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Abstract

We prove the analogue of the Ax-Lindemann-Weierstrass Theorem for not necessar-
ily arithmetic lattices of the automorphism group of the complex unit ball Bn us-
ing methods of several complex variables, algebraic geometry and Kähler geometry.
Consider a torsion-free lattice Γ ⊂ Aut(Bn) and the associated uniformization map
π : Bn → Bn/Γ =: XΓ. Given an algebraic subset S ⊂ Bn and writing Z for the Zariski
closure of π(S) in XΓ (which is equipped with a canonical quasi-projective structure),
in some precise sense we realize Z as a variety uniruled by images of algebraic subsets
under the uniformization map, and study the asymptotic geometry of an irreducible
component Z̃ of π−1(Z) as Z̃ exits the boundary ∂Bn by exploiting the strict pseu-
doconvexity of Bn, culminating in the proof that Z̃ ⊂ Bn is totally geodesic. Our
methodology sets the stage for tackling problems in functional transcendence theory
for arbitrary lattices of Aut(Ω) for (possibly reducible) bounded symmetric domains
Ω.

Let (X, ds2
X) be a complex hyperbolic space form of finite volume, i.e., X = Bn/Γ is the quotient

of the complex unit ball Bn by a torsion-free lattice Γ ⊂ Aut(Bn), and ds2
X be a canonical

Kähler-Einstein metric on X. In Mok [Mo2] (2010), motivated by the study of the Gauss map
on subvarieties of X we considered the question of determining Zariski closures of images of
totally geodesic complex submanifolds S ⊂ Bn under the universal covering map π : Bn → X.

We proved that the Zariski closure Z = π(S)
Zar⊂ X must be a totally geodesic subset.

In place of X = Bn/Γ one can more generally consider Ω b CN ⊂ M a bounded symmet-
ric domain in the Harish-Chandra realization Ω b CN and in the Borel embedding Ω ⊂ M
into its dual Hermitian symmetric manifold M of the compact type, Γ ⊂ Aut(Ω) a torsion-
free lattice, and, in place of a totally geodesic complex submanifold one may consider S ⊂ Ω
an irreducible algebraic subset, by which we mean an irreducible component of V ∩ Ω, where
V ⊂ M is a projective subvariety, dim(S) > 0. In recent years, the question of finding Zariski

closures Z = π(S)
Zar

was posed in the area of functional transcendence theory in the form of
the hyperbolic Ax-Lindemann-Weierstrass conjecture, when Γ ⊂ Aut(Ω) is an arithmetic lattice.
The conjecture was formulated by Pila in [Pi] (2011) in relation to the André-Oort conjecture
in number theory using the method of Pila-Zannier (cf. [PZ] (2008)), and it is one of the two
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components for an unconditional affirmative resolution of the latter conjecture. By means of
the method of o-minimality from model theory in mathematical logic in combination with other
methods, the hyperbolic Ax-Lindemann-Weierstrass conjecture was resolved in the affirmative in
the cocompact and arithmetic case by Ullmo-Yafaev [UY] (2014), for the moduli space X = Ag
of principally polarized Abelian varieties by Pila-Tsimerman [PT] (2014), and in the general
arithmetic case by Klingler-Ullmo-Yafaev [KUY] (2016). All these proofs relied heavily on the
arithmeticity of the lattices being considered.

In relation to Mok [Mo2], the author was led to consider the same problem in complex
differential geometry for arbitrary lattices. When Ω is irreducible, in view of the arithmeticity
theorem of Margulis [Ma] (1984) only the complex unit ball Bn admits non-arithmetic finite-
volume quotients. In this article we resolve in the affirmative the analogue of the hyperbolic
Ax-Lindemann-Weierstrass conjecture in the rank-1 case for arbitrary lattices Γ ⊂ Aut(Bn). It
serves as a starting point for tackling the analogous problem and other related problems (e.g. Ax-
Schanuel) for arbitrary and possibly reducible lattices (cf. Remark after Lemma 4.1).

We consider the problem from a completely different perspective using methods of several
complex variables, algebraic geometry and Kähler geometry. In the case where S ⊂ Bn is totally

geodesic, it was proved in [Mo2, loc. cit. ] that the Zariski closure Z = π(S)
Zar

is necessarily
“uniruled” by pieces of totally geodesic complex submanifolds, and a lifting Z̃ of Z to Bn was
shown to be totally geodesic from its asymptotic geometric behavior as Z̃ exits ∂Bn. For an
arbitrary irreducible algebraic subvariety S ⊂ Bn we make use of the universal family ρ : U → K
over an irreducible component K ⊂ Chow(Pn), the Chow space of Pn, to construct by restriction
and by descent a locally homogeneous holomorphic fiber bundle of projective varieties µΓ : UΓ →
XΓ equipped with a tautological meromorphic foliation F . In the case of compact ball quotients,
by embedding µΓ : UΓ → XΓ as a locally homogeneous holomorphic fiber subbundle of some
locally homogeneous projective bundle $Γ : PΓ → XΓ, which is necessarily projective algebraic,
we are led to the study of the foliation F on the projective variety UΓ ⊂PΓ.

For noncompact complex ball quotients XΓ = Bn/Γ we make use of the existence of the
minimal compactification even in the non-arithmetic case by the works of Siu-Yau [SY] (1982),
which were shown to be projective in Mok [Mo3] (2012), and the methods of compactification
of complete Kähler manifolds of finite volume of Mok-Zhong [MZ2] (1989) applied to $Γ :
PΓ → XΓ to show that PΓ and hence UΓ is quasi-projective, and to show that the tautological
foliation obtained by descent from the universal family ρ : U → K extends meromorphically
to a compactification UΓ. To complete the proof of Main Theorem we introduce a rescaling
argument for Kähler submanifolds exiting ∂Bn by means of a result of Klembeck [Kl] (1978)
according to which a certain standard complete Kähler metric on a strictly pseudoconvex domain
is asymptotically of constant holomorphic sectional curvature. As a by-product of our proof of
Main Theorem for arbitrary lattices Γ ⊂ Aut(Bn) we show that the Zariski closure Z ⊂ XΓ of
π(S) is uniruled by subvarieties belonging to K (in the precise sense of Definition 3.1).

After earlier works the author’s interest in further pursuing the analytic and geometric ap-
proach to functional transcendence theory was rekindled after discussions with Jacob Tsimerman
in Spring 2016; it transpired that a combination of our approach from the perspective of com-
plex geometry with works of Pila-Tsimerman on the hyperbolic Ax-Schanuel conjecture from the
perspective of o-minimal geometry might shed light on the not necessarily arithmetic analogue
of the latter conjecture. Ax-Schanuel Theorem for Shimura varieties has now been established
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by Mok-Pila-Tsimerman [MPT] (2019).

1. Introduction, background materials and statement of Main Theorem

Let Γ ⊂ Aut(Bn) be a torsion-free lattice and denote by X := Bn/Γ the quotient manifold. When
Γ ⊂ Aut(Bn) is an arithmetic lattice, by Satake [Sa] (1960) and Baily-Borel [BB] (1966) X admits
a minimal compactification Xmin by adjoining a finite number of normal isolated singularities.
In general X = Bn/Γ is of finite volume with respect to the canonical Kähler-Einstein metric,
and by Siu-Yau [SY] (1982), X admits a compactification X ⊂ Xmin by adding a finite number
of normal isolated singularities, where Xmin is exactly the minimal compactification of Satake-
Baily-Borel in the arithmetic case. The methods of Siu-Yau [SY] are transcendental, and they
apply to complete Kähler manifolds of finite volume and of pinched negative sectional curvature.
When X = Bn/Γ, Mok [Mo3] (2012) proved that Xmin is projective. For finite-volume complex
ball quotients, by [Sa], [BB], [SY] and [Mo3] we have

Theorem 1.1. Let n > 2 and denote by Bn b Cn the complex unit ball equipped with the
canonical Kähler-Einstein metric ds2

Bn . Let Γ ⊂ Aut(Bn) be a torsion-free lattice. Denote by
X := Bn/Γ the quotient manifold, of finite volume with respect to the canonical Kähler-Einstein
metric ds2

X induced from ds2
Bn . Then, there exists a projective variety Xmin such that X =

Xmin − {p1, · · · , pm}, where each pi, 1 6 i 6 m, is a normal isolated singularity of Xmin.

Here and henceforth, without loss of generality we choose the canonical Kähler-Einstein
metric so that (Bn, ds2

Bn) and hence (X, ds2
X) are of constant holomorphic sectional curvature

−2. From now on X = Bn/Γ will be equipped with the quasi-projective structure inherited from
the projective variety Xmin. To emphasize the dependence on the lattice Γ we will now write XΓ

for X, and XΓ for Xmin. In Mok [Mo2] we consider Zariski closures of totally geodesic complex
submanifolds on XΓ = Bn/Γ, and we proved

Theorem 1.2. (Mok [Mo2, Main Theorem]) Let XΓ = Bn/Γ be a complex ball quotient of
finite volume with respect to ds2

X , as in Theorem 1.1, and denote by π : Bn → XΓ the universal
covering map. Let S ⊂ Bn be a totally geodesic complex submanifold in

(
Bn, ds2

Bn
)
. Then, the

Zariski closure Z of π(S) in XΓ is a totally geodesic subset.

Denoting by Z̃ an irreducible component of π−1(Z) ⊂ Bn, in the above Z ⊂ X is said to be
a totally geodesic subset if and only if Z̃ ⊂ Bn is a totally geodesic (complex) submanifold with
respect to the canonical Kähler-Einstein metric.

In the current article we prove Ax-Lindemann-Weierstrass Theorem for not necessarily arith-
metic finite-volume quotients of Bn, n > 2. A subvariety S ⊂ Bn is said to be an irreducible
algebraic subset if and only if it is an irreducible component of the intersection V ∩Bn for some
(irreducible) projective subvariety V ⊂ Pn, and an algebraic subset S ⊂ Bn is the union of a
finite number of irreducible algebraic subsets. Note that a totally geodesic complex submanifold
of Bn is precisely a non-empty intersection of the form V ∩ Bn, where V ⊂ Pn is a projective
linear subspace of Pn. We have

Main Theorem. Let n > 2 and denote by Bn b Cn the complex unit ball equipped with
the canonical Kähler-Einstein metric ds2

Bn. Let Γ ⊂ Aut(Bn) be a torsion-free lattice. Denote by
XΓ := Bn/Γ the quotient manifold, of finite volume with respect to the canonical Kähler-Einstein
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metric gΓ := ds2
XΓ

induced from ds2
Bn and equipped with the structure of a quasi-projective man-

ifold from XΓ ⊂ XΓ. Let π : Bn → XΓ be the universal covering map and denote by S ⊂ Bn an
irreducible algebraic subset. Then, the Zariski closure Z ⊂ XΓ of π(S) in XΓ is a totally geodesic
subset.

