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1 Introduction

Denote by A the open unit disk in C. Let Q € C" be a bounded symmetric domain of rank r > 2
in its Harish-Chandra realization. Denote by ds% the Bergman metric for any bounded symmetric
domain Q € CV in its Harish-Chandra realization.

Let u : U — CV be a holomorphic embedding such that u(U N A) C Q, u(U N OA) C 09,
where U = B!(bg,¢) is an open neighborhood of a point by € JA. Denote by o(z) the second
fundamental form of (U NA) = S in (,ds?) at x € S. The main objective of this article is to
prove that |o(u(w))| — 0 as w — b for any general point b € U N OA. One of the motivations
of this study is to provide complete proof of Theorem 3.5.1. in [Mk11] as corollary of our Main
Theorem and its applications as stated in [Mk11, p.254-255], which is also related to the study of
compact complex-analytic subvarieties in the quotient Q/T" of bounded symmetric domain Q by

torsion-free discrete subgroup I' C Auto(€2).

Remark. Note that such a holomorphic embedding p is said to be asymptotically totally geodesic
at general point b € UNIA if ||o(u(w))|| — 0 as w — b for general point b € U NIA (cf. [Mk09]).

Mok [Mk14] has proven that such local holomorphic curve u is asymptotically totally geodesic at
general point b € U N JA under the assumption that p exits at regular points of the boundary of

), and has provided the precise estimate of the norm of the second fundamental form as follows:

Proposition 1.1 (Main Theorem, [Mk14]). Let p : U — CN be a holomorphic embedding such
that w(U N A) C Q, p(UNOA) C E; = Reg(df), where U is an open neighborhood of a point
by € OA, Q € CV is a bounded symmetric domain of rank v > 2 in its Harish-Chandra realization.
Then, p is asymptotically totally geodesic at general point b € U NOA. More precisely, for any
open neighborhood Uy of b in C such that Uy € U, there is a positive constant C' depending on Uy
such that ||o(p(w))]] < Cé(w) for any w € Uy N A, where 6(w) :=1— |w| forw € A.

Our main result is the following theorem:



Theorem 1.2. Let Q € CV be a bounded symmetric domain in its Harish-Chandra realization
equipping with the Bergman metric ds}. Let y: U = B'(bg, ) — CY be a holomorphic embedding
such that p(UNA) C Q and p(U NIOA) C 9Q. Denote by o(z) the second fundamental form of
p(UNA) in (Q,dsd) at z = p(w), then limyerna, wsllo(u(w))|| = 0 for general point b € UNOA.

Before proving Theorem 1.2 in the general situation, we will first prove Theorem 1.2 under the
assumption that  is irreducible and of tube type. The reason of considering irreducible bounded
symmetric domain of tube type and of rank > 2 is due to the idea coming from the proof of
Theorem 1 in [Mk02]. After that, the complete proof of Theorem 1.2 will follow from routine
construction and the procedure of reducing the problem to the case where € is of tube type.

The first application of Theorem 1.2 is to prove the following theorem, which is precisely

Theorem 3.5.1. in [Mk11, p. 254].

Theorem 1.3 (Theorem 3.5.1. [Mk11]). Let f: (A, A\dsd) — (,ds3) be a holomorphic isometric
embedding, where X is a positive real constant and Q2 € CN is a bounded symmetric domain in its

Harish-Chandra realization. Then f is asymptotically totally geodesic at general point b € OA.

Proof. Tt follows from [Mk12] that f may be extended holomorphically around b for general point
b € OA, namely there is an open neighborhood Uy, of b and a holomorphic embedding f* : U, — CV
such that f*|y,na = flo,na and f5(U, N OA) C 99 because f is proper holomorphic. Note that
there are only finitely many points b on A such that f could not extend holomorphically around
b € OA. Denote by o(z) the second fundamental form of f(A) in (,ds). Then Theorem 1.2
asserts that limyeu,na, wopr [|o(f(w))| = 0 for general point ¥' € U, N A. We may suppose that
b € OA is a general point chosen so that limyep,na, wobl|o(f(w))]| = 0 as there are only finitely

many potentially bad boundary points on A (cf [Mk09]). The result follows. O

2 Preliminaries

Let Q € C¥ be an irreducible bounded symmetric domain of rank r. We may identify Q = Go/K
as Hermitian symmetric space of the non-compact type, where Gy = Auto(Q) and K C Gy is the
isotropy subgroup at 0 € 2 (cf [Wo72], [Mk14]). We follow some basic terminologies introduced
in [Wo72] (cf [Mk89], [Mk14]). Let G® be the complexification of Gy and g® be the complex Lie
algebra of GC. Let go C g© be the real Lie algebra of Gy, which is a non-compact real form of g€,
and € C go be the Lie algebra of K. Fixing a Cartan subalgebra b of €, the complexification h* of
b lies in the complexification €€ of £. Then h® C g€ is also a Cartan subalgebra of g€, and the set
of all roots of g€ lies in v/—1h*. Let AX/I be the set of non-compact positive roots as a subset of
the set of all roots of g*, then m* = @@eAL Ce, and g, = Ce,, with e, being of unit length with
respect to the canonical Kéhler-Einstein metric h. We let ¥ = {41, ...,1,} be a maximal strongly

orthogonal set of non-compact positive roots. From the Polydisk Theorem (cf [Wo72], [Mk14]),



there is a maximal polydisk A" = II C €2 given by II = (@;:1 ij) N such that (I, hlg) C (2, h)
is totally geodesic, Q = UweK ~ - 11

2.1 Canonical Kahler-Einstein metric on irreducible bounded symmetric

domains

Given an irreducible bounded symmetric domain € C¥ in its Harish-Chandra realization, denote
by gq the canonical Kéhler-Einstein metric on {2 normalized so that minimal disks are of constant

Gaussian curvature —2. Note that the Bergman kernel of {2 may be written as

1
~ Vol(Q)

Ka(z,2) ho(z,2)” P2,

where hq(z,z) is some polynomial in (z1,...,2n,%1,...,28) With hq(0,2) = 1, Vol(2) is the
Euclidean volume of © in CV with respect to the standard Euclidean metric on C and p(f2) :=
p(X.) = dimg 6,(X.) is the complex dimension of the VMRTs %,(X.) of X, 2 G./K at 0o = eK
(cf [Mk89]). Then the Kéhler form wy, respect to go on 2 is given by

Wgo = \/jlag(* log(—p)),
where p(z) := —hq(z, 2).

Lemma 2.4 (cf [Mk14, Mk15]). Let u: U — CV be a holomorphic embedding such that u(UNA) C
Q, wW(UNOA) C 99, where U C C is an open neighborhood of some point b e OA and Q is an
irreducible bounded symmetric domain of rank r > 2. For general point b € U N OA, there is an
integer m depending on b such that (U N A, u*goluna) is asymptotically of Gaussian curvature
—% along Uy, N OA for some open neighborhood Uy, of b in U. More precisely, denote by k(w) the
Gaussian curvature of (UNA, u*galuna) at w € UN A, then there is an integer m depending on
b such that

5(w) =~ = +O(b(w)’)

as w — b for general point b € U NIA, where §(w) = 1 — |w| for w € A.

Proof. From [Mk14] and [Mk15], for general point b € UNJA, the real-analytic function —p(u(w))
vanishes to the order m on an open neighborhood of b in U NAA for some integer m > 1 depending
on b. Then, we have —p(u(w)) = (1—|w|?)™x(w) on U, for some smooth positive function y defined

on some neighborhood of U, and some positive integer m, where U, is some open neighborhood of

bin U such that U, € U, say U, = B'(b, &) for some small g, > 0. Then, on U, N A, we have
1 wgo = —V=10log ho(u(w), p(w)) = m - we, —v/~190log x(w)
(cf [Mk14]), where wy, = —v/—1901og(1 — |w|?). Then,

m

Wwgg, = <(1_|w|2)2 + q(w)) V—=1ldw A dw,



where g(w) = —B;l% is a smooth function defined on a neighborhood of Uy,.

From [Mk14], p. 13, it suffices to show that g(w) - (1 — |w|?)? = O(5(w)?) on U, N A, where
0(w) =1 — |w| is the distance between w € A and 9A. Since ¢(w) is a smooth function defined on
a neighborhood of U, and Uy, is compact, so |¢(w)|? is bounded on Uy, i.e. 0 < |g(w)|*> < C; on Uy
for some real constants C; independent of w. It is clear that (1 + |w|)? is bounded above by some

positive real number for any w € U, because Uy, is bounded. Now, on U, N A, we have

* u / —
,U/OJQQ:W' —1dw/\dw:qu,

where u = m + q(w)(1 — |w|?)?. After shrinking Uy, if necessary, we can suppose that u # 0 on an
neighborhood of Uy, because |q(w)|? is bounded and (1 — |w|?)? vanishes on U, N JA. Denote by
k(w) the Gaussian curvature of (U N A, u*ga|luna) at w € UNA. For w € U, N A, we have

U 0? U 02 2

r(w) 1- w2~ owdw log 11— [wP)? ~  owdw logu — 11— [wp)?

