [(Aup)? 4 (Avg)?H]™ [(AW)M (Aw)zH]—%

X 11y < Aug / Aup <y} L {1 /v < Avg ) Avg <y} At dug dug dovp.

wf3

Making the change of variables as in the proof of Lemma 5.3, we could obtain that the right-hand
side of the above inequality is less than a constant multiple of (In~y)/n. Therefore,

~ ~ /In
‘I% — I?ﬂﬁ’ < ci6 (n*)‘ + T’Y)

This implies that limsup [T, — 17, .| = 0.

n—oo

Step 2. We show that i" is asymptotically equal to i ~ defined in (4.13). Making the change

of variables y; = Z xj for i =1,2,--- ,m (with the convention y,,+1 = 0) gives
j=i

3

T%’V ((2m d\f " Z /me’Y /m H = Yir1) eXp ( B %Var (iyz H (K X“"‘l)))

i=1 i=1

X exp ( — §Var Z Z ya(j)+1) (Xvi — XUi—l))) dy du dv.

1=1 j=1

For any € € (0,1), define

B v s H<>< (S 50)

X exp ( — §Var (ZZ Yo(j) — Yo(j)+1) * (sz. — X'Ui—l))) dydudv, (4.13)

i=1 j=1

m
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where

m

T? =R™N { [y2k—1| <&, Z Wo() = Yo(i)+1)| <& k=1,2,-- ,m/Q}. (4.14)
j=2k—1
Let
To‘,s = Rmd N { Z (ya(j) - ya(j)+1) <& k=12, 7m/2}
j=2k—1
and

T. =R™n{|yask—1| <&, bk=1,2,--- ,m/2}.

Then T? =T, NT, .. This implies that

Rmd (Rmd > (Rmd O‘E) .
Therefore,
ﬁn _in,s |
X exp ( - %\far (Z S Wots) — Yotiye1) - (Xu, - Xm_J)) dy du dv
i=1 j:i
= s n_% /O <O, /Rmd T ;= ~ vl exp ( B %Var (;yz = Xui_l))>

Ms
M= "

X exp ( — fVar( (yg(]) Yo(j)+1) ° (XUZ. — XUFI))) dy du dv

.
Il
Il
&

1y
m

" 1
+egnE ; (—fv i (X, — Xu, )
975 5 [ e g, LIl (= o (3 =)

"o i i=1
X exp ( - %V&r (Z Z ya(j yo-(g +1) (XUz — X’Ui—l))) dy du dv.

Using similar arguments as in (I) Symmetrization of |I},| via Cauchy-Schwarz inequality,

[
<cign 2 / / H‘f — Yit1) eXp(—IVar(iy‘,(X'_X. )))
O x O JRMI-T. 32 v 2 i=1 l " H
m
xexp (- %Var(Zyz‘ (X, = Xo,,) ) dy dudo.
i—1
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Now, by Assumption (B) and Lemma 4.4, ﬁ%v — T | is less than

m/2

caon N +con” 2/ / H\f y25)|
O}, x07, JRmd_ TE

X exp ( Z ]yl [(Au;) 2H (Avi)QH]) dy du dv

nt/m nt/m K
<epn e n! / / exp — —\:):\Z(SQH + tZH)> dxdsdt
|x|>e

-2 T A 2(.2H | ,2H
<coon N4 cogpn e 2N / / / exp \:U| (s 41t )) dx dsdt
n?2 |x|>e

2 4H
<cgon M Hepze 25N

This gives lim sup |T”m7 — iﬁfv =0.
n—o0

Step 3. Recall the change of variables y; = Z xj for i = 1,2,--- ,m. We see that T"may can also
] %
be written as

Te ;=1 z:l j=i

X exp ( — §Var (Zixg(j) . (XUZ. — Xvi_l))) dz du dv,
j=i

=
where
T7 —R™n {‘ 3 xj‘ <o | xg(j)‘ <e k=12 - ,m/2}. (4.15)
j=2k—1 j=2k—1
For any o € &, define
P1={oce€P: #A(oc) =m/2} and Py=L — P, (4.16)

where

A(o) = {{21@,21@ 1) k=1,2,- ,m/Q} N {{0‘(2/-{7),0‘(2/{7 1) k=1,2,- ,m/z}.