For the proof of Main Theorem we will consider the universal family ρ : U → K, µ : U →
Pn over some irreducible component K of the Chow space of Pn and obtain by restriction to
Bn ⊂ Pn and by descent to XΓ a locally homogeneous holomorphic fiber bundle µΓ : UΓ → XΓ

equipped with a tautological foliation. µΓ : UΓ → XΓ will be embedded as a locally homogeneous
fiber subbundle of projective varieties in a certain locally homogeneous projective bundle $Γ :
PΓ → XΓ, which implies in the compact case that UΓ is projective. For the finite-volume and
noncompact case we will need to embed the total space PΓ onto a quasi-projective variety. For
this purpose we will need the following compactification result of Mok-Zhong [MZ2] (1989) from
Kähler geometry.

Theorem 1.3. (Mok-Zhong [MZ2]) Let (X, g) be a complete Kähler manifold of finite volume,
bounded sectional curvature and finite topological type, and denote by ω the Kähler form of
(X, g). Suppose there exists on (X, g) a Hermitian holomorphic line bundle (L, h) whose curvature
form Θ(L, h) satisfies aω 6 Θ(L, h) 6 bω for some real constants a, b > 0. For an integer k > 0
and for a holomorphic section s ∈ Γ(X,Lk), we say that s is of the Nevanlinna class if and
only if log+ ‖s‖hk := max(log ‖s‖hk , 0) is integrable on X. Then, denoting by N (X,Lk) ⊂
Γ(X,Lk) the vector subspace consisting of holomorphic sections of the Nevanlinna class, we
have dim(N (X,Lk)) < ∞. Furthermore, there exists some ` > 0 such that N (X,L`) has no
base points and defines a holomorphic embedding Φ` : X ↪→ P(N (X,L`)∗) onto a dense Zariski
open subset of some projective variety. In particular, X is biholomorphic to a quasi-projective
manifold.

For the study of µΓ : UΓ → XΓ we will need the following basic result on Chow spaces of Pn
from Chow-van der Waerden [CvdW] (1937). More details will be given in §2.

Theorem 1.4. On the projective space Pn, for an integer r, 0 6 r < n, and a positive integer
d, denote by Q = Q(n, r, d) the set of pure r-dimensional cycles W on Pn of degree d. Then, Q
admits canonically the structure of a projective subvariety of some projective space Ps, where
s = s(n, r, d). Moreover, Aut(Pn) ∼= PGL(n+ 1,C) acts canonically on Ps preserving the subset
Q ⊂ Ps. Furthermore, the subset W :=

{
w = ([W ], x) ∈ Q × Pn : x ∈ W

}
⊂ Q× Pn ⊂ Ps × Pn

is a projective subvariety invariant under the natural action of Aut(Pn) on Ps × Pn.

Here an element [W ] ∈ Q denotes an r-cycle on Pn, which is neither necessarily irreducible
nor reduced. As an r-cycle [W ] = k1[W1] + · · · + ks[Ws], where s > 1 and Wi, 1 6 i 6 s, are
reduced and irreducible r-dimensional subvarieties of Pn.

In the proof of Main Theorem we will study pre-images of Zariski closures of the image of an
algebraic subset on Bn under the universal covering map, for which we will need the following
result of Klembeck [Kl] (1978) on the asymptotic behavior of complete Kähler metrics on strictly
pseudoconvex domains.

Theorem 1.5. (Klembeck [Kl]) Let U ⊂ Cn be a domain, ρ be a smooth real function on U
and b be a point on U . Suppose ρ(b) = 0 and dρ(x) 6= 0 for any x ∈ U , and assume that ρ is
strictly plurisubharmonic on U , i.e.,

√
−1∂∂ρ > 0 on U . Let U ′ ⊂ U be the open subset defined

by ρ < 0, and s be the Kähler metric on U ′ with Kähler form given by ωs =
√
−1∂∂(−log (−ρ)).
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Then, (U ′, s) is asymptotically of constant holomorphic sectional curvature −2 at b, i.e., defining
ε(x) > 0 at x ∈ U ′ to be the smallest nonnegative number such that holomorphic sectional
curvatures of (U ′, s) at x are bounded between −2− ε(x) and −2 + ε(x), then ε(x)→ 0 as x ∈ U ′
approaches b ∈ ∂U ′ ∩ U .

2. Construction of locally homogeneous projective fiber subbundles of projective
bundles

Consider the standard inclusions Bn b Cn ⊂ Pn. Let W0 ⊂ Pn be an irreducible subvariety and
S be an irreducible component of W0∩Bn. Let K be an irreducible component of the Chow space
of Pn to which the reduced cycle W0 belongs, written [W0] ∈ K. Aut(Pn) = PGL(n+ 1,C) acts
on K naturally. Let ρ : U → K be the universal family associated to K, i.e., U = {([W ], x) ∈
K×Pn : x ∈W} ⊂ K×Pn, and ρ : U → K is induced from the canonical projection from K×Pn
onto the first factor. For [W ] ∈ K we have [W ] = k1[W1] + · · · + ks[Ws] where s = s(W ) > 1
and Wi, 1 6 i 6 s are the reductions of the irreducible components of the pure r-dimensional
complex space W ⊂ Pn. From the definition of K a general member [W ] ∈ K is irreducible and
reduced, i.e., s = 1 and k1 = 1. The canonical projection from K × Pn to Pn restricted to U
gives µ : U → Pn, called the evaluation map of the universal family ρ : U → K, which realizes
U as the total space of a homogeneous holomorphic fiber bundle (with respect to Aut(Pn))
with fibers isomorphic to U0 := µ−1(0). Hence, the map ρ : U → K is a holomorphic fibration
with equidimensional fibers ρ−1(κ), κ = [W ]. Each fiber ρ−1(κ) projects via the evaluation map
µ : U → Pn onto the support Supp(W ) = W1 ∪ · · · ∪Ws ⊂ Pn of the cycles W ⊂ Pn belonging
to K. (We will henceforth make no notational distinction between W and its support.) The
holomorphic fibration ρ : U → K defines naturally a foliation F on U such that, at a smooth
point u ∈ U where ρ is a submersion, ρ(u) =: [W ] ∈ K, the germ of leaf of F passing through u

is just the germ of Ŵ := ρ−1(ρ(u)) at u, Ŵ being the tautological lifting of W to U . We have

W = µ(Ŵ ) = µ(ρ−1(ρ(u))).

Write U ′ := U |Bn . Aut(Pn) acts on U ′, hence the holomorphic fiber bundle µ′ : U ′ → Bn is
homogeneous under Aut(Bn), and it descends under the action of a torsion-free discrete subgroup
Γ ⊂ Aut(Bn) to XΓ to give a complex space UΓ := U ′/Γ equipped with the evaluation map
µΓ : UΓ → XΓ, realizing the latter as a locally homogeneous holomorphic fiber bundle with
fibers isomorphic to U0. The fiber bundle µΓ : UΓ → XΓ will be our major object of study.
In the case where XΓ is compact, we will show that UΓ is a projective variety by embedding
µΓ : UΓ → XΓ into some projective bundle $Γ : PΓ → XΓ. (Projective bundles are understood
to be holomorphic.) By the Kodaira Embedding Theorem, we have the following well-known
result on projective bundles.

Proposition 2.1. Let Z be a projective manifold and A be an ample line bundle on Z, and
let $ : P → Z be a projective bundle over Z. Denote by T$ the relative tangent bundle of
$ : P → Z. Then, for a sufficiently large integer k, the holomorphic line bundle det(T$)⊗$∗Ak
is ample on P. As a consequence, P is a projective manifold.

We proceed to construct a projective bundle $Γ : PΓ → XΓ which admits µΓ : UΓ → XΓ

naturally as an embedded complex subspace. In what follows we denote by G := PGL(n+ 1,C),
which is identified with the automorphism group of Pn, by G0 := PU(n, 1) ⊂ G the automorphism
group of Bn b Cn ⊂ Pn, and by Γ ⊂ G0 a torsion-free lattice. We write P ⊂ G for the parabolic
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subgroup at 0 ∈ Pn, and K ⊂ G0 for the isotropy subgroup of (Bn, ds2
Bn) at 0 ∈ Bn. Lie algebras

of real or complex Lie groups will be denoted by corresponding fraktur characters, so that g
stands for the Lie algebra of the complex Lie group G, and g0 for the Lie algebra of the real Lie
group G0, etc. On the complex unit ball Bn b Cn, K = U(n) acts as a compact group of linear
transformations on Cn extending to projective linear transformations on Pn, and we denote by
KC its complexification, i.e., KC = GL(n,C), preserving Cn ⊂ Pn and acting as a group of
automorphisms of Pn which restricts to Cn to give the usual action of GL(n,C) on Cn ⊂ Pn. The
complex Lie algebra g, considered as the Lie algebra of holomorphic vector fields on Pn, admits
the Harish-Chandra decomposition g = m+⊕ kC⊕m−, where kC = k⊗RC is the complexification
of k, equivalently the Lie algebra of KC, m− ⊂ g is the Abelian Lie subalgebra consisting of
holomorphic vector fields on Pn vanishing to the order > 2 at 0 ∈ Pn, and m+ ⊂ g is the
Abelian Lie subalgebra whose elements restrict to constant vector fields on Cn ⊂ Pn. The vector
subspace p := kC ⊕ m− ⊂ g is the parabolic subalgebra at 0 ∈ Pn. Writing M+ = exp(m+) and
M− = exp(m−), the mapping λ : M+×KC×M− → G defined by λ(m+, k,m−) = m+km− ∈ G
maps M+×KC×M− biholomorphically onto a dense open subset of G. We note that KCM− = P
is a Levi decomposition of P ⊂ G, with KC ⊂ P being a Levi factor. By means of λ, and writing
e ∈ G for the identity element, the orbit of 0 = eP ∈ G/P under M+ is identified with M+ ∼= Cn,
from which the Harish-Chandra realization Bn b Cn arises as the obvious projection of λ−1(G0)
into M+ ∼= Cn. The description above applies in general to bounded symmetric domains, cf. Wolf
[Wo] (1972) and Mok [Mo1] (1989).

