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Abstract. We study the values of |L(1, F )| for Hecke-Maass cusp forms F on SL(n,Z)
(n ≥ 3) of large Langlands parameters. New unconditional results on the extreme
values and conditional results on the size range are derived, which determine precisely
the order of magnitude of L(1, F ). In addition, we enhance the new average estimate
toward the Ramanujan Conjecture due to Matz and Templier. An application of the
Hecke multiplicativity to the Littlewood-Richardson rule for a product of two Schur
polynomials is cultivated.
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1. Introduction

In the past two decades, there are many great advances in the study of the size of

L(1, f) for L-functions over a family of f where the point s = 1 is on the boundary of

the critical strip. The initial research may be attributed to the work of Littlewood [17]

and Chowla [3] almost a century ago, investigating the extreme values of the Dirichlet

L-functions L(1, χ) at 1. Later there were works on the distribution of L(1, χd) over a

family of quadratic characters by Chowla and Erdös, Elliott, etc. In 1999, Montogmery

and Vaughan [24] formulated, based on a probabilistic model, three conjectures about the

Date: October 22, 2017.
2000 Mathematics Subject Classification. 11F67 (11F66), 11F30.
Key words and phrases. Automorphic forms on GL(n), L-functions, extreme values at 1, complex

moments.

1



2 Y.-K. LAU & Y. WANG

proportion of exceptional χd for which L(1, χd) lies outside a certain threshold. Granville

and Soundararjan [9] considered a modified probabilistic model and, together with many

new ideas and techniques, computed the distribution function

(1.1) Φx(τ) = exp

(
− eτ−C1

τ

(
1 +O

(
1

τ

)))
uniformly for τ ≤ log2 x, where Φx(τ) denotes the proportion of fundamental discrimi-

nants d ∈ [−x, x] for which L(1, χd) > eγτ , and C1 = 0.8187....

In addition to the Dirichlet L-function (of GL(1) case), the investigation was extended

to the L-functions associated to GL(2) automorphic forms as well as their symmetric

powers in a series of papers, including Luo [19], Royer [29], Cogdell & Michel [4], Royer &

Wu [30], Liu-Royer-Wu [18], Lamzouri [13], etc. Analogues of the extreme value results of

Littlewood and Chowla were derived, and some weaken form of the Montgomery-Vaughan

conjecture could also be settled. The probabilistic model follows the Sato-Tate law arising

from the equidistribution of satake parameters (or eigenvalues) over a family of GL(2)

Hecke eigenforms. The equidistribution is ultimately boiled down to the Petersson or

Kuznetsov trace formula. Let us review some results in this case.

Suppose f is a Hecke-Maass form for SL(2,Z) of type ν, so its Laplacian eigenvalue

and Langlands parameter are λf = ν(1− ν) and µf = (ν − 1
2 ,

1
2 − ν). Then L(1, symmf)

is the value of its mth symmetric power L-function at 1 where 1 ≤ m ≤ 4. Conditionally

(on GRC and GRH)‡1, there exist positive constants A±m such that

(log2 λf )−A−m � L(1, symmf)� (log2 λf )A+
m

as λf → ∞, and unconditionally there are infinitely many forms f± with λf± → ∞ for

which

L(1, symmf−)� (log2 λf−)−A−m , L(1, symmf+)� (log2 λf+)A+
m

where logr · means log(logr−1 · ). It is computed that for m = 1, 2, 3, 4,

(A−m,A
+
m) = (2, 2), (1, 3), (4, 4), (

5

4
, 5)(1.2)

respectively. The figures show an asymmetry in the order of magnitude of L(1, symmf)−1

and L(1, symmf) when m is even. Note that L(s, symmf) is an L-function for GL(m+1).

Later we shall see that the phenomenon of asymmetry appears in the whole family of

L-function for GL(n) (Hecke-Maass forms) when n is odd. Moreover, the harmonic

weighted distribution function Φx(symm, τ) (cf. [13], [35], [34]) is shown to satisfy a

formula like (1.1) for τ in a slightly shorter range.

The value of an L-function at 1 may encode properties of other objects. The Dirichlet

class number formula expresses the class number h(d) of a quadratic number field in

terms of L(1, χd), hence the distribution of class numbers can be understood. Also, the

Hecke-Maass form f for SL2(Z) (considered above) is an eigenfunction of the Laplacian

on the hyperbolic manifold SL2(Z) \ H. Suppose f is normalized with its first Fourier

coefficients equal to 1. Then 2‖f‖2 cosh(π|ν|) = L(1, sym2f) where ‖ · ‖ is the L2-norm.

‡1 GRC and GRH abbreviate Generalized Ramanujan Conjecture and Grand Riemann Hypothesis
respectively.
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The proportion Ψ+
x (τ) (resp. Ψ−x (τ)) of λf ≤ x for which ‖f‖2eπ

√
λf > τ (resp. < τ−1)

satisfies

Ψ+
x (τ) = exp

(
−
(
c1 + o(1)

)ec2τ1/3

τ1/3

)
(resp. Ψ−x (τ) = exp(−(c3 + o(1))ec4τ/τ))), uniformly for τ ≤ c5(log2 x)1/3, where ci > 0,

1 ≤ i ≤ 5, are constants. These examples arouse the interest in the values of L-functions

at 1 beyond the low rank case of Dirichlet characters or GL(2) automorphic forms.

In this paper, we are concerned with the L-functions for GL(n) associated to the Hecke-

Maass cusp forms for SL(n,Z) (n ≥ 3). Let us follow the set-up in Goldfeld’s book [7],

and write H\ for the set of all Hecke-Maass cusp forms for SL(n,Z) of L2-norm 1. Suppose

φ ∈ H\ is of type ν ∈ Cn−1. Then its Langlands parameter µφ ∈ Cn is determined (as in

(3.1) below) and its associated Laplacian eigenvalue is λφ = 1
2(‖ρ‖22 − ‖µφ + ρ‖22) where

ρ := (n+1
2 − 1, · · · , n+1

2 − n) is the half sum of positive roots and ‖ · ‖2 is the Euclidean

norm.‡2 Here we establish new results in the general context – for |L(1, φ)| with φ ∈ H\

– generalizing Littlewood [17] and Chowla [3], Luo [19] and Cogdell & Michel [4].

Briefly speaking, the exact order of magnitudes A±n of the size range are determined

for almost all φ ∈ H\ whose µφ ∈ iRn (i.e. whose λφ is not in the complementary

cuspidal spectrum). Then it reveals that a generic L-function and the symmetric lift

L(s, symn−1f) (both of which are L-functions for GL(n)) attain different extreme small

value at 1 for odd n. We also compute the distribution functions Φ±T (K, τ), and a result

analogous to (1.1) can be generalized to the GL(n) case. To its end, we introduce a

probabilistic model

L(1, ρSt) =
∏
p det(I − ρSt(θp)p

−1)−1

where θp is a random vector distributed over the subset of the n-torus governed by

θ1 + · · · + θn ≡ 0 (mod 2π) according to the p-adic Plancherel measure dµp, and the

random vectors θp (where p runs through all primes) are independent (see §8).

The machinery for the proof comprises many techniques in analytic number theory

and probability from the aforementioned papers, with necessary adaption to the more

sophisticated case of GL(n). As GRC is open, a more delicate analysis (in comparison

with the holomorphic cusp form case) is undertaken; then we may use an average bound

towards the Ramanujan Conjecture in lieu. To build a passage from the moments of

|L(1, φ)|z to the probability moment E[|L(1, ρSt)|z], we need an equidistribution result for

the satake parameters associated to φ. The recent work of Matz & Templier [23] provides

the key ingredient in this regard. However there are still obstacles: (i) their bounds

towards the Ramanujan Conjecture falls short of our purpose and (ii) the computation

of the main term as in Gross [10] seems not effective enough to reveal its arithmetic

properties. We provide different treatments and get new findings (in § 7.5-7.8), which is

a novelty in our work in addition to the results for L(1, φ).

For (i), we show the zero density of φ ∈ H failing marginally the Ramanujan Con-

jecture at a fixed non-archimedean place. This refines [23, Corollary 1.6] to a more

intimate generalization of Sarnak’s result [32], see Theorem 7.3. For (ii), the main

term of the unweighted trace formula
∑

φAφ(m1, · · · ,mn−1) will vanish if the product

‡2 See [11, VIII,§1].
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mn−1
1 mn−2

2 · · ·mn−1 is not an nth power (see Proposition 7.5), enriching the observation

in [23] – the main term is zero when m1 · · ·mn−1 > 1 is squarefree. A consequence is:

Specialized to
∑

φ∈HT Aφ(m, 1, · · · , 1), the main term is simply m−(n−1)/2
1
n

(m)Λ(T )

where 1
n

is the characteristic function of the set of the nth powers of positive integers

and Λ(T ) � Tn(n+1)/2−1. Note it is known for the case n = 2, cf. [15] and [23]. Another

consequence is a dainty product formula in the spirit of Pieri’s rule for Schur polynomials,

see Corollary 7.8.

2. Statement of results

The set H\ of Hecke-Maass cusp forms φ on GL(n) (defined in §3.1) can be separated

into two parts according as the Langlands parameter µφ ∈ ia∗ ⊂ iRn or not (cf. §7.3).

Denote the subset of φ ∈ H\ whose µφ ∈ ia∗ by H. For T ≥ 102, we let

H
\
T := {φ ∈ H\ : ‖µφ‖2 ≤ T} , HT := {φ ∈ H

\
T : µφ ∈ ia∗}.

The case of µφ /∈ iRn corresponds to the complementary cuspidal spectrum, which is

asserted in GRC to be vacant but not yet settled. Nevertheless, Matz and Templier [23,

(1.1)] showed that #(HT )� T d where d = n(n+ 1)/2− 1. Also #(H\
T )� T d, cf. [26].

Throughout we let the integer n ≥ 3 and T be any sufficiently large number. Define

A+
n = n and A−n =

{
n if n is even,

n cos(π/n) if n is odd.

and let B±n be the positive constants in Lemma 5.3.

Theorem 2.1. (1) There exists a subset K ⊂ H of full density such that for every

φ ∈ KT := K ∩HT ,

(log2 T )−A
−
n �n |L(1, φ)| �n (log2 T )A

+
n ;

the exceptional set satisfies #(HT \KT ) ≤ #(HT ) exp(−(log T )/(log2 T )1+o(1)).

(2) Assume GRC (so H
\
T = HT ) and GRH. For all φ ∈ H

\
T , we have

{1 + o(1)}(2B−n log2 T )−A
−
n ≤ |L(1, φ)| ≤ {1 + o(1)}(2B+

n log2 T )A
+
n .

Theorem 2.2. There exist φ± ∈ HT such that

|L(1, φ−)| ≤ {1 + o(1)}(B−n log2 T )−A
−
n , |L(1, φ+)| ≥ {1 + o(1)}(B+

n log2 T )A
+
n .

The proportion of such exceptional φ± in HT is at least exp
(
− (log T )/(log2 T )3+o(1)

)
.

Remark 2.1. 1. For odd n ≥ 3, A−n = n cos(π/n) is likely different from A−n−1 in (1.2),

which is true for n = 3, 5: (A−3 ,A
−
2 ) = (3

2 , 1), (A−5 ,A
−
4 ) = (4.045 · · · , 5

4).

2. Like the low rank cases, the (conditional) bounds and the extreme value results in

Theorems 2.1 and 2.2 differ by a factor of 2 (in front of B±n ).

3. Alongside the Montgomery-Vaughan conjecture (cf. Conjecture 1 in [9]), one would

predict the proportion of φ± in HT satisfying |L(1, φ±)|±1 ≥ (B±n log2 T )A
±
n respectively

is > exp(−C log T/ log2 T ) and < exp(−c log T/ log2 T ) for some constants C > c > 0.

Theorem 2.2 provides a (better) lower bound after sacrificing an o(1) factor.
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Let K ⊂ H and KT = K ∩HT . Define for τ > 0,

Φ+
T (K, τ) =

#{φ ∈ KT : |L(1, φ)| > (B+
n τ)A

+
n }

#(KT )

and

Φ−T (K, τ) =
#{φ ∈ KT : |L(1, φ)| < (B−n τ)−A

−
n }

#(KT )
.

Theorem 2.3. There exist a subset K ⊂ H of full density and constants C±n such that

Φ±T (K, τ) = exp

(
− eτ−C

±
n

τ

(
1 +O

(
1

τ

)))
uniformly for τ ≤ log2 T − (2 + o(1)) log3 T .

Theorems 2.2 and 2.3 are consequences of the complex moment result, Theorem 2.4,

which links to the moment of the probabilistic model L-function L(1, ρSt) defined in (8.4).

Theorem 2.4. There exists a subset K ⊂ H of full density such that for KT := K∩HT ,

1

#(KT )

∑
φ∈KT

|L(1, φ)|2z = E[|L(1, ρSt)|2z] +O
(

exp
(
− (log T )/(log2 T )2+o(1)

))
holds uniformly for |z| ≤ (log T )/(log2 T )2+o(1).

Remark 2.2. 1. By (8.5), explicitly the main term is

E[|L(1, ρSt)|2z] =
∏
p

∫
T0/Sn

∣∣ det(I − ρSt(θ)p
−1)
∣∣−2z

dµp

which equals
(
(1 + o(1))(B±n log z)A

±
n
)2z

for real z → ±∞, by Proposition 8.3.

2. Define for τ > 0,

Φ+(ρSt, τ) := Prob(|L(1, ρSt)| > (B+
n τ)A

+
n )

and

Φ−(ρSt, τ) = Prob(|L(1, ρSt)| < (B−n τ)−A
−
n ).

Then we have

(2.1) Φ±(ρSt, τ) = exp

(
− eτ−C

±
n

τ

(
1 +O

(
1

τ

)))
where C±n are constants same as in Theorem 2.3, and Φ±T (K, τ)→ Φ±(ρSt, τ) as T →∞.