In particular, for w € U, N A, we have

19%logu oo 2
ww) = = e D

__2 <2q(w) B 1821ogu> (1 — wf?)?

m m-u u Owow

_ _3 n <2q(w) B 182 logu) (1 + |’U)D2 . (S(U))Q

m m-u  u Qwow
For general point b € U N JA, there is an open neighborhood U of b in U such that U, € U and

2
u > 0 on Up. Then, % — %%J}% is smooth and real-valued on U,. Thus, we have

as w — b for general point b € U N JA. O

2.2 Convention

Let M be a smooth manifold and F is a differentiable vector bundle over M, then we denote by
I'(M,E) (resp. T'igcz(M,E)) the space of smooth sections (resp. local smooth sections around
x € M) of E. We also denote by I'ioc (M, E) the space of local smooth sections around some point
in M. If M is a complex manifold and E is a holomorphic vector bundle over M, then we also
denote by I'o.(M, E) as the space of local holomorphic sections of E around some point in M. For
a complex manifold X and z € X, we always identify T,.(X) with T19(X), namely ¢ € T,,(X) can

be written as £ = v + v for some v € T}0(X).

3 Construction of holomorphic isometric embedding

Let Q € CV be an irreducible bounded symmetric domain of rank r in its Harish-Chandra real-

ization. Let p : U = Bl(bg,e) — CY be a holomorphic embedding such that u(U N'A) C Q and



w(UNAA) C 99, where by € A. For general point b € UNOA, |lo(u(w))]|? is real-analytic around
b (cf [Mk09]). Let {wy}{>S be a sequence of points in U N A such that wy — b as k — +oc.
Let ¢ € Aut(A) be the map ¢ (¢) = f:wlk’z and @, € Aut(Q) such that @ (u(wy)) = 0, where
k=1,2,3,.... Then we have ®4(u(¢x(0))) = 0. Consider the sequence {®y o (1o pg)}/ > of germs

of holomorphic maps (A;0) — (€2;0). That means all ®; 0 (uopy) are defined on some small open
neighborhood U’ = B*(0,¢’) of 0 in A, which is valid by choosing some suitable sequence {wy,}; 25
in U N A converging to b € U N QA and for sufficiently small & > 0.

Lemma 3.5. By choosing some suitable sequence {wk}ﬁo‘i of points in U N A converging to b €
U NOA, then there is a subsequence of {ji; = ®; o (puo goj) °{ converges to some holomorphic
map f on U’ after shrinking U’ if necessary such that [i : (A, moga;0) = (2, 90;0) is a germ of

holomorphic isometry for some integer mgo > 1.

Proof. Tt is clear that the sequence {fi; = ®; o (po <pJ) 2} is bounded on compact subsets of
B(0,¢'), so it should contain a subsequence {ujk} +2] converging uniformly on compact subsets
of BY(0,¢’) = U’ to some holomorphic map i by Montel’s Theorem and Weierstrass’ Theorem
[Na71, p. 7-8]. After shrinking U’ if necessary, we may suppose that such a sequence {fi;, };5
converges uniformly to i on U’ because we only need to consider the germ of holomorphic map
e (A;0) = (©;0).

Recall that p*wg, = mow,, + ¢(w)v/—1ldw A dw on U, N A for some U, = Bl(b,&,) due to
w(U NOA) C 092 and (U NA) C £, where my is some positive integer, g(w) is a smooth (real-
valued) function on Uj such that |g(w)| is bounded from above on U, for some open neighborhood
Uy of b in C.

For k sufficiently large and w € U’ after shrinking U’ if necessary, we have ¢, (U’) C U, N A by

choosing some suitable sequence {wk}'k":i in U N'A converging to b € 0A and

00 1og(—p(fur(w))) = 00 log(—p(u(er(w))))
= moddlog(1 — [wx(w)[*) + g(wr(w))|g),(w) Pdw A dw

= moddlog(1 — [wl?) + q(¢r(w))l e} (w)dw A dw

s0 that 52— log(—p(fix (w))) = mo 5= log(1—|w|2) +q(pr(w))|¢} (w)[2. Taking limit as k — +o00
(passing to some subsequence of {fip};=5 if necessary) and since f : (A;0) — (2;0) is a germ of
holomorphic map, we have 52— log(—p(fi(w))) = mo 525 log(1 — |w|?) so that i*gn = moga on
U”. That means g : (A,moga;0) — (£2,9q;0) is a germ of holomorphic isometry, and thus it
extends to a holomorphic isometry (A, moga) — (2, ga) by the extension theorem of Mok [Mk12].
The extension is still denoted by . O

We have the following basic lemma from analysis:

Lemma 3.6. Let ¢(7) = g ; be a quotient of some real-valued, real-analytic functions p,q on U

where U is some open neighborhood of 0 in C. Denote by H = {7 € C : Im7 > 0} the upper-half



plane in C. Suppose that ¢(7) is bounded from above and below on U NH, then ¢(t) extends
real-analytically around a general point b € Unow.

Proof. We may regard p,q as functions of (x,y), where 7 = z + v—1ly. We write p(r) =
p(z,y),q(7) = q(z,y) as real-analytic functions of (z,y). Locally around 0, we have p(z,y) =

Z:C;io ai;xy! and q(z,y) = z:r;io b;;jx'y’ for some a;j,b;; € R. Then we have the local holo-

morphic functions on C? around (0,0) € C? given by p(7,() = Zj_;io a;;7'¢7 and ¢(1,¢) =

Z:;io bij7'¢7 with Rer = x, Re¢ = y. Consider ¢(7,¢) = 5518, which is a quotient of holomor-

phic functions around (0,0) € C2. Thus ¢A> is a meromorphic function on an open neighborhood

U of (0,0) in C2. The set of indeterminacy I(¢) of ¢ is of dimension at most 0 because it is the
intersection of the set Z(¢) of zeros and set P(¢) of poles of ¢ (cf. Gunning [Gun90, p. 180]).
Moreover, the restriction of ¢ to U’ := {(r,¢{) € U : Im7 =0, Im ¢ = 0} is bounded after shrinking
U if necessary, so U’ does not intersect P(QAS) ~ 1 ((;AS) Note that the set of singular points of ¢ on
U is P(¢) UI(¢) = P(¢), so the above arguments show that the set of potentially bad points of ¢
lies inside I (q{)) N U’, which is of dimension at most 0. Hence, for general point b € U N dH, ()

extends real-analytically around b. O

Given a non-zero tangent vector v € T,,(2), x € 2, then under Gy-action, there is an unique normal
form n = (m,...,nr) € Toll of v satisfying n; € R (1 < j <r)andnm > --- > n > 0, where
IT 2 A" is a maximal polydisk in € containing 0 and r = rank(2). For the notion of normal form

of tangent vectors in T,,(Q), z € £, one may refer to [Mk02, Mk89] for details.

Lemma 3.7. Let v € T,,(2) be a tangent vector of unit length with respect to h at some x € ) and
n = Z;:l njey,; € To(II) be the normal form of v. Then, the Hermitian bilinear form H, defined
by Hy(o, B) = R,-.5(€% ga) has real eigenvalues lying inside the closed interval [—2,0] and the
corresponding Hermitian matriz Hn of H,, can be represented as a diagonal matriz with respect to

the standard orthonormal basis {e, : ¢ € AL} of m*.

Proof. We write R s = Ragﬂ@(ﬁ, ga) for simplicity. From the assumption, we have Z;Zl 77]2- =
land ny > --- > 1. > 0 are real numbers. Writing o = ZweAL age,, B = EgaeAL Bty €
To(Q) 2 m™, we can compute

r

2 2. B
Hy(0,B) =3 0B, wiap =D D M0eBeRey ee,m
j=1

= +
I=l ey,

T

= _QZUJZO‘WBTU"" Z

) _
: : njRey egeqe; Py
j=1 pent ~w \J=1

From [Mk89], Re, e o7 =0 (resp. —1) whenever v, — ¢ is not a root (resp. ¥; — ¢ is a root).

Eigenvalues of H,, are 7217]2, 1 < j <r, and those of the form 7(771.21 +...+ 773) corresponding to
e, for some ¢ € A}, \ U such that Yi; — @ is aroot for 1 < j < m and ¢; — ¢ is not a root for

¢ {ij : 1 <j<m}. Here we have —2§—277J2-§0(1§j§r) andOZ—(n?l+...+nin)>—1



because Z;:1 17]2 =1landn; > 0,1 <5 <r. In particular, the eigenvector corresponding to
the eigenvalue —277]2- is precisely e, 1 < j < r. Note that the above computations imply that
the corresponding Hermitian matrix I:I,, can be represented as a diagonal matrix with diagonal
—2n%,...,—2n? and those eigenvalues —(77?1 + ...+ nfm) mentioned above with respect to the

standard orthonormal basis {e,, : ¢ € A}, } of m*. O

From the construction the sequence {/71@}2'3, we realize that the limit i of some subsequence of
{ﬁk}:;’ol should have some special properties locally around 0. Moreover, we can produce another
holomorphic map from g by the same kind of construction and such a map also has those special

properties on the unit disk.

Proposition 3.8. Let Q € CV be an irreducible bounded symmetric domain of rank r in its
Harish-Chandra realization. Let y : U = Bl(bg,e) — CV be a holomorphic embedding such that
p(UNOA) C 9Q and p(U N A) C Q, where by € OA. Let {wi}{25 be some sequence of points
in U N A converging to some general point b € U N OA as k — 400, and we let v € Aut(A)
and Oy € Aut(Q) such that ¢r(0) = wy and Pp(u(wy)) =0, k =1,2,3,.... Then, the sequence
of germs of holomorphic embeddings {jiy := P o (u o i) ;;’cl at 0 € A into Q (passing to some
subsequence if necessary) converges to the germ . of holomorphic isometry (A, mog;0) — (2, h; 0)
for some integer mo > 1, say fi is defined on U' = B*(0,&’) for some ' > 0, satisfying the following

properties:

1. o (m(w))||* = ||lo(u(b))||? being independent of w € U’, where &(z) is the second fundamental
form Of ﬁ(U/) in (QagQ) at z = ﬁ(w)! w e U/;

2. the normal form of % is independent of w € U’ and so is the rank of %
aQ 0

Moreover, i extends to a holomorphic isometry (A, moga) — (£2, ga) so that the property 1 actually
holds true on A for the extension of . Furthermore, by the same kind of process, i induces a
holomorphic isometry (A,moga) — (Q,g9q) satisfying the above two properties on the whole A.