Let E be a finite-dimensional complex vector space, and Φ : P → PGL(E) be a projective
linear representation. Introduce an equivalence relation ∼ on G × P(E) by declaring (g, e) ∼
(g′, e′); g, g′ ∈ G, e, e′ ∈ E; if and only if there exists p ∈ P such that g′ = gp−1 and e′ = pe, where
pe means Φ(p)e, and define G×P P(E) = (G×P(E))/ ∼. Denote by [g, e] the equivalence class of
(g, e) with respect to ∼. The natural map τ : G×P P(E)→ G/P defined by τ([g, e]) = gP realizes
G×P P(E) as the total space of a projective bundle $ : P → G/P = Pn. Left multiplication on
G induces a holomorphic action of G on P compatible with the natural transitive holomorphic
action of G on G/P = Pn. By a homogeneous projective bundle on Pn we will always mean
$ : P → Pn arising this way. We have K = P ∩G0. Defining G0 ×K P(E) analogously we have
on G0 ×K P(E) the structure of a smooth projective bundle $′ : P ′ → G0/K = Bn. P ′ is a
priori only a smooth projective bundle since K is a real Lie group, but embedding G0 ×K P(E)
canonically into G ×P P(E) one identifies G0 ×K P(E) as an open subset of G ×P P(E), and
hence P ′ as the restriction of P over Bn ⊂ Pn, so that P ′ = P|Bn inherits the structure of a
(holomorphic) projective bundle over Bn. From now on we will identify P ′ with P|Bn . The fiber
of P over a point x ∈ Pn will be denoted by Px.

Let ν : E → M be a locally trivial holomorphic fiber bundle over a complex manifold M .
By a locally trivial holomorphic fiber subbundle E ′ ⊂ E we mean a subvariety E ′ ⊂ E such
that, writing E ′0 := E0 ∩ E ′, and shrinking the neighborhoods U if necessary, the trivializations

ϕ : ν−1(U)
∼=−→ E0×U can be chosen such that ϕ(ν−1(U)∩E ′) = E ′0×U ⊂ E0×U , endowed with

the canonical projection map ν ′ : E ′ →M given by ν ′ = ν|E ′ . The adjective “locally trivial” will
be understood and omitted in what follows. For M = XΓ a holomorphic fiber (sub)bundle is said
to be locally homogeneous if it descends from a homogeneous holomorphic fiber (sub)bundle on
Bn under the action of G0.

In order to embed µΓ : UΓ → XΓ into a projective bundle we will embed µ : U → Pn into a
projective bundle $ : P → Pn in such a way that G acts canonically on P. For this we need some
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basic facts about Chow(Pn). This is provided by the Chow coordinates (Chow-van der Waerden
[CvdW]). Fix an integer r, 0 < r < n, and an integer d > 0. For an irreducible and reduced r-cycle
W of degree d consider the set F of (r+ 1)-tuples (Π1, · · · ,Πr+1), 1 6 i 6 r+ 1, of hyperplanes
Πi ⊂ Pn, such that Π1∩· · ·∩Πr+1∩W 6= ∅. Writing Pn = P(H),H ∼= Cn+1, hyperplanes Π ⊂ P(H)
are parametrized by the dual projective space P̌n = P(H∗). The set F ⊂ P̌n × · · · × P̌n is then a
hypersurface and it is the zero set of some σ = σW ∈ Γ

(
P̌n × · · · × P̌n, ε∗1O(d)⊗ · · · ⊗ ε∗r+1O(d)

)
,

P̌n = P(H∗), where εk : P̌n × · · · × P̌n → P̌n is the canonical projection onto the k-th factor.
Writing O(d, · · · , d) for ε∗1O(d)⊗· · ·⊗ε∗r+1O(d), σ corresponds to a plurihomogeneous polynomial
of multi-degree (d, · · · , d), which is called the Chow form of [W ], uniquely determined up to a
non-zero multiplicative scalar. In the general case of [W ] = k1[W1]+· · ·+ks[Ws] one defines σW =
σk1
W1
· · ·σksWs

, which is again of multi-degree (d, · · · , d). WritingQ for the set of all r-cycles of degree

d in Pn, the mapping Ψ associating [W ] ∈ Q to [σW ] ∈ P(J), J = Γ
(
P̌n×· · ·× P̌n,O(d, · · · , d)

)∗
,

is injective, and we have defined the structure of a projective variety on Q by identifying it with
Ψ(Q) ⊂ P(J), noting that G acts canonically on P(J). Restricting to an irreducible component
K of Q we summarize the relevant statements in the following lemma using the notation in the
above.

Lemma 2.1. Let r and d be positive integers, 1 6 r 6 n − 1. Let K be an irreducible compo-
nent of Chow(Pn) parametrizing r-cycles of degree d in Pn. Then, writing J := Γ

(
P̌n × · · · ×

P̌n,O(d, · · · , d)
)∗

, in which there are r + 1 Cartesian factors of P̌n, the association of [W ] ∈ K
to [σW ] ∈ P(J), where σW ∈ J denotes the Chow form of W (which is unique up to scaling
constants), identifies K as a projective subvariety of P(J). Furthermore, G leaves K ⊂ P(J)
invariant and acts holomorphically on K.

We proceed to embed µΓ : UΓ → XΓ into a projective bundle. We have

Proposition 2.2. Let ρ : U → K be the universal family for the irreducible component K
of Chow(Pn), Γ ⊂ G0 be a torsion-free cocompact discrete subgroup, XΓ := Bn/Γ. Define
U ′ = U |Bn and write µΓ : UΓ := U ′/Γ→ XΓ for the induced locally homogeneous holomorphic
fiber bundle on XΓ with fibers biholomorphic to U0. Then, there exists a locally homogeneous
projective bundle $Γ : PΓ → XΓ such that UΓ ⊂ PΓ is a locally homogeneous holomorphic
fiber subbundle over XΓ. Moreover, the total space PΓ is a projective manifold, hence UΓ ⊂PΓ

is a projective variety.

Proof. It suffices to show that µ : U → Pn embeds into some homogeneous projective bundle
$ : P → Pn such that U is invariant under the action of G on P. In this way, the restriction
µ′ : U ′ → Bn, U ′ := µ−1(Bn), µ′ = µ|P′ is invariant under G0 ⊂ G, and it descends under the
action of Γ ⊂ G0 to give µΓ : UΓ → XΓ, UΓ = U ′/Γ, which embeds as a locally homogeneous
holomorphic fiber subbundle of the projective bundle $Γ : PΓ → XΓ. Given this, Proposition
2.1 implies the projectivity of UΓ ⊂PΓ.

For the Chow component K ⊂ Chow(Pn) whose members are r-cycles of degree d in Pn, by
Lemma 2.1, writing Pn =: P(H), K embeds canonically into the projective space P(J) :∼= PN ,
where J = Γ

(
P̌n×· · ·× P̌n,O(d, · · · , d)

)∗
, P̌n = P(H∗). By definition U ⊂ K×Pn ↪→ PN ×Pn ↪→

P(J ⊗ H) ∼=: Ps and hence U ↪→ Ps embeds canonically into Ps. We have U0 = µ−1(0) ⊂
U ⊂ K × Pn ↪→ Ps. Restricting the G-action on Ps to the parabolic subgroup P , written
Φ : P → Aut(Ps), we obtain from the discussion preceding Lemma 2.1 a homogeneous projective
bundle $ : P → Pn equipped with a G-action. The restriction P ′ = P|Bn is invariant under
G0 ⊂ G, hence it descends to $Γ : PΓ → XΓ. The mapping ϕ(u) = (u, µ(u)) embeds U into
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U × Pn, and its image U ] equipped with the projection onto Pn realizes U ] ⊂ Ps × Pn = P
as a holomorphic fiber subbundle of P. Identifying U with U ] and µ : U → Pn with the
projection of U ] ⊂ Ps × Pn onto the second factor Pn, we have realized µ : U → Pn as a locally
homogeneous holomorphic fiber subbundle of $ : P → Pn. Proposition 2.2 follows. �

In the case where Γ ⊂ G0 is a torsion-free nonuniform lattice, we will study µΓ : UΓ → XΓ by
constructing Hermitian metrics with positive curvature (1,1)-form on a homogeneous holomor-
phic line bundle on PΓ and prove quasi-projectivity by means of techniques of compactification
of complete Kähler manifolds of finite volume.

As a preparation we consider the general situation of a representation Φ : P → PGL(E) and
the associated homogeneous projective bundle $ : P → Pn.

Writing E :∼= Cm+1 we have PGL(E) ∼= PGL(m + 1,C) ∼= SL(m + 1,C)/Z, where Z ={
λIm+1 : λm+1 = 1

}
. Recall that K ∼= U(n) is the isotropy subgroup of

(
Bn, ds2

Bn
)

at 0 ∈ Bn,
K = P ∩G0. Denoting by α : SL(m+ 1,C)→ SL(m+ 1,C)/Z ∼= PGL(E) the quotient map, let
Q ⊂ SL(m+1,C) be the subgroup α−1(Φ(K)). Let now ζ be a Hermitian Euclidean metric on the
complex vector space E which is invariant under the compact subgroup Q ⊂ GL(E). The metric
ζ induces on P(E) a Fubini-Study metric gc with Kähler form ωc such that, with respect to the
canonical projection β : E−{0} → P(E), β∗(ωc) =

√
−1∂∂ log ‖w‖2ζ , where w = (w1, · · · , wm+1)

are Euclidean coordinates on E and ‖w‖ζ denotes the norm of w measured in terms of ζ.

Restricting Φ to G0 ∩ P = K, from Φ|K : K → PGL(E) we obtain $′ : P ′ = G0 ×K
P(E) → G/K = Bn as a homogeneous projective bundle over Bn such that P ′ is identified
with P|Bn . Since gc is invariant under Q, identifying P(E) with the fiber P0 = $−1(0) we have
correspondingly a Fubini-Study metric g0 on P0. By the Q-invariance of g0, the latter metric
can be transported by means of G0-action to fibers Px over x ∈ Bn, yielding thereby a G0-
invariant Hermitian metric g on the relative tangent bundle T$′ . Denoting by L the determinant
line bundle det(T$′) and writing h for det(g), we have a Hermitian holomorphic line bundle
(L, h) on P ′ which is invariant under the G0-action described. The curvature form Θ(L, h), as
a closed (1,1)-form on P ′, is G0-invariant and positive when restricted to each of the fibers
Px, x ∈ Bn. Let (A, t) be a positive homogeneous Hermitian holomorphic line bundle on Bn.
By the G0-invariance of θ and the compactness of the fibers Px

∼= P(E), for a sufficiently large
integer k, θ := Θ

(
L ⊗ ($′∗A)k, h ⊗ ($′∗(t))k

)
> 0. Since θ is G0-invariant, for a torsion-free

lattice Γ ⊂ G0, $Γ : PΓ = P/Γ → XΓ = Bn/Γ, the Hermitian holomorphic line bundle
(Λ, s) := (L⊗ ($′∗A)k, h⊗ ($′∗(t))k

)
descends to a positive line bundle on PΓ.

We summarize the discussion above to the following result which will be used in the case of
finite-volume noncompact quotient manifolds.