Notation. The symbol p is reserved for (rational) primes, N = {1, 2, · · · } and N0 =

N ∪ {0}. We denote i =
√
−1, σ = <e s and τ = =m s for the complex variable s. (But

τ(m) is the Dirichlet divisor function.) A vector is sometimes underlined or written in

bold face, the former (e.g. θ) is designated to have n coordinates while the latter (e.g.

k) has n − 1 coordinates. For k = (k1, · · · , kn−1) ∈ Nn−1
0 , we write |k| :=

∑
j kj and

‖k‖ :=
∑

j(n − j)kj . An m-tuple (a, · · · , a) may be abbreviated as (am) or am. An

unspecified positive constant is denoted by c, c′, etc, whose values may differ at each

occurrence; we may write c∗ and c′∗ in order to emphasize the dependence on ∗. The

vinogradov symbol �∗ is used whenever its dependence on ∗ would be emphasized.
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Organization of the paper. Sections 3 and 4 provide the background of Hecke-

Maass cusp forms and the L-functions as well as some basic facts using classical L-function

techniques. Section 5 gives an approximation to logL(s, φ) conditionally on some weak

forms of GRC and GRH, then we bound logL(1, φ) for random Satake parameters and

figure out the subset KT of HT for unconditional results – completing most of Theo-

rem 2.1. Section 6 evaluates the exceptional set HT \KT using a zero density estimate

and average bounds toward the Ramanujan Conjecture. The zero density result is de-

rived with Montgomery’s zero detection method and the large sieve inequality. Section 7

gives expositions on the Schur polynomials and the Littlewood-Richardson rule for GL(n)

forms, Weyl’s integration formulas and the Plancherel measure for PGLn(Qp), and the

novel automorphic Plancherel density theorem for GL(n) (of Matz and Templier). Two

applications – on the Ramanujan Conjecture and a case of Pieri’s formula for the Schur

polynomial – will be cultivated, exploiting the Satake isomorphism, the Hall-Littlewood

polynomials and the Hecke multiplicativity of Fourier coefficients. Sections 8 and 9 are

based on the essence of moment methods in [4, 30, 14]. Section 8 is devoted to the

probabilistic model L(s, ρSt) and study the complex moments of L(1, ρSt) using tools in

Section 7. In Section 9, we relate the complex moments of L(1, φ) to the probabilistic

complex moments via the (consequence of) automorphic Plancherel density theorem, and

complete the proofs of Theorems 2.2-2.4.

3. Background

The main reference is Goldfeld’s book [7]. Let Γ := SL(n,Z), G := GL(n,R), K :=

O(n,R) and hn := G/(K · R×). Let L2(Γ \ hn) be the Hilbert space of square integrable

functions on Γ \ hn. A Maass cusp form f for Γ of type ν (∈ Cn−1) is, cf. [7, §5.1], a

smooth function f ∈ L2(Γ \ hn) such that f is a common eigenfunction of the differential

operators corresponding to elements in the center Dn of the universal enveloping algebra

of gl(n,R), and f satisfies the automorphic condition and the cuspidal condition.

Associated to ν = (ν1, · · · , νn−1) ∈ Cn−1, the Langlands parameters µ1(ν), · · · , µn(ν) ∈
Cn, cf. [8, §2], (which are also the parameters introduced in [7, (11.6.15)]) are defined as

µi(ν) := Bn−i(ν)−Bn−i+1(ν) + i− n+ 1

2
= Bn−i(ν −

1

n
)−Bn−i+1(ν − 1

n
)(3.1)

where B0(ν) = Bn(ν) := 0,

Bi(ν) := i
∑

1≤j≤n−i
jνj + (n− i)

∑
n−i<j≤n−1

(n− j)νj (1 ≤ i ≤ n− 1)

(with empty sums meaning 0) and ν − 1
n := ν − 1

n(1, · · · , 1). Clearly,

Bn−i(ν) = (µ1(ν) + · · ·+ µi(ν)) +
i(n− i)

2
,

n∑
i=1

µi(ν) = 0.(3.2)

Every Maass cusp form f has a Fourier expansion (cf. [7, (9.1.2)]). For εi ∈ {±1}, let

δ = diag(ε1, · · · , εn−1, 1) and define the operator Tδf(z) := f(δzδ). Suppose the Maass

form f is a common eigenfunction of all Tδ’s. The Fourier series of f is a multiple sum over

m1, · · · ,mn−1 ≥ 1 with the Fourier coefficient Af (m1, · · · ,mn−1). Let w = (wij) ∈ Γ
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satisfy wij = 0 unless i + j = n + 1 and wi,n−i+1 = 1 for i = 2, · · · , n. For any Maass

cusp form f of type ν = (ν1, · · · , νn−1), its dual Maass form f̃ defined as

f̃(z) =
(
w · f

)
(z) := f(w tz−1w)

is a Maass cusp form of type ν̃ := (νn−1, · · · , ν1) where tz−1 is the inverse of the transpose

of z. If f is a common function of all Tδ’s, then so is f̃ . From [7, Proposition 9.2.1], we

have

A
f̃
(m1, · · · ,mn−1) = Af (mn−1, · · · ,m1).

Remark 3.1. 〈w · f, g〉 = 〈f, w · g〉, thus 〈f̃ , g̃〉 = 〈f, g〉 where 〈 , 〉 is the inner product in

L2(Γ \ hn).

3.1. Hecke-Maass cusp forms. Let R be the full Hecke ring for Γ, see [7, §9.3 & §3.10].

The adjoint operator T ∗ of any T ∈ R also lies in R and commutes with T . In fact R is a

commutative family of normal operators which commute with D ∈ Dn and Tδ’s as well.

The (nonzero) Maass cusp forms that are common eigenfunctions of all T ∈ R, D ∈ Dn

and Tδ’s are called Hecke-Maass cusp forms. A Hecke-Maass cusp form φ is said to even

or odd according as Tδ0φ = ±φ where δ0 = (−1, 1, · · · , 1).

Let H\ = {φj} be the orthonormal basis for L2
cusp(Γ \ hn) consisting of Hecke-Maass

cusp forms. (See [7, p.357] for the spectral decomposition.) The eigenvalues of φ under

the Hecke operators Tm in R, m ≥ 1, are scalar multiples of Fourier coefficients, cf. [7,

(9.3.5) and Theorem 9.3.11]. More specifically, for all m ≥ 1, if Tmφ = Aφ(m, 1, · · · , 1)φ,

then Aφ(m, 1, · · · , 1) = cφAφ(m, 1, · · · , 1) where cφ ∈ C× is a scalar independent of m.

Let Aφ(m1, · · · ,mn−1) = c−1
φ Aφ(m1, · · · ,mn−1) be the normalized Fourier coefficients.

We have the following Hecke multiplicative relations:

Aφ(m1, · · · ,mn−1)Aφ(m′1, · · · ,m′n−1) = Aφ(m1m
′
1, · · · ,mn−1m

′
n−1)

if (m1 · · ·mn−1,m
′
1 · · · ,m′n−1) = 1 and

Aφ(m, 1, · · · , 1)Aφ(m1, · · · ,mn−1)(3.3)

=
∑

∏n
`=1

c`=m

c1|m1,c2|m2,··· ,cn−1|mn−1

Aφ

(
m1cn
c1

,
m2c1

c2
, · · · , mn−1cn−2

cn−1

)
.

According as φ is even or odd, Aφ(m1, · · · ,mn−2,−mn−1) = ±Aφ(m1, · · · ,mn−2,mn−1),

and for odd n, all Hecke-Maass cusp forms φj ’s are even, cf. [7, Propositions 9.2.5-6].

The dual φ̃ of a Hecke-Maass cusp form φ is also a Hecke-Maass cusp form (so φ̃ ∈ H\

by Strong Multiplicity One Theorem [7, Theorem 12.6.1]). In general, if f is a common

eigenfunction of all T ∈ R and Tf = λT f , then from T ∗f̃ = T̃ f for all T ∈ R, so is its

dual f̃ and T f̃ = λT f̃ . Let A
φ̃
(m1, · · · ,mn−1) be the normalized Fourier coefficient of

its dual φ̃. By the addendum after [7, Theorem 9.3.11], we have

A
φ̃
(m1, · · · ,mn−1) = Aφ(mn−1, · · · ,m1) = Aφ(m1, · · · ,mn−1).(3.4)
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3.2. L-functions associated to Hecke-Maass cusp forms. Let φ be a Hecke-Maass

cusp form of type ν and Aφ(m, 1, · · · , 1) be the eigenvalue under Tm. Its L-function

defined as

L(s, φ) =
∑
m≥1

Aφ(m, 1, · · · , 1)m−s,

for <e s > (n+ 1)/2, factors into the Euler product

L(s, φ) =
∏
p

n∏
i=1

(1− αφ,i(p)p−s)−1

where αφ,i(p), 1 ≤ i ≤ n, are the Satake parameters. Moreover L(s, φ) extends to an

entire function and its completed L-function

Λ(s, φ) := π−
ns
2

n∏
i=1

Γ

(
s+ µi(ν)

2

)
L(s, φ)

(µi(ν), 1 ≤ i ≤ n, are the Langlands parameters) satisfies the functional equation

Λ(s, φ) = ε(φ)Λ(1− s, φ̃)

where ε(φ) is the root number, which is of modulus one, and φ̃ is the dual Maass form

of φ.

Remark 3.2. (1) The Satake parameters αφ,i(p), abbreviated as αp,i, satisfy

n∏
i=1

(1− αp,iX)

(3.5)

= 1−A(p, 1, · · · , 1)X +A(1, p, · · · , 1)X2 − · · ·+ (−1)n−1A(1, · · · , 1, p)X(n−1) + (−1)nXn.

In particular,
∏n
i=1 αφ,i(p) = 1. For <e s� 1 (meaning sufficiently large <e s),

L(s, φ)−1 =
∑

m1,··· ,mn≥1

A(m1, · · · ,mn−1)
µn(m1, · · · ,mn)

(m1m2
2 · · ·mn

n)s

where µn(m1, · · · ,mn) := |µ(m1 · · ·mn)|µ(m1)µ(m2)2 · · ·µ(mn)n. (µ is the Möbius func-

tion.)

(2) The Satake parameters in the pth local factor of L(s, φ̃) satisfy {α
φ̃,i

(p) : 1 ≤ i ≤
n} = {αφ,i(p) : 1 ≤ i ≤ n} by (3.4) and (3.5). Suppose φ̃ is of type ν̃. For 0 ≤ i ≤ n,

Bi(ν̃) = Bn−i(ν) and thus for 1 ≤ i ≤ n,

µi(ν̃) = −µn+1−i(ν).(3.6)

Given two Hecke-Maass cusp forms φ and φ′. Let αp,i and µi, resp. α′p,i and µ′i, be the

Satake and Langlands parameters of φ, resp. φ′. Define the Rankin-Selberg L-function

L(s, φ× φ′) := ζ(ns)
∑

m1,··· ,mn−1≥1

A(m1, · · · ,mn−1)A′(m1, · · · ,mn−1)

(mn−1
1 mn−2

2 · · ·mn−1)s

=
∏
p

n∏
i=1

n∏
j=1

(
1−

αp,iα
′
p,j

ps

)−1



ABSOLUTE VALUES OF L-FUNCTIONS FOR GL(n,R) AT THE POINT 1 9

where <e s � 1. It extends to a meromorphic function with at most a simple pole of

residue c · 〈φ, φ̃′〉 at s = 1, see Remark 3.3. Moreover the following functional equation

holds:

Λ(s, φ× φ′) = ε(φ× φ′)Λ(1− s, φ̃× φ̃′)

where ε(φ× φ′) denotes the root number and

Λ(s, φ× φ′) := π−
n2s

2

n∏
i=1

n∏
j=1

Γ

(
s+ µi − µ′j

2

)
L(s, φ× φ′).

Remark 3.3. (1) Here the definition of L(s, f × g) is Lf×g̃(s) (not Lf×g(s)) in [7, Def

12.1.2]. The above functional equation follows from 〈f, g̃EP (·, s)〉 and the functional

equation of EP (z, s) ([7, Prop 10.7.5]). In view of the Laurent expansion of EP (z, s) at

s = 1 in [1, Theorem 1], the residue of 〈f, g̃EP (·, s)〉 is cn〈f, g̃〉 which is zero if there is

no pole at s = 1. Consequently, we have

res
s=1

L(s, φ× φ′) = c′n〈φ, φ̃′〉 ·
n∏
i=1

n∏
j=1

Γ

(
1 + µi − µ′j

2

)−1

.

Both cn and c′n denote some constants that depend on n only.

(2) In case φ′ = φ̃, L(s, φ × φ̃) has a simple pole at s = 1 and its Dirichlet series

converges absolutely in <e s > 1 (by [7, Remark 12.1.8]); moreover, Λ(s, φ× φ̃) = ε(φ×
φ̃)Λ(1− s, φ̃× φ) where (with (3.6))

Λ(s, φ× φ̃) = π−
n2s

2

n∏
i=1

n∏
j=1

Γ

(
s+ µi(ν) + µj(ν)

2

)
L(s, φ× φ̃).

(cf. [8, (4.2)].)

4. Basic facts for L-functions

Let φ, φ′ ∈ H\ be Hecke-Maass cusp forms of type ν and ν ′, and denote their Satake and

Langlands parameters by αp,i, µi := µi(ν) and α′p,i, µ
′
i := µi(ν

′), i = 1, · · · , n. We define

the analytic conductors Cφ(τ) and Cφ×φ′(τ) for the L-functions L(s, φ) and L(s, φ× φ′)
to be

Cφ(τ) =

n∏
i=1

(3 + |τ + µi|) and Cφ×φ′(τ) =

n∏
i=1

n∏
j=1

(3 + |τ + µi + µ′j |).

As
∑

i µi = 0, see (3.2), we have Cφ(τ) ≤ Cφ×φ′(τ). We write C∗ for C∗(0). Clearly

Cφ = C
φ̃

and Cφ×φ′ � (CφCφ′)
n.

4.1. Convexity bounds. In [16], Li studied the size of L(1) for a wide class of L-

functions (whose critical strips are 0 ≤ <e s ≤ 1). In particular, his results lead to: for

1 ≤ σ ≤ 3,

L(σ, φ) � exp
(
cn ·

√
logCφ

)
,

(σ − 1)L(σ, φ× φ̃) � exp

(
c′n ·

logCφ
log2Cφ

)
(4.1)
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where both constants cn, c
′
n > 0 depend on n only, and the implied constants are inde-

pendent of σ. With Cauchy-Schwarz’s inequality, one easily sees that L(s, φ × φ′) �ε(
C
φ×φ̃Cφ′×φ̃′

)ε � Cφ×φ′
4nε and L(s, φ) �ε Cφ×φ̃

ε � Cφ
nε on the line <e s = 1 + ε,

for any ε > 0. The following proposition is derived from the standard argument with

convexity principle.

