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Abstract. We present a model reduction approach to construct problem dependent ba-
sis functions and compute eigenvalues and eigenfunctions of stationary Schrödinger
equations. The basis functions are defined on coarse meshes and obtained through
solving an optimization problem. We shall show that the basis functions span a low-
dimensional generalized finite element space that accurately preserves the lowermost
eigenvalues and eigenfunctions of the stationary Schrödinger equations. Therefore,
our method avoids the application of eigenvalue solver on fine-scale discretization and
offers considerable savings in solving eigenvalues and eigenfunctions of Schrödinger
equations. The construction the basis functions are independent of each other; thus
our method is perfectly parallel. We also provide error estimates for the eigenvalues
obtained by our new method. Numerical results are presented to demonstrate the ac-
curacy and efficiency of the proposed method, especially Schrödinger equations with
double well potentials are tested.
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1 Introduction

In this paper, we construct a set of problem dependent basis functions to compute eigen-
values and eigenfunctions of Schrödinger equations. To be more specific, we consider the
eigenvalue problem of the stationary Schrödinger equation with a potential V(x) of the
following form

Hu(x) :=−∆u(x)+V(x)u(x)=λu(x), x∈Ω⊆Rd, (1.1)

u(x)=0, x∈∂Ω⊆Rd, (1.2)
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where Ω is a bounded domain in Rd and V(x) : Rd→R is a real-valued function. λ and
u(x) are the corresponding eigenvalues and eigenfunctions of the Hamiltonian operator
H=−∆+V(x). We should emphasize that the spectrum of the Hamiltonian operator H
can have negative values and physically the negative part of the spectrum corresponding
to bound states and they have many important applications in computational chemistry
[6, 17, 18, 29].

The eigenvalue problem of (1.1) in variational form reads: find an eigenvalue λ and
its associated eigenfunction u(x)∈W :=H1

0(Ω) such that

a(u,v) :=
∫

Ω

(
∇u(x)·∇v(x)+V(x)u(x)v(x)

)
dx=λ

∫
Ω

u(x)v(x)dx=λ(u,v), (1.3)

for all v ∈W. By using the finite element method (FEM), we obtained the discretized
problem of the eigenvalue problem (1.3): find λh and associated eigenfunctions uh(x)∈
Vh⊆W such that

a(uh,vh)=λh(uh,vh), for all vh∈Vh, (1.4)

where Vh is a conforming finite element space spanned by Nh nodal basis functions on
some regular finite element mesh Th with mesh size h. After the FEM discretization,
one could apply eigenvalue algorithms, including QR-algorithm, Lanczos algorithm, and
Arnoldi iteration, directly to the Nh-dimensional finite element matrices to obtain the
eigen-pairs {λh,uh}, see [10] and references therein. We remark that it is extremely ex-
pensive to compute eigenvalues and eigenfunctions of (1.4) when Nh becomes big. For
example, finding all eigenvalues and eigenvectors of the matrix corresponding to the
FEM discretization of (1.4) using QR-algorithm costs 6N3

h +O(N2
h ) flops.

In practice, however, we are mainly interested in the first few lowermost eigenvalues
and eigenfunctions as they have important meanings in computational chemistry [19].
In addition, when we use the FEM to approximate eigenvalues of (1.4), the number of
reliable numerical eigenvalues takes up only a tiny portion of the total degrees of freedom
Nh in the resulting discrete system. See [2, 30–32, 35] for the discussion of second-order
elliptic eigenvalue problems.

This motivates us to avoid the application of eigenvalue algorithms for the fine-scale
FEM discretization (1.4) and build a low-dimensional generalized finite element space
so that we can accurately and efficiently compute the lowermost eigenvalues and eigen-
functions. Specifically, we introduce a coarse discretization of the physical space Ω into
mesh TH with mesh size H�h. On the coarse mesh TH, we build a set of basis functions
{Ψi(x)}NH

i=1 that generate a low-dimensional generalized finite element space Vc. The di-
mension of Vc is NH and it is much smaller than Nh. In the low-dimensional space Vc,
we compute the discretized form of the eigenvalue problem (1.3): find λH and associated
eigenfunctions uH(x)∈Vc⊆W such that

a(uH,vH)=λH(uH,vH) for all vH∈Vc, (1.5)
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The basis functions {Ψi}NH
i=1 have already captured the information of the Schrödinger

equation, which enables us to accurately compute the first few important eigen-pairs
of (1.1), {λH,uH}. The construction of the basis functions {Ψi}NH

i=1 involves solving of
NH optimization problems [4]. These optimization problems are independent of each
other and thus can be computed in parallel. Recall that the size of the matrix obtained
by the discretization of (1.5) is NH. This significantly reduces the computational cost in
computing the eigenvalues and eigenfunctions of Schrödinger equation (1.1).

We should point out that the idea of using two-level technique or multi-level tech-
nique for designing algorithms for eigenvalue problem and other problems is not new.
In [33], a two-grid discretization scheme was proposed to solve eigenvalue problems,
including both partial differential equations and integral equations. In [13], Hackbusch
proposed a multi-grid method to compute eigenvalues and eigenfunctions of the elliptic
problem obtained by the finite element discretization. In [21], Peterseim used the numer-
ical upscaling techniques to compute eigenvalues for a class of linear second-order self-
adjoint elliptic partial differential operators. Using similar methodology to construct low-
dimensional generalized finite element spaces is pioneered by the generalized finite ele-
ment method (GFEM) [1] and the multiscale finite element method (MsFEM) [11, 14, 15],
and is pervasive in the recent developments in the numerical methods for multiscale
problems and elliptic PDEs with random coefficients, see [8, 34] and references therein.

We would like to point out some similarities and differences between our approach
and other existing methods. Our construction of basis functions is inspired by the re-
cently development in building localized basis function for multiscale elliptic PDEs and
Schrödinger equations, see [16,20,21,23] and reference therein. Previous researchers have
utilized the Clément-type quasi-interpolation approach or optimization approach to con-
struct localized basis functions that give optimal approximation property of the elliptic
operator. In the Schrödinger equation (1.1), however, the potential V(x) is a real-valued
function. Therefore, the Hamiltonian operator −∆+V(x) is not necessarily positive def-
inite, which is quite common in Schrödinger equation models, see [12, 28]. We shall con-
struct basis functions that can be used to compress or upscale the Hamiltonian operator
in Schrödinger equation (1.1) so that we can compute the corresponding eigen-pairs in
the reduced space. In addition, we shall estimate the error of the eigenvalues |λh−λH |
obtained by the FEM and our new method. We comment that similar ideas of computing
eigenvalue problems using adaptive basis functions are considered in [24,25], though the
main point of these papers are different and they mainly focus on numerical investiga-
tion. Their goals are to obtain compressed modes that are sparse and spatially localized
so they can be used to span the low-energy eigenspace of differential operators.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction
of the eigenvalue problems of the Schrödinger equation and its finite element method
discretization. In section 3, we present the derivation of basis functions based on the
two-scale decompositions and the approximation of eigenvalues and eigenfunctions in
the reduced space. Issues regarding the practical implementation of our method will also
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be discussed. Error estimate of the eigenvalues and computational complexity analysis
will be discussed in Section 4. In Section 5, we present numerical results to demonstrate
the accuracy and efficiency of our method. Concluding remarks are made in Section 6.

To simplify the notation, we will write a.b for two positive quantities a and b, if a≤Cb
with some constant C>0 that depends only on the size of the domain Ω, parameters in
Schrödinger equation, and parameters that measures the quality of the underlying finite
element mesh. We emphasize that C does not depend on the mesh size h and H.