Proposition 2.3. Let E be a finite-dimensional complex vector space, Φ : P → PGL(E) be a
representation, $ : P → Pn be the associated homogeneous projective bundle on Pn, and write
P ′ := P|Bn . Then, there exists a G0-invariant Hermitian holomorphic line bundle (Λ, s) on
P ′ whose curvature form θ is positive definite. Hence, given any torsion-free discrete subgroup
Γ ⊂ G0, (Λ, s) descends to a locally homogeneous Hermitian holomorphic line bundle (ΛΓ, sΓ)
with positive curvature form θΓ.

We prove now an embedding theorem for $Γ : PΓ → XΓ.

Proposition 2.4. For a torsion-free nonuniform lattice Γ ⊂ G0 the total space PΓ of the locally

8
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homogeneous projective bundle $Γ : PΓ → XΓ is biholomorphic to a dense Zariski open subset
of some projective subvariety V ⊂ P` of a projective space P`.

Proof. By Proposition 2.3, P ′ = P|Bn is equipped with a homogeneous Hermitian holomorphic
line bundle (Λ, s) whose curvature form θ is positive definite. We can now equip P ′ with the
Kähler form θ, which descends to a Kähler form θΓ on PΓ. From the definition we have

θ := Θ
(
L⊗ ($′∗A)k, h⊗ ($′∗(t))k

)
= Θ(L, h) + k$′∗(Θ(KBn , t))

= Θ(L, h) + k(n+ 1)$′∗(ωΓ) > 0 .

Recall that ωΓ is the Kähler form of the complete Kähler metric on XΓ with constant holo-
morphic sectional curvature −2. Replacing k by k + 1 we may assume furthermore that θ >
(n + 1)$′∗(ωΓ) > $′∗(ωΓ). It follows that the length of any smooth curve γ : [0, 1] → PΓ with
respect to θΓ dominates the length of the smooth curve γ ◦ $Γ : [0, 1] → XΓ with respect to
ωΓ. Since (XΓ, ωΓ) is a complete Kähler manifold, we conclude that (PΓ, θΓ) is also a complete
Kähler manifold.

We also equip (PΓ, θΓ) with the Hermitian-Einstein positive line bundle (ΛΓ, sΓ). Since
the Kähler form θ on P ′ is G0-invariant, for any open subset O b Bn and any ϕ ∈ G0,
Volume

(
$−1(O), θ

)
= Volume

(
$−1(ϕ(O)), θ

)
< ∞. Recall that $Γ : PΓ → XΓ is of fiber

dimension s. Since both (1,1)-forms θ and $∗(ω) are invariant under G0, both θs+n and θs ∧
($∗(ω))n are G0-invariant volume forms on P ′, and the function h : P ′ → R defined by
θs+n(p) = h(p)θs ∧ ($∗(ω))n is a G0-invariant function on P ′. Since any point p ∈P ′ is equiva-
lent under the action of G0 to some point on P0, which is compact, we observe that there exists
a constant C0 > 0 such that 0 < h(p) 6 C0 for any p ∈ P ′. For any open subset O ⊂ XΓ, by
Fubini’s Theorem we have∫

$−1
Γ (O)

θsΓ ∧
(
$∗Γ(ωΓ)

)n
=

∫
P0

θs ×
∫
O
ωnΓ ;

Volume
(
$−1

Γ (O), θΓ

)
=

1

(s+ n)!

∫
$−1

Γ (O)
θs+nΓ 6

C0

(s+ n)!

∫
$−1

Γ (O)
θsΓ ∧

(
$∗Γ(ωΓ)

)n
=

n!

(s+ n)!
· C0

∫
P0

θs ×
∫
O

ωnΓ
n!

= C ·Volume(O, ωΓ) ,

where C =
n!

(s+ n)!
· C0

∫
P0

θs. In particular,

Volume(PΓ, θΓ) 6 C ·Volume(XΓ, ωΓ) <∞ .

From the G0-invariance of (P ′, θ) and the compactness of the fibers of $′ : P ′ → Bn, it follows
that (P ′, θ) is of bounded sectional curvature. Since XΓ is a quasi-projective manifold (as in
Theorem 1.1), it is of finite topological type. Hence, PΓ is also of finite topological type. As a
consequence, one can apply the embedding result on complete Kähler manifolds of finite volume
given by Theorem 1.3 here (from Mok-Zhong [MZ2]) to complete the proof of the proposition.
�

Without loss of generality we may assume V to be normal, and we also write PΓ ⊂PΓ := V
for the compactification of PΓ as a normal projective variety. Since $Γ : PΓ → XΓ is a proper
holomorphic map, by the Riemann extension theorem and the normality of PΓ, it extends
holomorphically to PΓ, to be denoted as $]

Γ : PΓ → XΓ.
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We now return to our study of the locally homogeneous holomorphic fiber subbundle µΓ :
UΓ → XΓ of $Γ : PΓ → XΓ. We have

Proposition 2.5. For a torsion-free lattice Γ ⊂ G0, identifying the total space of the locally
homogeneous holomorphic projective bundle $Γ : PΓ → XΓ as a quasi-projective variety by
means of Proposition 2.4 and embedding µΓ : UΓ → XΓ as a locally homogeneous holomorphic
fiber subbundle of $Γ : PΓ → XΓ, UΓ ⊂PΓ is a quasi-projective subvariety.

Proof. Let Ψ : PΓ
∼=−→ W ⊂ V ⊂ P` be a biholomorphism of PΓ onto a Zariski open subset W

of a projective subvariety V ⊂ P`, where V is the topological closure of W in P`, and identify
PΓ with W = Ψ(PΓ), and write PΓ := V . Subsets of PΓ will likewise be identified with their
images under Ψ in W . Recall that $Γ : PΓ → XΓ is a projective bundle, and µΓ : UΓ → XΓ is
a holomorphic fiber subbundle with fibers µ−1

Γ (x) =: Ux. Write q := dim(Ux) for x ∈ XΓ, and

denote by d the degree of Ux ⊂ Px ⊂ PΓ ⊂ P` as a projective subvariety. Denote by H̃ the
subset of Chow(P`) consisting of all pure q-dimensional cycles in P` of degree d. The continuous
mapping ϕ : XΓ → H̃ defined by ϕ(x) = [Ux] ∈ H̃ is a holomorphic mapping from the complex
manifold XΓ into some irreducible component H ⊂ H̃. Recall that XΓ is normal and XΓ −XΓ

is a finite set. Since XΓ is of complex dimension n > 2, by Hartogs extension the holomorphic
map ϕ : XΓ → H extends meromorphically to ϕ] : XΓ → H.

Let Z ⊂ XΓ×H be the graph of the meromorphic map ϕ], i.e., Z is the topological closure of
Graph(ϕ) in XΓ×H. Denote by α : V → H the universal family over H ⊂ Chow(P`), V ⊂ H×P`.
Let now W ⊂ Z × P` be the total space of the pull-back of the universal family α : V → H by
the canonical projection map β : Z → H, i.e., writing Cη for the q-cycle in P` represented
by η ∈ H we have W =

{
(x, η, y) ∈ XΓ × H × P` : (x, η) ∈ Z, y ∈ Cη

}
. Then, denoting by

γ : XΓ×H×P` → XΓ×P` the canonical projection, by the proper mapping theorem and Chow’s
Theorem, Q := γ(W) ⊂ XΓ × P` is projective. Consider the canonical projections δ : Q → XΓ

and λ : XΓ × P` → P`. Then, by the theorems above E := λ(Q) ⊂PΓ ⊂ P` is projective, and it
contains λ(δ−1(XΓ)) = UΓ. Finally it follows from UΓ = E ∩PΓ that UΓ ⊂ E is a dense Zariski
open subset, hence UΓ ⊂PΓ is a quasi-projective subvariety, as desired. �

3. Uniruling on Zariski closures of images of algebraic subsets under the
uniformization map

Let Γ ⊂ G0 be a torsion-free lattice, XΓ := Bn/Γ, n > 2, XΓ be its minimal compactification,
and π : Bn → XΓ be the universal covering map. We consider an irreducible algebraic subset
S ⊂ Bn of positive dimension and define Z ⊂ XΓ to be the Zariski closure of π(S) in XΓ. To
characterize Z we will resort to studying meromorphic foliations on holomorphic fiber bundles
over XΓ and on compactifications of total spaces of such fiber bundles. We start with some
generalities about complex spaces (cf. Grauert-Peternell-Remmert [GPR, p.100ff.]) and about
meromorphic foliations on them.

Let (Y,OY ) be a reduced irreducible complex space, assumed to be embedded as a subvariety
of a complex manifold M . Let ΩM = O(T ∗M ) be the cotangent sheaf on M , and IY ⊂ OM be
the ideal sheaf of Y ⊂ M . Define now S ⊂ ΩM to be the subsheaf spanned by IY ΩM and
{df : f ∈ IY }. Then, S ⊂ ΩM is a coherent subsheaf and ΩY := ΩM/S is called the cotangent
sheaf of Y . The tangent sheaf TY is by definition the coherent sheaf HomOY (ΩY ,OY ), which is
naturally identified with a coherent subsheaf of TM |Y . The tangent sheaf TY on Y thus defined
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is unique up to isomorphisms independent of the embedding Y ⊂ M . When the assumption
Y ⊂M is dropped, the tangent sheaf TY is defined using an atlas U = {Uα}α∈A on Y consisting
of subvarieties of coordinate open sets by gluing together the tangent sheaves of Uα.

A meromorphic foliation F on a reduced irreducible complex space Y is by definition given
by a coherent subsheaf TF of the tangent sheaf TY such that, outside some subvariety A ( Y ,
A ⊃ Sing(Y ), TF |Y−A is a locally free subsheaf and, writing TF |Y−A := O(F ) for a holomorphic
distribution F ⊂ TY−A, F satisfies the involutive property [F, F ] = F . The tangent subsheaf of
the meromorphic foliation TF ⊂ TY is also uniquely determined subject to the conditions that
TF agrees with O(F ) over Y − A and that TY /TF is torsion-free, in which case TF ⊂ TY is
said to be saturated. In the sequel TF ⊂ TY is always assumed saturated. The singular locus
Sing(F ) ⊂ Y is the union of Sing(Y ) and the locus on Reg(Y ) over which F fails to be a locally
free subsheaf. Sing(F ) ( Y is a subvariety, and we write Reg(F ) := Y − Sing(F ). Given an
irreducible complex-analytic subvariety Z ⊂ Y such that Z ∩ Reg(F ) 6= ∅, we say that Z is
saturated with respect to F to mean that for any point z0 ∈ Reg(Z) ∩ Reg(F ) 6= ∅, the leaf
L(z0) of F passing through z0 must necessarily lie on Z. When Y is projective, we have the
following result concerning Zariski closures of leaves of F .