We also denote such a holomorphic isometry by [i.

Proof. The first assertion about convergent of subsequence of certain sequence of germs of holo-
morphic maps fig : (A;0) — (£2;0) follows from Lemma 3.5. More precisely, from Lemma 3.5,
the limit is the germ of holomorphic isometry i : (A, moga;0) — (2, ga;0). We also denote by &
the extension of i as holomorphic isometry (A, moga) — (2, go) [Mk12]. It remains to show that
such [ satisfies the properties 1 and 2. By Weierstrass’ Theorem, fi'(w) = limy_, 4 o 1}, (w) for each
w € U’ and f'(w) # 0 because [1 is a germ of holomorphic isometry (A, moga;0) — (2, ga;0).
We identify Q = Go/K. Let 7 (w) (resp. n(w)) be the normal form of Hﬁﬁ% (resp. ”Mf‘(ﬁi“)j”)m)
for w € U' (resp. w € UNA). We also let 7j(w) be the normal form of Hﬁﬁ& Let

/(w)Hggz

Hy (o, B) = Rn(w)mag(ﬁgg) be the Hermitian bilinear form and ﬁn(w) be the corresponding



Hermitian matrix. The characteristic polynomial of ﬁn(w) is given by P, (,)(A) := det(A Ny —Hy(y))-
Moreover all eigenvalues of H,,,, are lying in the interval [—2,0] by Lemma 3.7.

For the normal forms 7x(w) and 7(w), we also define the Hermitian bilinear forms Hp, (u),
Hip) with the corresponding Hermitian matrices fI;,k(w) respectively. Then, the characteristic
polynomial of Hy, () (resp. Hyy)) is given by Py, (4)(A) := det(Ay — Hz, () (resp. Prw)(A) :=
det(My — flﬁ(w))). By Lemma 3.7, all eigenvalues of Hg, () (resp. Hy(,)) are lying in the in-
terval [—2,0]. For simplicity, we may suppose that ¢x(U’) C UNA for any K > 1. Fix an

iy, (w)

arbitrary point w € U’. From the construction, =& -07—
175, (w)llgq,

Op(w)  p (er(w))
[p5 (W) [ (er (W)l g

under Gyp-action so that the normal form 7 (w) is equivalent to n(¢x(w)) under the K-action and

is equivalent to

for k > 1. From the uniqueness of the normal form (cf. [MkO02]), we have 7, (w) = n(pr(w))
and thus Hy, () = Hy(p,(w)) for integer k > 1. Note that Hg, () (vesp. Hy,, (w))) IS equiva-

lent to the Hermitian bilinear form H /) (resp. H oy ) on Ty ) () = CN (resp.
17, (W) lgg, I (e (w)llgq

Tu(or () (2) =2 CV) in the sense that the corresponding Hermitian matrices are similar as matrices

due to the invariance of H,(«,3) = R (Q, ga) under the action of Autg(Q) = Gy. Moreover,

vBaB
the corresponding eigenvalues are the same under such equivalence because the corresponding
characteristic polynomial remains unchanged.

Note that the characteristic polynomial Py )(\) only depends on the eigenvalues of H, ),
which are the same as those of H /) for ( € UN A. Since eigenvalues of H, ) are real

e’ ) llgg,

numbers lying inside [-2,0] C R, and coefficients of P, )()) are bounded functions of ¢ on U N A

and may be written as a quotient of real-valued, real-analytic functions of ¢ on U, = Bl(b,&}).
Therefore, Lemma 3.6 asserts that for a general point b € U N JA, all coefficients of Py ()
can be extended as a real-analytic function of ¢ on Uy = BY(V,ey) for some g, > 0. We can
suppose that b € U N JA is the general point chosen so that all coefficients of P, )(A) can be
extended as a real-analytic function of ¢ around Uy, and ¢y (U’) lies inside U, N A for k sufficiently
large and shrinking U’ if necessary. Thus, there is a subsequence of {P,,, (w))(A)}}2] converges
to some polynomial P, (\) of A which is independent of w € U’ by the construction, in particular
the roots of Py ()) are independent of w € U’. Moreover, since Py, ()(A) = Pyp,(w))(A) and
the subsequence of {Py, ()(A)}/2] converges to Pyy)(A), we have Py(,)(A) = Px(A) so that the
eigenvalues of Hy(,,) are independent of w € U’. In particular, by computing the eigenvalues of
Hj) as in the proof of Lemma 3.7, the normal form 7(w) is independent of w € U’ and so is the
rank of 7j(w), i.e. i satisfies the property 2.

We suppose that the germ g is defined on U’ = B'(0,¢’) for some ¢ > 0. Denote by 7(z)
(resp. 0(z)) the (1,0)-part of the second fundamental form of g (U’) (resp. w(U’)) in (Q,h)
at z = fg(w) (resp. z = p(w)), k = 1,2,3,.... Denote by x(w) the Gaussian curvature of
(WUNA), galuwnay)) at w € UNA, then from the invariance of holomorphic sectional curvature

of (2, go) under Gy-action, we have

Ry i@y (wyie(w) (1 902) = llo (uler(w))II* + w(r(w)).



On the other hand, there is subsequence of Rﬁk(w)mﬁk(w)m(ﬂ’ h) (k=1,2,3,...) converging

to Rﬁ(w)%ﬁ(w)W(Q’ h) for w € U’. Therefore, for w € U’, we have o (i(w))||? = ||o(u(b))]|* by

the above formula and continuity of ||o(u(¢))||? as a function of ¢ € B1(b,e;). Since fi extends as
a holomorphic isometry i : (A, moga) — (£, ga) by [Mk12], by the real-analyticity of ||o((w))]|?
on A and the identity theorem for real-analytic functions, we have ||o(fi(w))||? = ||o(u(b))|* for
w € A. Thus i satisfies the property 1.

We now construct another holomorphic isometry by i as follows: We may choose a general point
b’ € OA such that i extends holomorphically around ¥’ and ||&(fi(w))||? extends real-analytically
around b’ (cf. [Mk12, Mk09]). Let {wj}}; 2] be some sequence of points in A converging to b’
as k — 400, and let ¢, € Aut(A),d, € Aut(Q) such that ¢x(0) = w}, Px(fi(w))) = 0 for
k = 1,2,3,.... Then Montel’s Theorem asserts that some subsequence of {@k o (o dr)H=g
converges uniformly on any compact subsets U of A to some holomorphic map [ U — Q. By the
same arguments as before, fi : (A, moga;zo) — (2, ga; i(zo)) is a germ of holomorphic isometry
for some zy € A and fi extends to a holomorphic isometry (A, moga) — (£2,9q). Denote by

f(w) the normal form of & (w) , then 7j(w) is independent of w € U for any compact subset

12" (w)llqq,
U C A by the same arguments as before, say for any U = B1(0,¢) with £ € (0,1). Denote also

by i the extension of fi as holomorphic isometry (A, moga) — (€, gq) and 7j(w) the normal form

i (w)
of g

fj(w). Denote by &(z) the second fundamental form of i(A) in (9, gq) at z = ji(w), then we have

for w € A. Then, 7(w) is actually independent of w € A and so is the rank of

llo(a(w)]|? = ||a(a(®))]|? = ||lo(u(b))]|? by the same arguments as before. For simplicity, we may

replace the notation fi, & by p, o respectively. O
Remark.

1. The positive integer myq is actually the vanishing order of p(u(w)) as w — b and we have

—p(u(w)) = (1 — |w|?)™ x(w) on Uy = BY(b, &) for some positive smooth function x on Uy.

2. The reason of equipping a bounded symmetric domain with the Bergman metric in the
statement of Theorem 1.2 is because we need to apply the extension theorem of Mok [Mk12]
for germs of holomorphic isometries of the Poincaré disk into bounded symmetric domains
with respect to their Bergman metrics up to normalizing constants. Otherwise, we may
consider any invariant Kéhler metric g¢, on a bounded symmetric domain € so that (Q, gg,)

has non-positive holomorphic bisectional curvature.

4 Proof of Theorem 1.2

We first prove the following theorem, then it could be generalized to the case where 2 is reducible
and of tube type. On the other hand, we will show that given a bounded symmetric domain 2,

then the problem may be reduced to our study on the case where {2 is of tube type.
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Theorem 4.9. Let Q € CV be an irreducible bounded symmetric domain of rank r > 2 in its
Harish-Chandra realization. Suppose that Q is of tube type. Let u : U = B'(by,e) — CV be a
holomorphic embedding such that p(U NA) C  and u(U NOA) C 0Q. Denote by o(z) the second
fundamental form of p(U N A) in Q at z = p(w), then limyeuna, wosllo(p(w))] = 0 for general
point b € U N OA.