2 Model problem and its finite element discretization

We compute the eigenpairs {λ,u(x)} of the following Schrödinger equation on the bounded
domain Ω,

−∆u(x)+V(x)u(x)=λu(x), x∈Ω⊆Rd, (2.1)

u(x)=0, x∈∂Ω⊆Rd. (2.2)

The eigenvalue problem of (2.1) in variational form reads: find an eigenvalue λ and its
associated eigenfunction u(x)∈W :=H1

0(Ω) such that

a(u,v) :=
∫

Ω

(
∇u·∇v+Vuv

)
dx=λ

∫
Ω

uvdx=λ(u,v), for all v∈W, (2.3)

In the finite element method, we first partition the physical domain Ω into a set of regular
fine elements with mesh size h. For example, we divide Ω into a set of non-overlapping
triangles Th = {τe}Ne

e=1 such that no vertex of one triangle lies in the interior of the edge
of another triangle, where Ne is the number of finite elements. Let N f denote the set of
interior vertices of Th. Let Nh denote the number of the interior vertices, which is also
equal to the dimension of the finite element space. For every vertex xi ∈N f , let ϕi(x)
denote the corresponding nodal basis function, i.e., ϕi(xj)=δij, xj∈N f . In this paper, we
assume that all the nodal basis functions ϕi(x) are linear functions and continuous across
the boundaries of the elements, so we obtain the first-order conforming finite element
space corresponding to Th,

Vh ={ϕ(x)| ∀τe∈Th, ϕ(x)|τe is a polynomial of total degree≤1}⊂H1
0(Ω). (2.4)

Then, we apply the Galerkin method to solve (2.3). Specifically, we find λh and associated
eigenfunctions uh(x)=∑Nh

i=1 ui ϕi(x)∈Vh such that

a(uh,vh)=λh(uh,vh) for all vh∈Vh. (2.5)

Finally, we solve a generalized eigenvalue problem obtained from the discretization of
(2.5) to obtain λh and uh(x). The Hamiltonian operator −∆+V(x) is self-adjoint so the
eigenvalues are real. They can be sorted in ascending order,

λ
(1)
h ≤λ

(2)
h ≤λ

(3)
h ≤λ

(4)
h ≤··· (2.6)
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If the potential V(x) is bounded from below, we have the estimate for the lowermost
eigenvalue λ

(1)
h .

Lemma 2.1. We assume the potential V(x)≥Vmin, ∀x∈Ω, then the lowermost eigenvalue λ
(1)
h

is bounded from below.

Proof. We introduce the Rayleigh quotient [30] within the finite dimension subspace Vh,
which is defined by

R(vh)=
a(vh,vh)

(vh,vh)
, for all vh∈Vh, (2.7)

Then, λ
(1)
h =minR(vh), vh ∈Vh. Obviously, λ

(1)
h is bounded from below if V(x)≥Vmin,

∀x∈Ω. In addition, its corresponding eigenfunctions u(1)
h (x) is the critical point of R(vh)

over the finite element space Vh.

Remark 2.1. The Rayleigh quotient provides an alternative way to compute eigenvalues
and eigenfunctions of the Schrödinger equation (1.1) and its discretized form (2.5) [30].
The l-th eigenvalue is λ

(l)
h =minvh⊥El−1,vh∈Vh R(vh), where El−1 is the eigen-space spanned

by eigenfunctions u1
h,··· ,ul−1

h associated with eigenvalues λ
(1)
h ,··· ,λ(l−1)

h .

In the finite element method framework, the dimension of the discretized problem is
proportional to the number of interior vertices in the fine mesh Th. Therefore, the finite
element method becomes expensive for 2D and 3D Schrödinger equations. It is desir-
able to develop model reduction methods that can efficiently and accurately solve the
eigenvalue problem of Schrödinger equation with relatively small computational cost.

3 Construction of basis functions and their corresponding low-
dimensional space

In this section, we shall apply the two-level techniques and decompose the finite element
space Vh into coarse and fine parts. The coarse part is a low-dimensional generalized
finite element space that enables us to efficiently compute the lowermost eigenvalues
and eigenfunctions of Schrödinger equations. To achieve this goal, we need to build a set
of basis functions {Ψi(x)} that capture the information of the Hamiltonian operator.

To construct the basis functions {Ψi(x)}, we first partition the physical domain Ω
into a set of regular coarse elements with mesh size H� h. Again, we divide Ω into a
set of non-overlapping triangles TH ={Te} such that no vertex of one triangle lies in the
interior of the edge of another triangle. To facilitate the implementation, the fine mesh
Th and coarse mesh TH are nested. Let Nc denote the set of interior vertices of coarse
mesh TH and NH be the number of interior vertices. For every vertex xi ∈Nc, let Φi(x)
denote the corresponding FEM nodal basis functions, i.e., Φi(xj) = δij, xj ∈Nc. We also
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assume that all the nodal basis functions Φi(x) are continuous across the boundaries of
the elements, so we obtain the first-order conforming finite element space corresponding
to the coarse mesh TH,

VH ={Φ(x)| ∀Te∈TH, Φ(x)|Te is a polynomial of total degree≤1}⊂H1
0(Ω). (3.1)

The dimension of the coarse finite element space VH (3.1) is NH, which is far less than
that of fine-scale FEM space Vh. However, one cannot use the coarse finite element
basis functions Φi, i = 1,...,NH to directly compute the eigenvalues and eigenfunctions
of Schrödinger equation because they do not capture the fine-scale information of the
Hamiltonian operator in (1.1). Therefore, we need to construct some problem-dependent
basis functions that incorporate the fine-scale information into the coarse finite element
space.

In this paper, we construct such basis functions {Ψi(x)}NH
i=1 through an optimiza-

tion approach [4]. More specifically, we compute the following constrained optimization
problem to obtain Ψi(x),

Ψi(x)= argmin
Ψ∈H1

0 (Ω)

∫
Ω

(
|∇Ψ(x)|2+V(x)|Ψ(x)|2

)
dx (3.2)

s.t.
∫

Ω
Ψ(x)Φj(x)=δi,j, ∀1≤ j≤NH, (3.3)

where Φj(x) are the nodal basis functions on the coarse FEM space VH. The objective
function (3.2) contains both the kinetic energy and the potential energy of the Schrödinger
equation system. It is important to note that the boundary condition of the Schrödinger
equation has already been incorporated in the above optimization problem through the
definition of the solution space H1

0(Ω). In general, the optimization problem cannot be
solved analytically as it is an optimization problem in an infinite dimensional space. We
have to solve the optimization problem (3.2)-(3.3) using numerical methods.

In this paper, we apply the finite element method to discretize the basis functions
Ψi(x). Specifically, we represent Ψi(x) = ∑Nh

k=1 b(i)k ϕk(x), where ϕk(x) are the finite ele-

ment basis functions defined on the fine mesh Th and b(i)k ’s are the coefficients. In this
discrete level, the optimization problem (3.2)-(3.3) is reduced to a constrained quadratic
optimization problem, which can be efficiently solved using Lagrange multiplier meth-
ods. Since the basis functions are independent of each other, they can be constructed
independently and the optimization problem (3.2)-(3.3) can be done perfectly in parallel.

Let Vc denote the conforming generalized finite element space spanned by Ψi(x),

Vc ={Ψi(x)| i=1,...,NH}⊂H1
0(Ω). (3.4)

Note that the dimension of Vc is equal to the coarse finite element space VH. However,
the basis functions Ψi(x) contain fine-scale information of the Hamiltonian operator in
(1.1), which enable us to compute the eigenvalue problem (1.3) on the coarse mesh TH.
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Now we use the Galerkin method to solve the eigenvalue problem (1.3) in the gen-
eralized finite element space Vc: find λ

(j)
H and its associated eigenfunctions u(j)

c (x)∈Vc,
j=1,...,NH, such that

a(u(j)
c ,v)=λ

(j)
H (u(j)

c ,v), for all v∈Vc. (3.5)

In general, the stiffness matrices and mass matrices corresponding to the discretization
of (3.5) are not sparse. However, the dimension of the coarse generalized finite element
space Vc is NH�Nh so the lack of sparsity is not an issue.