For any 0 € &, let

B = et g e L0000 (Ve (0 2 )

=1 1=1 j=1

xexp ( - %Var (3D 0y (X = Xo,0)) ) dwdudo,

i=1 j=i

In the following, we will show the asymptotic behavior of Imw when o € &y and 0 €
respectively.
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For any o € &, there exist j, k, 0 € {1,2,--- ,m/2} with k # ¢ such that
0(2j) € {2k,2k — 1} and (25 — 1) € {2¢,2¢ — 1}. (4.17)
By the definition of T¢ in (4.15). For any i = 1,2,...,m/2,
‘.T}Qi + 1‘22'_1‘ < (m/2 -1+ 1)€ and ]xa(zi) + xg(zi_l)‘ < (m/2 -1+ 1)8. (4.18)
We claim that
|zor — x| < 2me  or |wop + woy| < 2me.
In fact, from (4.17) there are four possibilities for the values of 0(2j) and (25 —1): (1) 0(25) = 2k
and 0(2j — 1) =2¢; (2) 0(2j) =2k and 0(2j — 1) =20 —1; (3) 0(2j) =2k — 1 and 0(25 — 1) = 2¢;
(4) 0(2j) =2k —1 and 0(2j — 1) = 2/ — 1. In this first case, the claim follows from (4.18) directly.
In the second and the third cases,
|Zor, — Tae| < |ok — (—1)7 Dz, 05| + [To(2g) + Toi—1) + [(=1)7F Va0 1) — 20| < 2me.

In the last case,

|zok + T20| < |To + To2j)| + [To(2j) + To2i—1)| T [To2j—1) + 22| < 2me.

We next show that
Yok — yor| < 4me  or  |yor — yoe| < dme.

Without loss of generality, we can assume that k& < ¢. Then

20
Yok — yor| = Z Tj+ Top — x| < dme
j=2k+1
if |zor — wog| < 2me, and
20
Y2k + y2e| = [2 Z vi+ Y @yt wop + wo] < dme
j=20+1 j=2k+1

if |zok + wog| < 2me.

Using similar arguments as in (I) Symmetrization of |I},| via Cauchy-Schwarz inequality
and then Lemma 4.4,

|I"z—:cr|<024 Z /OVXW/ H|f ()] exp(—Var(iixj (Xui—Xu,H)))

1§k7£e<m/2 T i —
XeXp<_7var ZZ% Xy — X 1)))d$dudv
=1 j=1
m/2
< Cos A + c95 /7 7/ H|f3/2]
1<k7ée< /2 O, x0Op, JRmMA =1

X exp ( Z ]y, [(Auy) 20 (Avi)QH]) L{ lyontyae | <dme} dy du dv.
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This yields, by Lemmas 5.3 and 5.5,
lim sup [T557] < c26 / F@ PPl )yl Yo yi<ame) dedy, for o€ Po. (4.19)
n—o0 R2d
Note that the integral on the right hand side goes to zero as ¢ tends to zero.

Observe that

~ 1 m

freo _ . (_7\/ > i (X, — X, )

my 27T d\r /O'Ym><0’Y /5 i=1 yH'l)eXp 2 ar(i:l v ( ul uzil))
m m

X exp ( - §Var (ZZ(ya(j) — Yo(j)+1) - (X — leq))) dydudv. (4.20)
i=1 j=i

Recall T7 in (4.14). Let 7, =T7 — T7, where

7 =T N{|y2i| >ve:i=1,2,--- ,m/2}.