4.1 Geometry of the induced holomorphic isometric embedding

In this section, we suppose that €2 is an irreducible bounded symmetric domain of tube type and
of rank > 2. Recall that we have constructed a germ of holomorphic isometry z : (A, moga;0) —
(92, 90;0) from p and i is defined on U’ = B1(0,¢’) for some &’ > 0 such that ||g(a(w))|]* =
o (1(b))||? for w € U’ and ' (w) = dfi (-2 ) (w) is of constant rank on U’, say of rank k for some
k, 1 < k < r = rank(Q). By Proposition 3.8, we may suppose that the following setting for
the germ 1z at 0 should also valid for the whole holomorphic isometry 1 : (A, moga) — (2, 9q).
We write Z = (U’) and n(w) as the normal form of i'(w), which is of the form Z?Zl nj(w)ey,
with m (w) > -+ > n(w) > 0, and ¥ = {¢1,...,%,} a maximal strongly orthogonal set of non-
compact positive roots [Wo72]. Then, we consider the null space N, of the Hermitian bilinear
form H,(a,B) = R,;,5(2,9q), which is of complex dimension n,(2) [Mk89]. Here ny(f2) is the
k-th null dimension of the irreducible bounded symmetric domain Q. In case k = r = rank(Q),
we simply write ng(Q) = n,—x(2) = dim¢ Q. For z € Q, let @, be a Hermitian bilinear form on

T () ® T,.(Q) given by Q(a ® 5,0/ ® f/) = R, 775758 go). For w € U', we define
W) = {v € Ti)? : Q) (v® ¢, ) =0 ¥V ¢ € Ny }

where NVy(w) = Nyw) = {0 € T2 Byyym(h) = 0F = {v € T : n(w) @7 €

Ker(Qp(w))}- Then, we have Ty()(Z) C Wiw) C Thw)(Q). Note that ((w) = ((i'(w)) € Ny (w)

varies antiholomorphically with respect to w. Let

k
Nie = ﬂWE AY i #j, ¢ —1j is not a root},
j=1
then N, = Doen; 9o Let N = Neen ¥ € Al;0 # ¢, 1 — @ is not a root}, then the normal
form of Wi(w) 18 given by

() Ne= P gu-

CEN, ¢eﬁ
Lemma 4.10. In the above constructions, if ) is of tube type, then for any x € Z, W, = T,(2L)

for some characteristic subdomain Q, C Q of rank k passing through x and Y., is of tube type.

Proof. We fix an arbitrary € Z. Consider the case where = DV!. If k = 3 = rank(Q2), then
W, = T,(€) so that the result follows directly and Q) = Q. If k = 1, then W, = T,,(Z) = T,,(4,)
with A, C Q being the minimal disk passing through x = p(w) because ﬂCGNn(m) N¢ = Cn(w)
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(cf [MT92, p. 98]). Suppose that k = 2. Note that the automorphism group of the exceptional
domain DV! corresponds to the Lie group E;. From [Zh84] and [Si81, p. 868], ¥ = {11, 12,13}
with 1 = &1 — o, o = 21 + T2 + 23 and 3 = 237.:1 x; —x3, where x;, 1 < j <7, is the standard

basis of R7. We can write n(w) = 01 (w)ex, —z, + N2(W)€x; 12y+as, then

2 7
Ny = ﬂ{(p €AY, #1;, p—1; is not a root} = ij —x3 p = {3}
j=1 j=1

Actually, if n(w) = ni(w)ey, +na(w)ey,, with some distinct ji, jo € {1,2,3}, then Ny () = Cey,,
with j3 € {1,2,3} \ {j1,52}. Therefore, in any case, ey, is a characteristic vector so that the
normal form of Wi, is N%j = To(Y), where Q' € Q = DV! is a characteristic subdomain of
rank 2 (cf. Proposition 1.8. in [MT92]). From [Wo72], we have 2’ = DIV. For ) being of type-1V,
if k=1 (resp. k =2), then W, = T,(2Z) = T,(A,) (resp. W, = T,(€2)) for a unique minimal disk
A, C Q passing through x € Z and T,(A,) = Cn (These arguments not only work for DY, but
also for any irreducible bounded symmetric domain of rank 2, including DV).

For 2 of type I,1I or III, the result follows from the use of normal form of 7 and computations in
[MKk89]. For the case where k = r, we have W, = T,(Q2). For each z € Z, we see that the normal
form of W, is the holomorphic tangent space to some characteristic symmetric subdomain ' C Q

of rank k£ at 0 as follows:

1. For Q = D!

b 2 <p=r,and 1 <k < p, then the normal form 7 is given by

diag, ,(1,-- -, Mk, 0,...,0)

and it is clear that

Z/
ﬂ Ne = € M(p,p;C): Z' € M(k,k;C) 3 = TO(D}M)
CeEN, 0

I
p,p’

by [Mk89], where we identify le, . With its image via the standard embedding D}c’ =D
Z/
VAR .
0
2. For Q = DI the normal form 7 is given by diagpm(m7 ey Mi, 0,...,0), then it is clear that

Z/
) Ne = € My(r;C) : Z' € My(k;C) » = To(DIM)
CEN, 0

by [Mk89], where we identify DI with its image via the standard embedding DI — DI
!
Z'
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3. For = DIl we have the normal form

T

mJr
0 1
n= ) Jl = )
NeJ1 -1 0
i 0
then it is clear that
_Z,
() Ne = € M,(2r;C) : Z' € M,(2k;C) p = To(DLL)
CENy L 0

by [Mk89], where DI is identified with its image via the standard embedding DI} < DIl
!
AR .
0

For each of the above case, from classification of boundary components of irreducible bounded
symmetric domain and the notion of characteristic subdomain in [Wo72] and [MT92], we see that
Q' C Q is a characteristic subdomain of rank k. Then, by using Gy-action and the fact that Q' is
invariant geodesic submanifold of €2, we see that W, = T, (€Y,) for some characteristic subdomain

Q) C Q of rank k. Since 2 is of tube type, all its characteristic subdomains are of tube type (cf

[Wo72]). O

Remark. When Q is an arbitrary irreducible bounded symmetric domain (not necessarily of tube
type) of rank r > 2 and T,(Z) is spanned by a rank k vector n, € T,(Q) for each z € Z with
k < r. Then it follows that for any x € Z, W,, = T,.(€2,) for some invariant geodesic submanifold
Q! C Q passing through z such that 2 is an irreducible bounded symmetric domain of rank &

and of tube type.
Lemma 4.11. In the above construction, W C Tq|z is a holomorphic vector subbundle.

Proof. We may write W, = {y € T,Q2: Q(v®(,-) =0, V¢ € N} for z € Z = i(U’). Note that ( is

antiholomorphic, where ((w) € Tipe,»(Z, N') with N7 := | Ny (w) is an antiholomorphic vector

wel’
subbundle of Tq|z. For (1,0) tangent vector v tangent to Z at z, for any o, S € Tipe (2, Talz)

and v € Dioc (2, W) a local smooth section, then we have

0=Vs(Q(v®(,a®p) =Q(Viy®(,a®p)

because ¢ is antiholomorphic, so (Vy)(xz) € W,. Hence W C Tgq|z is a holomorphic vector
subbundle. O

Lemma 4.12. Define the (1,0)-part of the second fundamental form 7 : Tz @ W — Tqlz/W of
the holomorphic vector subbundle (W, go|lw) C (Talz,9a) by 7(n ®v) = (Vyv)(x) mod W, for
each x € Z, n € Tp(Z) and v € Wy, then T is holomorphic.
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Proof. We need to show that for local holomorphic sections 7, 8 € Tioc (2, Tz) and vy € T'ioc (2, W),
V(Vyy)(z) € W, for any x € Z so that projecting to the quotient bundle To|z /W would imply
V5(r(n®7)) =0, i.e. 7 is holomorphic. Note that R(n,B)y = —V5(Vy7), so it suffices to show
that RnBvE(Q’gQ) = 0 for any & orthogonal to W, equivalently R(n, 3)v takes values in W. For
each ¢ € Z, W, = T,(Q.,) for some characteristic subdomain €/, C 2 of rank k containing . Note
that €/, C Q is an invariantly geodesic submanifold, we can regard x as a base point o of Q and
thus
[(m™, W], W] C W,

by Lemma 4.3 in [Ts93]. This shows that (R(n, 8)7)(z) = [[8(z), n(z)],v(x)] € W, because n(z) €
T:(S) € W, and v(z) € W,. This shows that —V5(V,7) = R(n, B)y takes value in W so that
7 is holomorphic. Moreover, we can regard 7 € I'(Z,T5 ® W* ® (Ta|z/W)) as a holomorphic

section. O

Lemma 4.13. Under the above assumptions, for any x € Z and 0,8 € Diocx(Z,Tz), we have
T (n(x) ® B(x)) =0, i.e. (VyB)(x) € Wy, equivalently T|r,e1, = 0.