The discrete eigenvalues are ordered in ascending order,

λ
(1)
H ≤λ

(2)
H ≤λ

(3)
H ≤λ

(4)
H ≤···≤λ

(NH)
H . (3.6)

Let u(j)
c , j=1,2,....,NH be normalized to one in L2(Ω), i.e., (u(j)

c ,u(j)
c )L2(Ω)=1. The discrete

eigenfunctions satisfy the orthogonal constraints

a(u(j)
c ,u(k)

c )=(u(j)
c ,u(k)

c )=0, j 6= k. (3.7)

4 Errors analysis

In this section, we present the error estimate of the approximate eigenvalues |λh−λH |
obtained by the finite element method (FEM) and our method. The computational com-
plexity analysis of the FEM and our method can be obtained easily.

4.1 Orthogonal decomposition of the solution space in L2(Ω) sense

We first introduce some notations that will be used in the error estimate. Let V0 :=
||V(x)||L∞(Ω)<+∞ and W :=H1

0(Ω). We define a norm |||·||| to be

|||u(x)||| :=
√

V0‖u‖2
L2(Ω)

+‖∇u‖2
L2(Ω)

, for any u∈W. (4.1)

Recall that the bilinear form a(u,v) used in the variational form corresponding to the
eigenvalue problem of (1.1) is defined by

a(u,v) :=(∇u,∇v)+(Vu,v), for any u,v∈W, (4.2)

where V =V(x) is the potential function and (·,·) stands for the standard inner product
on Ω. Under mild conditions, the second part (Vu,v) in (4.2) can be viewed as a pertur-
bation. Our method requires the following assumption on the resolution of the coarse
mesh TH.

Assumption 4.1. We assume that the potential V(x) is bounded, i.e., V0 :=||V(x)||L∞(Ω)<

+∞, and the mesh size H of TH satisfies H
√

V0.1.
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Under this assumption, many typical bounded potentials from Schrodinger equation
(1.1) can be treated as a perturbation to the kinetic operator. Thus, they can be com-
puted using our method. We also point out that this assumption restrains our ability to
handle Schrodinger equation (1.1) with unbounded potential, such as Coulomb potential.
We shall consider this issue in our future work.

Before we proceed the error estimate, we first study the orthogonal decomposition of
the solution space W. Write Vf as the subset of W defined by

Vf =
{

v(x)∈W
∣∣∫

Ω
v(x)Φi(x)=0,∀i=1,...,NH

}
. (4.3)

From the definition of Vf , one can find that Vf contains functions with fine-scale infor-
mation that cannot be captured by the coarse-scale finite element basis functions Φi(x)
defined in (3.1). This property is closely related to the Clément-type interpolation opera-
tor [5, 9, 27]

IHv(x) := ∑
xi∈Nc

αi(v)Φi(x), (4.4)

where Nc contains all the interior nodes of coarse mesh, Φi(x) are the nodal basis func-
tions corresponding to xi, and the quasi-interpolation coefficient αi(v) is defined by

αi(v)=

∫
Ω Φi(x)v(x)dx∫

Ω Φi(x)dx
, ∀xi∈Nc (4.5)

In order to define interpolators for rough functions and to preserve piecewise polynomial
boundary conditions, the approximated functions are averaged appropriately using (4.5)
in order to generate nodal values for the interpolation operator.

Compare the dimension of the fine-scale space, we obtain that space Vf and the kernel
space of the Clément-type interpolation operator IH are equal. In addition, the solution
space W has the orthogonal decomposition W=kernel(IH)⊕VH=Vf⊕VH in L2(Ω) sense.
Namely, ∀u∈W, we have the decomposition u=uH+u f , where uH∈VH, u f ∈Vf , and they
satisfy (uH,u f )L2(Ω)=0.

The Clément-type interpolation operators possess the local approximation and stabil-
ity properties that are crucial in our error estimate. There exists a generic constant CIH

such that for all v∈W and for all coarse element Te∈TH, we have

||v(x)−IHv(x)||L2(Te)≤CIH H||∇v(x)||L2(Se), (4.6)

where Se :=∪{K∈TH |K∩Te 6=∅} [7]. We also assume that there exists a constant Col >0
such that the number of elements covered by Se is uniformly bounded by Col . Both CIH

and Col may depend on the shape regularity of the finite element mesh but not on the
coarse mesh size H.
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4.2 Quasi-orthogonal decomposition of the solution space

With these preparations, we are ready to study the structure of the generalized finite
element space Vc (spanned by Ψi(x)) and the corresponding orthogonal decomposition
of the solution space W :=H1

0(Ω). First, we explore the connections between the standard
H1 norm ‖∇·‖L2(Ω), norm |||·|||, and the bilinear form a(u,v). We get the following
lemmas.

Lemma 4.1. For any u,v in W, we have

|a(u,v)|. |||u||||||v|||.

Proof. Using the Cauchy-Schwarz inequality, we can obtain that

|a(u,v)|2≤ (‖∇u‖L2(Ω)‖∇v‖L2(Ω)+V0‖u‖L2(Ω)‖v‖L2(Ω))

≤ (‖∇u‖2
L2(Ω)+V0‖u‖2

L2(Ω))(‖∇v‖2
L2(Ω)+V0‖v‖2

L2(Ω))

≤|||u|||2|||v|||2.

Lemma 4.2. ‖∇·‖L2(Ω) and |||·||| are equivalent in Vf , given H
√

V0.1.

Proof. For any w in Vf , ‖∇w‖L2(Ω)≤|||w||| is obvious. For the other direction,

|||w|||2=(w−IHw,w−IHw)V0+(∇w,∇w)

≤V0‖w−IHw‖2
L2(Ω)+(∇w,∇w)

=V0( ∑
T∈TH

‖w−IHw‖2
L2(Ω))+(∇w,∇w)

≤H2V0C2
IH

Col‖∇w‖2
L2(Ω)+‖∇w‖2

L2(Ω)

=(H2V0C2
IH

Col+1)‖∇w‖2
L2(Ω).‖∇w‖2

L2(Ω).

Lemma 4.3. The bilinear form a(·,·) is Vf -elliptic, given H
√

V0<
1

CIH

√
Col

.

Proof. For any w in Vf , we have

a(w,w)≥−V0‖w‖2
L2(Ω)+‖∇w‖2

L2(Ω)

=−V0‖w−IHw‖2
L2(Ω)+‖∇w‖2

L2(Ω)

≥ (1−H2V0C2
IH

Col)‖∇w‖2
L2(Ω)

≥
1−H2V0C2

IH
Col

1+V0H2C2
IH

Col
|||w|||2Ω,

where the last inequality directly follows from the previous lemma 4.3.
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In the Section 3, our new basis functions {Ψi(x)} are constructed through an opti-
mization problem. For any i, let Ψi(x) be the unique minimizer of the following problem

Ψi(x)=argmin
Ψ(x)∈W

a(Ψ,Ψ) (4.7)

s.t.
∫

Ω
Ψ(x)Φj(x)dx=δi,j. (4.8)

Then, the generalized finite element space Vc is spanned by {Ψi(x)}NH
i=1. We shall show

that for each i, the optimization problem (4.7)(4.8) gives rise to a minimizer Ψi(x) given
certain conditions. In addition, we shall show that the above optimization problem
yields an orthogonal decomposition of the solution space W into the generalized finite
element space Vc and its quasi-orthogonal complement Vf . Quasi-orthogonal decomposi-
tion means ∀u∈W, we have the decomposition u=uc+u f , where uc∈Vc, u f∈Vf , and they
satisfy the condition a(uc,u f )=0. We notice that relation ( f ,g)=(HH−1 f ,g)=a(H−1 f ,g),
∀ f ,g∈W and the bilinear form a(·,·) is symmetric. Therefore, the constrains

∫
Ω ΨΦj=δi,j

in the optimization problem is equivalent to a(Ψ,H−1Φj)=δi,j. For each i, we define

Wi ={Ψ(x)∈W|
∫

Ω
Ψ(x)Φj(x)dx=δi,j, j=1,...,NH}

to be the feasible set of the optimization problem (4.7). Then, we have that

Lemma 4.4. Under the resolution condition H
√

V0<
1

CIH

√
Col

, the optimization problem (4.7)(4.8)

is a strictly convex optimization problem over Wi, for each i.