Proposition 4.1. Let ε > 0 be arbitrarily small. For any −ε ≤ σ ≤ 1 + ε and τ ∈ R,

we have

L(s, φ)�ε Cφ
εCφ(τ)

1
2

(1−σ)+ε , (s− 1)L(s, φ× φ′)�ε (1 + |τ |)Cφ×φ′εCφ×φ′(τ)
1
2

(1−σ)+ε.

Remark 4.1. For its proof, we need (3.2) and the following estimate: Recall the Stirling

formula Γ(σ + iτ) � |τ |σ−1/2 exp(−π|τ |/2) if |τ | ≥ 1 and σ � 1. Suppose |<eα| < 1/2

and 0 < ε < 1. Then

Γ((1− s− α)/2)

Γ((s+ α)/2)
� (1 + |τ + α|)

1
2
−σ−<eα

for s = σ + iτ with −ε < σ < 1 + ε and τ ∈ R, and lying away from the poles.

4.2. The number of zeros of L(s, φ). Let σ ≥ 1/2 and H ≥ 1 be any number. A

generic zero of L(s, φ) (in the critical strip) is written as ρ = β + iγ. For any Hecke-

Maass cusp form φ, we define

N(σ,H, φ) := #{ρ = β + iγ : β ≥ σ, |γ| ≤ H, L(ρ, φ) = 0}.

Then N(1, H, φ) = 0 for all H ≥ 1, and we have the following typical result.

Lemma 4.2. For any h ≥ 1,

N(1
2 , h+ 1, φ)−N(1

2 , h, φ)� logCφ(h)

where the implied constant is absolute.

Proof. This follows from [16, (12)] with the choice s = 3
2 + ih. �

4.3. The logarithms logL(s, φ) and logL(s, φ× φ̃). From the Euler products, we may

write

logL(s, φ) =
∑
m≥2

Λφ(m)

ms logm
and logL(s, φ× φ̃) =

∑
m≥2

Λ
φ×φ̃(m)

ms logm
(4.2)

when <e s � 1. Clearly the sums run over prime powers, and we may express Λφ(pj)

and Λ
φ×φ̃(pj) in terms of the Satake parameters:

Λφ(pj)

log p
=

n∑
i=1

αjp,i,
Λ
φ×φ̃(pj)

log p
=

∣∣∣∣∣
n∑
i=1

αjp,i

∣∣∣∣∣
2

.(4.3)

Thus, we see that Λ
φ×φ̃(pj) log p = |Λφ(pj)|2 and, in light of (4.1), both series in (4.2)

are absolutely convergent in <e s > 1. To estimate the size of logL(s, φ) where <e s is

close to 1, a classical approach uses Borel-Carathedory theorem and the convexity bound

in Proposition 4.1. Let τ ∈ R and 1
2 < σ0 ≤ 1 be any numbers. Suppose L(s, φ) has no
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zero in the rectangle with corners at 1− δ+i(τ ±2
√
δ), 1 +i(τ ±2

√
δ) where δ = 1−σ0.

Then for σ0 < σ < 3
2 ,

logL(σ + iτ, φ)�
logCφ
σ − σ0

(4.4)

where the implied constant is independent of σ and σ0. Apply Borel-Carathedory to the

disk centred at 3/2 + iτ with radius 1 + δ, the same result holds for logL(s, φ× φ̃).

5. Conditional bounds for logL(s, φ) and Proof of Theorem 2.1

5.1. Conditional results for logL(s, φ). Suppose L(s, φ) has no zero in a sufficiently

large region around s = 1. The estimate in (4.4) will be refined, but we are unable to get

the expected tight bound unless some weak form of GRC for non-archimedean places is

imposed (cf. (7.6)). Thus we introduce a Weak Ramanujan Conjecture condition to φ:

WRC%(Y ): log max
1≤i≤n

|αφ,i(p)| ≤ %, ∀ p ≤ Y

where % > 0.

Lemma 5.1. Let η ∈ (0, 1
102 ) be any fixed constant. Suppose X ≥ (logCφ)4/η and

0 < % ≤ η−1. Assume the Hecke Maass cusp form φ satisfies

(1) WRC%

(
X3/2

)
, and

(2) L(s, φ) has no zero in the rectangular region 1− η ≤ σ ≤ 1, |τ | ≤ 4X.

Uniformly for σ ≥ 1− 1
2η and |τ | ≤ X, we have

logL(s, φ)�η
X1−σ − 1

(1− σ) log2X
+ log2X

where the implied constant depends on η only.

Proof. Let σ0 = 1− 3
4η. Using the Mellin transform pair e−x and Γ(s), we deduce that

logL(s, φ) =

∞∑
m=2

Λφ(m)

ms logm
e−m/X +Oη(X

−(σ−σ0) logCφ)(5.1)

for 1− 1
2η ≤ σ ≤

3
2 and |τ | ≤ X. (See the proof of [14, Proposition 3.4] for details.)

Under WRC%(X
3/2), we have |Λφ(pj)| ≤ nej% log p for p ≤ X3/2, otherwise, we apply

the trivial bound |Λφ(pj)| ≤ npj/2. Thus the result follows as the sum over m in (5.1) is

�
∑
p

p−σe−p/X � X1−σ − 1

(1− σ) logX
+ log2X.

For σ ≥ 1 the last inequality is obvious, and for σ ≤ 1, it is handled in [14, (3.20)-(3.22)]

with ∑
p≤y

1

pσ
� y1−σ − 1

(1− σ) log y
+ log2 y.(5.2)

�
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Lemma 5.2. Under the same assumptions in Lemma 5.1, we have

logL(1, φ) = −
∑
p≤X

log
n∏
i=1

(
1−

αφ,i(p)

p

)
+O(

1

log2Cφ
).(5.3)

Proof. It follows from (5.1) with X = (logCφ)4/η that

logL(1, φ) =
∞∑
m=2

Λφ(m)

m logm
e−m/X +Oη((logCφ)−2)

With WRC%(X
3/2) (yielding Λφ(m)� Λ(m) for m ≤ X3/2) or the trivial bound for the

Satake parameters, we infer that∑
m≥X

|Λφ(m)|
m logm

e−m/X �
∑
p, j

pj>X

e−p
j/X

jpj
+X−1 �

∑
p>X

e−p/X

p
+X−1 � 1

logX
.

Replacing e−p
j/X with e−jp/X for j ≥ 2 and noting e−p

j/X − e−jp/X � min(1, pj/X),

this results in

logL(1, φ) =
∑
p≤X

∑
j≥1

Λφ(pj)

pj log pj
e−jp/X +O(

1

logX
).

Using (4.3), one finds that∑
j≥1

Λφ(pj)

pj log pj
e−jp/X =

∑
j≥1

(pep/X)−j

j

n∑
i=1

αφ,i(p)
j = log

n∏
i=1

(
1−

αφ,i(p)

pep/X

)−1

= − log

n∏
i=1

(
1−

αφ,i(p)

p

)
+O

(
1− e−p/X

p

)
.

Thus the sum of the O-terms over p ≤ X is at most O(1/(logX)). �

Remark 5.1. Suppose both GRC and GRH are true. Lemma 5.1 implies logL(s, φ) �
log3Cφ on <e s = 1. Write δ = 1/(2 log2Cφ). Taking σ0 = 1

2 + δ and σ = 1
2 + 2δ in (4.4),

we obtain from the convexity principle that

logL(σ + iτ, φ)�ε (logCφ)2(1−σ) log2
2Cφ

uniformly for 1
2 + δ ≤ σ ≤ 1 and τ ∈ R, and then (5.1) holds for all X > 2 with

the O-term replaced by O(X1/2+δ−σ(logCφ)1−2δ log2
2Cφ). Then (5.3) holds for X =

(logCφ)2 log8
2Cφ = (logCφ)2+o(1).

5.2. Bounding a short sum. In view of (5.3), it remains to deal with the sum over

p ≤ X. If GRC holds, we shall have |αφ,j(p)| = 1 and thus model αφ,j(p) with eiθj where

θj ∈ [0, 2π). As
∏n
j=1 αφ,j(p) = 1, we shall estimate for the case of random θj ’s subject

to
∑n

j=1 θj = 0. Write Tr = [0, 2π)r for a r-torus (r = n− 1 or n). For θ ∈ Tn, we set

g(θ) = g(θ1, · · · , θn) :=
n∑
j=1

cos θj

and

fp(θ) := log
n∏
j=1

∣∣∣∣1− eiθj

p

∣∣∣∣−2

= −
n∑
j=1

log(1− 2p−1 cos θj + p−2).
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Let θ± and ς±p ∈ Tn be points at which g and fp attain their maximum/minimum, i.e.

g(θ±) = max /min
θ∈Tn

θ1+···+θn=0

g(θ), fp(ς
±
p ) = max /min

θ∈Tn
θ1+···+θn=0

fp(θ).

Lemma 5.3. Let X > 3 be any real number. Then

max
θ∈Tn

θ1+···+θn=0

(
±
∑
p≤X

fp(θ)

)
= 2A±n log

(
B±n logX

)
+O

(
1

log3X

)
where A+

n = n for all n ≥ 3, A−n = n or n cos(π/n) for even or odd n ≥ 3 respectively,

and B±n are some positive constants.

Proof. Subject to the constraint θ1 + · · ·+ θn = 0, the two functions g and fp on Tn may

be viewed as functions on Tn−1. Suppose θ± ∈ Tn−1 is projected to θ±. We may take,

by inspection, θ+ to be (0, · · · , 0), and for even n, θ− = (π, · · · , π). But for odd n, since

θ− must be a critical point, one gets sin θj = sin θn, ∀ j, where
∑n

j=1 θj = 0. Among

all the candidates, it is seen that θ− = ((n − 1)π/n, · · · , (n − 1)π/n) ∈ Tn−1 yields the

minimum. So g(θ+) = n and g(θ−) = −n or −n cos(π/n) according as n is even or odd.

Clearly, 2n log(1+p−1)−1 ≤ fp(θ) ≤ 2n log(1−p−1)−1, we hence observe that ς+
p = θ+

for all p, and if 2|n, we have ς−p = θ− as well. For the remaining case, we write

f(θ) =
2g(θ)

p
− hp(θ)

where

hp(θ) =
n∑
j=1

(
log(1− 2p−1 cos θj + p−2) + 2p−1 cos θj

)
�n p

−2.

The inequality

2g(θ−)

p
+O(p−2) = f(θ−) ≥ f(ς−p ) =

2g(ς−p )

p
+O(p−2),

implies

g(ς−p )−O(p−1) ≤ g(θ−) ≤ g(ς−p )

(whose second inequality follows from the definition of θ−), i.e. g(ς−p ) − g(θ−) � p−1.

Thus,

fp(ς
−
p ) =

2g(θ−)

p
+

2

p

(
g(ς+

p )− g(θ−)
)
− hp(ς−p )

where the last two summands are � p−2. In summary,

(5.4) fp(ς
±
p ) =

2g(θ±)

p
+ h±p

where h±p � p−2.

Consequently, letting P be the set of all primes, we obtain for some constant b,

±
∑
p≤X

fp(ς
±
p ) = ±2g(θ±)

(
log2X + b) +

∑
p∈P

h±p +O
(
e−c
√

logX
)
,

cf. [25, p.182] for
∑

p≤X p
−1 and

∑
p>X h

±
p �

∑
p>X p

−2 � 1/(X logX). This completes

the proof with A±n = ±g(θ±) and B±n = eb exp
(∑

p∈P h
±
p /A

±
n

)
. �
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5.3. Construction of KT and Proof of Theorem 2.1. Suppose φ ∈ H
\
T . Then

logCφ � log T and we shall take X = (log T )β for some β specified later. Define

θφ,i(p) ∈ C such that αφ,i(p) = eiθφ,i(p), ∀ p, and θφ(p) = (θφ,1(p), · · · , θφ,n(p)). If φ

satisfies the condition WRC%(X), then fp(θφ(p)) = fp(<e θφ(p)) + O(%/p) for p ≤ X.

The summation of O(%/p) over p ≤ X is � % log3 T . Thus we construct the set KT as

follows (and take K =
⋃
T KT ).

Let η ∈ (0, 10−2) and T ≥ 102. Define

(5.5) HT (η) := {φ ∈ HT : L(s, φ)L(s, φ̃) 6= 0, ∀ s ∈ S}

where S := Sη,T = {s : σ ≥ 1− η, |τ | ≤ T η} ∪ {s : σ ≥ 1} and φ̃ is the dual Maass form

of φ, and

(5.6) KT = KT (η) :=

{
φ ∈ HT (η) :

φ satisfies WRC%(Y ) where

% = 1/(log3 T )1+η and Y = (log T )6/η

}
.

If φ ∈ KT , then from Lemma 5.2, we infer that

log |L(1, φ)|2 =
∑
p≤X

fp(<e θφ(p)) + o(1)(5.7)

holds for X = (log T )β with β = 4/η. Under GRH and GRC, (5.7) holds for β = 2 +o(1)

by Remark 5.1. Appealing to Lemma 5.3, we get

−2A−n log(B−n logX) + o(1) ≤ log |L(1, φ)|2 ≤ 2A+
n log(B+

n logX) + o(1),

i.e. (1 + o(1))(βB−n log T )−A
−
n ≤ |L(1, φ)| ≤ (1 + o(1))(βB+

n log T )A
+
n , which holds un-

conditionally for φ ∈ KT with β = 4/η, or conditionally for φ ∈ H
\
T with β = 2 + o(1).

The proof will be complete after the evaluation of #(HT \KT ), which is left to the next

section.

6. The size of HT \KT and a zero density theorem

Now we explain the evaluation of the exceptional set HT \KT . Our result is

(6.1) #
(
HT \KT

)
� #

(
HT

)
exp

(
− c

% log T

log2 T

)
.

6.1. The size of HT \ KT . Let WT (η) be the set of φ ∈ HT that does not satisfy

WRC%(Y ) for % = 1/(log3 T )1+η and Y = (log T )6/η. With (5.5), it is clear that

#
(
HT \KT

)
≤ #

(
HT \HT (η)

)
+ #

(
WT (η)

)
.

To treat #
(
WT (η)

)
, we appeal to the quantitative bounds towards Ramanujan in The-

orem 7.3 of the next section, which yields

#
(
WT,p

)
:= #

{
φ ∈ HT : log max

1≤i≤n
|αφ,i(p)| > %

}
� T d exp

(
− c

% log T

log p

)
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for some constant c > 0 and the implied constant depends on n only. Consequently,

#
(
WT (η)

)
≤

∑
p≤(log T )6/η

#
(
WT,p

)
� T d exp

(
− c

% log T

log2 T

)
.