Proposition 3.1. Let Y be a reduced irreducible projective variety. Let F be a meromorphic
foliation on Y , Sing(F ) ⊃ Sing(Y ) be the singular locus of F , and write Reg(F ) := Y −Sing(F ).
Denote by TY the tangent sheaf of Y , and by TF ⊂ TY the tangent subsheaf of F . Let now
y0 ∈ Reg(F ), and L ⊂ Reg(F ) be the leaf of F |Reg(F ) passing through y0. Denote by Z ⊂ Y
the Zariski closure of L. Then, Z is saturated with respect to the meromorphic foliation F .

Proof. Note first of all that L 6⊂ Sing(Z), otherwise the Zariski closure of L in Y would be

contained in Sing(Z) ( Z, contradicting the assumption Z = LZar
. On the projective subvariety

Z ⊂ Y consider the coherent subsheaf E := TF |Z + TZ ⊂ TY |Z , where TF |Z := TF ⊗OY
OZ , TY |Z := TY ⊗OY OZ . Let Σ ⊂ Z be the union of Sing(Z), Sing(F ) ∩ Z, and the locus
of points x ∈ Reg(Z) ∩ Reg(Y ) where E ⊂ TY |Z fails to be a locally free subsheaf. Then,
Σ ( Z is a projective subvariety and we must have L 6⊂ Σ, otherwise the Zariski closure of L
in Y would be contained in Σ ( Z, and we reach the same contradiction. Thus, there exists
y1 ∈ L ∩ Reg(Z) ∩ Reg(F ) such that the coherent subsheaf E ⊂ TY |Z is a locally free subsheaf
at y1. On Z − Σ ⊂ Reg(Z) ∩ Reg(F ) ⊂ Reg(Z) ∩ Reg(Y ) we have E |Z−Σ = O(E) for some
holomorphic vector subbundle E ⊂ TZ−Σ. Since TF ,y1 ⊂ TZ,y1 we must have Ey1 = TZ,y1 , so that
rank(E) = dim(Ey1) = dim(Z). It follows that E = TZ−Σ. Writing TF |Reg(F ) = O(F ) for some

F ⊂ TY |Reg(F ) we must have Fy + TZ,y = TZ,y for all y ∈ Z − Σ, i.e., F |Z−Σ ⊂ TZ−Σ. As a
consequence, Z is saturated with respect to the meromorphic foliation F , as desired. �

Let M be a complex manifold, π : M̃ →M be a covering map, and Y ⊂M be an irreducible
subvariety. Let H be a reduced irreducible complex space and R ⊂ H× M̃ be a subvariety such
that the canonical projection σ : R → H is surjective and the fibers σ−1(t) =: {t} × Rt are

equidimensional. Denote by ν : H × M̃ → M̃ the canonical projection. We have the following
notion of uniruling of subvarieties Y ⊂ M . In what follows openness and denseness of subsets
are defined in terms of the complex topology.

Definition 3.1. We say that Y ⊂ M is uniruled by subvarieties belonging to H if and only
if there exists a dense open subset O ⊂ Reg(Y ) for which the following statement (]) holds for
every point x0 ∈ O. (]) There exist an open neighborhood Ux0 ⊂ O of x0 and a point t0 ∈ Reg(H)
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satisfying (t0, x0) ∈ Reg(R), a complex submanifold S ⊂ G ⊂ H of some open subset G ⊂ H
and a smooth neighborhood Ut0,x0 ⊂ σ−1(S) of (t0, x0) such that σ|Ut0,x0

: Ut0,x0 → S is a
holomorphic submersion and such that π ◦ ν|Ut0,x0

: Ut0,x0 → M maps Ut0,x0 biholomorphically
onto Ux0 ⊂ Y ⊂M .

We will apply the notion of uniruling to the case where M = Bn/Γ = XΓ is a complex ball
quotient by a torsion-free lattice Γ ⊂ Aut(Bn) equipped with the quasi-projective structure given
by XΓ ⊂ XΓ, H is some G-invariant irreducible subvariety of Chow(Pn), and where Y ⊂ XΓ

is an algebraic subvariety. We start with some preparation relating meromorphic foliations to
meromorphic sections of Grassmann bundles.

Let M be a complex manifold, Y ⊂ M be an irreducible subvariety, and TY ⊂ TM |Y be the
tangent sheaf of Y . Let TF ⊂ TY be the tangent sheaf of a meromorphic foliation F of leaf
dimension r, 0 < r < dim(M), defined on Y . Write B := Sing(F ), and write F ⊂ TY−B for the
involutive holomorphic distribution such that TF = O(F ). Define the holomorphic section ϕ :
Y −B → Gr(r, TM ) by setting ϕ(y) = [Fy] ∈ Gr(r, TY,y) ⊂ Gr(r, TM,y). Since F is locally finitely
generated, at every point y0 ∈ Y , there exist r holomorphic sections χ1, · · · , χr ∈ Γ(U, T |F )
defined on some neighborhood U of y0, such that χ1(y′), · · · , χr(y′) span TF ,y′ at a general
point y′ ∈ U −B. Then, by using Plücker coordinates, the formula Φ(y) = [χ1(y)∧ · · · ∧χr(y)] ∈
Gr(r, TM,y) ⊂ P(ΛrTM,y) determines a unique meromorphic section over U of Gr(r, TM ) extending
ϕ|U−B. From uniqueness it follows that ϕ extends meromorphically to ϕ[ : Y 99K Gr(r, TM ). We
call ϕ[ the meromorphic section of Gr(r, TM ) associated to (Y,F ). We have

Lemma 3.1. Let M be a complex manifold, Y ⊂ M be an irreducible normal complex-analytic
subvariety and A ⊂ Y be a complex-analytic subvariety containing Sing(Y ). Let F be a mero-
morphic foliation on Y − A and TF ⊂ TY−A be its tangent sheaf. Let ϕ[ : Y − A 99K Gr(r, TM )
be the meromorphic section associated to (Y − A,F ). Then, the foliation F on Y − A admits
a meromorphic extension to Y if and only if ϕ[ extends meromorphically from Y −A to Y .

Proof. The forward implication has been established (without assuming Y normal). Conversely,
assume that ϕ[ admits a meromorphic extension to ϕ] : Y 99K Gr(r, TM ). Let H ⊂ Y be the
subvariety of codimension > 2 over which either Y is singular or ϕ] fails to be holomorphic. Write
B := Sing(F ) ⊂ Y − A, ψ := ϕ]|Y−H , and α : Gr(r, TM ) → M for the canonical projection.
Let F ⊂ TY−H be the distribution such that TF |Y−H = O(F ) and define Y ′ ⊂ Gr(r, TM )
to be the topological closure of Y 0 := ψ(Y − H). The universal rank-r bundle on Gr(r, TM )
restricts to Y ′ to give a rank-r holomorphic vector bundle F ′ over Y ′ such that F ′|Y 0 is the
tautological lifting of the holomorphic rank-r vector subbundle F ⊂ TY−H . By the Direct Image
Theorem, α∗(O(F ′)) =: E is a coherent sheaf on Y such that E|Y−H = O(F ) and such that
E|Y−A−B = TF |Y−A−B. Since Y is normal, for any open subset U ⊂ Y and any σ ∈ Γ(U, E),
σ|U−H ∈ Γ(U−H,O(F )) extends holomorphically to give σ′ ∈ Γ(U, TY ). E can thus be identified
as a coherent subsheaf of TY and its double dual E∗∗ is mapped canonically onto a coherent
subsheaf S ⊂ TY extending O(F ) such that TY /S is torsion-free and S |Y−A = TF . S is the
tangent sheaf of a meromorphic foliation F ] on Y extending F , as desired. �

We return now to the study of Zariski closures of images of algebraic subsets S ⊂ Bn, n > 2,
under the universal covering map π : Bn → XΓ for a torsion-free lattice Γ ⊂ G0, XΓ := Bn.
When Γ ⊂ G0 is not cocompact, we embed XΓ into its minimal compactification XΓ by adding a
finite number of normal isolated singularities. Recall that XΓ is projective and XΓ ⊂ XΓ inherits
a canonical quasi-projective structure.
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Recall that the irreducible algebraic subset S ⊂ Bn in the statement of Main Theorem is an
irreducible component of W0 ∩ Bn for some irreducible projective subvariety W0 ⊂ Pn. Consider
the universal family ρ : U → K, where K is an irreducible component of the Chow space of
Pn containing [W0]. By means of the stratification given by singular loci we are going to define
a G-invariant irreducible subvariety H ⊂ K, [W0] ∈ H, such that [W0] is a smooth point of
H, and consider the restriction over H of the universal family ρ : U → K, as follows. Write
K1 := K, and consider the Zariski open subset K0

1 ⊂ K1 consisting of smooth points [F ] ∈ K such
that F ⊂ Pn is irreducible and reduced. In case [W0] ∈ K0

1 we define H = K1 = K. Otherwise
[W0] ∈ K1 −K0

1. Let now K2 ( K1 be an irreducible component of K1 −K0
1 containing the point

[W0]. Since G = PGL(n + 1,C) is connected, the irreducible component K2 of the G-invariant
subvariety K1 −K0

1 is also G-invariant. Define now K0
2 ⊂ K2 to consist of all [F ] ∈ K2 such that

F is irreducible and reduced. Iterating the process, we obtain a finite sequence of G-invariant
irreducible subvarieties Km ( · · · ( K1 = K ⊂ Chow(Pn) such that [W0] is a smooth point on
Km. We define now H = Km and V := ρ−1(Km). Clearly H is also G-invariant. We denote by
σ : V → H the restriction of the universal family ρ : U → K over H ⊂ K.

A torsion-free lattice Γ ⊂ G0 acts properly discontinuously on V ′ = V |Bn without fixed
points, and we have a quotient space VΓ := V ′/Γ equipped with a map νΓ : VΓ → XΓ = Bn/Γ,
νΓ = µΓ|VΓ

, realizing VΓ as a locally homogeneous holomorphic fiber subbundle of µΓ : UΓ → XΓ.
The foliation F on U restricts to V = ρ−1(H), and we will use the same notation F for the
restriction to V . F descends to a foliation FΓ on VΓ.