Proof. Let us choose any two different Ψa,Ψb∈Wi. We write for η∈ [0,1],

f (η)= a(Ψa+η(Ψb−Ψa),Ψa+η(Ψb−Ψa))

= a(Ψa,Ψa)+2ηa(Ψa,Ψb−Ψa)+η2a(Ψb−Ψa,Ψb−Ψa).

Use the fact that Ψb−Ψa ∈Vf defined in (4.3) and a(·,·) is Vf -elliptic by the Lemma 4.3,
we get that f ′′(η)>0. Thus, we finish the proof.

Lemma 4.5. For any 1≤ i≤NH, the optimization problem (4.7)(4.8) has a minimizer Ψi(x) if
and only if {H−1Φi}NH

i=1 are linearly independent.

Proof. We define an NH-by-NH matrix Θ with Θi,j := (H−1Φi,Φj). It is clear that Θ is
invertible if and only if {H−1Φi}NH

i=1 are linearly independent. Let us define Ψi(x) =
NH

∑
k=1

Θ−1
i,k H−1Φk(x), where Θ−1

i,k is the (i,k)-th entry of Θ−1. It is easy to find that

(
NH

∑
k=1

Θ−1
i,k H

−1Φk,Φj)=
NH

∑
k=1

Θ−1
i,k Θk,j =δi,j,



11

which means that
NH

∑
k=1

Θ−1
i,k H−1Φk satisfies the constrains (4.8). Thus linear independency

of {H−1Φi}NH
i=1 will imply existence of the minimizer. As for the other direction, assume

that there exists a Ψi such that a(Ψi,H−1Φj)= δi,j, for all j=1,2,...,NH. Suppose we have
NH

∑
j=1

αjH−1Φj = 0. Then for each i, we will have that 0=
NH

∑
j=1

αja(Ψi,H−1Φj)=
NH

∑
j=1

αjδi,j = αi.

Thus {H−1Φj}NH
j=1 are linearly independent.

Lemma 4.6. The optimization problem (4.7)(4.8) yields an orthogonal decomposition of the so-
lution space W into the generalized finite element space Vc and its quasi-orthogonal complement
Vf . Namely, a(uc,u f )=0, for any uc∈Vc and u f ∈Vf .

Proof. Let Ψi be a minimizer. Then for any w ∈Vf , we consider the objective function
a(Ψi+c·w,Ψi+c·w), c∈R. As Ψi satisfies the constrains, i.e.

∫
Ω ΨiΦj = δi,j, we also have∫

Ω(Ψi+c·w)Φj = δi,j, since w is orthogonal to every Φi according to (4.3). We define
m(c) := a(Ψi+c·w,Ψi+c·w)= c2a(w,w)+2c·a(Ψi,w)+a(Ψi,Ψi). Since a(·,·) is Vf -elliptic
by the Lemma 4.3, we have that a(w,w)>0 for nontrivial w. Recall that Ψi is a minimizer,
we obtain that m′(c)|c=0=2a(Ψi,w)=0, and this should holds for every w∈Vf . From the
definition of Vc in (3.4), we get the conclusion that a(uc,u f )=0, for any uc∈Vc and u f ∈Vf .

To see that W = Vc+Vf , we firstly note that Vc is an NH-dimensional subspace of
W and that Vc∩Vf = 0 by definition. For any i in {1,2,··· ,NH}, write Ψi as v f ,i+vH,i,
where v f ,i ∈Vf and vH,i ∈VH. Then, we can show that {vH,i} are linearly independent,
because otherwise, there exists non-trivial ci’s such that ∑

i
civH,i = 0, which implies that

∑
i

ciΨi∈Vf , a contradiction. Now, as {vH,i} are linearly independent, any element in VH

can be written as linear combination of Ψi’s and an element in Vf . Thus, further, we can
have W=Vc+Vf .

Remark 4.1. From Lemma 4.5 and Lemma 4.6, we can actually show that when a(·,·) is

a positive definite bilinear form, the minimizer has a simple form Ψi=
NH

∑
k=1

Θ−1
i,k H−1Φk(x).

See [16] for more details.

We also comment that Vc contains some fine-scale information of Vf which is very
important in our computation of the eigenvalue problem. We shall show this in our error
estimates and numerical experiments. The quasi-orthogonal decomposition with respect
to a(·,·) does not exactly preserve the L2-orthogonality. However, we find that the error
can be controlled.

Theorem 4.1. For any vc∈Vc and v f ∈Vf , we have

(vc,v f )L2(Ω).H2|||∇vc||||||∇v f |||. (4.9)
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Proof. For any vc∈Vc and v f ∈Vf , we have

(vc,v f )L2(Ω)=(vc−IHvc,v f−IHv f )L2(Ω).H2‖∇vc‖L2(Ω)‖∇v f ‖L2(Ω)

.H2|||vc||||||v f |||

where we have used the fact (IHvc,v f )L2(Ω)=0, IHv f =0, and the stable estimate of the
Clément-type interpolation (4.6).

Remark 4.2. In previous works [16, 20, 23], the authors utilized the Clément-type inter-
polation or optimization approach to upscale elliptic operators. The corresponding op-
timization problem is strictly convex over the solution space W. In our case, the Hamil-
tonian operator −∆+V(x) may not be positive definite. Hence, the corresponding opti-
mization problem is not strictly convex over the solution space W. Based on our numer-
ical experiments and analysis, we found that under the assumption 4.1, we can prove
that our optimization problem is strictly convex over Wi, which enables us to obtain the
quasi-orthogonal decomposition of W and construct the basis functions Ψi for model re-
duction.

4.3 Exponential decay of the basis function Ψi

We shall show that the basis function Ψi decay exponentially fast away from its asso-
ciated vertex xi ∈Nc, namely the basis functions have exponential decay property. In
practice, when we solve the optimization problem (4.7)(4.8) to construct the basis func-
tion Ψi, we choose a localized domain Si⊆Ω associated with xi and impose the condition
that supp{Ψi}⊆Si. Therefore, the exponential decay property significantly reduces our
computational cost in constructing basis functions.

We first define a series of nodal patches Ωl associated with xi∈Nc by

Ω0 := supp{Φi}=∪{K∈TH |xi∈K}, (4.10)

Ωl :=∪{K∈TH |K∩Ωl−1 6=∅}, l=1,2,3,4,··· . (4.11)

Then, we state the main theorem as follows and put the detailed proof in the A.

Theorem 4.2. Under the resolution condition H
√

V0<
1

2CIH

√
Col

, there exist some constants C>0

and 0<β<1 independent of H, such that

||∇Ψi||Ω\Ωl
≤Cβl ||∇Ψi||Ω (4.12)

for any i=1,2,...,NH.