Define
e vl A | D wye (= 5ver (Cwe: (- X))
1 m m
e ( —5Var (D) (o) — oiy+1)  (Xu, = sz._l))) dy du.dv,
1=1 j=1
IWLQ’Q N ((277)d\r /O7 xO7, /502 11_[1 Fyi = yia) exp < B fVar Zyl Xu; = X“ifl))>
1 m m
X exp ( - §Var( Z — Yo (j) 41) - (Xvi - Xvi_l))) dy du dv
=1 j=1
and
_ m! m/2
neo e 1 _
Lias = ((2m)dy/n)m /52%5 /52 ]1_11 ’f i)l Sexp ( Var Zyz Kus = Xus 1))>
X exp ( - §Var (ZZ(ya(j) — Yo(i)+1) - (Ko — Xvi_l))) dy du dv.
i=1 j=i

Obviously, Iy%” =17 ot s -

Step 4. For any o € £, we will show that lim n SUp |ifn’€;y‘71| is less than a constant multiple of
TIn ,€,0

ﬁylg'yg | F()?lyl~ dy and hmsup Lo — 1 73\ = 0 when « is large enough.

Recall the definition of 21 in (4.16). It is easy to see that #2 = 2% 2 (4)!. Moreover, for any
o € P, the expression of summation ZJ:l(yg( ) = Yo(j)+1) on the right- hand side of (4.20) after
simplification only has two possibilities. One is that it consists of only variables y with odd indices
when ¢ is odd, and the other is that among the variables y in its expression, there is only one
variable y with even index when ¢ is even. Note that all variables y with odd indices are in the ball
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centered at the origin with radius € and ¢ is a positive constant which can be chosen arbitrarily
small.

For any o € &7, using similar arguments as in (I) Symmetrization of |I/',| via Cauchy-
Schwarz inequality and Lemma 4.4,

lim sup |’fo77?1‘ < co7 Z / ’ ‘ya(z ’ ddya ()
n—oo i=1,i:even ¥ 1Yo (i )|<’Y‘E
S e (121)
ly|<ve
where 7 (i) = o(i) if o(7) is even and o(i — 1) otherwise.
Define
Jeo, — / / f(yi — yit1) exp ( - fVar Yi - (Xuy — Xu;_ )
2 ((QW)d\f 03, %03, JT17, H i ; )
X exp < - fVar Z Z Yo(i) = Yoi)+1) - (X, — XUFI))) dy du dv
=1 j=i
and
m/2
j:lrf’o— — / / f yQ exp ( — *Val' Yi - ul - Uz ) )
(2 d\F O x0% JTZ, Jl_[l S Z )
X €Xp ( - ivar (Z Z Yo(5) — Yo (j) +1) (X’Uz - XUz‘—l))) dy dudv,
i=1 j=i
where
T2y, =TSy — U {lysl/7 < 1yl < ~ly;l}-

i#je{2k—1:k=1,2,- ,m/2}

Now, for any o € £, using similar arguments as in obtaining (3.15) with the help of (I)
Symmetrization of |I| via Cauchy-Schwarz inequality and Lemma 4.4, we get

nEU' nEO' TLEU nEO'
hmﬁsup Lo —Jdmal =0 and hHLSUP‘Imyg_meﬂ
n n

provided that v is large enough.

n,e,o n ,E,0 |
myy,2 I 7,3

(2r d\f /07 50 /o | — Yit1) — H |f(1/2j)\2‘
X exp ( — fVar Zyl Xu;, — Xui—l)))

Next we estimate |J

nso’ ’T'LEO'
’Jm% — I m,y,3

X exp ( - §Var (Z Z — Yo(i)11) * (Ko, — XUi—l))) dy du dv.

i=1 j=i

For ~y large enough, on T7, ,

(1—; Suplyg|<‘2yo +1)]5

JEAY
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where
A7 ={o(@), - ,o(m)}A{o()) + 1, ,o(m) + 1},
So, by Assumption (B),

m/2

TLEO' TLEO'
omge = Jm sl < ((2r d\/’ /O"* XOﬂ,/ ‘Hf ~ Yi+1) H F(y25)] ’