In the case of torsion-free nonuniform lattices Γ ⊂ G0 we will be dealing with quasi-projective
varieties XΓ and we have to consider their minimal compactifications XΓ ⊂ XΓ together with
projective compactifications of various holomorphic fiber bundles over XΓ. Recall that µΓ : UΓ →
XΓ is embedded as a locally homogeneous holomorphic fiber subbundle into $Γ : PΓ → XΓ, PΓ

is quasi-projective by Proposition 2.4 and UΓ ⊂ PΓ is quasi-projective by Proposition 2.5. In
fact, identifying UΓ as a subset of PΓ, compactifying PΓ to a projective variety PΓ ⊂ P` and
extending the canonical projection $Γ : PΓ → XΓ to a holomorphic map $]

Γ : PΓ → XΓ, the
topological closure UΓ ⊂ PΓ ⊂ P` is a projective subvariety. The same proof as in Proposition
2.5 shows that for the holomorphic fiber bundle νΓ : VΓ → XΓ, the topological closure VΓ ⊂
UΓ ⊂ PΓ ⊂ P` is a projective subvariety, and we have ν]Γ : VΓ → XΓ, ν]Γ := $]

Γ|VΓ
. We need

now to extend FΓ on VΓ to a meromorphic foliation F ]
Γ on VΓ. Denoting the normalization of

a reduced irreducible complex space Y by Y n, FΓ induces a meromorphic foliation F n
Γ on V n

Γ ,
and the aforementioned extension problem on FΓ is equivalently the problem of extending F n

Γ

meromorphically from V n
Γ to VΓ

n
, hence we may apply Lemma 3.1. For the purpose of proving the

meromorphic extension of F n
Γ to VΓ

n
we will need the following Hartogs-type extension theorem

for meromorphic functions in Mok-Zhang [MZ1, Lemma 7.4].

Lemma 3.2. Let B be an irreducible projective variety, and E ⊂ B be a subvariety of codimension
> 2. Let X be an irreducible projective variety and α : X → B be a surjective morphism.
Let Ω ⊂ B be an open subset in the complex topology and f be a meromorphic function on
X|Ω−E := α−1(Ω− E). Then, f extends to a meromorphic function on X|Ω = α−1(Ω).

Remark The main point of Lemma 3.2 is that α−1(E) ⊂ X may have irreducible components
of codimension 1 even though E ⊂ B is of codimension > 2. Realizing X ⊂ Pm as a projective
subvariety and writing Xt := α−1(t), we define ϕ : Ω − E 99K H by ϕ(t) = [Graph(f |Xt)] ∈ H
for a general point t ∈ Ω − E, where H ⊂ Chow(Pm × P1) is some irreducible component. By
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Hartogs extension, ϕ extends meromorphically to ϕ] : Ω 99K H, and the meromorphic extension
f ] : X|Ω 99K P1 of f : X|Ω−E 99K P1 is defined by pulling back the universal family over H by ϕ]

and projecting to the P1 factor of Pm × P1. For details cf. [MZ1, Lemma 7.4].

We deduce from Lemma 3.2 the following extension theorem for meromorphic foliations. We
will apply the setting of Lemma 3.1 to the case where Ω = B and where B and X are normal.

Lemma 3.3. Let B be a normal irreducible projective variety, and E ⊂ B be a subvariety of
codimension > 2. Let X be a normal irreducible projective variety and α : X → B be a surjective
morphism. Let L be a meromorphic foliation on X|B−E := α−1(B −E). Then, L extends to a
meromorphic foliation on X .

Proof. Let r be the leaf dimension of the meromorphic foliation L on X|B−E . Identify the
total space X ⊂ PN as a projective subvariety of some projective space PN . The tangent sheaf
TX is a saturated coherent subsheaf of TPN |X = O(TPN |X ). The meromorphic foliation L on
X|B−E corresponds to a saturated coherent subsheaf TL ⊂ TX|B−E of rank r such that, outside
a complex-analytic subvariety A ⊂ X|B−E of codimension > 2 containing the singularity set
Sing(X|B−E) of the normal projective variety X|B−E , TL |X|B−E−A = O(L) for some rank-r
integrable holomorphic distribution L ⊂ TX|B−E−A. The holomorphic distribution L then defines
a holomorphic section ψ of the Grassmann bundle Gr(r, TX|B−E−A) ⊂ Gr(r, TPN |X|B−E−A) over
X|B−E − A. Given a point x on the complex manifold X|B−E − A, ψ(x) = [V (x)] for some
r-dimensional linear subspace V (x) ⊂ TPN ,x

∼= CN . Denote by Ψ(x) the unique r-dimensional

projective linear subspace in PN passing through x such that Tx(Ψ(x)) = V (x). Then, Ψ :
X|B−E −A → G , where G is the Grassmannian of r-dimensional projective linear subspaces in
PN ; G ∼= Gr(r + 1,CN+1).

We may identify G as a projective subvariety of P
(
Λr+1(CN+1)

)
by means of the Plücker em-

bedding. Write d := dimC
(
Λr+1(CN+1)

)
. Make now a generic choice of homogeneous coordinates

[w0, · · · , wd] on P
(
Λr+1(CN+1)

)
so that Ψ(X|B−E − A) does not entirely lie on the hyperplane

{w0 = 0} of P
(
Λr+1(CN+1)

) ∼= Pd. Then, writing zk := wk
w0

for 1 6 k 6 d, so that (z1, · · · , zd) con-

stitutes a system of inhomogeneous coordinates on Pd, we have Ψ(x) = (Ψ1(x), · · · ,Ψd(x)), where
each Ψk is a meromorphic function on X|B−E − A. By Hartogs extension each Ψk, 1 6 k 6 d,

extends meromorphically to X|B−E . Denote by Ψ†k, 1 6 k 6 d, the meromorphic extension of Ψk

to X|B−E . Then, by Lemma 3.2 each Ψ†k, 1 6 k 6 d, extends to a meromorphic function Ψ]
k on

X , yielding a meromorphic extension Ψ] = (Ψ]
1, · · · ,Ψ

]
d), Ψ] : X 99K Pd. Since the graph of Ψ] is

obtained by taking the topological closure of the graph of Ψ, and since Ψ(X|B−E−A) ⊂ G ⊂ Pd,
we have also Ψ] : X 99K G .

Finally, to apply Lemma 3.1 we need to extend the holomorphic section ψ of Gr(r, TPN ) over
X|B−E − A to a meromorphic section ψ] of Gr(r, TPN ) over X . Since Ψ(x) passes through x
whenever x belongs to the dense open subset X|B−E−A ⊂ X in the complex topology, it follows
by continuity that at a point y ∈ X where Ψ](y) is holomorphic, Ψ](y) (which is well-defined)
must pass through y, hence ψ] can be defined at y by ψ](y) = [Ty(Ψ

](y))] ∈ Gr(r, Ty(PN ). It
follows that ψ](y) is defined and holomorphic outside of a normal projective subvariety S of X
of codimension > 2 and hence by Hartogs extension ψ] is defined as a meromorphic section of
Gr(r, TPN ) over X in such a way that ψ]|X|B−E−A ≡ ψ. By Lemma 3.1 the meromorphic foliation
L on X|B−E extends meromorphically to X . �

We conclude this section with the following result on νΓ : VΓ → XΓ and on the compactifica-
tion ν]Γ : VΓ → XΓ for torsion-free lattices Γ ⊂ G0.
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Proposition 3.2. Let K be an irreducible component of Chow(Pn), [W0] ∈ K, S ⊂ Bn be an
irreducible component of W0∩Bn, and S ⊂ U be the tautological lifting of S to U . LetH ⊂ K be
a G-invariant subvariety such that [W0] ∈ H and such that, denoting by σ : V → H, ν : V → Pn
the restriction of the universal family ρ : U → K, µ : U → Pn from U to V , a general point
of S is a smooth point of V . Then, denoting ν|Bn by ν ′ : V ′ → Bn, and by νΓ : VΓ → XΓ the
locally homogeneous fiber bundle obtained from ν ′ : V ′ → Bn by taking quotients with respect to
Γ, the tautological foliation F on V descends to a meromorphic foliation FΓ on VΓ. Moreover,
when Γ ⊂ G0 is a torsion-free nonuniform lattice the topological closure VΓ ⊂PΓ is projective,
and FΓ extends to a meromorphic foliation F ]

Γ on VΓ. As a consequence, for any torsion-free
lattice Γ ⊂ G0 the Zariski closure Z of π(S) in XΓ is uniruled by subvarieties belonging to H.

Proof of Proposition 3.2. As in the second last paragraph preceding Lemma 3.2, we have seen that
the tautological foliation F on V descends to a meromorphic foliation FΓ on VΓ. When Γ ⊂ G0

is a torsion-free nonuniform lattice, by the last paragraph preceding Lemma 3.2, the topological
closure VΓ ⊂PΓ is projective. By Lemma 3.3 and passing to normalizations (as in the paragraph
preceding Lemma 3.2) the meromorphic foliation FΓ on VΓ extends to a meromorphic foliation

F ]
Γ on VΓ.

For an arbitrary torsion-free lattice Γ ⊂ G0 it remains to establish the concluding sentence
on the uniruling of Z by subvarieties belonging to H. Write π̃ : V → VΓ for the covering map
induced from the universal covering map π : Bn → XΓ, and denote by Z ⊂ VΓ the Zariski
closure of π̃(S ) in VΓ. We observe that νΓ(Z ) = Z. In the notation as in §2 denote by Z ⊂PΓ

the topological closure of Z in the projective compactification PΓ of the projective bundle PΓ.
Z ⊂PΓ is projective. Denote by νΓ : Z → XΓ the restriction of $]

Γ : PΓ → XΓ to Z . By the
proper mapping theorem νΓ(Z ) = νΓ(Z )∩XΓ ⊂ XΓ is a quasi-projective subvariety containing
π(S), hence νΓ(Z ) ⊃ Z. Suppose νΓ(Z ) ) Z. Then, ν−1

Γ (Z) ∩ Z ( Z is a quasi-projective

subvariety of VΓ containing π̃(S ), contradicting with Z := π̃(S )
Zar

. Hence, νΓ(Z ) = Z by
contradiction, as observed.

Recall that dim(S) =: r and define d := dim(Z), e := dim(Z ). By Proposition 3.1, FΓ

on VΓ restricts to a meromorphic foliation on Z which we denote by E . The singular locus
Sing(E ) ( Z of E is a subvariety containing Sing(Z ). Write Reg(E ) := Z −Sing(E ) ⊂ Reg(Z )
and consider the open subset Ω := π̃−1(Reg(E )) ⊂P ′. Let A ⊂ Ω be the subvariety over which
rank(dσ) < e− r. Then A is invariant under π1(Z) and it descends to a subvariety A ⊂ Reg(E ).
Write λ := νΓ|Z . Define now B ⊂ Z to be the locus of points v ∈ Z where (a) v ∈ Sing(Z ),
or (b) λ(v) ∈ Sing(Z), or (c) v ∈ Reg(Z ), λ(v) ∈ Reg(Z) but λ|Reg(Z )∩ν−1

Γ (Reg(Z)) : Reg(Z ) ∩
ν−1

Γ (Reg(Z)) → Reg(Z) fails to be a submersion at v. Then, B ⊂ Z is a quasi-projective
subvariety.