The exponential decay of the basis functions Ψi allows us to localize the computa-
tional domain of the basis functions and to reduce the computational cost. In practice,
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we modify the constrained optimization problem (3.2)(3.3) as follows,

Ψi(x)= argmin
Ψ∈H1

0 (Ω)

∫
Ω

(
|∇Ψ(x)|2+V(x)|Ψ(x)|2

)
dx (4.13)

s.t.
∫

Ω
Ψ(x)Φj(x)=δi,j, ∀1≤ j≤NH, (4.14)

Ψ(x)=0, x∈Ω\Ωl∗ . (4.15)

where Ωl∗ is the support set of the basis function Ψi(x) and l∗ depends on the decay speed
of Ψi(x). In numerical experiments, we find that a small integer l∗∼ log(L/H) will gen-
erate accurate results, where L is the diameter of domain Ω. Moreover, the optimization
problem (4.13)-(4.15) can be done in parallel.

4.4 Error estimate for the eigenvalues

In this subsection, we shall provide the error estimate of the eigenvalues |λh−λH | ob-
tained by the FEM and our new method. Before we proceed, we add an assumption that
describes the well-posedness condition of the bilinear form a(·,·).

Assumption 4.2. We assume that the bilinear form a(·,·) satisfies

inf
u∈W\{0}

sup
v∈W\{0}

a(u,v)
|||u||||||v||| ≥C>0,

where the positive constant C may depend on V0 and the domain Ω.

Let El denote the eigen-space spanned by the first l eigenfunctions obtained by the
finite element method. El := span{u(1)

h ,··· ,u(l)
h }, where u(i)

h ’s are normalized to be one in

L2(Ω) norm. Recall that we have λ
(1)
h ≤λ

(2)
h ≤λ

(3)
h ≤λ

(l)
h . Let λ∗h=max1≤i≤l{|λ

(i)
h |}. Then,

we can estimate |λh−λH | working in the eigen-space El .

Lemma 4.7. Assume the assumption (4.2) is satisfied. For u ∈ El with ‖u‖L2(Ω) = 1 and let
u=uc+u f be the quasi-orthogonal decomposition, where uc∈Vc

⋂
El and u f ∈Vf

⋂
El . Then, we

have the following three estimates:

|||uc|||. lλ∗h, (4.16)

|||u f |||. (lλ∗h)
2H2, (4.17)

|(uc,u f )|. (lλ∗h)
3H4. (4.18)

Proof. Let u=
l

∑
j=1

cju
(j)
h , where cj’s are the projection coefficients of u on the eigenfunctions

u(j)
h and |cj| ≤ 1. According to the assumption (4.2), there exists u2 ∈W\{0}, such that
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a(u,u2)& |||u||||||u2|||. Then we have

|||u||||||u2|||. a(u,u2)= a(
l

∑
j=1

cju
(j)
h ,u2)=

l

∑
j=1

cja(u
(j)
h ,u2)

=
l

∑
j=1

cjλ
(j)
h (u(j)

h ,u2)≤ lλ∗h‖u
(j)
h ‖‖u2‖≤ lλ∗h|||u2|||.

Thus, we have

|||uc|||≤ |||u|||. lλ∗h.

We also have

|||u f |||2. a(u f ,u f )= a(u,u f )=
l

∑
j=1

cja(u
(j)
h ,u f )=

l

∑
j=1

cjλ
(j)
h (u(j)

h ,u f )

. lλ∗h H2|||u(j)
h ||||||u f |||. (lλ∗h)

2H2|||u f |||.

The last inequality directly follows from (4.9) of Theorem 4.1 and the above two inequal-
ities.

Finally, we estimate the error for the eigenvalues |λh−λH | obtained by the FEM and our
new method.

Theorem 4.3. When the coarse mesh H is chosen small enough such that H<2−
1
4 (lλ∗h)

− 3
4 . Then,

we can get the following estimate

∣∣λ(l)
H −λ

(l)
h

λ
(l)
h

∣∣≤ (lλ∗h)
2H4, l=1,2,...

Proof. Define σ
(l)
H :=maxu∈El :(u,u)=1 |(u f ,u f )L2(Ω)+2(uc,u f )L2(Ω)|. Then, we have the fol-

lowing estimate for σ
(l)
H ,

(u f ,u f )+2(uc,u f )=(u,u f )+(uc,u f )

=(u−IHu,u f−IHu f )+(uc,u f )

.H2‖∇u‖L2(Ω)‖∇u f ‖L2(Ω)+(lλ∗h)
3H4

≤H2|||u|||Ω|||u f |||Ω+(lλ∗h)
3H4

. (lλ∗h)
3H4, (4.19)

where we have used the fact that |||u f |||. (lλ∗h)
2H2. Therefore, we obtain that σ

(l)
H .

(lλ∗h)
3H4. If H is chosen small enough so that σ

(l)
H ≤ 1/2, i.e., H ≤ 2−

1
4 (lλ∗h)

− 3
4 . Then,

Lemma 6.1 in [30] implies

λ
(l)
H ≤ (1−σ

(l)
H )−1λ

(l)
h ≤ (1+2σ

(l)
H )λ

(l)
h
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After some simple calculations, one can easily obtain the final result based on the estimate
for σ

(l)
H in (4.19).

5 Numerical Experiments

In this section, we conduct numerical experiments to illustrate our analytical results.
More specifically, we will consider several different models of Schrödinger equations
and test the performances of our method. Examples include Schrödinger equations of
free electrons and those with double-well potentials. We are able to demonstrate that the
relative error of eigenvalues converges of order at leastO(H4). Aside from the large con-
vergence rate, using our problem dependent basis functions {Ψi}, we are able to achieve
at a numerical method of better computational complexity than finite element method.
Moreover, using our basis functions, one can capture the first few eigenvalue and eigen-
functions of stationary Schrödinger Equations accurately. The potentials taken in the
examples are frequently used in chemistry models, which shows that our method is a
very efficient model reduction method.

5.1 Hamiltonian of a free electron

In this example, we consider the Hamiltonian of a free electron in a bounded domain
Ω with Dirichlet boundary condition. In our numerical experiments, H=−∂xx and the
bounded domain Ω is taken to be [0,1] for one dimensional problems. H=−∆ and the
bounded domain Ω is [0,1]2 for two dimensional problems.

0 0.2 0.4 0.6 0.8 1
x

-50

0

50

100

150

200

(x
)

(a) 1D basis functions (b) 2D basis function

Figure 1: Profiles of the basis functions Ψ in 1D and 2D.

In 1D case, we uniformly partition our interval into NH=128 patches, and for each patch,
we further uniformly partition it into Nr=8 parts for numerical computation. We use the
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Lagrange multiplier method to solve the optimization problem. Then, with the computed
problem dependent basis functions, we discretize the Hamiltonian operator H onto the
NH−dimensional space spanned by Ψ1,··· ,ΨNH and approximate the smallest NH eigen-
values ofH. In 2D case, we set the coarse mesh H= 1

16 and partition our unit square into
256 squares (512 triangle elements). For each element, we further uniformly partition it
into fine triangle element with mesh h= 1

128 . The computation method is similar.
In Figure 1, we plot the profiles of the basis functions obtained from our method. One

can see that the basis functions decay exponentially fast, which numerically verify our
proof on the exponential decay of the basis functions Ψi. Therefore, we can localize the
computational domain of the basis functions and reduce the computational cost. Due to
the exponential decay of the basis functions, we can maintain a certain level of accuracy
using the localized basis functions.
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Figure 2: Profile of the double well potential function

5.2 1D Schrödinger equations with double well potential

Another model problem we consider is Schrödinger equations with double well potential
[12,22,28], which can be used to model the proton motion restricted to the line joining the
two bridged atoms separated by a fixed distance. The stationary Schrödinger equation in
this case can be formulated as

u′′(ξ)+
1
2
(E′−V ′)u(ξ)=0, (5.1)

where E= 1
4 h̄βE′, V = 1

4 h̄βV ′, ξ = αx, α= (µβh̄)
1
2 , h̄ is the reduced Planck constant, µ is

the reduced mass of the H bond A-H···B, and β is an arbitrary frequency. We suppose
also that the potential energy of the proton can be represented as a polynomial in the
proton coordinate x. On the basis of both experimental and theoretical investigations, it
is generally assumed that the potential-energy surface of many hydrogen bonds has two
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l λ
(l)
h e(l)(1/4) e(l)(1/8) e(l)(1/16) e(l)(1/32)