52711

m
K
X exp ( — 5 Z ]inQ(ui — U,Z‘_1>2H>

KR
xexp (=507 Zsup 5 2(0s = vica)?).

zlj

By Lemma 5.7, there exists 0 € & such that &(j) and j have the same parity for all j =
1,2,---,m, and

m
In,e,o necr ' _ N2
e vy A 11 =) T
m 5 ~i=1 =
m
K K
X exp ( —3 Z lal* (ui — ui—1)*" — 3 >y (vi - Uifl)zH) dy dudv.
i=1 i=1

Now, using similar arguments as in the proof of Lemma 4.4 to the right hand side of the above

inequality, we can get
n,e,o JTL ,E€,0 |

11msup|Jm72 —Jmas

n—o0

TLEO’ _ITLEO'

Therefore, limsup [T .2 m,y,3

n—oo

| = 0 when ~ is large enough.

Step 5. We obtain the limit of I?, as n tends to co. By Assumptions (C1) and (C2),
Var Zyz ' ul - ui_l))

is between 3(v,n) ; yil’E (X, — X5 )? and B(v,n) ; yil’E (X — X, )% where B(v,n) =
1 — c20p1(7y) — c20B2(n) and B(v,n) =1+ c3081(7) + cz062(n).

37



In the sequel, we always assume that v is very large. Note that

1=1,2:even

m/2
~ m! >
limsup I Slimsup/ / Fy2)]?
n—00 3 n—00 ((QW)d\/ﬁ)m 07, x O, 50,2]1;[1’ ( !
7n il
coxp (= 205 X2 )2)
i=1
B(7,1) =~
xexp (= =5 1Y ots) — Yoo+ ) PE (XS, = X)) dydudv
i=1 j=i
m) m/z
< i . )2
=P (@ody/mym /@mxaxl /TE 17!
By,n) &
<exp (- =5— Y IWPE(X), - X;,)?)
=1
5(7777’) m "
e (=S50 3 PR - X))

B(r,n) &
i D Wot) — Yo+ E (X, — Xii_l)Q) dy du dv.
i=1,i:0dd j=1

By Assumption (A2), on O}, and for even i, E (X5, — X4 ) and E(X}, — X[ )? are greater

than @ (u; — u;—1)?" and @s(v; — v;_1)?H, respectively, where @y is given in (3.20). Then,

) . Qm(m 1)” 1 / R 5 4 m/2
1 TV <
im sup g 3 (2 )2 ((27r)d . lf(2)|%|z| % d=

a d.d.72 m/2
(TGN || atrirzds
X (b(’Y)Oéz(”Y)) (%)'F((%gg)%) (1-— c’:)ip(lldQQ) (m — 1),

where @; and @y are given in (3.20), and b(y) = & — mpBi(y), the two integrals are from the

integration with respect to Au; = u; — u;—1 and Av; = v; — v;_1 with even indices ¢ and the
fact that [;° e=el2 ™ g = | 2|74/ I e=e*" ds, and the terms in the third line follows from the
methodology used in Step 3 and Step 4 of the proof for Proposition 3.3.

Recall that ~Z{7€Jf = T&Efl —G—Iffij, inequality (4.21) and lim sup |I%Ejf2 —f2€§03| =0 for o € #.
9 k) b K n%w b b b b
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So limsup > Iy is less than
n—o0 ge

Y m((m — 1)1)? ~ m/2
o /ylévs TPy dy -+ : ((;W)mdl/l”) ((271r)d /Rd [FE)P dz)

m/2
1 m._
X (/[0 ooy exp <—2(1 — c29P1(7))(1 = ;)ag(uw + v2H)> du dv)