Next #(HT \HT (η)) does not exceed the number of φ ∈ H
\
T that satisfies L(s, φ)L(s, φ̃) =

0 for some s ∈ S, see (5.5). As φ ∈ H
\
T implies φ̃ ∈ H

\
T (cf. §3.1 and (3.6)), it boils down

to count {φ ∈ H
\
T : L(s, φ) = 0 for some s ∈ S}. The zero density estimate, Theorem 6.2

below, implies

#
(
HT \HT (η)

)
≤
∑
φ∈H\

T

N(1− η, T η, φ)� T 9n2η

and (6.1) hence follows.

We devote the remains of this section to prove Theorems 6.2 following quite closely the

argument in [14, Sections 4-5], hence the proofs are sketchy as the details are available

in [14].

6.2. A large sieve inequality. We need the following auxiliary tool, which is a large

sieve inequality derived from the Rankin-Selberg L-functions.

Proposition 6.1. For any {a(m) : m ∈ Nn−1} ⊂ C and any numbers T, L ≥ 1, we

have ∑
φ∈H\

T

∣∣∣∣∣∣
∑

det y(m)≤L

a(m)Aφ(m)

∣∣∣∣∣∣
2

�ε T
ε(T d+

n(n−1)
2 L

1
n

+ε + L)
∑

det y(m)≤L

|a(m)|2

where the inner sum on the left side runs over m = (m1, · · · ,mn−1) and y(m) is defined

as y(m) := diag
(
y1y2 · · · yn−1 y1y2 · · · yn−2 · · · y1 1

)
. Note that d + n(n − 1)/2 =

n2 − 1.

Proof. By duality principle, we are led to the bilinear form

B :=
∑

bφ1bφ2I(φ1, φ2;L)

where the sum runs over φ1, φ2 ∈ H\, {bφ}H\ is any arbitrary set indexed by φ ∈ H\ with

‖µφ‖2 and

I(φ1, φ2;L) :=
1

2πi

∫
(2)

L(s, φ1 × φ̃2)

ζ(ns)
Γ(s)Ls ds.

As ‖µφ‖2 ≤ T , the Langlands parameters of φ are � T . Thus we infer with Proposi-

tion 4.1 that

L(s, φ1 × φ̃2)� (T + |τ |)
n2

2
(1−σ)+n2ε

where s = σ+ iτ satisfies −ε ≤ σ ≤ 1 + ε and |s− 1| ≥ ε. Shifting the line of integration

to <e s = 1/n + ε, the term from the pole at s = 1 is � T εL by (4.1), which appears

when φ1 = φ2, and the integral over the line <e s = 1/n + ε is � Tn(n−1)/2+εL1/n+ε.

Together with the bound #(H\
T )� T d (which implies

∑
|bφ1bφ2 | � T d

∑
|bφ|2), we infer

that
B� (T εL+ T d+n(n−1)/2+εL1/n+ε)

∑
|bφ|2.

�
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6.3. Zero density estimates. Let σ ≥ 1/2 and H ≥ 1 be any number. We are con-

cerned with the number of zeros ρ = β + iγ of L(s, φ) in the box σ ± iH, 1 ± iH, i.e.

N(σ,H, φ), for the family H
\
T .

Theorem 6.2. Let T,H ≥ 2 be any numbers. Define E = d + n(n + 3
2) + 2n(n + 1)ϑ

(see (7.6) for ϑ). Then for any ε > 0 and any 1
2 + ε ≤ α ≤ 1, we have∑

φ∈H\
T

N(α,H, φ)�ε Hk
E(1−α)/(3−2α)+ε

where k = max(T,H). The implied constant depends on n and ε only.

Now we are ready to prove Theorem 6.2, using Montgomery’s zero detection method.

Set

MX(s, φ) =
∑

m1,··· ,mn≥1

m1m
2
2···m

n
n≤X

A(m1, · · · ,mn−1)
µn(m1, · · · ,mn)

(m1m2
2 · · ·mn

n)s
(6.2)

where µn(m1, · · · ,mn) = |µ(m1 · · ·mn)|µ(m1)µ(m2)2 · · ·µ(mn)n. i.e. MX(s, φ) is an

initial section of L(s, φ)−1, cf. Remark 3.2 (1). Immediately it follows from |αφ,i(p)| ≤ pϑ

(see (7.6)) that for <e s ≥ 1/2,

MX(s, φ)� X1/2+ϑ+ε(6.3)

and from a� 1 + |a|2, (3.4) and (4.1) that for <e s = 1 + ε,

L(s, φ)−1 −MX(s, φ) �
∑

m1m2
2···mnn>X

|A(mn−1, · · · ,m1)|2 + 1

(mn−1
n−1 · · ·m1)1+εm

n(1+ε)
n

(6.4)

�ε X−ε/4(1 + |L(1 + ε, φ× φ̃)|)
� Tn

2εX−ε/4.

Take

x = Tn(n+1) and y =
(
T dkn/2x1+2ϑ

)1/(3−2α)

the values of which will be explained in the proof. (Recall k = max(T,H).) Let h ∈
[−H,H] and Box(h) be the rectangular box in C whose corners are α+i(h±1), 1+i(h±1).

The key ingredient of the zero detection is that if ρ = β+ iγ ∈ Box(h) is a zero of L(s, φ),

then a count of ρ will be reflected by the sum

kεy2(1−α)

∫ h+K

h−K

∣∣1− L(1 + ε+ iτ, φ)Mx(1 + ε+ iτ, φ)
∣∣2 dτ

+y1/2−α
∫ h+K

h−K

∣∣L(1
2 + iτ, φ)Mx(1

2 + iτ, φ)
∣∣ dτ

where K = log2 k. Using Lemma 4.2 and taking the multiplicity (at most O(kε)) into

account, we infer that

N(α,H, φ) � kεy1/2−α
∫ H

−H

∣∣L(1
2 + iτ, φ)Mx(1

2 + iτ, φ)
∣∣ dτ

+ k2εy2(1−α)

∫ H

−H

∣∣1− L(1 + ε+ iτ, φ)Mx(1 + ε+ iτ, φ)
∣∣2 dτ.
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The first integral is clearly� Hkn/4x1/2+ϑ by (6.3) and the convexity bound (cf. Propo-

sition 4.1). As 1 = L(s, φ)L(s, φ)−1 and L(1 + ε + iτ, φ) � knε, the second integral is

bounded above by

kε
∫ H

−H

∣∣L(1 + ε+ iτ, φ)−1 −Mx′(1 + ε+ iτ, φ)
∣∣2 dτ

+kε
∫ H

−H

∣∣Mx′(1 + ε+ iτ, φ)−Mx(1 + ε+ iτ, φ)
∣∣2 dτ

where x′ := k8n2/ε. With (6.2) and (6.4), we deduce that∑
φ∈H\

T

N(α,H, φ)

� T dy1/2−αHkn/4+εx1/2+ϑ

+kεy2(1−α)

∫ H

−H

∑
m≤x′1/n

1

mn

∑
µφ∈H\

T

∣∣∣∣ ∑
x/mn<det y(m)≤x′/mn

am,τ (m)Aφ(m)

∣∣∣∣2 dτ
where

am,τ (m) = |µ(mn−1 · · ·m1 ·m)|µ(mn−1)µ(mn−2)2 · · ·µ(m1)n−1

(mn−1 · · ·mn−1
1 )1+ε−iτ .

Note det y(m) = mn−1 · · ·mn−1
1 . Using the large sieve inequality (Proposition 6.1), the

integral
∫ H
−H is � H(Tx)ε(T d+n(n−1)/2x1/n−1 + 1)� H(Tx)ε which is the condition for

the choice of x. Thus∑
φ∈H\

T

N(α,H, φ)� kεH
(
y1/2−αT dkn/4x1/2+ϑ + y2(1−α))� kεHy2(1−α)

subject to our selection of y.

7. Consequences of Automorphic Plancherel density theorem for GL(n)

For computation we need the Schur polynomial sλ. Indeed we shall later see that the

Hecke eigenvalues are the Schur polynomials at the Satake parameters. As
∏n
i=1 αφ,i(p) =

1, we adopt the degenerate Schur polynomial Sk which is indexed as in Goldfeld’s book

[7].

7.1. The Schur polynomial and the Littlewood-Richardson rule. Let λ = (λ1, · · · , λn) ∈
Nn0 with λ1 ≥ · · · ≥ λn be a partition and k = (k1, · · · , kn−1) ∈ Nn−1

0 . Define

(7.1)

sλ(x1, · · · , xn) :=
det
(
xλi+n−ij

)
1≤i,j≤n

det
(
xn−ij

)
1≤i,j≤n

, Sk(x1, x2, · · · , xn) :=
det
(
x
∑n−i
l=1 (kl+1)

j

)
1≤i,j≤n

det
(
x
∑n−i
l=1 1

j

)
1≤i,j≤n

(where the bottom rows of the two matrices in Sk consist of 1’s). The Schur polynomials

are commonly referred to sλ, but clearly, sλ and Sk are related as follows:
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(I) Given k = (k1, · · · , kn−1) ∈ Nn−1
0 , and set ı(k) = (k1 + · · · + kn−1, k1 + · · · +

kn−2, · · · , k1, 0). Then Sk(x1, · · · , xn) = sλ(x1, · · · , xn) where λ = ı(k). Note

|λ| = ‖k‖, i.e.
∑
λi =

∑
(n− i)ki.

(II) Given λ = (λ1, · · · , λn) with λ1 ≥ · · · ≥ λn ≥ 0. Set (λ) = (λn−1−λn, · · · , λ1−λ2).

Then sλ(x1, · · · , xn) = (x1 · · ·xn)λnSk(x1, · · · , xn) if k = (λ). Note ‖k‖ = |λ| −
nλn.

Remark 7.1. (a) S0 = s0 = 1.

(b) ı is injective while the fibre of  is contained in λ+ Z · (1n).

(c) The collection of Schur polynomials sλ(x1, · · · , xn), λ1 ≥ · · · ≥ λn ≥ 0, form a basis

for the space C[x1, · · · , xn]Sn of symmetric polynomials in x1, · · · , xn (which is in fact

an algebra), see [22, I.3]. Thus if x1 · · ·xn = 1, then Sk, k ∈ Nn−1
0 , span C[x1, · · · , xn]Sn0

consisting of polynomials in C[x1, · · · , xn]Sn together with the constraint x1 · · ·xn = 1.

(In practice, we view C[x1, · · · , xn]Sn0 as the vector space SpanC
{∑

σ∈Sn x
λ1

σ(1) · · ·x
λn−1

σ(n−1) :

λ1 ≥ · · · ≥ λn−1 ≥ 0
}

.)

Lemma 7.1. (1) Define Sk(1, · · · , 1) by taking xi → 1. For any X ≥ 1 and k ∈
Nn−1

0 ,

max
|xi|≤X, ∀ i

|Sk(x1, · · · , xn)| ≤ X‖k‖Sk(1, · · · , 1) ≤ X‖k‖(1 + |k|)n2−n.

(2) (Littlewood-Richardson’s rule) Let k,k′ ∈ Nn−1
0 . Assume x1 · · ·xn = 1. Then

Sk · Sk′ =
∑
ξ

dξ
kk′
Sξ

where the sum is over ξ ∈ Nn−1
0 satisfying ‖ξ‖ ≤ ‖k‖+‖k′‖ and ‖ξ‖ ≡ ‖k‖+‖k′‖

mod n. The coefficients dξ
kk′

are nonnegative integers.

Recall |k| =
∑

i ki and ‖k‖ =
∑

i(n− i)ki for k = (k1, · · · , kn−1).

Proof. (1) By [5, (A.19)], we may express sλ =
∑

λKλµMµ where Kλµ ∈ N0 is the Kosta

number and Mµ =
∑

σ∈Sn x
µ1

σ(1) · · ·x
µn
σ(n). This implies

|sλ(x1, · · · , xn)| ≤ sλ(1, · · · , 1)

if |xi| ≤ 1, ∀ i. Now we take ui = xi/X, then by definition and the properties of

determinants, Sk(x1, · · · , xn) = X‖k‖Sk(u1, · · · , un) = X‖k‖sλ(u1, · · · , un) where λ =

ı(k) defined as in (I).

Next, from [5, Exercise A.30 (ii)]‡3, we have

Sk(1, · · · , 1) =
∏

1≤i<j≤n

kn−i + · · ·+ kn−j+1 + j − i
j − i

≤
∏

1≤i<j≤n

|k|+ j − i
j − i

≤ (1+|k|)n2−n.

(2) This follows from the Littlewood-Richardson rule for sλ, [5, p.456]:

(7.2) sλ · sν =
∑
µ

cµλνsµ

‡3 There is a typo in Part (i) of this exercise: The exponent k of x should be
∑k
j=1(j − 1)λj .



ABSOLUTE VALUES OF L-FUNCTIONS FOR GL(n,R) AT THE POINT 1 19

where cµλν ∈ N0 and the sum runs over partitions µ = (µ1, · · · , µn) with |µ| = |λ| + |ν|.
(We have confined to the case of n variables and λ, µ ∈ Nn0 .) Thus, let λ = ı(k) and

λ′ = ı(k′),

Sk · Sk′ =
∑
µ

cµλλ′sµ

where µ = (µ1, · · · , µn) satisfies |µ| = ‖k‖+‖k′‖. By (II), under the condition x1 · · ·xn =

1, sµ is reduced to Sξ (for the same ξ) whenever ξ = (µ). Note that |µ| = ‖ξ‖ + nµn,

which implies ‖ξ‖+ nµn = ‖k‖+ ‖k′‖. (Recall (1n) = (1, · · · , 1).) Then,

Sk · Sk′ =
∑
ξ

c
ı(ξ)+`·(1n)
λλ′ Sξ

(
` :=

1

n
(‖k‖+ ‖k′‖ − ‖ξ‖)

)
(7.3)

where the summation over ξ is constrainted as stated. Plainly dξ
k,k′
∈ N0. �

7.2. Weyl’s integration formulas for U(n) and SU(n). We are concerned with the

pushforward measure on the space of conjugacy classes.‡4

Case 1. Let U(n) be the group of n × n unitary matrices and U(n)] be the space

of conjugacy classes. Elements in U(n)] may be represented by (eiθ1 , · · · , eiθn) where

θ1, · · · , θn ∈ [0, 2π]. In fact, U(n)] ∼= S1n/Sn. A function f on U(n)] is (regarded as) a

class function on U(n), i.e. constant on each conjugacy class. Let p : U(n) → U(n)] be

the natural projection. Then∫
U(n)]

f =

∫
U(n)

f ◦ p =
1

n!(2π)n

∫
[0,2π]n

f(θ1, · · · , θn)
∏

1≤i<j≤n
|eiθi − eiθj |2 dθ1 · · · dθn,

cf. [27] for a detailed discussion. Any f ∈ C[eiθ1 , · · · , eiθn ]Sn is a function on S1n/Sn

and thus a function on U(n)]. The above measure on U(n)] induces an inner product

( , ) on C[eiθ1 , · · · , eiθn ]Sn . Let sλ(θ) = sλ(θ1, · · · , θn) be the restriction of the Schur

polynomial sλ on S1n, i.e. sλ(θ) = sλ(eiθ1 , · · · , eiθn). Then {sλ : λ1 ≥ · · · ≥ λn ≥ 0} is

an orthonormal basis for C[eiθ1 , · · · , eiθn ]Sn by Lemma 7.2 (b) below.