1 -7.4193719518 1.3835941155 0.0038910332 0.0000818444 0.0000028630
2 -7.4112857508 1.9049638409 0.0090247237 0.0000823858 0.0000028577
3 -2.1299632024 1.0847454244 0.0228617229 0.0000653230 0.0000255027
4 -1.7356348046 0.0370931918 0.0000594389 0.0000437861
5 1.5265029050 0.0443342756 0.0000731927 0.0000671185
6 3.7596565522 0.2392715598 0.0006789233 0.0000539193
7 6.8680570735 0.0785633586 0.0021042608 0.0000391890
8 10.2397336594 0.0051750133 0.0000235955
9 13.9262761972 0.0137490946 0.0000071148
10 17.8750209804 0.0359595248 0.0000642540
11 22.0630278538 0.0550625298 0.0001634628
12 26.4710403941 0.0283996294 0.0003259629
13 31.0847265155 0.0520077439 0.0005803314
14 35.8938813732 0.3381533790 0.0009646512
15 40.8927032420 0.1824533435 0.0015294094

Table 1: Relative errors e(l)H = |λ
(l)
H −λ

(l)
h

λ
(l)
h

| for l = 1,···15, potential function being V(x), and

various choices of the coarse mesh size H. Space means no available data.

minima in the region available for protonic movement [28]. In most cases the minima
are not equivalent since the physical situation is changed when the proton is transferred
from one minimum to the other.

We consider the interval [−4,4] and partition it into NH = 4,8,16,32 patches respec-
tively and further partition them such that the partition number of the fine mesh is
Nh =1024. Our potential function is taken to be V(x)=−5.26x2+0.6575x4 and its graph
is plotted in Figure 2 .

In the Table 1, we compare the eigenvalues λ
(l)
h obtained through finite element method

with the eigenvalues λ
(l)
H obtained on coarse-scale approximations using problem-dependent

basis functions with different mesh size H. The chart illustrates that the convergence rate
of relative error is at least of order O(H4), which matches our analysis.

We have also run some tests to compare the errors of the approximated eigenfunc-
tions. In Figure 3, one can find that the eigenfunctions obtained from our method can
capture the reference eigenfunctions accurately. Especially, note that the double well po-
tentials take negative values at some x. This indicates the operator L is no longer positive
semidefinite. Even in this case, our method can still accurately approximate the first few
eigenfunctions of the Schrödinger equation.

As in the Figure 3, qualitatively, we can see that the graph of approximated eigen-
functions computed through our method overlap with that of the fine-scale finite element
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(c) Third eigenfunction
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Figure 3: Selected examples of computed eigenfunctions using our method as compared
to eigenfunctions obtained through finite element method in fine scale.

method. In the Table 2, we show the relatively error
‖u(l)

H −u(l)
h ‖L2(Ω)

‖u(l)
h ‖L2(Ω)

, l=1,2,.... One can see

that the relative errors are very small, which indicates that our method can accurately
compute the eigenfunctions.

To demonstrate the computational savings of the our method over the finite element
method, we show in Figure 4 the computational time of compute first 15 eigenvalues and
eigenfunctions of the Schrödinger equation. Based on our previous result in Table 1, we

assume that if the coarsening ratio is 64, then the relative error |λ
(l)
H −λ

(l)
h

λ
(
h l)
|<1%. We choose

Nh =211,212,213,214,215, and NH =25,26,27,28,29, respectively. We record the wall time of
running the eigenvalue algorithm in Matlab. From the Figure 4, one can see that our new
method offers considerable savings over the finite element method. The slope of the blue
line with stars is approximate equal to 2.56, which means the computational complexity
of eigenvalue algorithm is O(N2.56

h ). The complexity of our method is also in the similar
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order O(Nα
H) with α≈ 2.5, but NH is far less than Nh. Therefore, our method can bring

significant savings over the FEM. The advantage of our method will be more obvious in
two or higher dimensional problems.

We should point out that in this example we choose the coarsening ratio to be 64,
which is used to demonstrate the main idea. In general, this ratio is problem-dependent
and may be different. However, considerable savings over the finite method can al-
ways be achieved if we only compute first few eigenvalues and eigenfunctions of the
Schrödinger equation because our method can efficiently reduce the dimension of the
problem. Here we only compare the wall time of running the eigenvalue algorithm. In
the FEM, one needs extra time to form the large-scale stiffness and mass matrices. In our
method, we need extra time to compute the problem dependent basis functions, which is
not a serious issue as this can be done in parallel.

l e(l)(1/4) e(l)(1/8) e(l)(1/16) e(l)(1/32) e(l)(1/64)
1 0.6965984460 0.0774389135 0.0060291238 0.0057078965 0.0057077218
2 0.6965984460 0.0774389135 0.0060291238 0.0057078965 0.0057077218
3 0.6965984460 0.0774389135 0.0060291238 0.0057078965 0.0057077218
4 0.3248398972 0.0103391321 0.0073621435 0.0073601873
5 1.4082343730 0.0189615168 0.0084268470 0.0084164228
6 1.4082343730 0.0189615168 0.0084268470 0.0084164228
7 0.2068980702 0.0189615168 0.0084268470 0.0084164228
8 0.0337396932 0.0095348370 0.0094984863
9 0.0711299849 0.0105979475 0.0104960909

Table 2: Errors e(l)(H) =:
‖u(l)

H −u(l)
h ‖L2(Ω)

‖u(l)
h ‖L2(Ω)

for l = 1,···9, potential function being V(x) and

various coarse mesh sizes H. Space means no available data.

5.3 2D Schrödinger equations with double well potential

In 2D problems, we consider the double well potential again, which can be used to mimic
the nuclear attraction potential generated by two separate nuclei. Our computational
domain is unit square Ω=[0,1]2. We partition Ω into 2N2

H =8,32,128,512 right triangular
elements respectively and further partition them such that the length of the fine-scale
triangular elements remains to be 1/128. In this setting, the fine-scale finite element
space contains 32768 triangular elements. The potential function is taken to be V(x) =
−e(−100((x− 1

3 )
2+(y− 1

3 )
2))−e(−100((x− 2

3 )
2+(y− 2

3 )
2))) and its profile is plotted in the Figure 5.

In the Table 3, we compare the eigenvalues λ
(l)
H obtained through our method on

coarse scale with mesh size H and λ
(l)
h obtained through finite element method on fine

mesh. The chart illustrates that the convergence rate of relative error is at least of order
O(H4), which matches our analysis.



20

N
h

103 104 105

T
im

e

10-4

10-3

10-2

10-1

100

101

102

Finite Element Method

Our Method

Figure 4: Computational time comparison. The slope of the blue line with stars is ap-
proximately equal to 2.56.

l λ
(l)
h e(l)( 1

2 ) e(l)( 1
4 ) e(l)( 1

8 ) e(l)( 1
16 )

1 19.6091772610 0.0219784613 9.8340489578 0.0000692656 0.0000177255
2 49.1412025030 1.9911925433 0.0004530679 0.0000540041
3 49.3430613108 1.7657226037 0.0003209520 0.0000490705
4 78.8921013458 0.2945283689 0.0010193662 0.0000952112
5 98.6998638157 0.0301345748 0.0015716893 0.0001298963
6 98.7015416394 0.1830111746 0.0015720886 0.0001298952
7 128.3476681238 0.6136893299 0.0022049449 0.0001681032
8 128.4018950402 0.6152620757 0.0034741934 0.0002184742
9 167.7715860381 0.8830349576 0.0047696354 0.0002968372

10 167.9116924534 0.0047105112 0.0002936821
11 177.8715926909 0.0059546459 0.0003294618
12 197.5146060216 0.0072691230 0.0003944581
13 197.6078861306 0.0073017043 0.0003936524
14 247.0403560121 0.0099947299 0.0004769060
15 247.2626621136 0.0157984022 0.0007181437

Table 3: Relative errors of eigenvalues e(l)(H)=: λ
(l)
H −λ

(l)
h

λ
(l)
h

for l=1,···15, potential function

being V(x) and various choices of the coarse mesh size H. Space means no available
data.