Proof. By Lemma 4.12, 7|z € I'(Z,5%Ty ® (Ta|z/W)) is a holomorphic section. Let v, = €
mod W be holomorphic basis of the quotient bundle Tq|z /W, namely, v (¢) = ex(¢) mod W),
where €;(¢) = %L:ﬁ(é)' We write n(¢) = p@/(¢) = du (8%) (¢) for simplicity. Note that p|y-
can be extended as a holomorphic isometry 1 : (A, moga) — (£2,9q), so we can also extend Z
as a complex submanifold Z’ = f(A) of Q by [Mk12], and we also denote the extension by .
By Proposition 3.8, Lemma 4.10, Lemma 4.11 and Lemma 4.12, we can extend the domain of
definition of 7 and the holomorphic vector bundle W so that Tz C W C Tq|z. We also extend
7|z to 7|z € (2, 5T} ® Ta|z /W). We may write

7l2(¢ Zm ¢)d¢ ® d¢ ® vi(Q)
so that T,’]“n(g) = 7,(¢). Then, we have

171z (O < Z [ OS]
We write 7 = 7|z for simplicity. Note that

ld¢]| < C"-6(¢) (C” >0 is a real constant)

with 6(¢) = 1 — |¢| by using the fact that & is a holomorphic isometry and actually Hﬁ'(()Hin =

2
H‘%H = M@W We also have

Q@) ]
T|TZ/®TZ/(<) - ||77(<)H2 - |C| Z 11

so that 71, a1, (Ol < 7 3 17 Q)] 5()2 v (Ol Note that [I7]z,,e1, ()2 can be extended

= mg

as a real-analytic function around a general point ¥’ € A, say on Uy = B!(b, ey ), and that all
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7. (¢) are holomorphic functions on a neighborhood of Uy. Note that [[v5(C)] < [lex(Q)llge (cf
[Mk10]).

We need to obtain an estimate of ||ex({)|lq, as in [Mk10] and we claim that

, 1
lex(Ollge < C 30

for some positive real constant C’. The idea is to use Kobayashi pseudo-distance, Kobayashi

pseudo-metric on 2, and convexity of Q. Denote by da(:,) (resp. dq(,-)) the Kobayashi pseudo-

distance on A (resp. Q) with da(0,¢) = log ijgl‘ and da(+,-) is defined by using the Bergman

metric dsi on A (cf [Ko98]). From [Ko98], for a complex manifold M, we define the Kobayashi

pseudo-metric by
Fu(v) = inf{||@||dSzA L0 € Ty(A), f € Hol(A, M), fii = v}

for v € T,(M), x € M. Since Q € CV is convex, the Carathéodory pseudo-metric on € coincide
with the Kobayashi pseudo-metric Fo ([K098], p.220). For z € Q, let dq(x) = §(x,I) be the

Euclidean distance from x to the boundary 9. Note that —=Fpn (£) = [€]lg,y - Fix some z € Q.

V2
By definition of dq(z) = §(x, 9Q), we have BN (x, 6o(x)) C Q and thus we have a holomorphic map
f:BY — Q given by f(w) = éq(x)w + 2. Then, f maps BY biholomorphically onto B (z, 5o (z))
and dfo (ﬁ(w)aiwj 0) = aizj . Forv=¢;(() = 6%1";7({) € T()(Q2), and by [Az85] and [Ko98],
p-90, there is positive real constant C} (independent of the choice of tangent vector to 2) such that

o], < V/C5Fa(v) < /T Fyx (521()6 )

x) Ow;

1 0 1
2C" = /20, ——,
5@ 2w ol ~ V5@
where = = 1(¢). In particular, there is a positive real constant C' such that ||ej(§)HgS2 < CWI(Q)

for 1 <j < N and ¢ € A. Since Q € CV is convex, it follows from [Me93, Proposition 2.4.] that
there is C; € R such that C; — 1logdq(z) < 1do(0, 2) for any z € €. From our definition of the
Kobayashi pseudo-distance dq(-,-) and that kq(-,-) in [Me93], we have kq(-,) = 2dq(,-). Then,

we have e=2C1§q(z) > e~ 92(0:2) 5o that
(5(() <2. e—dA(O,C) <2. e—dsz(Oﬁ(C)) < 2¢—2C1 . 59(/7(0)

It follows that for 1 < j < N, [|€;({)]lg0 < C5Q(M(C)) < C’ j for ¢ € A, where C’ is some positive

real constant. The claim is proven. Then, we have
IFQI < C6(0) - Y I (0)
k

on Uy N A for some positive real constant C. The summation in the above inequality is a finite

sum. For a general point ' € A, ||7(¢)|* can be extended as a real-analytic function in an open

neighborhood Uy of &' in C (by Lemma 3.6) and each 7§ (¢) can be extended as a holomorphic
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function on some neighborhood of Uy, then each |7f; (¢)| is bounded above by a uniform positive real
constant on Uy so that ||7(¢)|] — 0 as ¢ — b” for any b” € Uy NOA. Actually, the above arguments
show that [|7(¢)|| — 0 as ( € ¥ for general point ¥’ € OA. Note that ||7(¢)||?> depends only on

||2 = W. From the construction,

normal form of the tangent vector i'(¢), i.e. [|7(¢)
7(¢) is actually independent of ¢ € A so that ||7(¢)||? is constant on A. But then ||7(¢)||*? — 0 as
¢ — b for general point ¥’ € JA implies that ||7(¢)|| = 0 on A, ie. 7|1, g1, () =0 on A. The

result follows. O
Lemma 4.14. In the above construction, we have 7 = 0.

Proof. By the Lemma 4.13, we have 7|p,o1, =0, i.e. (V,1)(z) € W, for any 1,1 € T'oc (2, T7)
yzos = 0 for n € Tocu(Z,T7), ¢ € Ny, and any o, 8 € T;(?), where
x € Z. From the definition of W, we have R(V,n,(,, ) = 0, because v € I'(Z, W) if and only

and x € Z. Note that R

if szag =0 for any «, 8 € I'oe(Z,Ta|z) and any ¢ € N,), where n € I'oc(Z,T7). Thus we have
R(n, V7, o, B) = 0 for any «, 8 € T1oc(Z, Ta|7z). In particular, (V5¢)(i(w)) € Nyw). For any
v € Tioc(Z, W), ¢ € Ny and any a, B € Toc(Z, Talz), we have R z,5 = 0 so that

R(Vy7,C e, B) + R(v, V¢, a, ) = 0.

Since (V¢)(7i(w)) € Ny(w), we have

R((Vyy)(1(w)), ¢(w), a(p(w)), B(p(w)) = 0

for arbitrary ¢ € Ny, o, 8 € T'0c(Z, Talz). Therefore, (V,7)(fi(w)) € Wy for arbitrary w € U’,
i.e. 7 =0. This shows that if 7|7,g71, = 0, then 7 = 0. O

Lemma 4.15. In the above construction, we have Z = u(U') C Q' for some characteristic subdo-

main Q' C Q of rank k.

Proof. From the above constructions, T, (Z) is spanned by a rank k vector n(w) at any x = (w) €
Z (w € U’) and there is a holomorphic vector subbundle W C Tq|z with Ty C W C Tq|z. By
Lemma 4.14, we have 7 = 0. We first show that there is a characteristic subdomain ' C Q
of rank k such that Z is tangent to €' to the order at least 2 at some point u(wy) (wo € U’)

and T = By considering the normal form of W, (), it is clear that there is

#(wo)
a characteristic subdomain Q" C Q of rank k such that u(wo) € Q" and Tw)Q" = Wiwe)-
Moreover, for fixed wq, such € is unique because if there is characteristic subdomain Q" C Q such
that p(wo) € Q" and T),(1)2" = W(wy), then by using some & € Aut(Q) with ®(u(wo)) = 0,
both ®()’) and ®()”) are linear sections by complex vector subspaces in CV = m*, but then
their tangent spaces at 0 are coincide to each other so that ®(Q') = ®(Q"), ie. Q = Q"
From the assumption that 7 = 0, we have (V,v)(u(w)) € W) for any w € U’, where 1 €

Dioc,u(w)(Z,Tz), v € Dige u(w)(Z, W) are local holomorphic sections.
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Denote by 7 : G(Tq,n,—k(2)) — Q the Grassmann bundle, where G(T,(Q),n,—x(2)) is the
Grassmannian of the complex n,_j(2)-dimensional vector subspaces of T,(Q2) for each z € .
From [MT92, p.99], we can let NS,_(2) be the collection of all n,_;(2)-planes which are
holomorphic tangent spaces to the (r — k)-th characteristic subdomains of €, then NS, ()
lies in the Grassmann bundle G(Tq,n,—£(2)) and is a holomorphic fiber bundle over © with
NS, k() 2 NS, _r0(R) x Q. For each z € Q and each (r — k)-th characteristic subdomain
Q! C € containing z, we can lift Q) to NS,_1(Q) as

= {[T)()] € NSy k() 1y € 2}

Such lifting of (r — k)-th characteristic subdomains of €2 forms a tautological foliation .# on
NS, _1(Q) with n,_;(2)-dimensional leaves @ Then, we let Z be the tautological lifting of
S to NS, _(Q2) defined by

Z={[W,] ENS,_12(Q) 1z € Z}.

Then Z is tangent to ¢ at [(Wi(we)] because of (V) (p(wo)) € Wy(w,)- Actually, since (V,v)(z) €
W, for any z € Z, Z is tangent to the leaf ﬁz of Z at [W,] for any = € Z, where Q) C Q is the
characteristic subdomain of rank k at x satisfying T,,(2.) = W,. Therefore, Z is an integral curve
of the integrable distribution defined by the foliation .%. From the general theory of foliation, such
integral curve of the distribution induced from .# must lie inside the single leaf O of 7 , which is
also the maximal integral submanifold of the induced integrable distribution. Actually, any smooth
real curve v passing through p(wg) on Z should lie inside the single leaf QO of F so that Z itself
should lie inside the leaf )/ of the foliation .Z because Z is path connected. Note that Z is the
image of Z under the canonical projection G(Tq,n,_(€2)) — €. But then the above argument
shows that Z should lie in Q' because Z C (V.