Lemma 7.2. Let α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ Zn. (a) We have

I(α, β) :=
1

n!(2π)n

∫
[0,2π]n

det
(
eiαiθj

)
det
(
e−iβiθj

)
dθ1 · · · dθn =

∑
σ∈Sn

(βσ(1),··· ,βσ(n))=(α1,··· ,αn)

sgn(σ).

(b) Moreover, suppose α1 > · · · > αn and β1 ≥ · · · ≥ βn (or vice versa). Then

I(α, β) = 1 if α = β, and 0 otherwise.

(c) The integral

J(α, β) :=

∫
[0,2π]n

det
(
ei(n−i+αj)θj

)
det
(
e−i(n−i+βi)θj

)
dθ1 · · · dθn

will vanish if there is no permutation σ, π ∈ Sn such that

(n− σ(1) + α1, · · · , n− σ(n) + αn) = (n− π(1) + βπ(1), · · · , n− π(n) + βπ(n)).

This condition will occur if |α| 6= |β|.
‡4 This measure for U(n)] is solely used in the proof of Lemma 8.1 (2).
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Proof. Using Laplace expansion for determinants, the integral becomes

1

n!(2π)n

∑
σ,π

sgn(σπ)

∫
[0,2π]n

ei(ασ(1)−βπ(1))θ1 · · · ei(ασ(n)−βπ(n))θn dθ1 · · · dθn

=
1

n!

∑
σ,π

(ασ(1),··· ,ασ(n))=(βπ(1),··· ,βπ(n))

sgn(σπ) =
1

n!

∑
π

∑
σ,π

(ασ(1),··· ,ασ(n))=(βπ(1),··· ,βπ(n))

sgn(σ)

which is equivalent to the result. Part (b) is obvious and Part (c) is proved similarly to

(a). �

Case 2. Consider the space of conjugacy classes in SU(n), denoted by SU(n)], which

is isomorphic to T0/Sn. Express t ∈ T0/Sn as t = (eiθ1 , · · · , eiθn) where θ1 + · · ·+θn = 0

with θi ∈ R. By the Weyl integration formula in [12, §VIII.5], the push-forward measure

on SU(n)] is∫
SU(n)]

f =
1

n!(2π)n−1

∫
[0,2π]n−1

f(θ1, · · · , θn)
∏

1≤i<j≤n
|eiθi − eiθj |2 dθ1 · · · dθn−1(7.4)

where
∑n

i=1 θi = 0. On T0/Sn, this measure is known as the Sato-Tate measure dµST.

Now we consider the restrictions of symmetric polynomials f ∈ C[x1, · · · , xn]Sn on

T0/Sn, the collection of which is denoted by C[eiθ1 , · · · , eiθn ]Sn0 . i.e., A function f ∈
C[eiθ1 , · · · , eiθn ]Sn0 is given by f(θ1, · · · , θn) = F (eiθ1 , · · · , eiθn) where F ∈ C[x1, · · · , xn]Sn0

(see Remark 7.1 (c)). We use the same notation sλ(θ) to denote the Schur polynomial

sλ on T0/Sn. Remark 7.1 explains that Sk(θ) := Sk(eiθ1 , · · · , eiθn), k ∈ Nn−1
0 , span

C[eiθ1 , · · · , eiθn ]Sn0 . Moreover they form an orthonormal basis with respect to the inner

product 〈 , 〉 induced from the measure on SU(n)]. This follows from Weyl’s theory on

the compact Lie group SU(n), cf. [12, (8.63a)-(8.63b)],

〈Sk,Sk′〉 =
1

n!(2π)n−1

∫
[0,2π]n−1

Sk(θ)Sk′(θ)
∏

1≤i<j≤n
|eiθi − eiθj |2 dθ1 · · · dθn−1

= δk=k′ .

7.3. Automorphic representations associated to Hecke-Maass cusp forms. We

follow the excellent exposition in [23]. Let G = GL(n), A be the ring of adeles of Q and

G(A)1 := {g ∈ G(A) : | det g|A = 1}. The set of irreducible unitary representations π in

the cuspidal part of L2(G(Q) \G(A)1) is denoted by Πcusp(G(A)1). A Hecke-Maass cusp

form φ ∈ H\ is uniquely associated to an unramified representation π in Πcusp(G(A)1)

and vice versa (for which one may see from the Strong Multiplicity One Theorem). Let

a = {(x1, · · · , xn) ∈ Rn :
∑
xi = 0} be the Lie algebra of the subgroup A ⊂ G(R)1 of

diagonal matrices with positive entries, and W be the Weyl group which is isomorphic to

the symmetric group Sn. The infinitesimal character of the archimedean component π∞
of π ∈ Πcusp(G(A)1) is parametrized by λπ ∈ a∗C/Sn, where a∗C is the complexification of

the dual a∗ of a.

Suppose π ∈ Πcusp(G(A)1) is associated to the Hecke-Maass cusp form φ whose Lang-

lands parameters are µφ,i, 1 ≤ i ≤ n. Then its infinitesimal character λπ ∈ a∗C/Sn

may be represented as µφ := (µφ,1, · · · , µφ,n) in a∗C. Let Aφ(m1, · · · ,mn−1) denote the
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normalized Fourier coefficient of φ (see §3.1). For each rational prime p, the Satake pa-

rameters αφ,i(p), 1 ≤ i ≤ n, are associated to the non-archimedean component πp via

Satake isomorphism, such that
∏n
i=1 αφ,i(p) = 1 and (cf. [37, Proposition 5.1] as well)

Aφ(pk1 , pk2 , · · · , pkn−1) = Sk(αφ,1(p), αφ,2(p), · · · , αφ,n(p))

where Sk ∈ C[x1, · · · , xn]Sn with k := (k1, · · · , kn−1) is the degenerate Schur polynomial,

see (7.1). The Satake parameter αφ(p) = (αφ,1(p), · · · , αφ,n(p)) is (viewed as) an element

in C×n/Sn and, moreover, satisfies the unitary condition (cf. [23, §13.1]), saying that

(7.5)
{
αφ,1(p), · · · , αφ,n(p)

}
=
{
αφ,1(p)−1, · · · , αφ,n(p)−1

}
(as multisets)

for all primes p, cf. Remark 3.2 (2).

The (unsettled) Generalized Ramanujan Conjecture asserts that µφ ∈ ia∗ and αφ(p) ∈
T0/Sn ⊂ S1n/Sn for all p, where S1 is the unit circle in C and T0 = {(t1, · · · , tn) ∈ S1n :∏
ti = 1}. The bound towards the conjecture due to [20, Theorem 1.2] is:

|<eµi(ν)| ≤ ϑ and |αφ,i(p)| ≤ pϑ(7.6)

where ϑ = 1/2− 1/(n2 + 1).

7.4. Matz-Templier’s Automorphic Plancherel Density Theorem. We parame-

trize t ∈ T0 by (eiθ1 , · · · , eiθn) where θn := −
∑n−1

i=1 θi. The Sato-Tate measure dµST

on T0/Sn is the measure given by the integration formula (7.4), see also [32] and [37,

Section 3]. In [23], Matz and Templier established an automorphic Plancherel density

theorem with error term for GL(n) – equidistribution law for αφ(p) with respect to the

Plancherel measure dµp on S1n/Sn. The measure dµp is supported on T0/Sn; moreover

from [21, Theorem (5.1.2) and p.52], the integration formula for dµp is

1

n!

n∏
i=2

1− p−i

1− p−1
·
∏

1≤i<j≤n

∣∣∣∣eiθi − p−1eiθj

eiθi − eiθj

∣∣∣∣−2

· 1

(2π)n−1
dθ1 · · · θn−1(7.7)

under the same parametrization. Thus, we get a relation between the two measures on

T0/Sn:

dµp =
n∏
i=2

(1− p−i) · det(I − ρAd(t)p−1)−1 dµST(7.8)

where det(I−ρAd(t)p−1)−1 = (1−p−1)
∏

1≤i,j≤n(1−p−1ei(θj−θi))−1‡5 if t is parameterized

as above by (eiθ1 , · · · , eiθn). The work in [23] yields the following vital tool Theorem

M-T for our study, which follows from [23, Theorem 1.3] and its proof.

Theorem M-T. (Matz-Templier) Let d = n(n + 1)/2 − 1, Ω ⊂ ia∗ be a W -invariant

domain with piecewise C2-boundary. For some constant A > 0, we have for any t ≥ 1,∑
φ∈H\
µφ∈tΩ

Aφ(m1, · · · ,mn−1) = ΛΩ(t)
∏
p

∫
S1n/Sn

Skp dµp +O((m1 · · ·mn−1)Atd−1/2)

where ΛΩ(t) � td as t→∞ (with the implied constants in � depending on n and Ω), and

for each prime p, the tuple kp = (k1, · · · , kn−1) is determined by pki‖mi, 1 ≤ i ≤ n− 1.

‡5See §8.1 for the notation det(I − ρAd(t)X).
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7.5. Application I: Average bounds toward the Ramanujan Conjecture. Amongst

many, a significant application of the Matz-Templier theorem is an estimate of the num-

ber of forms φ that fail the Ramanujan Conjecture at a fixed prime p, see [23, Corollary

1.6]. For our purpose, we have to peel off the factor ω/ log p in the exponent of the bound

in this corollary. Theorem 7.3 below, which remains non-trivial for very small %, is a re-

finement based on the argument in the proof of [23, Corollary 1.6] and new ingredients

arising from the computational aspects of Satake isomorphism and the Hall-Littlewood

polynomials.

Theorem 7.3. There are constants c, T0 > 0 (depending only on n) such that for any

prime p and any % > 0, the cardinality

#

{
φ ∈ HT : log max

1≤i≤n
|αφ,i(p)| > %

}
� T d−c%/log p

holds for all T ≥ T0, where the implied constant depends on n only.

Proof. Let h be a large integer (� log T ) whose value will be specified later. By [23,

Lemma 13.1], for 0 ≤ j ≤ n, the polynomials

ϕh,j(x1, · · · , xn) := 2j
∑
σ∈Sn

xhσ(1) · · ·x
h
σ(j) ∈ C[x1, · · · , xn]Sn

satisfies

max
0≤j≤n

|ϕh,j(α)| ≥ |α|h∞ := max
1≤i≤n

|αi|h

for all α = (α1, · · · , αn) ∈ Cn. Define ϕ∨h,j(x1, · · · , xn) := ϕh,j(x
−1
1 , · · · , x−1

n ). Now we

repeat the proof of Corollary 1.6 (Section 13.1) in [23] with

ϕh :=
n∑
j=0

ϕh,jϕ
∨
h,j .

Note that ϕh(α) ≥ |α|2h when α satisfies the unitary condition (7.5). Denote the cardi-

nality in Theorem 7.3 by N . Thus with [23, Theorem 1.1],

(7.9) e2h%N ≤
∑
φ∈HT

ϕ(αφ(p))�n T
d

∫
S1n/Sn

ϕhµp + T d−1/2‖τh‖AL1(GLn(Qp))

where the implied constant and A depend at most on n, and the function τh is a smooth

compactly support bi-K-invariant functions on GLn(Qp) with K = GLn(Zp) such that

τh corresponds to ϕh under the Satake correspondence. Our choice of ϕh is O(1) (inde-

pendent of h) on S1n, saving the exponential factor (eωk in [23]), and the trade-off is a

further analysis on ‖τh‖L1(GLn(Qp)).

To its end, we invoke the following facts: Let λ = (λ1, · · · , λn) ∈ Zn with λ1 ≥ · · · ≥
λn ≥ 0, and fλ be the characteristic function on the double coset Kdiag(pλ1 , · · · , pλn)K.

• The Satake isomorphism b sends fλ to

(7.10) b(fλ) = p〈ρ,λ〉Pλ(x1, · · · , xn; p−1) ∈ C[x1, · · · , xn]Sn

where ρ = 1
2(n− 1, n− 3, · · · , 1− n) and Pλ is the Hall-Littlewood polynomial corre-

sponding to λ. (cf. [28, Lemma 3.1].)



ABSOLUTE VALUES OF L-FUNCTIONS FOR GL(n,R) AT THE POINT 1 23

• The polynomials Pλ(x; ξ) = Pλ(x1, · · · , xn; ξ) are homogeneous (in x) of degree |λ| and

form a Z[ξ]-basis for the ring Λξ := Z[ξ][x1, · · · , xn]Sn , cf. [22, III (2.7)]. Moreover,

let Λkξ be the space of all homogeneous polynomials of degree k in Λξ, together with

the zero polynomial. Then Pλ(x; ξ), |λ| = k, form a basis for Λkξ because by [22, I

(3.2)-(3.3)], the Schur polynomials sλ, |λ| = k, form a Z-basis for Λk0 and by [22, III

p.209], Pλ =
∑

µ�λ
|µ|=|λ|

wλµ(ξ)sµ where wλµ(ξ) ∈ Z[ξ] and wλλ(ξ) = 1. The partition

ordering µ � λ means
∑

1≤i≤j µi ≤
∑

1≤i≤j λi for all j ≥ 1, see [22, I p.7].

• The Hall-Littlewood polynomials satisfy a sort of orthogonality with respect to the

measure ∆(x; ξ) dx on the torus S1n. Indeed, [33, Theorem 2] shows that for any two

partitions λ and µ,∫
S1n

Pλ(x1, · · · , xn; ξ)Pµ(x−1
1 , · · · , x−1

n ; ξ)∆(x, ξ) dx = δλ=µ
n!

vµ(ξ)

where under the parametrization, (x1, · · · , xn) = (eiθ1 , · · · , eiθn) with (θ1, · · · , θn) ∈
[0, 2π]n, the measure is given by

∆(x, ξ) dx :=
∏

1≤i 6=j≤n

xj − xi
xj − ξxi

dx =
1

(2π)n

∏
1≤i 6=j≤n

eiθj − eiθi
eiθj − ξeiθi

dθ1 · · · dθn,

δλ=µ is the Kronecker delta and the function vµ fulfills 1 ≤ vµ(ξ) ≤ (1 + ξ)n for all

0 ≤ ξ ≤ 1
2 .