_em [TEHEEDD || 2emiT2(dd)
« (b(y)aa(y)) L T
S (IT((E5) | |0 —2)iT(42)

Note that by Step 2,
hmsupI" my < limsup Z I"g 7 4+ lim sup Z I"E .

n—00 n—00 n—00
ogeP, oceES

Taking ¢ — 0 first and then v — 400 on the right hand side of the above inequality, we obtain,

by Step 1,
d 2
: n )4) m/2 2
limsup I}, < d) (Dyat)™=((m — 1))~
1

n—o0

[F(m + (

a2
2 a1
(5)T((52

On the other hand,
liminf I, > liminf Z I"EU + lim inf Z I:Lngfl + hnrr_lgéf Z I:Lngﬁg. (4.22)

n—o0 n—oo n—oo
O‘Ego ocEP ocEP

. . o . In.e,o -
Using similar arguments as above, liminf > I 03 is greater than
n—oo 0691 s

m/2
liminf / / |f Y2;)
n—00 m Z 0}, %07, 502]1_{ J

,n
X €Xp ( - ’}/T Z |yz|2E (Xu; — Xui—l)Q)
- m m

2B (X, — X,)?) dydudo

xexp(

0_6321 O’Y XO’Y 2 ] 1
-
xexp(—-ﬁ“;)EjnﬁPE<xa,—xaFJZ)
=1

=1 j=
> liminf ————— (2r d\fm Z

B(y,n m. .
cep (- 0T Y g PECK - Xe)?)
i=1,i:even

) m

’n Ui
X exp ( - ) > 1D Wot) = Yo+ PE (X, — Xvi,l)Q) dy du dv.

2 = —
i=1l,i:odd j=1
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Hence,

- S () 2 2
imint 32 T3> S0 (e f P 1 0

ocES
. m/2

X</ ew(—grﬂmmwmr%>%<w+““ym“>

[0,400)?
o 472 m/2

o [T+ EO ]| 2trtrr(es
X (b(V)az ()t | — ;21((:)) d my @ 4d+2 ’
(5)'F((;1(7))4) (1+7)4F(T)

where b(y) = 5 +mpBi(7), a;(7) and ay(7) are given in (3.20).

Recall inequalities (4.19) and (4.21). Taking ¢ — 0 first and then v — +o0 on the right hand
side of (4.22) gives

(3 + ()]’

m @2\7

liminf I, > | —2—%1° ] (Dy.at)™?((m — 1))
e SNL((52)1)

This completes the proof of convergence of even moments. [

Remark 4.6 When m is an even integer, although the asymptotic m-th moment I, given by (4.2)
involves all permutations of {1,2,...,m}, only permutations in &1 given by (4.16) contribute to
the limit when n — oco. Moreover, the arguments in Step 3, Step 4 and Step 5 show that the
paring defined in (4.16) indicates a clear relationship between the first-order limit law and the
corresponding second-order limit law.

Proof of Theorem 1.4: This follows from Lemmas 4.1-4.4 and Proposition 4.5. [ ]

5 Appendix

Here we give some lemmas which are used to estimate moments when n goes to infinity. Recall
that Hd = 2. The generic constant c is independent of n and varies at different places.

Lemma 5.1 Let a and m be positive constants. Then we have

/ e P dy = ca=¥?, and hence / el gz < c(1Ana=9?),
Rd

|z|<m

o0 m
/ e qu = ca~¥?, and hence / ey < ¢ (1A a~%?).
0 0

Proof. The results can be proven using change of variables and the fact that Hd = 2. [

Lemma 5.2 For anya>0,b>0 and v > 1,
ay by
/ / (u?H 4+ )= 2 qudy < T In~.
2
a/vy Jb/y
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Proof. Let uf! = rcosf and v/ = rsinf. Then

\/W’YH s 1
/ / QH)—d/Qdudvg i /2 r_dﬁr?i 1(0050) (sm@) ~1d6dr
b a2H+bZH/'yH
- \/a2H L p2H A H 1

—dr
= 2H? |, [a2H 4 p2H jyH T
-7
H n-,
where in the second inequality we use the fact that % =dand H < 1. [

Lemma 5.3

ent ent 4
/ / (W 4 v* " 2dudv < cn,
—2mnt —2mnt

nt nt
d
/ / + "2 dudv < en.