We have also run some tests on approximated eigenfunctions. In Figure 6, we see that
our method can approximate the first few eigenfunctions of the Schrödinger equation
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Figure 5: Profile of the 2D double well potential function

accurately. Especially, note that the double well potentials take negative values at some
x. This indicates the operator L is no longer positive semidefinite. Even in this case, our
method can still approximate the first few eigenfunctions of the Schrödinger equation
accurately.

As shown in the figure 6, qualitatively, we can see that the graph of approximated
eigenfunctions computed through our method overlap with that of the fine-scale finite
element method. Here, the domain is taken to be [0,1]2 and we partition the unit square
into 2m2 = 512 right triangular patches respectively and further partition them into 16

parts. Quantitatively, the relatively errors
‖u(l)

H −u(l)
h ‖L2(Ω)

‖u(l)
h ‖L2(Ω)

, l = 1,2,..., are kept at a very low

level, indicating the accuracy of our method in capturing the first few eigenfunctions,
where u(l)

H stand for eigenfunctions computed through our method and u(l)
h stand for

eigenfunctions computed through finite element method.

e(1) e(4) e(7)

0.000253557665 0.000964396658 0.000154570260

Table 4: Relative errors of eigenfunctions e(l)=:
‖u(l)

H −u(l)
h ‖L2(Ω)

‖u(l)
h ‖L2(Ω)

for l=1,4,7 potential function

being V(x), the coarse mesh size H is 1/16, and the fine mesh size h=1/128.
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5.4 A simple study of choosing coarse mesh size H

We shall investigate how the course mesh size H is scaled with the fine mesh size h in
order to keep the error rate at a similar level. We consider the one dimensional free
electron model as discussed in Section 5.1. Since true eigenvalues λ

(l)
TRUE of this model

problem can be computed analytically, we compare the relative errors of |e(l)H |=|
λ
(l)
H −λ

(l)
TRUE

λ
(l)
TRUE

|

and |e(l)h |= |
λ
(l)
h −λ

(l)
TRUE

λ
(l)
TRUE

|, where λ
(l)
H are computed using our new basis functions and λ

(l)
h

are computed using finite element basis function with mesh size indicated in the bracket.

In table 5, we compared the differences between two types of relative errors obtained
through our method and finite element method respectively. For each pair of relative er-
rors, we fix the mesh size to be H=h1/2 and consider the errors incurred when computing
the first few eigenvalues. We can see from the table that relatively errors are at the same
level. This provides us with an empirical guidance on how to choosing coarse mesh size
H. More theoretical and numerical investigations of our method will be considered in
our subsequent research.

l |e(l)H (1/16)| |e(l)h (1/162)| |e(l)H (1/32)| |e(l)h (1/322)| |e(l)H (1/64)| |e(l)h (1/642)|
1 0.0000125478 0.0000125499 0.0000007843 0.0000007844 0.0000000490 0.0000000490
2 0.0000500623 0.0000502004 0.0000031355 0.0000031375 0.0000001961 0.0000001961
3 0.0001112512 0.0001129538 0.0000070365 0.0000070593 0.0000004409 0.0000004412
4 0.0001900937 0.0002008137 0.0000124177 0.0000125499 0.0000007824 0.0000007844
5 0.0002667773 0.0003137856 0.0000190841 0.0000196093 0.0000012181 0.0000012256
6 0.0002873505 0.0004518762 0.0000265911 0.0000282375 0.0000017422 0.0000017648
7 0.0001217994 0.0006150938 0.0000340436 0.0000384345 0.0000023443 0.0000024021

l |e(l)H (1/128)| |e(l)h (1/1282)| |e(l)H (1/256)| |e(l)h (1/2562)|
1 0.0000000031 0.0000000030 0.0000000002 0.0000000006
2 0.0000000123 0.0000000122 0.0000000008 0.0000000008
3 0.0000000276 0.0000000276 0.0000000017 0.0000000017
4 0.0000000490 0.0000000490 0.0000000031 0.0000000031
5 0.0000000765 0.0000000766 0.0000000048 0.0000000048
6 0.0000001100 0.0000001103 0.0000000069 0.0000000069
7 0.0000001493 0.0000001501 0.0000000094 0.0000000094

Table 5: Relative errors of |e(l)H |= |
λ
(l)
H −λ

(l)
TRUE

λ
(l)
TRUE

| and |e(l)h |= |
λ
(l)
h −λ

(l)
TRUE

λ
(l)
TRUE

|, l = 1,···7 for the free

electron model with various choices of the coarse mesh size H and fine mesh size h. Space
means no available data.
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6 Conclusions

In this paper, we propose a model reduction method to construct problem dependent
basis functions and compute eigenvalues and eigenfunctions of stationary Schrödinger
equations. The basis function are obtained through solving an optimization problem.
Under mild conditions, we prove that the generalized finite element space spanned by
our basis functions can accurately compute the first few eigenvalues and eigenfunctions
of the stationary Schrödinger equations. In addition, our new method can significantly
reduce the computational cost in eigenvalue decomposition problems compared with the
standard finite element method on fine mesh. We demonstrate through numerical exper-
iments to show that our method works well for Schrödinger equations with double well
potentials, in which case the differential operators are no longer positive semidefinite.

There are several directions we want to explore in our future work. Firstly, we would
like to construct problem dependent basis functions to compute eigenvalues and eigen-
functions of Schrödinger equations with unbounded potential, such as Coulomb poten-
tial. Then, we would like to employ our new basis functions to compute time-evolutionary
Schrödinger equations. In addition, we shall construct problem dependent basis func-
tions using optimization approach to solve problems arising from uncertainty quantifi-
cation, such as multiscale elliptic PDEs with random coefficients.
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A Exponential decay of the basis function Ψi

In this appendix, we provide a detailed derivation of the Theorem 4.2. For the ease of
reading, we state the theorem again as follows,

Theorem A.1. Under the resolution condition H
√

V0<
1

2CIH

√
Col

, there exist some constant C>0

and 0<β<1 independent of H, such that

||∇Ψi||Ω\Ωl
≤Cβl ||∇Ψi||Ω (A.1)

for any i=1,2,...,NH.

Proof. To facilitate the proof, we make use of a few properties of the Clément-type inter-
polation operator IH. For more detailed arguments, we refer the interested readers to
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Section 6 of [7]. Note that there exists a constant CIH such that, for all v∈V and xi∈Nc,

H−1‖v−IHv‖L2(Ω0)+‖∇(v−IHv)‖L2(Ω0)≤CIH‖∇v‖L2(Ω1). (A.2)

The constant CIH depends on the shape regularity parameter γ but does not depend on
the local mesh size H.