Consider now W := Reg(E ) − A −B ⊂ Z , which is dense in Z in the complex topology.
Let v be a point on W ⊂ Z , λ(v) =: x. By the definition of universal families the restriction
of λ to each local leaf L ⊂ Reg(E ) of E is an immersion into XΓ. Since λ : W → Reg(Z) is
a submersion, there exists a (d − r)-dimensional complex submanifold D ⊂ W0 of some open
neighborhood W0 of v in W such that D is biholomorphic to ∆d−r and λ|D : D → Reg(Z) is a
holomorphic embedding onto a locally closed complex submanifold N ⊂ Reg(Z). Lifting D to D̃
on any connected component of Ω and noting that D̃ ∩ A = ∅, shrinking D̃ if necessary we may
assume that σ maps D̃ biholomorphically onto some (d − r)-dimensional complex submanifold
S of some open subset G of H. Clearly, there exists a contractible open neighborhood Õ of D̃ in
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σ−1(S) such that π̃ maps Õ biholomorphically onto a neighborhood O of v on Reg(E ) and O is
the disjoint union of local leaves of E = FΓ|Z passing through points on D , and such that νΓ ◦ π̃
maps Õ biholomorphically onto a neighborhood U of x = λ(v). Here we make take N to be a
complex submanifold of U and U to be a disjoint union of r-dimensional complex submanifolds
L(y) ⊂ U passing through y ∈ N which are images under π ◦ ν = νΓ ◦ π̃ of connected smooth
open subsets of Sη ∩Õ, where Sη := Wη ∩Bn and Wη belongs to S ⊂ H, and we have a uniruling
of Z by subvarieties belonging to H (cf. Definition 3.1), as desired. �

The uniruling of Z by subvarieties belonging to H is the key statement in Proposition 3.2
which will allow us to establish Main Theorem in §4 by analytic methods.

4. Proof of the Main Theorem and generalizations

Proof of Main Theorem in the compact case. Recall that g = ds2
Bn is the canonical Kähler-Einstein

metric with Kähler form ωg =
√
−1∂∂(− log(1−‖z‖2)), which is of constant holomorphic sectional

curvature −2, and XΓ is endowed with the quotient metric gΓ = ds2
XΓ

. Recall that dim(S) = r,

and write dim(Z) = d. When Γ ⊂ G0 = Aut(Bn) is cocompact, the proof that Z = π(S)
Zar⊂ XΓ

is a totally geodesic subset will now be deduced from Proposition 3.1, as follows. A general point

x ∈ S must be a smooth point on π−1(Z), otherwise Z = π(S)
Zar⊂ X ⊂ Sing(Z) ( Z, a plain

contradiction. In particular, there is a unique irreducible component Z̃ of π−1(Z) which contains
S.

Recall that S ⊂ V is the tautological lifting of S to the total space V of the G-invariant

subfamily σ : V → H of the universal family ρ : U → K, and that Z := π̃(S )
Zar ⊂ VΓ. By

Proposition 3.1, Z is saturated with respect to the tautological foliation F on VΓ. By Proposition
3.2, Z = νΓ(Z ) is uniruled by subvarieties belonging to H in the sense of Definition 3.1. Consider
the germ at some point b ∈ ∂Z̃ of a complex submanifold Σ which is the union of nonempty open
subsets of a certain family of subvarieties Wη ⊂ Pn belonging to H and which exits the boundary

of Bn near b ∈ ∂Z̃ ⊂ ∂Bn. We are going to prove that Z ⊂ XΓ is a totally geodesic subset
by exploiting the asymptotic total geodesy of

(
Σ ∩ Z̃, g|

Σ∩Z̃
)

at b ∈ ∂Bn ∩ Σ using asymptotic
curvature properties resulting from Klembeck [Kl] (Theorem 1.5 here).

By Proposition 3.2, Z is uniruled by subvarieties belonging to H. In the notation there
consider now the mapping β := ν|σ−1(S) : σ−1(S)→ Pn. Note that dim(σ−1(S)) = (d−r)+r = d

and that the image β(σ−1(S)) contains the open set Õ ⊂ Z̃. Since by construction β is a local
biholomorphism into Z̃ at ṽ ∈ Z̃, β must necessarily be an immersion into Pn at a general smooth
point of σ−1(S).

Observe that singularities of σ−1(S) are of complex codimension > 1 while β−1(∂Bn) =
ν−1(∂Bn) ∩ σ−1(S) is a real hypersurface in σ−1(S). It follows that for a general point b̂ ∈
β−1(∂Bn), b̂ is a smooth point of σ−1(S) and β is an immersion at b̂. Thus, for some open

neighborhood W of b̂ in σ−1(S), β|W : W
∼=−→ Σ ⊂ Cn maps W biholomorphically onto some

complex submanifold Σ ⊂ U of some open set U ⊂ Cn, b ∈ U , such that Σ ∩ Bn is a nonempty
open subset of Z̃. One may say that Z̃ is analytically continued by grafting Σ to Z̃ at b̂. For
convenience we may assume that both Σ and Σ∩Bn ⊂ Σ are connected, and that Σ∩Bn = Z̃∩U .

For easy reference we include a proof of the following well-known lemma.
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Lemma 4.1. At a general point b ∈ σ−1(S) ∩ ∂Bn the function ϕ := ‖z‖2 − 1 of ∂Bn = {ϕ = 0}
must necessarily vanish exactly to the order 1.

Proof. Otherwise ϕ vanishes to the order k > 2 on a neighborhood N of a general point b in
Wη ∩ ∂Bn and −ϕ|Wη = θk such that θ > 0 and dθ(p) 6= 0 for p ∈ N . We have

√
−1∂∂ϕ = −

√
−1∂∂θk

= −kθk−1
√
−1∂∂θ − k(k − 1)θk−2

√
−1∂θ ∧ ∂θ

= −kθk−2
(
θ
√
−1∂∂θ + (k − 1)

√
−1∂θ ∧ ∂θ

)
At p ∈ N we have θ(p) = 0 while µ :=

√
−1∂θ(p) ∧ ∂θ(p) > 0 and µ

(
1√
−1
ξ ∧ ξ

)
> 0 whenever

ξ ∈ T 1,0
p (Bn) and ∂θ(ξ) 6= 0, hence

√
−1∂∂ϕ

(
1√
−1
ξ ∧ ξ

)
< 0. Thus, for x ∈ Wη ∩ Bn sufficiently

close to p, by continuity there also exists ξ ∈ T 1,0
x (Bn) such that

√
−1∂∂ϕ

(
1√
−1
ξ ∧ ξ

)
< 0,

contradicting the plurisubharmonicity of ϕ, as desired. �

Proof of Main Theorem in the compact case continued. By Lemma 4.1 the function ϕ|Σ vanishes
on Σ∩∂Bn exactly to the order 1 at a general point p ∈ Σ∩∂Bn. Thus, shrinking Σ if necessary,
Σ ∩ Bn = {x ∈ Σ : ϕ < 0} = Z̃ ∩ U ⊂ Σ and ϕ is a defining function of Σ ∩ Bn ⊂ Σ along
Σ ∩ ∂Bn = ∂Z̃ ∩ U . It follows from Klembeck [Kl] (Theorem 1.5 here) that

(
Σ ∩ Bn, g|Σ∩Bn

)
,

where the Kähler form ωg of (Bn, g) given by ωg =
√
−1∂∂(− log(−ϕ)), is asymptotically of

constant holomorphic sectional curvature −2 at any boundary point p ∈ Σ ∩ ∂Bn. This implies
that

(
Σ ∩ Bn, g|Σ∩Bn

)
is asymptotically totally geodesic along Σ ∩ ∂Bn.

Finally we are going to deduce the total geodesy of Z̃ ⊂ Bn and hence that Z ⊂ XΓ is a
totally geodesic subset. Choose R <∞ exceeding the diameter of the compact ball quotient XΓ.
Then, denoting by B(a; r) ⊂ Bn the geodesic ball with respect to the canonical Kähler-Einstein
metric g of radius r > 0 centered at a ∈ Bn, we have π(B(y;R)) = XΓ for any point y in Bn.
Take now any point x ∈ Z̃. Let xk, k > 0, be a sequence of points on Z̃ such that xk converges
to b ∈ Σ ∩ ∂Bn. For any k > 0, it follows from π(B(xk;R)) = XΓ that there exists a point
yk ∈ B(xk;R) such that π(yk) = π(x). In other words, there exists γk ∈ Γ such that γk(x) = yk.
Denoting by d(·; ·) the distance function with respect to g, we have d(xk; yk) < R. Comparing

the Kähler form ωg of (Bn, g) with the Kähler form ωge =
√
−1
2 ∂∂‖z‖2 of the Euclidean metric

ge we have

ωg =
√
−1∂∂(− log(1− ‖z‖2)) =

√
−1∂∂‖z‖2

1− ‖z‖2
+

√
−1∂‖z‖2 ∧ ∂‖z‖2

(1− ‖z‖2)2

>

√
−1∂∂‖z‖2

1− ‖z‖2
=

2ωge
(1 + ‖z‖)(1− ‖z‖)

.

Thus, g > ge
1−‖z‖ on Bn. Since xk converges in Cn to b, from d(xk; yk) < R we conclude that there

exists a constant C > 0 such that we have

‖yk − xk‖ 6 C
√

1− ‖xk‖ → 0

as k tends to ∞, so that yk also converges in Cn to b. On the other hand, by the invariance of
g under Γ ⊂ G0, holomorphic sectional curvatures at x are the same as holomorphic sectional
curvatures at yk = γk(x). From the last paragraph

(
Z̃, g|

Z̃

)
is of constant holomorphic sectional

curvature −2 at x. Denoting by τ the second fundamental form of Z̃ in (Bn, g), by the Gauss
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equation we have

−2 = Rαααα(Z̃, g|
Z̃

) = Rαααα(Bn, g)− ‖τ(α, α)‖ = −2− ‖τ(α, α)‖ ,

where α ∈ T 1,0
x (Z̃) and ‖·‖ stands for norms measured with respect to Hermitian metrics induced

from g. It follows that τ(α, α) = 0 at x for all α ∈ T 1,0
x , hence τ(α′, α′′) = 0 for all α′, α′′ ∈ T 1,0

x

by polarization. Since x ∈ Z̃ is arbitrary, τ ≡ 0, and we conclude that Z̃ ⊂ Bn is totally geodesic
with respect to g, as desired. The proof of Main Theorem for the case of cocompact torsion-free
lattices Γ ⊂ G0 is complete. �

Remark Replacing Bn by a possibly reducible bounded symmetric domain Ω of higher rank,
in the same setup we have a complex-analytic subvariety Z̃ ⊂ Ω exiting as a germ of complex
submanifold at points b ∈ ∂Ω belonging to some G0-invariant subset E ⊂ ∂Ω. If the analytic
continuation Z̃∪U by grafting a coordinate chart U at b happens to be transversal to the foliation
of E by maximal complex submanifolds (cf. Wolf [Wo]), then Z is strictly pseudoconvex at b and
the same rescaling argument shows that Z̃ is the image of a holomorphic isometry of some Bm and
it is hence algebraic by Mok [Mo4]. In general the rescaling argument shows that Z̃ decomposes
near b into a union of algebraic subsets which are images of holomorphic isometric embeddings of
some Bm, which furnishes a starting point of our approach under preparation to Ax-Lindemann-
Weierstrass for bounded symmetric domains applicable to non-arithmetic lattices.