O

Remark. After proving Lemma 4.15, the first author realizes that Tsai [Ts93, p. 144] has also
used a similar technique in which he considered invariant geodesic submanifolds of an irreducible
compact Hermitian symmetric space. Notice that same kind of technique could be also used
for reducible bounded symmetric domains (or reducible compact Hermitian symmetric spaces).
Using the notations in [Ts93, p. 144], the requirement for Z lying inside a single leaf of .# is
that 0u[W,l(z) C T.(Q,) = W, for each x € Z, which is equivalent to that for any local
holomorphic sections v € T'igc »(Z, W) and 1 € T o (Z,T2), (Vyvy)(x) € Wy, Of course this is

actually equivalent to the assumption 7 = 0.

From the above constructions and Lemmas, we can complete the proof of Theorem 4.9 as follows:

Proof of Theorem 4.9 . From the holomorphic embedding p : U — C¥ and choosing an arbitrary

general point b € UNAA, we have constructed a germ of holomorphic isometry g : (A, moga;0) —
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(2, ga; 0) satisfying the two properties mentioned in Proposition 3.8, say g is defined on U’ =
BY(0,€’). Denote also by i : (A,moga) — (A, ga) the extension of i as a holomorphic isometry,
the two properties are precisely (1) ||o(g(w))]|? = ||o(u(b))||? and (2) the normal form of ﬁ
is independent of w € A and of rank k, where k is some integer satisfying 1 < k < r. By Lemma
4.15, Z = p(U’) lies inside a characteristic subdomain ' C €2 of rank k. In case k = r = rank(02),
then we have ' = Q. Note that Q is of tube type, so Q' is also of tube type. Denote by ¢’(z) the
second fundamental form of (Z, go/|z) in (', ga) at © € Z, where the Kéhler metric gor = galo
on ' is precisely the restriction of gq to Q. We write Q' = G/K’ and automorphisms of ' can
be extended as automorphism of Q. Fix an arbitrary point w € U’. If i/(w) is a rank &k’ vector
in 75y, then applying the K'-action would imply that the normal form of zi'(w) is tangent to
some totally geodesic polydisk IIz 22 A* in the maximal polydisk II; = A¥ of €', which also lies
in A" = II C Q. This also implies that the normal form of zi'(w) as a tangent vector in T,
is of rank &’. Therefore & = k&’ and '(w) is a generic vector in Tj(,,) (') for w € U’. The idea
is to consider a certain holomorphic line bundle over the projectivized tangent bundle PTq/, and
make use of the Poincaré-Lelong equation as an analogue of the arguments in [Mk02] to the local
holomorphic curve z(U’) C € such that the tangent space to Z := i(U’) at f(w) is spanned by

generic vector (i.e. a rank k vector) because ' is of tube type. From [Mk02], we have

V -1, = —~ * *

?aalogHsHZ =mec1(L, g ) — ley (7" E, 7 go) + [Sk_1()],
with s € T'(PTo/, L™ @ m*E'), E = O(1)|q/, L — PTq the tautological line bundle. Denote by w
the Kahler form of (€', go/). Since i : (A, moga;0) — (€, ga; 0) is a germ of holomorphic isometry
and a(U') C €, we may regard 1 : (A, moga;0) — (', gor; 0) as a germ of holomorphic isometry.
Let

Z=A{la] eP(T:):z € Z, T,(Z) = Ca}

be the tautological lifting of Z to PTq.. Note that Zis a complex manifold without boundary so
that [, /=199 log||s||, = 0 by Stokes’ Theorem. Moreover, [, w|z is finite due to

mo
\/ 1d dw = —— | 2d2d
/‘”'Z / - WA U,<<1—x2—y2>2) e

<C | dxdy= C’VOI(U’) < +o0,
U/

where w = x + +/—1y, Vol(U’) is the Euclidean volume of U’, C' is the uniform upper bound of

2 ((1—;?73,1;2)2) on U’ since ﬁ < =% on BY(0,¢’) = U’. Since Sp—1() N Z = @, we have

/ (mer(L, go) — ler (7B, 7 g,)) = 0,
Z

/Z (ker(Tz,90/1z) — 2¢1(E, go)) = 0.

Note that ¢1(Tz, ga/|z) = %/{Zoﬁz by formula of the Gaussian curvarture £z of (Z, go/|z) and

[Mk89], p. 36. Moreover, m = k, [ = 2 by [Mk02]. Then [, kkzw = —c [, w for some ¢ > 0.
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Denote by Ag the holomorphic disk of maximal Gaussian curvature —%, i.e. of diagonal type in the
maximal polydisk AF>T, c V. Actually, —kka, = cand ka, = —% so that ¢ = 2. But then the
equality —2 [, w = [, kkzw and the inequality [, kkzw < —2 [, w implies that ky = f%. Then
we have [|o’(fi(w))||> < =2 + 2 = 0 so that [|o/(2(w))||> = 0 on U, ie. (Z,galz) C (2, g0lo)
is totally geodesic. But then (', gala) C (2, gq) is totally geodesic so that (Z, galz) C (2, gq)
is totally geodesic and thus ||o(fz(w))||? = 0 on U’. In particular, ||o(u(b))||?> = ||o(m(w))]]* = 0.

Since b € U N QA is an arbitrary general point, we see that ||o(u(w))]|?

point b € U N 0A. O

— 0 as w — b for general

4.2 Complete proof of Theorem 1.2

In Section 3, we have construct a holomorphic isometry (A, moga) — (€, ga) into an irreducible
bounded symmetric domain with certain properties. The following shows that our study on such

a holomorphic isometry may be reduced to the case where Q is of tube type.

Proposition 4.16. Let Q2 € CV be an irreducible bounded symmetric domain of rank k and let
(A ga) = (2, 9a) be a holomorphic isometry such that the tangent space To,(Z) of Z := (A)
is Aut(Q)-equivalent and spanned by a rank k vector n, in T,(QY). Then, there exists an invariant
geodesic submanifold Q' C Q containing Z such that Q' is an irreducible bounded symmetric domain

of rank k and of tube type. In particular, Z C (2, gq) is totally geodesic.

Remark. Note that if T,(Z) is spanned by a rank k vector in T, () with k£ < r = rank(Q2), then
the construction in Section 4.1 is also valid for a bounded symmetric domain of non-tube type and
one construct an invariant geodesic submanifold Q" of © which contains Z and Q" is a bounded
symmetric domain of rank k and of tube type. In particular, we may suppose that T, (Z) is spanned

by a generic vector in T,(€2) and Q is of rank k.

Proof. If € is of tube type, then the result follows from the proof of Theorem 4.9. Thus it suffices
to consider the case where € is of non-tube type. From the classification of irreducible bounded
symmetric domain, € is biholomorphic to either D , (p < q), D,y (n > 2) or DV. Define
P:Ta®To — Ta®To by g(P(a®B),7®46) = R ~55(%2, ds3). Here g, (-, ) is a natural Hermitian
pairing of the basis for S?T,(Q2), i.e. gu(e; - e;,€ -e) = 1 (vesp. 0) if {i,5} = {s,I} (resp.
{i,7} # {s,1}). Then P is parallel because VR = 0. We define p : (Tq @ T) ® T3, — Tq so that
for each x € Q,
po (T2(Q) © To() 8 TH(Q) — To(Q)

is a multi-linear map given by p, (¢ ® v)(w*) = w*(v)u for decomposable elements (1 @ v) ® w* €
(T(Q) @ T(Q)) @ Tk (2). We have Pl ® o) = Z«M@’GAL Roezae (2, 90)e, ® €, and p(Pla ®
a)®ey) = ZveAL Raezae; (2, ga)e,. Define the vector subbundle V' := p(P(n®n) ®Ty) C Talz,

where 7 is a non-zero holomorphic vector field on Z = ji(A) C Q.
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By using the normal form n(w) € To(R2) of ”ﬁfy‘(ﬁi’;’l‘)m, if Q is of the classical type, then it
follows from direct computation of the Riemannian curvature of (€, gq) that the normal form
of Vo (x € Z) as a complex vector subspace of To(Q) is exactly M(p,p;C) = To(D,,,) (resp.
M,(2n;C) = To(D3,)) if @ = DL (p < q) (resp. D3, (n > 2)). In the case where Q = DV,
it follows from the computation of Tsai [Ts93, pp. 149-151] and R(v,w)v’ = —[[v,w],v’] that the
normal form of V, (z € Z) as a complex vector subspace of To(f2) is exactly To(€') for some
invariant geodesic submanifold ' C Q satisfying Q' = DLV. Actually, we may write the normal
form n(w) = 11 (w)€x, 2y +12(W)€x, 42125, then we compute R(n(w), &;)n(w) = [[e—y, n(w)], n(w)]
for each non-compact positive root ¢. It then follows from Tsai [Ts93, pp. 149-151] that the normal
form of V,, is p(P(n(w), n(w))®T§ (£2)), which is spanned by ez, —z,, 4 <@ < 6; €3, 105+, 4 <1 < 6;
€y —z, AN €4 44yt 4y. Here n(w) = 1y for w € A. In particular, the normal form of V, is exactly
To(Q%) = To(D§Y). It is then obvious that Spanc{ey,(z) : j = 1,....k} C V, and n, € V, for
each ¢ € Z for each € Z. By similar arguments as in the proof of Lemma 4.11, V C Tg|z is
a holomorphic vector subbundle with 77 C V. Let 7 : T, @ V. — Tq|z/V be T(n ® v) = V,y
mod V. Then it follows from the arguments in the proof of Lemma 4.12 that 7 is holomorphic
since V,, = T, (§2,) for some invariant geodesic submanifold Q) C Q. It follows from arguments in
the proof of Lemma 4.13 that 7|7,g7, = 0. From the definition of V' C Tq|z and the fact that
(Vyn)(x) € V, for any « € Z and 1,7 € Tioe,2(Z,T7), we have 7 = 0. Actually, p is a contraction
and thus for 7,7 € Tioe 2 (Z,Tz), we have