Notice that IH |VH is a local operator, by which we mean it gives rise to a sparse matrix,
but its inverse (IH |VH )

−1 is not. Nevertheless, there exists some bounded right inverse
I−1,loc

H : VH→V of IH that is local. That is, there exists a constant C′IH
depending only on

γ, such that for all vH∈VH,
IH(I−1,loc

H vH) = vH,

‖∇I−1,loc
H vH‖Ω ≤ C′IH

‖∇vH‖Ω,

Supp(I−1,loc
H vH) ⊂

⋃{Te |Te∈TH : Te∩Supp(vH) 6=∅}.
(A.3)

The third condition simply means that Supp(I−1,loc
H vH) is included Supp(vH) union an-

other layer of coarse elements. More detailed results can be found in [21, 26].
Now we are in the position to prove the decay property of the basis function Ψi. The

main idea of the proof is based on some iterative Caccioppoli-type argument that has
been used in [16, 21, 26]. We define a projection operator P : W→Vf such that a(Pv,w)=
a(v,w) for any v∈W and w∈Vf . More superficially, Pv=∑T∈TH

PT(v|T) and PT(v|T) solves
the equation a(PT(v|T),w)= aT(v,w) for all w∈Vf , where aT(·,·) means the restriction of
the weak form a(·,·) on the element T.

Now for any xi ∈Nc, we define Pi := ∑T∈Ωi,0
PT(Φi|T) where Ωi,0 = Supp(Φi). And

we shall prove the Pi has exponential decay property. To simplify notation, we omit
the dependence on i and use Ω0 to denote Ωi,0. We choose an integer l with l≥ 7 and
define a cutoff function as η(x)= dist(x,Ωl−4)

dist(x,Ωl−4)+dist(x,Ω\Ωl−3)
, x∈Ω. It is easy to check that the

cutoff function η(x) has the following properties: (1) η = 0 in Ωl−4, (2) η = 1 in Ω\Ωl−3,
(3) 0≤ η≤ 1, and η is Lipschitz continuous with ||∇η||L∞(Ω)≤H−1γ, where γ depends
on shape regularity parameter γ of the finite element triangles TH. Then we have the
estimate

||∇Pi||Ω\Ωl−3
=(∇Pi,∇Pi)Ω\Ωl−3

≤ (∇Pi,η∇Pi)Ω =(∇Pi,∇(ηPi))Ω−(∇Pi,(∇η)Pi)Ω

≤|(∇Pi,∇(ηPi−I−1,loc
H (IH(ηPi))))Ω|+|(∇Pi,∇(I−1,loc

H (IH(ηPi))))Ω|
+|(∇Pi,(∇η)Pi)Ω|. (A.4)

To simplify notations, we define

M1 := |(∇Pi,∇(ηPi−I−1,loc
H (IH(ηPi))))Ω|,

M2 := |(∇Pi,∇(I−1,loc
H (IH(ηPi))))Ω|,

M3 := |(∇Pi,(∇η)Pi)Ω|.



25

From the definition of IH in (4.4), we know that IH(ηPi−I−1,loc
H (IH(ηPi)))Ω=0. This im-

plies that ηPi−I−1,loc
H (IH(ηPi))∈Vf with support in Ω\Ωl−6. Thus, ηPi−I−1,loc

H (IH(ηPi))

vanishes on Ω0 as long as l≥6 and we have a(v,ηPi−I−1,loc
H (IH(ηPi)))Ω0 =0 for any v in

W. Then, we have

M1= |(∇Pi,∇(ηPi−I−1,loc
H (IH(ηPi))))Ω|

= |(VPi,ηPi−I−1,loc
H (IH(ηPi)))Ω|

≤V0|(Pi,ηPi−I−1,loc
H (IH(ηPi)))Ω|.

Note that ηPi−I−1,loc
H (IH(ηPi)) is supported in Ω\Ωl−6, so when l≥ 6, it vanishes on

Ω0. Using the properties of (A.2)(A.3), arguments used in Lemma 4.2, and the resolution
condition , we have

M1≤V0|(Pi,ηPi−I−1,loc
H (IH(ηPi)))Ω|

≤C2
IH

Col H2V0‖∇Pi‖2
Ω\Ωl−6

+C3
IH

C′IH
Col H2V0‖∇Pi‖2

Ωl\Ωl−7

≤ 1
2‖∇Pi‖2

Ω\Ωl
+ 1

2 (1+CIH C′IH
)‖∇Pi‖2

Ωl\Ωl−7
. (A.5)

Similar techniques and the Lipschitz bound lead to upper bounds of M2 and M3,

M2≤C′IH
CIH‖∇(ηPi)‖Ωl−1\Ωl−6

‖∇Pi‖Ωl−1\Ωl−6

≤C′IH
CIH

(
CIH

√
Col‖H∇η‖L∞(Ω)+1

)
‖∇Pi‖2

Ωl\Ωl−7
(A.6)

and
M3≤CIH

√
Col‖H∇η‖L∞(Ω)‖∇Pi‖2

Ωl−2\Ωl−5
. (A.7)

The combination of estimates (A.5)-(A.7) yields

1
2‖∇Pi‖2

Ω\Ωl
≤C1‖∇Pi‖2

Ωl\Ωl−7
,

where C1 := 1
2 +

3
2 CIH C′IH

+(C′IH
CIH +1)CIH

√
Colγ depends only on the shape regularity

γ of the finite element triangles TH. Since ‖∇Pi‖2
Ωl\Ωl−7

= ‖∇Pi‖2
Ω\Ωl−7

−‖∇Pi‖2
Ω\Ωl

, we
have the contraction

‖∇Pi‖2
Ω\Ωl
≤ C1

C1+
1
2

‖∇Pi‖2
Ω\Ωl−7

.

Finally, some algebraic calculations yield the exponential decay of the Pi’s,

‖∇Pi‖2
Ω\Ωl
≤
(

C1

C1+
1
2

)⌊ l
7

⌋
‖∇Pi‖2

Ω. (A.8)

After proving that Pi’s decay exponentially, we shall show that Ψi’s have the some prop-
erty. Notice that by definition, Pi−Φi ∈Vc and moreover, they span the space Vc. Thus
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each Ψi can be written as a linear combination of Pi−Φi’s, namely, Ψi=∑
j

a(i)j (Pj−Φj), for

some coefficients a(i)j . And from the condition that (Ψi,Φk)=δi,k, we have that (∑
j

a(i)j (Pj−

Φj),Φk)= δi,k. Thus ∑
j

a(i)j (Φj,Φk)=−δi,k. Let M be an NH×NH mass matrix with entry

(Φi,Φk) and write a(i)=(a(i)1 ,··· ,a(i)NH
)T. Then Ma(i)=−ei, where ei is a column vector with

i-th entry equals to one and other entries equal 0, and thus a(i)=−M−1ei.
If we number the finite element basis functions Φi in a proper way, so that the mass

M is a banded matrix with bandwidth at most p. Then we know that the entries of M−1

has the decay property
|(M−1)ij|≤2ρ2|i−j|/p||M−1||2, (A.9)

where ρ=(
√

cond2(M)−1)/(
√

cond2(M)+1). See Theorem 4.8 in [3] for more details.
Thus, a(i)j decays exponentially away from a(i)i . Now as each Pj−Φj decays exponentially,
their exponentially-decay linear combination also decays exponentially. Recall that Ψi =

∑
j

a(i)j (Pj−Φj), now take β = max{ρ2/p,
(

C1

C1+
1
2

) 1
7
}, then we get the exponential decay

property for Ψi, namely,
‖∇Ψi‖2

Ω\Ωl
≤Cβl‖∇Ψi‖2

Ω.

We remark that when Φi’s are taken to be piecewise constant basis functions as pro-
posed in [16], their correspond mass matrix M reduces to a diagonal matrix and thus
a(i)j =δij. In this case, Ψi=a(i)i (Pi−Φi) and its exponential decay property follows trivially
from the decay property of Pi.
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Figure 6: Selected examples of computed eigenfunctions as compared to eigenfunctions
obtained through finite element method in fine scale.