For the proof of Main Theorem it remains to consider torsion-free nonuniform lattices Γ ⊂ G0,
i.e, the case where (XΓ, ωΓ) is (necessarily) of finite volume but noncompact. In this case, in the
notation of the proof of Main Theorem in the cocompact case, taking sequences of points (xk)
on Z̃ converging to points on Z̃ ∩ ∂Bn, we have to take care of the possibility that π(xk) ∈ XΓ

escapes to infinity. To deal with this situation we prove

Proposition 4.1. In the notation of Main Theorem let S ⊂ Bn be an irreducible algebraic subset

and write Z := π(S)
Zar ⊂ XΓ. Let Z̃ be an irreducible component of π−1(Z). Suppose b ∈ ∂Bn

and let U b Cn be an open neighborhood of b for which there exists a complex submanifold
Σ ⊂ U of dimension d := dim(Z) such that (a) Σ ∩ Z̃ is a nonempty connected open subset
of Z̃ and ∂Bn ∩ Σ is connected; (b) Σ is transversal to ∂Bn at every point p ∈ ∂Bn ∩ Σ. Let
{Uk : 0 6 k < ∞} be a sequence of open neighborhoods of b in Cn, U0 = U , such that for each
k > 0, Uk+1 b Uk and Σ ∩ Z̃ ∩ Uk is connected, and such that

⋂
06k<∞ Uk = O ⊂ ∂Bn for some

open neighborhood O of b in ∂Bn. Then, there exists a compact subset Q ⊂ Z and a sequence
of points xk ∈ Uk such that π(xk) ∈ Q for any k > 0. As a consequence, Z ⊂ XΓ is a totally
geodesic subset.

For the proof of Proposition 4.1 we will need the following well-known statement about
holomorphic functions on the unit ball for which we include a proof for easy reference.

Lemma 4.2. Let n > 1, b ∈ ∂Bn, and U b Cn be a neighborhood of b. Suppose f : U ∩ Bn → C
is a continuous function which is holomorphic on U ∩ Bn and vanishes on U ∩ ∂Bn. Then, f ≡ 0
on U ∩ Bn.

Proof. Slicing by complex lines transversal to ∂Bn at points p ∈ U ∩ ∂Bn one reduces the
problem to the case of n = 1. By the Riemann mapping theorem it suffices to show that, for a
continuous function g : ∆ → C which is holomorphic on ∆ and vanishes on an open arc of ∂∆,
we must have g ≡ 0. To see this, replacing g by g ◦ ϕ for some ϕ ∈ Aut(∆) we may assume that
g(ζ) = 0 for ζ ∈ ∂∆ satisfying Re(ζ) > 0. Then, the continuous function h : ∆ → C defined by
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h(z) := g(z)g(−z) vanishes on ∂∆ and it is holomorphic on ∆. By the maximum principle h ≡ 0
and hence g ≡ 0, as desired. �

Proof of Proposition 4.1. Denote by {q1, · · · , qm} the finite set of normal isolated singularities
of XΓ. For each qi, 1 6 i 6 m, let Vi be an open neighborhood of qi in XΓ such that there is a

biholomorphism λi : Vi
∼=−→ Ei ⊂ BNi onto a subvariety Ei of the complex unit ball BNi in CNi ,

ν(qi) = 0. We assume without loss of generality that V1, · · · , Vm are disjoint. Let {Uk : 0 6 k <
∞} be the sequence of open neighborhoods of b in Cn as in the statement of the proposition.
Arguing by contradiction assume that there exists no compact subset Q ⊂ Z with the desired
property as stated in the proposition. Let C ⊂ Z be the compact subset such that Z − C is the
disjoint union of the open subsets Vi ∩ Z̃, 1 6 i 6 m. By assumption, for k sufficiently large, say
k > `, π(Σ∩ Z̃ ∩Uk) ⊂ Z−C = (V1 ∩ Z̃)∪ · · · ∪ (Vm ∩ Z̃). Since Σ∩ Z̃ ∩Uk is connected for each
k > 0, we may assume that π(Σ ∩ Z̃ ∩ Uk) ⊂ Vi for one of the disjoint open sets Vi, say i = 1,

whenever k > `. Since λ1 : V1
∼=−→ E1 ⊂ BN1 there exists a holomorphic function h on BN1 such

that h(0) = 0 and such that the holomorphic function f : Σ∩Z̃∩U` → C defined by f := h◦λ1◦π
is nonconstant. By assumption, for any sequence of points xk ∈ Σ ∩ Z̃ ∩ Uk, π(xk) converges to
q1 ∈ XΓ. It follows that f(x) converges to 0 as x ∈ Σ∩ Z̃ ∩U` converges to some boundary point
p ∈ O ⊂ ∂Bn ∩ Σ. By Lemma 4.2, such a holomorphic function must necessarily be identically
zero, a plain contradiction. We have thus proven by contradiction that there is some compact
subset Q ⊂ Z for which there exists some sequence of points xk ∈ Σ∩Z̃∩Uk such that π(xk) ∈ Q
for each k. By the proof of Main Theorem in the compact case and by Proposition 4.1 this forces
Z̃ to be totally geodesic on an open neighborhood of some point x ∈ Z, hence Z = π(Z̃) is a
totally geodesic subset in XΓ, as desired. �

Proof of Main Theorem continued. Main Theorem was first proved for the case where XΓ is
compact, and the case where XΓ is noncompact has been incorporated in Proposition 4.1. The
proof of Main Theorem is now complete. �

The proof of Main Theorem also yields readily the following result about the Zariski closure
of unions of totally geodesic subsets of XΓ.

Theorem 4.1. Let A be any set of indices and Σα ⊂ XΓ ⊂ XΓ, α ∈ A, be a family of closed
totally geodesic subsets of XΓ of positive dimension. Write E :=

⋃{
Σα : α ∈ A

}
. Then, the

Zariski closure of E in XΓ is a union of finitely many totally geodesic subsets.

Proof. Since the minimal compactification XΓ ⊂ XΓ is obtained by adding a finite number of
normal isolated singularities, by the Remmert-Stein extension theorem the topological closure
in XΓ of each Σα ⊂ XΓ, α ∈ A, is necessarily a projective subvariety of XΓ. Hence for any
α ∈ A, Σα ⊂ XΓ is a quasi-projective subvariety. Denote by Z the Zariski closure of E =

⋃{
Σα :

α ∈ A
}

. Write Z = Z1 ∪ · · · ∪ Zm for the decomposition of Z into irreducible components. For
1 6 k 6 m we proceed to prove that Zk ⊂ XΓ is a totally geodesic subset. For each dimension
d, 1 6 d 6 dim(Zk), denote by A(k, d) ⊂ A the set of indices α ∈ A such that Σα ⊂ Zk and
dim(Σα) = d. Let E(k, d) be the union of

{
Σα : α ∈ A(k, d)

}
and denote by Z(k, d) the Zariski

closure of E(k, d). Then, there exists some d0, 1 6 d0 6 dim(Zk), such that Z(k, d0) = Zk. Thus,
replacing Z by Zk and A by A(k, d0), for the proof of Theorem 4.1 without loss of generality we
may assume that Z is irreducible and that all Σα, α ∈ A, are of the same complex dimension d0.

Consider now the Chow space K of all d0-dimensional projective subspaces in Pn and the
universal family ρ : U → K, µ : U → Pn. (In this case µ : U → Pn can be identified with the
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Grassmann bundle Gr(d0, TPn).) Denote by Lα ⊂ UΓ the tautological lifting of Zα ⊂ XΓ to UΓ.
Let Z ⊂ UΓ be the Zariski closure of

⋃
α∈A Lα. Writing Z = Z1∪· · ·∪Zs for the decomposition

of Z into irreducible components and recalling that Z is assumed now to be irreducible, there
exists an integer `, 1 6 ` 6 s, such that µΓ(Z`) = Z. Then, µΓ(Z`) ⊂ XΓ is the Zariski closure
Z of E =

⋃{
Σα : α ∈ A

}
. Denote by F the tautological holomorphic foliation on U and by FΓ

the induced holomorphic foliation on UΓ. In analogy to the proof of Proposition 3.1, there exists
a point e` ∈ E ∩ Reg(Z ) ∩Z` such that S` := TFΓ

|Z` + TZ` ⊂ TUΓ
|Z` is a locally free subsheaf

at e` ∈ E (since the points to be excluded form a quasi-projective subvariety Q` ( Z`, which
implies that TFΓ

|Z` + TZ` = TZ`). It follows that TFΓ
|Z` ⊂ TZ` and Z is uniruled by subvarieties

belonging to K in the sense of Definition 3.1, and the proof of Main Theorem shows that Z is a
totally geodesic subset, as desired. �

Combining Main Theorem and Theorem 4.1 we conclude with

Corollary 4.1. Let A be any set of indices and Sα ⊂ Bn ⊂ Pn be a family of algebraic subsets
on the complex unit ball Bn of positive dimension. Let π : Bn → XΓ be the universal covering
map and define E :=

⋃{
π(Sα) : α ∈ A

}
⊂ XΓ. Then, the Zariski closure of E in XΓ is a finite

union of totally geodesic subsets.

Proof. Denote by Z ⊂ XΓ the Zariski closure of E. For each α ∈ A denote by Zα ⊂ XΓ the
Zariski closure of π(Sα) ⊂ XΓ. By Main Theorem, for each α ∈ A, Zα ⊂ XΓ is a totally geodesic
subset. Hence, Z is the Zariski closure of E′ =

⋃{
Zα : α ∈ A

}
⊂ XΓ. By Theorem 4.1, Z is a

finite union of totally geodesic subsets, as desired. �
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Mo3 N. Mok, Projective-algebraicity of minimal compactifications of complex-hyperbolic space
forms of finite volume, in Perspectives in Analysis, Geometry, Topology , Progr. Math., 296,
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