• By [10, Proposition 7.4] and [22, V (p.297-298)], the norm ‖fλ‖L1(GLn(Qp)) of the

characteristic function fλ equals the number of K-cosets in Kdiag(pλ1 , · · · , pλn)K,

denoted by deg fλ, and

(7.11) deg fλ =
p2〈ρ,λ〉

vλ(p−1)

n∏
i=1

1− p−i

1− p−1
� p2〈ρ,λ〉.

We are now ready to evaluate ‖τh‖ where the subscript L1(GLn(Qp)) is suppressed for

simplicity. Suppose τh,j (resp. τ∨h,j) corresponds to ϕh,j (resp. ϕ∨h,j) under the Satake

isomorphism. Then, τh =
∑

0≤j≤n τh,j ∗ τ∨h,j and

(7.12) ‖τh‖ ≤
n∑
j=0

‖τh,j‖‖τ∨h,j‖

because the Satake isomorphism sends convolutions to products (i.e. b(f ∗ g) = b(f)b(g))

and ‖f ∗ g‖ ≤ ‖f‖‖g‖.

In view of [22, III (2.8) & I (2.2)], the polynomial ϕh,j = 2jj!
∑

1≤i1<···<ij≤n x
h
i1
· · ·xhij ∈

Λjh1/p may be written as (noting (1j) = (1, · · · , 1) is a j-tuple)

ϕh,j = 2jj!P(1j)(x
h
1 , · · · , xhn; p−1) =

∑
µ

aµPµ(x1, · · · , xn; p−1)

where the sum is restricted by |µ| := µ1 + · · ·+ µn = jh and

aµ =
2jj!

n!
vµ(p−1)

∫
S1n

ϕh,j(x1, · · · , xn)Pµ(x−1
1 , · · · , x−1

n ; p−1)∆(x, p−1) dx�n 1
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uniformly for all primes p ≥ 2 and integers h ≥ 1. Here we have used, by [22, III (2.1)],

|Pλ(x; p−1)| ≤ 1

vλ(p−1)

∑
σ∈Sn

∏
i<j

∣∣∣∣xσ(i) − p−1xσ(j)

xσ(i) − xσ(j)

∣∣∣∣ (x ∈ S1n).

This follows that τh,j =
∑
|µ|=jh aµp

−〈ρ,µ〉fµ by (7.10) and thus, with (7.11), for some

positive constant c (depending on n only),

‖τh,j‖ ≤
∑
|µ|=jh

p−〈ρ,µ〉|aµ|‖fµ‖ �n

∑
|µ|=jh

p〈ρ,µ〉 � hnpch.(7.13)

From [22, V (p.297 & 295)], we see that p−n(n−1)/2x1 · · ·xn corresponds to the char-

acteristic function f(1n) under the Satake isomorphism and fλ ∗ f(rn) = fλ+(rn) for any λ

and any integer r. As ϕ∨h,j = 22j−n(x1 · · ·xn)−hϕh,n−j , we infer that

τ∨h,j = 22j−nτh,n−j ∗
(
f((−1)n)

∗h) = 22j−n
∑

|µ|=(n−j)h

a′µp
−〈ρ,µ〉fµ ∗

(
f((−1)n)

∗h)
where a′µ � 1. Note ‖f ∗ g‖ = ‖f‖‖g‖ for characteristic functions f and g (in fact,

‖f‖ = µ(f) in [22, p.297] if f is a characteristic function). Thus ‖fµ ∗
(
f((−1)n)

∗h)‖ =

‖fµ‖/‖f(1n)‖h and consequently, ‖τ∨h,j‖ � hnpch as well.

Set h =
[
δ0

log T
log p

]
+ 1 for some suitable small constant δ0 > 0 so ‖τh‖ ≤ T 1/(4A) in view

of (7.12) and (7.13). Theorem 7.3 follows readily from (7.9). �

7.6. Integration of Schur polynomials with respect to Plancherel measures.

The Schur polynomials are orthogonal to each other with respect to dµST. In the scenario

of Plancherel measure, we retrieve with Cauchy’s identity and (7.8): dµp = cp det(I −
ρAd(t)p−1)−1 dµST on T0/Sn where cp =

∏n
i=2(1 − p−i) and det(I − ρAd(t)p−1)−1 =

(1− p−1)
∏

1≤i,j≤n(1− p−1ei(θj−θi))−1. The results will be applied in later sections.

Proposition 7.4. Let k ∈ Nn−1
0 . (1) If ‖k‖ 6≡ 0 mod n, then

∫
T0/Sn

Sk dµp = 0.

Otherwise, we have∫
T0/Sn

Sk dµp =

n−1∏
i=1

(1− p−i) ·
∑

η∈Nn−1
0

dηkη · p
−‖η‖

where dηkη = c
µ+`·(1n)
λµ with λ = ı(k), µ = ı(η), and ` = ‖k‖/n. (See (7.2) for cνλµ.) The

summation over η is supported on |η| ≥ ‖k‖/n, see Remark 7.2 (3).

(2) Moreover, if ‖k‖ 6≡ ‖k′‖ mod n where k′ ∈ Nn−1
0 , then

∫
T0/Sn

SkSk′ dµp = 0.

Proof. (1) By Cauchy’s identity in [7, p.233], we have

det(I − ρAd(θ)p−1)−1 =
1− p−1

1− p−n
∑

η∈Nn−1
0

Sη(θ)Sη(θ)p−‖η‖.
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Let c′p = cp(1− p−1)/(1− p−n) =
∏n−1
j=1 (1− p−j). Thus∫

T0/Sn

Sk dµp = c′p
∑

η∈Nn−1
0

p−‖η‖
∫
T0/Sn

SkSηSη dµST

Applying Lemma 7.1 (2) to SkSη and the orthogonality, the integral is expressed into∑
ξ

dξkη

∫
T0/Sn

SξSη dµST = dηkη

where ‖η‖ ≡ ‖k‖+ ‖η‖ mod n in light of the constraint in the summation over ξ. This

is void if n - ‖k‖, hence the result follows. Write µ = ı(η). Indeed by (7.3), we have

dηkη = c
µ+`·(1n)
λµ where λ = ı(k), µ = ı(η) and ` = ‖k‖/n. The second assertion follows

plainly.

(2) Write k′′ = (k′n−1, · · · , k′1) for k′ = (k′1, · · · , k′n−1), and observe

S(k1,··· ,kn−1)(x1, · · · , xn) = (x1 · · ·xn)
∑
i kiS(kn−1,··· ,k1)(x

−1
1 , · · · , x−1

n ).(7.14)

Applying the Littlewood-Richardson rule for Sk (i.e. Lemma 7.1 (2)) to SkSk′′ = SkSk′

on T0, we have ∫
T0/Sn

SkSk′ dµp =
∑
ξ

dξ
kk′′

∫
T0/Sn

Sξ dµp.

Each ξ is required to satisfy ‖ξ‖ ≡ ‖k‖+ ‖k′′‖ ≡ ‖k‖ − ‖k′‖ mod n (by Lemma 7.1 and

‖k′′‖ = n|k′| − ‖k′‖). Part (1) imposes the condition n|‖ξ‖ for non-vanishing integrals

on the right-side. This implies ‖k‖ ≡ ‖k′‖ mod n. �

Remark 7.2. (1) For the case S0 = 1 one sees readily µp(T0/Sn) = 1, for
∑
η∈Nn−1

0
p−‖η‖ =∏n−1

j=1 (1− p−j)−1.

(2) For k = (k, 0n−3, k) and η = (0n−2, η) in Nn−1
0 where η ≥ k, we take correspond-

ingly λ = (2k, k, · · · , k, 0), µ = (η, 0n−1) and (` = k so) ν := µ+`·(1n) = (k+η, k, · · · , k);

the skew diagram µ\λ is a horizontal strip and dηkη = c
(k+η,k,··· ,k)
(2k,k,··· ,k,0)(η,0n−1) = 1 by the (third)

Pieri formula (cf. [5, (A.7)] or [2, Pieri’s formula]). For such k’s,
∫
T0/Sn

Sk dµp > 0 which

provides non-vanishing examples in addition to Corollary 7.7 below.

(3) The choice of η ≥ k in Part (2) underlies a somewhat sophisticated condition of

Horn’s inequalities, that is, the inequalities (∗IJK) in [6]. We refer to Fulton [6], partic-

ularly Theorem 11, for details. Indeed, specialized to r = 1 (amongst all inequalities)

in [6, Theorem 11 (p.222)] (noting Tn1 = Un1 ), one infers that cνλµ = 0 if νk > λi + µj

for some i + j = k + 1. Now, associated to k and η, we set λ = ı(k), µ = ı(η) and

ν = µ + ` · (1n). If νn > λn + µ1 (i.e. ` > |η|), then dηkη = cνλµ = 0. Indeed one may

deduce more conditions from other i, j, k.

7.7. An asymptotic unweighted trace formula of Petersson type. The Casselman-

Shalika formula Aφ(pk1 , · · · , pkn−1) = Sk(αφ(p)) holds in general even if αφ(p) ∈ C×n

does not belong to S1n. (Still
∏
i αφ,i(p) = 1.) Suppose |αφ,i(p)| ≤ pϑ, ∀ i. Set

θφ(p) := (θφ,1(p), · · · , θφ,n(p)) ∈ Cn such that αφ,i(p) = eiθφ,i(p), ∀ p. Apparently from
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Lemma 7.1,

|Aφ(pk1 , · · · , pkn−1)| = |Sk(θφ(p))| = |Sk(αφ(p))| ≤ pϑ‖k‖Sk(1, · · · , 1).(7.15)

Moreover the product of two coefficients may be described with the Littlewood-Richardson

rule, and as outlined in [23], one obtains the following (unweighted trace formula) result.

Define Λ(t) := ΛB(t) in Theorem M-T with Ω equal to the unit ball B ⊂ ia∗.

Proposition 7.5. Let m1, · · · ,mn−1,m
′
1, · · · ,m′n−1 ∈ N. For each prime p, the tuple

kp = (kp,1, · · · , kp,n−1) with pkp,j‖mj is associated to (m1, · · · ,mn−1) and similarly k′p is

associated to (m′1, · · · ,m′n−1). Then there is a constant L > 0 such that for any T ≥ 1,∑
φ∈HT

Aφ(m1, · · · ,mn−1)Aφ(m′1, · · · ,m′n−1)

= Λ(T )
∏
p

∫
S1n/Sn

SkpSk′p dµp +O(T d−1/2(mm′)L)

where Λ(T ) � T d (d = 1
2n(n+ 1)− 1), m =

∏n−1
i=1 mi and m′ =

∏n−1
i=1 m

′
i.

If (m1m
′
n−1)n−1 · · · (mn−1m

′
1) 6= hn for any h ∈ N, then the main term will vanish.

Remark 7.3. We may reformulate the unweighted trace formula into∑
φ∈HT

∏
p

Skp(αφ(p))Sk′p(αφ(p)) = Λ(T )
∏
p

∫
S1n/Sn

SkpSk′p dµp +O(T d−1/2(mm′)L).

Proof. As Aφ(m′1, · · · ,m′n−1) = Aφ(m′n−1, · · · ,m′1), we write k′′ = (k′n−1, · · · , k′1) for

k′ = (k′1, · · · , k′n−1). Assume mm′ has ω distinct prime factors, so mm′
∣∣∏ω

j=1 p
∞
j . Then

Aφ(m1, · · · ,mn−1)Aφ(m′1, · · · ,m′n−1) =

ω∏
j=1

Skj (αφ(pj))Sk′′j (αφ(pj)).(7.16)

Here we write kj for kp, etc, when p = pj . With the Littlewood-Richardson rule, the

left-side of (7.16) equals ∑
ξ1,··· ,ξω

ω∏
j=1

d
ξj
kjk
′′
j
·
ω∏
j=1

Sξj (αφ(pj)).

Summing over φ and invoking Theorem M-T, we get∑
φ∈H

‖µφ‖2≤T

Aφ(m1, · · · ,mn−1)Aφ(m′1, · · · ,m′n−1) = [Main] + [Error]

where (noting dξ
kk′
≥ 0)

[Main] = Λ(T )
∑

ξ1,··· ,ξω

ω∏
j=1

d
ξj
kjk
′′
j
·
ω∏
j=1

∫
S1n/Sn

Sξj dµj ,

[Error] � T d−1/2
∑

ξ1,··· ,ξω

ω∏
j=1

d
ξj
kjk
′′
j
·
( ω∏
j=1

p
|ξj |
j

)A
.
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Interchanging the summation and integration, the sum over ξj ’s in [Main] is restored

with the Littlewood-Richardson rule to
ω∏
j=1

SkjSk′′j =

ω∏
j=1

SkjSk′j

by (7.14) and that the variables all lie on S1n. By Proposition 7.4 (2), the main term will

vanish if ‖kj‖ 6≡ ‖k′j‖mod n for some j, which is equivalent to (m1m
′
n−1)n−1 · · · (mn−1m

′
1)

is not an nth power.

The product of prime powers in [Error] is� (mm′)n−1 as |ξj | ≤ ‖ξj‖ ≤ ‖kj‖+‖k′j‖ ≤
(n− 1)(|kj |+ |k′j |). Also dξ

kk′′
≤ (dξ

kk′′
)2, and∑

ξ
dξ
kk′

2 = (SkSk′ ,SkSk′)

≤ Sk(1, · · · , 1)Sk′(1, · · · , 1)(Sk,Sk)1/2(Sk′ , Sk′)
1/2

≤
(
(1 + |k|)(1 + |k′|)

)n2−n

by Lemma 7.1 (1). Observing τ(m) =
∏ω
j=1(1 + |kj |), we deduce that

[Error]� T d−1/2(mm′)A(n−1)
(
τ(m)τ(m′)

)n2−n

and hence the result. �

7.8. Application II: Generalization of a case of Pieri’s formula. ‡6 The value

of Littlewood-Richardson coefficient cνλµ in (7.2) is mysterious, Pieri’s formula describes

explicitly the cases of λ (or µ) equal to (m) or (1m), 1 ≤ m ≤ n. The next lemma is

a realization of the multiplicativity of the Fourier coefficients as a case of Littlewood-

Richardson rule. Consequently a (probably new) formula for λ = (αn−1) is derived in

Corollary 7.8 below, which reduces to a case of Pieri’s formula for the Schur polynomials

in n variables when α = 1.