Valp(P(n@n) ® w))(x) =p(V4(P(n @n)) @ w*))(x) + p(P(n®@n) @ (Viw"))(x)
=p(P((Vin)(x) ® n(z)) ® w*(x)) + p(P(n(x) @ (Vin)(z)) ® w*(z))
+ p(P(n(z) @ n(z)) ® (Vyw")(z)),
which lies in V,, because (V;n)(z) € V, and [[m~,V,],V,] C V, (cf. Tsai [Ts93, Lemma 4.3.]). In
other words, V' is parallel on Z. By applying the foliation technique as in the proof of Lemma
4.15, there is an invariant geodesic submanifold Q' C Q such that Z C ' and T, (Q') = V,, for any
x € Z. In addition, such a submanifold € is irreducible and of tube type as a Hermitian symmetric
space of the non-compact type. If € is of tube type, then it follows from the above construction

that Q' = Q. If Q' is of non-tube type, then Q is biholomorphic to either D;’q (r < q), Délnﬂ
(n >2) or DV so that we have the following:

(i) £Q =D} (p<gq) (resp. Q= Dy, (n>2)), then Q' = D] (resp. Q' = D).
(i) If Q= DV, then ' = DLV.

From the arguments in the proof of Theorem 4.9, Z = (A) C (', gala) is totally geodesic and
thus Z C (£2, ga) is totally geodesic. O

Indeed, the proof of Theorem 1.2 (under the assumption that the bounded symmetric domain

Q is irreducible) already follows from Proposition 4.16 and the proof of Theorem 4.9. Now, it
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remains to consider the bounded symmetric domain 2 being reducible. The idea is to generalize
the methods to the case where € is reducible throughout sections 3, 4.1 and that in Proposition
4.16, then this would complete the proof of Theorem 1.2.

Now, We may write Q@ = Q; x --- x Q,,, € CM x ... x CN» = C¥ for some integer m > 1,
where Q; € CNi is an irreducible bounded symmetric domain in its Harish-Chandra realizations
for j =1,...,m. Equipping Q (resp. A) with the Bergman metric ds (resp. ds3 ), then by slight
modifications we may obtain analogues of Lemma 2.4, Lemma 3.5, Lemma 3.7, Proposition 3.8
and the results in Section 4.1 in the case where ) is reducible. Recall that p : U = B'(by,e) —
CM x ... xCNm = CV is a holomorphic embedding such that u(UNA) C Q and u(UNOA) C 9.
Writing p = (p1, . . ., m) With p; : U — CNi being a holomorphic map, j =1,...,m.

4.2.1 Basic settings

We may write the Bergman kernel Kq(z,§) = m for some real constant C{, > 0 and some
polynomial Qq(z,€) in (z,£), then W2 = —/=1001log Qa(z,2). In the case where Q = A, we
have Qa(z,&) = 7+ (1 — 2£)? for z,£ € C. For the construction of a germ of holomorphic isometry
1 in Lemma 3.5 and Proposition 3.8, for general point b € U N A, there is an open neighborhood

Uy of bin U C C such that

Q) n(w) = x(w)(1 ~ [w) = L), ¥

on U, for some non-vanishing smooth function y on a neighborhood of U, and some positive integer

X. Then we may construct the sequence {1, = ®; o po ¢, ;’:"f as in Section 3 such that
N =
[Wasz = 5 Wisa TV —1901og x(;(¢)),

then we obtain a germ of holomorphic isometry 1 : (A, /\?IdSQA; 0) — (Q, dsd; 0) by taking limit
of some subsequence of {fi; }jzo‘f . Note that such a germ pu could be extended to a holomorphic
isometry (A, %/dsi) — (Q7 dss%) by the extension theorem of Mok [Mk12]. Then we may generalize
Proposition 3.8 to the case where 2 is reducible. Indeed, by decomposing T () = Ty, (1) B - D
Ty, () for @ = (21,...,2m) € Q1 X -+ X Qyy, we may decompose the normal form n(w) =

mw) + ...+ nm(w) € To(Q1) & -+ ® To(Qyy,) of B (w)

A" ()02
4.2.2 First step

The first step is to show that since Z := i(A) has Aut(Q’)-equivalent tangent space T,.(Z) spanned
by a rank k vector 7, of T,(Q2), then Z lies inside an invariant geodesic submanifold Q' C Q of

rank k£ and of tube type as a bounded symmetric domain.

Tube type: We first consider the case where Q is of tube type (equivalently all ©;’s are of tube

type). For z € Q, let Q, be a Hermitian bilinear form on 7, () ®T, () given by Q(a® 3, o’ ®3') =
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R, 7555 dsd). For z; € Q;, we also let Qg) be a Hermitian bilinear form on T, () ® T%, (£2;)
by Q¥)(a®B.o/ ®F) = R,,75(%,ds? ) and let N&) be the null space of the Hermitian bilinear
form H(%) (v,v") == Rajafj@g(ﬁj,ds%j) for o € T, (€25).

For w € U’, we define Wy, = {U € Thw): Qﬁ(w)(v®z, )=0V¢ EN;,(UJ)}, then we have

Wiw) = @, Wi,

i (w)? where

W = {vj € Ty ) () 1 QY (0, ®C,) =0 ¥ (€ /\/rfﬁw)}, j=1,...,m.

Up to permuting the irreducible factors ;s of 2 we may assume that n(w) = n (w)+...+nm(w) €
To(Q2) = To(1) & -+~ ® To(Qy,) is of rank k = 377 k; and each 7;(w) € To($;) is of rank k;.
Here we may suppose k; > 0 for [ = 1,...,m’, k; = 0, n;(w) = 0 and fi;(w) = 2 is a constant
map for m’ +1 < j < m provided that m" <m. For x = (z1,...,2,) € Z CQ=Q1 X -+ X Qp,

we have

m / ... / .o 1 /
o — ey _ | T @) @ 0T 00, ) @ (0} 0 -0 0} it <m
J=1 Txl (Qll,m) OB Txm (Qll,acm) if m"=m

for some characteristic subdomain Q;x] C Qj, j =1,...,m". Notice that it is possible that
Q ,, = € for some 7. The rest of the results obtained in Section 4.1 may be generalized in the
case where Q (resp. ) is reducible. It follows from the arguments in Section 4.1 that there
is a characteristic subdomain of € containing the Poincaré disk Z = f(A) which is of the form
Q)< x Q) {zpr g1} X x{zy =1 Q (resp. Q) x---x Q= Q) if m' <m (resp. m' =m),
where Q; C Qj is a characteristic subdomain of rank k;, 1 < j < m’. Notice that each Q; is of

tube type and each 7;(w) € To(Q}) is of rank k; = rank(Q}) for j =1,...,m/.

Non-tube type: Suppose that Q = Q; x .-+ X €, is of non-tube type. We may suppose that
T.(Z) is spanned by a generic vector in T, (), otherwise we are done by using the same method in
the case where 2 being of tube type. Similar to the case in which we considered the holomorphic
vector subbundle W C Tg|z, one may generalize the method in the proof of Proposition 4.16 to the
case where Q is reducible and equipped with the Bergman metric ds3. The key point is that our
construction of the holomorphic vector subbundle V' C T|z comes from the Riemannian curvature
tensor of (2, ds3), which is decomposed into sum of Riemannian curvature tensors of (£2;, ds%j) in
some sense, j = 1,...,m. Then, it follows that there is an invariant geodesic submanifold Qg C Qy
of rank equal to that of Q; and of tube type for j =1,...,m such that Z C Q' :=Q} x--- x Q.
Here Q' C Q is an invariant geodesic submanifold which is of tube type and of rank equal to that

of Q.

In any case, given a bounded symmetric domain €0 of rank r, the Poincaré disk Z lies inside an
invariant geodesic submanifold Q' C Q of rank k& and of tube type, T,.(Z) is spanned by a generic
vector in T, (') and is Aut(£2)-equivalent. This completes the first step.
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4.2.3 Second step

Notice that the method of using Poincaré-Lelong equation as in the proof of Theorem 4.9 may be

extended to the case where the bounded symmetric domain €’ is reducible.

Proposition 4.17. Let ' = Q) x --- x Q) , be a bounded symmetric domain of tube type and
of rank k equipped with a Kdhler metric g = @;ﬂ:/l Pr;k»g&;_ on ), where m’' is some positive
integer, 9?2; = )\ng; for some positive integer \; and Pr; : Q — Q; is the projection onto the
j-th irreducible factor of ', j = 1,...,m'. We also let Z C Q' be the local holomorphic curve,
i.e. Z is the image of a germ of holomorphic isometry [i : (A, Adsi;0) — (', g6,;0) for some
positive real constant A > 0, such that T,(Z) is spanned by a rank k vector n, € T,(Q). Then

(Z,9001z) C (¥, g5y) is totally geodesic.