Proof. Tt suffices to show the first inequality. Let u = rcos@ and v = rsinf. Then

nHt ™
/ / w4 ?H) ~Sdudv < /26 /2 r‘dirﬁ !(cos 9) (Sln@)ﬁ_ldgdr
—2mnt 72mnt —2mnHt J H?
- /QG”Ht ldr
= 2H? e—2mnHt T
<cn,
where in the second inequality we use the fact that % =dand H < 1. [

Lemma 5.4 For o > 0,

12(2H  2H
/ / |x|“e 25 dsdrdar < e n™He,
]Rd [n7m7ent]2

Proof. Integrating with respect to x gives

/ / ]a:\ae*|x|2(32H+r2H)dsdrdx —c/ (s*H +7°2H)JHTadsdr
Rd [n—m’ent]Q [n—m7ent}2

mHao
<can )

where the proof of the last inequality is similar to that of Lemma 5.3. [

Lemma 5.5 If f is a real-valued bounded measurable function on R with fRd f(z)dz =0 and
Jra If@)]|z|° dz < oo for some B> 0, then

/ / (z)[%e P s drda < oo,
R4 ent]Q
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1/H 1/Hy

Proof. Using the change of variables u = |z|"/*'s and v = |z

/ / ()2 P dsdrda

Rd ent

S/ \f(w)\ ]:J:\_Hdac/ e_“2Hdu/ e " dv
Rd 0 0

<e [ 1F@Plala,
Rd

where the last integral is finite by Remark 1.8. [

Lemma 5.6 For any A > 0,

S amio T (A + (1)),

cEPm i=1

where || is given in (3.22).
Proof. The result can be proven by the method of induction. [

Lemma 5.7 Let m be an even integer and o € &1, where &y is given in (4.16). Recall that

A7 ={o(i), - ,o(m)}A{o(i)+ 1, ,o(m) + 1}

and

175, C {|yk\ > e, for even k; |yi| < e, “yk" ¢ ( ) for odd k and l}.
Then on 17, ., there exists o € P, such that 0(j) and j have the same parity for j =1,2,...,m,
and

sup [y;] > |yz@;)l- (5.1)
jeAs

Proof. When i is even, noting that o € 271, A7 contains only one y with even index which is yz;).
Recall that for an even number i, 7 (i) equals 0‘( ) if o(7) is even and o (i — 1) otherwise. Therefore,

on T2 ., supje s |Y;| = |Yz(;)|, and we may just define 6 (i) = (i) for i even.

When i is odd, 0 € &% implies that A7 only contains y variables with odd indices. Define
(i) = o(i) if o(i) is odd, and 7(7) = a(z—{—l) otherwise. Clearly A7 | ={g(m—1),5(m—1)+2}.
Here we use the convention y; = 0 if £ > m. Hence a(m — 1) € AZ,_,. For a(m — 3), if it does not

belong to A? 5, then it must coincide with a(m — 1) + 2, and hence lies in A7 _,. Therefore, we
have {g(m — 3),5(m — 1)} C A%, _4|J A%, _,. Continuing in this way, we have
m—1
{E(2k —1),5(2k +1),...,5(m — 1)} c U A for k=12..,m/p2
i=2k—1; i odd

Noting that {E(l),E(S), co,0(m— 1)} = {1, 3,...,m— 1}, there exists an odd number k; in each
A7 with 7 odd such that {k,;,z' =13,....,m — 1} = {1,3,...,m — 1}, and thus we may define
o (i) = k; for ¢ odd. The proof is concluded. ]
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