Lemma 7.6. Assume x1 · · ·xn = 1. For any α ∈ N and any k ∈ Nn−1
0 , we have

S(α,0n−2)Sk =
∑

ξ∈Vα(k)

Sξ

where Vα(k) := k+{(`n− `1, `1− `2, · · · , `n−2− `n−1) :
∑n

i=1 `i = α, 0 ≤ `i ≤ ki, ∀ 1 ≤
i < n}. (Note ‖ξ‖ = ‖k‖+ n`n − α for ξ ∈ Vα(k).)

Proof. Let h = (α, 0n−2) ∈ Nn−1
0 . In view of Lemma 7.1 (2), it remains to show

dξhk = 1 for ξ ∈ V := Vα(k), or 0 otherwise. The value of dξhk equals
∫
ShSkSξ dµST.

Note Aφ(pα, 1 · · · , 1) = Sh(θφ(p)) and Aφ(pη1 , · · · , pηn−1) = Sη(θφ(p)) for any η =

(η1, · · · , ηn−1) ∈ Nn−1
0 . Thus, the Hecke multiplicative relation (3.3) gives

Sh(θφ(p))Sk(θφ(p)) =
∑
η∈V

Sη(θφ(p)).(7.17)

‡6The content of this section will not be applied in other sections.
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Consider

MT :=
∑
φ∈HT

Sh(θφ(p))Sk(θφ(p))Sξ(θφ(p)) det(I − ρAd(θφ(p))p−1).(7.18)

By Theorem M-T and (7.8), we see that

MT −−−−→
T→∞

cp

∫
T0/Sn

ShSkSξ dµST = cpd
ξ
hk

where cp =
∏n
i=2(1 − p−i). Next, we replace ShSk in (7.18) with (7.17) to get the limit

value cpδξ∈V where δξ∈V = 1 if ξ ∈ V, or 0 otherwise. The proof is done. �

Corollary 7.7. Let m ∈ N and T be sufficiently large. Then

Λ(T )−1
∑
φ∈HT

Aφ(m, 1, · · · , 1) =
1

m(n−1)/2
1
n

(m) +O(T−1/2mA)

where 1
n

(m) = 1 if m = hn for some h ∈ N and 0 otherwise.

Proof. Following from Theorem M-T and Proposition 7.4 (1), it remains to evaluate∏
p`‖m

c′p
∑

η∈Nn−1
0

dη(`,0n−2)η · p
−‖η‖

where c′p =
∏n−1
i=1 (1− p−i). By Lemma 7.6, η ∈ V`(η) if and only if n|` and ηi ≥ `/n for

all i. Thus the sum over η gives p−`(n−1)/2c′p
−1
1
n

(p`) and hence the result. �

Corollary 7.8. For any (αn−1) := (α, · · · , α) ∈ Nn−1 and partition λ = (λ1, · · · , λn),

we have

s(αn−1)(x1, · · · , xn) · sλ(x1, · · · , xn) =
∑
ν∈U

sν(x1, · · · , xn)

where U = λ+ (αn)−{(l1, · · · , ln) :
∑n

j=1 lj = α, 0 ≤ lj ≤ λj − λj+1, ∀ 1 ≤ j ≤ n− 1}.
(Note: s(αn−1) = s(αn−1,0).)

Proof. By the Littlewood-Richardson rule, s(α,··· ,α)sλ =
∑

ν cνsν where |ν| = |λ| + (n −
1)α. Impose the extra condition x1 · · ·xn = 1. As (αn−1, 0) = (α, 0n−2), we have

s(αn−1) = S(α,0n−2) and sλ = Sk if k = (λ). Set ξ = (ν). From Lemma 7.6 we infer that

cν is either 0 or 1. Moreover, ν ∈ U if and only if |ν| = |λ|+ (n− 1)α and ξ ∈ Vα(k), i.e.
νn−1 − νn = λn−1 − λn + `n − `1

νn−2 − νn−1 = λn−2 − λn−1 + `1 − `2
...

ν1 − ν2 = λ1 − λ2 + `n−2 − `n−1

⇔


ν1 − νn = λ1 − λn + `n − `n−1

ν2 − νn = λ2 − λn + `n − `n−2
...

νn−1 − νn = λn−1 − λn + `n − `1
where (λn−1−λn, λn−2−λn−1, · · · , λ1−λ2) + (`n− `1, `1− `2, · · · , `n−2− `n−1) ∈ Vα(k).

Given the linear system, the condition |ν| = |λ|+(n−1)α is equivalent to νn = λn+α−`n.

Equivalently, ν = λ + (α, · · · , α) − (l1, · · · , ln) for some (l1, · · · , ln) satisfying
∑
lj = α

and lj ≤ kn−j (1 ≤ j ≤ n− 1). Plainly this ends the proof. �

Remark 7.4. When α = 1, it is a case of Pieri’s formula asserting that s(1n−1)sλ =
∑

π sπ

where the sum is over all partitions π whose Young diagram can be obtained from that

of λ by adding n− 1 boxes with no two in any row. (cf. [5, p.462] or [2].) The formula in
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Corollary 7.8 may be phrased as: The sum is over all partitions ν whose Young diagram

is obtained by deleting r ≤ α boxes from the (horizontal) excessive boxes, then adding

α boxes to each non-bottom row and adding r boxes to the bottom row. For example,

consider s(4,4,4)(x1, x2, x3, x4)s(6,4,3,1)(x1, x2, x3, x4). Figure 1 is the Young diagram of

(6, 4, 3, 1) where the excessive boxes are shaded. Figure 2 shows a deletion of 3 excessive

boxes (one from rows 1,2,3 respectively). Figure 3 is the Young diagram after adding

4 boxes to each non-bottom row and 3 boxes in the bottom row. The partition ν is

(9, 7, 6, 4).

Figure 1 Figure 2 Figure 3

8. A probabilistic model for L(s, φ)

We have seen that the Satake parameters of φ in the family H follow an equidistribution

law given by the Plancherel measures. Now we consider the probabilistic models for L-

functions and study the expectation of the complex moments, which is an initial step to

understand the value distribution of {L(1, φ)}φ∈H, cf. [9, 4, 30, 14].

8.1. The characteristic polynomials of representations on SU(n). For a repre-

sentation ρ on SU(n), its characteristic polynomial det(I − ρ(g)X) with indeterminate

X (g ∈ SU(n)) is a class function and hence descends to a function on T0/Sn. Let

eiθ1 , · · · , eiθn be the eigenvalues of g. The characteristic polynomial is abbreviated as

det(I − ρ(θ)X) where θ = (θ1, · · · , θn).

Let ρSt be the standard representation of SU(n) on Cn, and ρ̌St denote the contra-

gredient representation of ρSt. We have the decomposition ρSt ⊗ ρ̌St
∼= id⊕ ρAd and the

following characteristic polynomials:

det(I − ρSt(θ)X) =
∏n
i=1(1− eiθiX),

det(I − ρ̌St(θ)X) = det(I − tρSt(θ)
−1X) = det(I − ρSt(−θ)X),

det(I − ρSt ⊗ ρ̌St(θ)X) =
∏

1≤i,j≤n(1− ei(θi−θj)X)

= (1−X)n
∏

1≤i<j≤n |1− ei(θi−θj)X|2 (if X ∈ R),

det(I − ρAd(θ)X) = det(I − ρSt ⊗ ρ̌St(θ)X)/(1−X).

8.2. The complex moments of a characteristic polynomial. The characteristic

polynomial det(I − ρSt(θ)X) may be regarded as the characteristic polynomial of the

standard representation of U(n) on Cn together with the condition
∑

i θi = 0. We shall

study the power series expansion of its complex moments with the analysis on U(n)].
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Define for z ∈ C,

det(I − ρSt(θ)X)−z =:
∑
`≥0

λz,`(θ)X` for |X| < 1.(8.1)

In fact, as det(I − ρSt(θ)X)−z =
∏n
i=1(1 − eiθiX)−z, we obtain by binomial expansion

that

λz,`(θ) =
∑
`∈Nn0
|`|=`

∏
1≤j≤n

C(z, `j)e
i(`1θ1+···+`nθn)(8.2)

where C(x, r) is the rth coefficient in the binomial expansion of (1−X)−x, i.e. C(x, 0) = 1

and for r ≥ 1,

C(x, r) =

(
x+ r − 1

r

)
=

1

r!

r−1∏
j=0

(x+ j).

Clearly λz,`(θ) ∈ C[eiθ1 , · · · , eiθn ]Sn , so with (II) in §7.1,

λz,`(θ) =
∑
ν

µz,`ν sν(θ) =
∑
k

Sk(θ)
∑

ν: j(ν)=k

µz,`ν eiνn
∑n
i=1 θi

where µz,`ν ∈ C and ν = (ν1, · · · , νn). Write µz,`k =
∑

ν: (ν)=k µ
z,`
ν . When

∑
θi = 0,

λz,`(θ) =
∑
k

µz,`k Sk(θ)(8.3)

lies in C[eiθ1 , · · · , eiθn ]Sn0 . Since {Sk} is an orthonormal basis for C[eiθ1 , · · · , eiθn ]Sn0 , we

have µz,`k = 〈λz,`, Sk〉.

Lemma 8.1. (1) µz,1k = z and λz,1(θ) = zS(0,··· ,0,1)(θ).

(2) µz,`k = 0 if ‖k‖ > ` or ‖k‖ 6≡ ` mod n.

(3)
∑
k |µ

z,`
k |

2 ≤ maxθ |λz,`(θ)|2 ≤ C(n|z|, `)2.

Proof. (1) When ` = 1, we have λz,1(θ) = z
∑

1≤i≤n e
iθi = zS(0n−2,1)(θ) (which may be

seen from the definition with a little calculation).

(2) As µz,`ν = (λz,`, sν), we obtain that

µz,`ν =
1

n!(2π)n

∑
`∈Nn0
|`|=`

∏
1≤j≤n

C(z, `j)

×
∫

[0,2π]n
ei(`1θ1+···+`nθn) det

(
e−i(νi+n−i)θj

) ∏
1≤i<j≤n

(eiθi − eiθj ) dθ1 · · · dθn.

The last integral equals∫
[0,2π]n

det
(
ei(n−i+`j)θj

)
det
(
e−i(νi+n−i)θj

)
dθ1 · · · dθn,

i.e. J(`1, · · · , `n, ν1, · · · , νn) in Lemma 7.2, that will vanish if
∑
`j 6=

∑
νi. Thus µz,`ν 6= 0

implies |ν| = `, consequently µz,`k 6= 0 implies ‖k‖ = `− nνn for some νn ≥ 0 (see (II)).
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(3) This follows from
∑
k |µ

z,`
k |

2 = 〈λz,`, λz,`〉 ≤ maxθ |λz,`(θ)|2; clearly

max
θ
|λz,`(θ)| ≤

∑
`∈Nn0
|`|=`

∏
1≤j≤n

C(|z|, `j) ≤ C(n|z|, `)

by the analogous inequality in the proof of [14, Lemma 6.1 (p.461)]. �

8.3. The expectation L-function E[L(s, ρSt)
zL(s, ρ̌St)

z]. For a prime p, we define

Lp(s, ρSt) = det(I − ρSt(θp)p
−s)−1

where θp denotes a random vector distributed on T0/Sn according to the Plancherel

measure dµp. Also we assume the random vectors {θp}p are independent. Introduce

(8.4) L(s, ρSt) =
∏
p

Lp(s, ρSt)

to model L(s, φ), and in fact, for <e s� 1, L(s, φ) = L(s, ρSt)|θp=θφ(p),∀ p where θφ(p) =

(θφ,1(p), · · · , θφ,n(p)) is the tuple associated to Satake parameters, cf. §7.7. We also

consider L(s, ρ̌St)
z. Recall that det(I − ρ̌St(θ)X) = det(I − ρSt(−θ)X) when θ ∈ Rn. We

define

λz(m) :=
∏
p`‖m

λz,`(θ) and λ̌z(m) :=
∏
p`‖m

λz,`(−θ)

where the product runs over all primes (with ` = 0 for all but finitely many `’s), thus

L(s, ρSt)
z =

∑
m≥1

λz(m)m−s and L(s, ρ̌St)
z =

∑
m≥1

λ̌z(m)m−s

for <e s� 1.

For <e s� 1, we have (the expectation L-function)

E[L(s, ρSt)
zL(s, ρ̌St)

z]

=
∏
p

E[Lp(s, ρSt)
zLp(s, ρ̌St)

z]

=
∏
p

∫
T0/Sn

det(I − ρSt(θ)p
−s)−z det(I − ρ̌St(θ)p

−s)−z dµp,(8.5)

so for real s � 1, E[|Lp(s, ρSt)|2z] =
∫
T0/Sn

|det(I − ρSt(θ)p
−s)|−2z dµp. Here and in

the sequel, we express a function f(t) on T0/Sn as f(θ) = f(eiθ1 , · · · , eiθn) to apply the

integration formula for dµp, and for simplicity, we abuse the notation so that
∫
T0/Sn

f(θ)

means
∫
T0/Sn

f(t).

Let ∗ be the Dirichlet convolution. Then

E[λz ∗ λ̌z(m)] =
∑
m=ab

E[λz(a)λ̌z(b)]

where

E[λz(a)λ̌z(b)] =
∏
p`‖a
p`
′ ‖b

∫
T0/Sn

λz,`(θ)λz,`
′
(−θ) dµp.
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By (8.1), it follows

(8.6) E[L(s, ρSt)
zL(s, ρ̌St)

z] =
∑
m≥1

E[λz ∗ λ̌z(m)]m−s =
∏
p

∑
`≥0

E[λz ∗ λ̌z(p`)]p−`s

(for <e s� 1), but in fact this series is absolutely convergent in <e s > 1/2 because the

product in (8.6) is
∏
p(1 +O(p−2σ)) by Lemma 8.2 below.

Lemma 8.2. Let z ∈ C. (1) The multiplicative function E[λz ∗ λ̌z(m)] is supported on

squarefull numbers, i.e. E[λz ∗ λ̌z(p)] = 0 for all primes p.