Proof. 1If Q' is irreducible, then we are done by the proof of Theorem 4.9. Consider the case where
Q' = Q) x---xQ , is reducible and of tube type, where each Q' is an irreducible bounded symmetric
domain of rank k; and m’ > 2 is some integer. Under the assumptions, we have k = E;’il k; and
each Q; is of tube type. We only need to apply the method in the proof of Theorem 4.9 and that
in [Mk02], and we generalize the settings to the case where ' is reducible. Denote by Sl(igj (Q2%)
the [-th characteristic variety for Q2 at z; € O}, j =1,...,m’. Then Sy ,(Q') is indeed a union
of m’ hypersurfaces of P(T,(€')) and thus is a divisor of P(T,(')) for each z € Q. In particular
Sk—1(€) still defines a divisor line bundle [Si_1(Y)] C PTq:. For = (x1,...,2m) € ¥, denote
by

Sio10@) = {1 @ @] €P (T, () @ O T, () vy € S, (@)},

where §’(fi)—1% (©2%) is the cone over Sl(fi)—l,zj (Q%) in Ty, (92), then Sp_1,.() = U?il Si_Lm(Q’).
In particular we have Si_1(€2) = Q' X Sp_1,,() C Q' x P(T,(Y)) = PT . Similarly, we define
Sp-1(X!) C PT'x;. Let L — PTx, be the tautological line bundle and 7 : PTx, — X be the
projectivized tangent bundle over X;. Writing X = X/, x --- x X, with each X/ ; being
an irreducible compact dual Hermitian symmetric space of (2%, then Pic(X[) = Pic(X, 1) x -+ X
Pic(X] /) because each X/ ; is a Fano manifold. Denote by Pr; : X! = X;; x -+ x X[, —
Xé,j be the canonical projection onto the j-th irreducible factor of X/ and n; := Prjom, j =
1,...,m’. Therefore, Pic(PT:) is generated by w*(Pr;(’)Xé‘j(l)), j=1,...,m', and L. Pulling
back of a non-trivial holomorphic section of S T, ® Ox: . (2) by the projection Pr; : X{ — X[ ;
gives a non-trivial holomorphic section in the holor;aorphic vector bundle S*s T, ® Prj (O X!, (2)),
which further gives a non-trivial holomorphic section in L=% ® W;Oxéwj (2). Then it follows from
[MK02, Proposition 3] that [S]_,(X!)] = L™% ® 7;O0x; (2) provided that Q is of rank > 2.
If Q) = A is biholomorphic to the unit disk for some j, then we also have S (X)) =L'e

o~

7 Ox: | (2) with X7 ; = P'. Moreover, we may simply consider the divisor line bundle [Sy.—1(X7)]
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Q™ [S]_, (X)) so that

[Sk-1(X7)] = Ll0®®7r PriOx; (2)))),
j=1
where lp = — E;":ll Ajkj. We denote by 7 : PTo — Q' be the canonical projection, Pr; : Q" — Q)
the projection onto the j-th irreducible factor of ' and m; = Pr; o« for simplicity. Let E; be
the restriction of OXQ,J» (1) to Q) for j =1,...,m’. We denote also by L the restriction of L to Q'
and g/’\Q, is the canonical Hermitian metric on L|g induced from the Kéhler metric gf,, on €. By

duality we have
[Se—1 ()] = L @ Q)i B
j=1
It follows from [Mk02] that we have the Poincaré-Lelong equation

V=1 _

?8alog||s||§ —locr (L gQ, 22)\ c1 (T Ej,mihd) + [Sp—1()],
where s is a non-trivial holomorphic section of L' ® ® =1 7T*E . Here the Hermitian metric h?,
on E; = Ox; (1)|Q9 is induced from the Kéhler metric gg,, on €2}. Similar to the case where Q' is

irreducible, we consider the tautological lifting Z of Z to PTq, then ZNSi_1(€Y') = @. Therefore,

we have
/ lOCI L gQ/ E 2A Cl E] s 7'1"7 h,‘Z)) = O’
A

’

/ loCl (Tz, ggl’ |Z) + Z 2)\]'01 (Pr;Ej, Pf;khg)) =0.
z ;

j=1
Moreover, denote by Ay a totally geodesic holomorphic disk in (', g, ) of constant Gaussian
curvature K, which is equal to the maximal holomorphic sectional curvature of (€, g¢,,). Then
where k; = rank(Q}), j = 1,...,m/. It follows from [MkO02] that

/

we have ka, = ERay

Z;-"le 2\je1 (PrjEj, Prihi) = =2 Z;nzll AjPrjwg,, = —2wg . Therefore, we have

/Zlol‘{zwggw ZQ/ZLUQ&/.

Notice that Kz < ka, = % by the Gauss equation for (Z,g¢/|z) C (€, g¢,). In particular, we
have [, lok 2w, =2 I 2wy and equality holds true only if £z = £, is the maximal holomorphic
sectional curvature of (€', g, ), i.e. (Z, g5y |z) C (€, g5y ) is totally geodesic by the Gauss equation.

O

4.2.4 Conclusion of the proof

From our construction and the above two steps, we may complete the proof of Theorem 1.2 as

follows:
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Proof of Theorem 1.2. The case where {2 being of rank 1 is obviously true by our constructions in
Section 3, so we assume that Q is of rank > 2. Following the constructions of a local holomorphic
curve Z throughout Sections 3 and 4 we first consider the case where € is of tube type. Then we
have shown that Z C € for some characteristic subdomain ' C Q of rank k and 7,,(Z) is spanned
by a generic vector in T, (2'). Here Q' is also of tube type. It follows from Proposition 4.17 that
(Z,ds}|z) C (,ds3|q) is totally geodesic so that Z C (,ds3) is totally geodesic. From the
proof of Theorem 4.9, we have ||o(u(w))||> — 0 as w — b for general point b € U N OA. Hence,
the proof is completed under the assumption that €2 is of tube type. Actually, without assuming
Q being of tube type, we still obtain an invariant geodesic submanifold Q' C Q which is of tube
type, of rank k and containing Z provided that T,(Z) is spanned by a rank k vector in T,,(£2) for
some positive integer k& < rank(€2). Then the result follows in this situation.

It remains to consider the case where Q is of non-tube type and T,(Z) is spanned by a generic
vector 1, € T,,(2). Notice that Proposition 4.16 may be generalized to the case where Q is reducible
because of Proposition 4.17, namely Z C ' for some invariant geodesic submanifold Q' C © such
that €' is of tube type and of rank equal to rank(Q). We may write Q' = Qf x --- x Q) C
Q=0 x - X Qp, then dsi|o = Z;.n:l(p(Qj) + 2)gQ;_. It follows from Proposition 4.17 that
Z C (,ds?|qr) is totally geodesic and thus Z C (2,ds3) is totally geodesic. Similar to the case

where 2 is of tube type, the rest follows from our construction. O

5 Applications

Mok [Mk11, p.255] has given a sketch of the proof of the following theorem on holomorphic

equivariant embeddings between bounded symmetric domains.

Theorem 5.18 (Theorem 3.5.2. [Mkl11]). Let D and Q be bounded symmetric domains, ® :
Auto(D) — Auto(2) be a group homomorphism, and F : D — Q be a ®-equivariant holomorphic
map. Then, F is totally geodesic.

Proof. A sketch of the proof was given in Mok [Mk11] and we explain here the details. Since F' is ®-
equivariant, it suffices to consider the case where  is irreducible. We may write the decomposition
D = D; x --- x Dy, of D into irreducible factors, where k > 1. Denote by o the (1,0)-part of the
second fundamental form of D in ). By considering the Gauss equation and the holomorphic
bisectional curvature of D, it suffices to show that o(n;,n;) = 0 for any »;,n; € T,(D) tangent to
the 4-th irreducible factor D; of D for ¢ = 1,..., k because o(n;,7n;) = 0 for any n;,7n; € T,,(D) such
that 7; (resp. n;) being tangent to D; (resp. D;) for distinct 4,7, 1 < 4,5 < k. Thus, it suffices to
consider the case where D is irreducible. If D is of rank > 2, then we are done. If D = B"”, then we
may simply restrict to any minimal disk of D by slicing the complex unit ball D = B™ with affine
linear subspaces of C" intersecting D = B™. This shows that the problem may be reduced to the

case where D = A is the unit disk. Notice that any ®-equivariant holomorphic map F : A — Q) is
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a holomorphic isometry up to a normalizing constant. It follows from Theorem 1.3 that F': A — Q
is asymptotically totally geodesic at a general point b € 9A. Then the ¢-equivariance of F' implies
that ||o||? is constant on the whole unit disk A, which implies that ||o|| = 0, i.e. F: A — Qs

totally geodesic. O

As a consequence of Theorem 5.18 we have the following characterization of compact totally
geodesic subsets of quotients of bounded symmetric domains. The deduction of Theorem 5.19 from

Theorem 5.18 was given in [Mk11].

Theorem 5.19 (Theorem 3.5.3 [Mk11]). Let (2,ds3) be a bounded symmetric domain equipped
with the Bergman metric ds?,. Let T' C Autg(S2) be a torsion-free discrete subgroup and X := Q/T.
Denote by h the Kihler metric on X induced from ds}. Suppose Z C X is a compact complex-
analytic subvariety and (Reg(Z), h|reg(z)) is locally symmetric. Then, Z C X is a totally geodesic

subset.
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