(2) For all primes p, |E[λz(pu)λ̌z(pv)]| ≤ C(n|z|, u)C(n|z|, v) and for σ > 0,

|E[Lp(s, ρSt)
zLp(s, ρ̌St)

z]| ≤
∑
`≥0

∣∣E[λz ∗ λ̌z(p`)]
∣∣p−`σ ≤ (1− 1

pσ

)−2n|z|
− 2n|z|

pσ

which is � exp((n|z|)2p−2σ) if pσ > 2n|z|.

(3) For any ε > 0, there is a constant c = cn,ε > 0 such that∣∣E[L(s, ρSt)
zL(s, ρ̌St)

z]
∣∣ ≤ ∑

m≥1

∣∣E[λz ∗ λ̌z(m)]
∣∣m−σ

≤ exp

{
cz′
(

log2 z
′ +

z′(1−σ)/σ − 1

(1− σ) log z′

)}
holds uniformly for σ ∈ [1

2 + ε, 1] and z ∈ C, where z′ = 2n|z|+ 3.

Proof. (1) By (8.1), we have∑
`≥0

E[λz ∗ λ̌z(p`)]p−`s

=

∫
T0/Sn

det(I − ρSt(θ)p
−s)−z det(I − ρSt(−θ)p−s)−z dµp

=

∫
T0/Sn

∑
`≥0

λz,`(θ)p−`s ·
∑
`≥0

λz,`(−θ)p−`s dµp

= 1 +
2

ps

∫
T0/Sn

λz,1(θ) dµp +
∑
`≥2

1

p`s

∑
u+v=`

∫
T0/Sn

λz,u(θ)λz,v(θ) dµp.

By Lemma 8.1 (1) and Proposition 7.4, it is seen that

E[λz ∗ λ̌z(p)] = 2

∫
T0/Sn

λz,1(θ) dµp = 0.

(2) Similarly, with (8.3) and Lemma 8.1 (3), we obtain∣∣E[λz(pu)λ̌z(pv)]
∣∣ =

∣∣∣∣ ∫
T0/Sn

λz,u(θ)λz,v(θ) dµp

∣∣∣∣ ≤ C(n|z|, u)C(n|z|, v).

Together with (1) and
∣∣E[λz ∗ λ̌z(p`)] ≤

∑
u+v=`

∣∣E[λz(pu)λ̌z(pv)]
∣∣, we are led to evaluate

1 +
∑
`≥2

1

p`σ

∑
u+v=`

C(n|z|, u)C(n|z|, v) =

(
1 +

∑
u≥1

1

puσ
C(n|z|, u)

)2

− 2C(n|z|, 1)p−σ

for σ > 0. The right-side equals (1− p−σ)−2n|z| − 2n|z|p−σ.

(3) This follows from the proof of [14, Lemma 6.4]. �
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Remark 8.1. Since

λz(m) =
∏
p`‖m

∑
k

µz,`k Sk(θ) and λ̌z(m′) =
∏
p`′‖m′

∑
k

µz,`k Sk(θ),

we may express

E[λz(m)λ̌z(m′)] =
∏
p`‖m
p`
′ ‖m′

∑
k

∑
k′

µz,`k µz,`
′

k′

∫
T0/Sn

SkSk′ dµp.

8.4. An asymptotic result for E[|L(1, ρSt)|2r].

Proposition 8.3. Let r > 3 be any real number. We have

logE[|L(1, ρSt)|±2r] = 2A±n r log
(
B±n log(2A±n r)

)
+

2A±n r

log(2A±n r)

{
C±n − 1 +

D±n
log(2A±n r)

+O

(
1

log2 r

)}
where A±n , B

±
n , C

±
n , D

±
n are constants, and the values of A±n and B±n are same as in

Lemma 5.3, so A+
n = n, A−n = n or n cos(π/n).

Remark 8.2. The distribution function (2.1) in Remark 2.2 follows from the argument in

[13] and the refinement in [36, Section 7] (comparing our formula and [36, Lemma 7.2]).

Proof. Recalling Section 5.2, we have denoted g(θ) =
∑n

j=1 cos θj and

fp(θ) = −
n∑
j=1

log(1− 2p−1 cos θj + p−2) = log
∣∣det(I − ρSt(θ)p

−1)
∣∣−2

on Tn ∼= T0 (a cover of T0/Sn). Thus

E[|L(1, ρSt)|±2r] =
∏
p

∫
T0/Sn

∣∣ det(I − ρSt(θ)p
−1)
∣∣∓2r

dµp =
∏
p

E[e±rfp(θp)].

Now we take advantage of real (positive) moments to express

logE[erfp(θp)] = rfp(ς
+
p ) + logE[e−r

(
fp(ς+

p
)−fp(θp)

)
],

logE[e−rfp(θp)] = −rfp(ς−p ) + logE[e+r
(
fp(ς−

p
)−fp(θp)

)
].

The random variables ∓r
(
fp(ς

±
p )− fp(θp)

)
inside the expectations are both non-positive,

and hence the expectations are ≤ 1.

Let p ≤ r′ := 2nr + 3, and B±p be two balls of radius p/(2r′) in Tn−1 that center at

some preimages of ς±p respectively, and U±p be their images in T0/Sn. Then fp(θ) =

fp(ς
±
p ) +O(r−1) on U±p by the mean value theorem and ∂f/∂θj � p−1 on Tn−1. Thus,

1 ≥ E[e∓r
(
fp(ς±

p
)−fp(θp)

)
] ≥ µp(U±p )

and the logarithm logE[· · · ] � | logµp(U
±
p )|. From the integration formulas (7.7) and

(7.4), it follows that

(8.7) dµp = (1 +On(p−1)) dµST



34 Y.-K. LAU & Y. WANG

and thus logµp(U
±
p )� p−1 + | logµST(U±p )|. One may check logµST(U±p )� | log(2r′/p)|

as follows: Suppose Bδ := B(a, δ) ⊂ Tn−1 is a ball of radius δ centered at a and let Uδ
be its image in T0/Sn. Let ε > 0 be chosen later. In view of the integration formula

(7.4) for dµST, µST(Uδ)�n ε
n2−nvol

(
Bδ \Bε(a, δ)

)
where vol is the Euclidean volume (in

Tn−1) and Bε(a, δ) := {θ ∈ Bδ : |θi − θj | < ε for some i 6= j}. Clearly vol(Bδ) � δn−1

and vol(Bε(a, δ)) � εδn−2. This implies µST(Uδ) � δn
2−1 by taking ε = cδ for a small

enough constant c > 0, and thus logµST(Uδ)�n | log δ|. Altogether, for p ≤ r′ we have

logE[e±rfp(θp)] = ±rfp(ς±p ) +O(log(2r′/p)).

For p ≥ r′, it follows from Lemma 8.2 (2) with σ = 1 that logE[e±rfp(θp)] �n r
2p−2.

But for the proposition, we need to undertake a more delicate analysis as in [13], and

introduce two auxiliary functions f± on [0,∞): let X be a random vector distributed on

T0/Sn according to the Sato-Tate measure dµST, define

f±(t) :=

{
logE[e±2tg(X)] if 0 ≤ t < 1,

logE[e±2t(g(X)−g(θ±))] if t ≥ 1.

Explicitly, for 0 ≤ t < 1, f±(t) = log
∫
T0/Sn

e±2t
∑n
j=1 cos θj dµST where θn = −

∑n−1
j=1 θj .

The functions f± are independent of p (and r) and differentiable in t. As in [13, Lemma

1.1], it can be shown that f ′±(t)�n 1 and

f±(t) =

{
O(t2) if 0 ≤ t < 1,

O(log t+ 1) if t ≥ 1.

As fp(θ) = 2g(θ)p−1 +O(p−2), we obtain E[e±rfp(θp)] = E[e
± 2r
p
g(θp)

]
(
1 +O(r/p2)

)
and

as before,

logE[e±rfp(θp)] = ±r2g(θ±)

p
+ logE[e

∓ r
p

2(g(θ±)−g(θp))
] +O

(
r

p2

)
.

By (5.4), we may replace 2g(θ±)/p by fp(ς
±
p ) subject to an error O(p−2). By (8.7), we

may replace dµp by dµST and θp by X subject to a factor of 1 + O(p−1). Thus we infer

that for p > r,

logE[e±rfp(θp)] = f±

(
r

p

)
+O(p−1)

and for p ≤ r,

logE[e±rfp(θp)] = ±rfp(ς±p ) + f±

(
r

p

)
+O(rp−2).

Separating into cases p ≤
√
r′,
√
r′ < p ≤ r′3/2 and r′3/2 < p, we deduce from above

that ∑
p

logE[e±rfp(θp)] = ±r
∑
p≤r

fp(ς
±
p ) +

∑
r′1/2<p≤r′3/2

f±

(
r

p

)
+O(r3/4).

(The exponent 3/4 is not optimal.) A calculation with the prime number theorem shows

that the second summation on the right side equals

r(log r)−1

∫ ∞
0

f±(t)

t2
dt+ r(log r)−2

∫ ∞
0

f±(t) log t

t2
dt+O

(
r(log r)−3

)
,

cf. [13]. The desired formula follows with a little manipulation, completing the proof. �
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9. Complex moments and Proofs of Theorems 2.4, 2.2 and 2.3

We shall show that the complex moment |L(1, φ)|2z converges in distribution to the

probability moment E[|L(1, ρSt)|2z], and then extract the extreme values. Let us start

with some preparatory work.

9.1. The complex moment |L(1, φ)|2z and its approximation. As explained in §8.3

(see §7.7 as well), we may express

L(s, φ) = L(s, ρSt)|θp=θφ(p), ∀ p

and by Remark 3.2 (2) and the unitary condition (7.5),

L(s, φ̃) = L(s, ρSt)|θp=−θφ(p), ∀ p = L(s, ρ̌St)|θp=θφ(p), ∀ p

for <e s� 1. Note L(s, φ̃) = L(s, φ) for s ∈ R (in fact, L(s, φ̃) = L(s, φ)).

Suppose z ∈ C and let

λzφ(m) :=
∏
p`‖m

λz,`(θφ(p)) and λz
φ̃
(m) :=

∏
p`‖m

λz,`(−θφ(p)).(9.1)

Then for <e s� 1,

L(s, φ)zL(s, φ̃)z =
∑
a≥1

λzφ(a)a−s
∑
b≥1

λz
φ̃
(b)b−s =

∑
m≥1

λzφ ∗ λzφ̃(m)m−s.

where λzφ ∗ λzφ̃ is the Dirichlet convolution of λzφ and λz
φ̃
.

Lemma 9.1. Let z ∈ C and x ≥ 102. Define for φ ∈ H\,

ωzφ(x) =
∑
m≥1

λzφ ∗ λzφ̃(m)
e−m/x

m
.

(1) We have ωφ(x)�n,ε x
ϑ+ε exp(cnz

′(log2 x+ log2 z
′)) for any ε > 0.

(2) Suppose φ ∈ KT (cf. (5.6)). Then we have

|L(1, φ)|2z = ωzφ(x) +O(Ez(x, T ))

where

Ez(x, T ) = xec|z| log T−(log T )2
+ x−1/ log2 T ec

′(|z|+1) log3 T .(9.2)

Proof. (1) By (8.3), Lemma 8.1 and (7.15), we obtain the estimate

λzφ(m) �
∏
p`‖m

∑
k

|µz,`k ||Sk(αφ(p))|

� mϑ
∏
p`‖m

C(n|z|, `)
∑

k: ‖k‖≤`

Sk(1, · · · , 1)

� mϑτ(m)n
2−1r|z|(m)
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where r|z|(m) is a multiplicative function in m such that r|z|(p`) = ((n−1)`+1)C(n|z|, `).
Here we have used the crude bound (`+ 1)n for the number of k satisfying ‖k‖ ≤ `, and

Sk(1, · · · , 1) ≤ (1 + |k|)n2−n. As 2uv ≥ u+ v for u, v ∈ N, we infer that

ωzφ(x)�
(∑
m≥1

r|z|(m)τ(m)n
2−1mϑ−1e−m/(2x)

)2

.

As r|z| is the function rzm in [14] (with m = n− 1), we use the estimate there [14, (6.17)]:∑
m≤y

r|z|(m)�n y(log y)n
2z∗−1ec|z| log2(|z|+3)(9.3)

uniformly for y ≥ 3 and z ∈ C, where z∗ = min{n ∈ N : n ≥ |z|}. Part (1) follows

readily with a partial summation.

(2) By the Mellin transform of Γ(s), we get that

ωzφ(x) =
1

2πi

∫
(1)
L(1 + s, φ)zL(1 + s, φ̃)zΓ(s)xs ds.

Replace the line segment [1 − i(log T )2, 1 + i(log T )2] with the path joining 1 − i∞,

1−i(log T )2, −κ−i(log T )2, −κ+i(log T )2, 1 +i(log T )2, 1 +i∞, where κ = 1/ log2 T .

The pole at s = 0 contributes L(1, φ)zL(1, φ̃)z = |L(1, φ)|2z. On the two horizontal line

segments (where τ = ±(log T )2), we have Γ(s) � e−(log T )2
and logL(s, φ) � log T , the

integrals over the two horizontal line segments are � x exp(|z| log T − (log T )2). For

the integral over −κ − i(log T )2, −κ + i(log T )2, we invoke Lemma 5.1, which gives,

logL(s, φ)� log3 T when φ ∈ KT ; moreover
∫

(−κ) |Γ(s)xs| |ds| � κ−1x−κ. It is absorbed

in Ez(x, T ) as well. �

9.2. Proof of Theorem 2.4. Let KT be defined as in (5.6). By Lemma 9.1, we have

Λ(T )−1
∑
φ∈KT

|L(1, φ)|2z = Λ(T )−1
∑
φ∈KT

ωzφ(x) +O(Ez(x, T )),(9.4)

and with (6.1),

Λ(T )−1
∑
φ∈KT

ωzφ(x) = Λ(T )−1
∑
φ∈HT

ωzφ(x)(9.5)

+O

(
xϑ+ε exp

(
cz′(log2 x+ log2 z

′)− c′%
log T

log2 T

))
.

Resolve ωzφ(x) with (9.1) and (8.3) into

ωzφ(x) =
∑
m,m′

λzφ(m)λz
φ̃
(m′)

e−mm
′/x

mm′

=
∑
m,m′

e−mm
′/x

mm′

∏
p`‖m
p`
′ ‖m′

∑
k

∑
k′

µz,`k µz,`
′

k′
Sk(αφ(p))Sk′(αφ(p)).

With Remark 7.3, we see that

Λ(T )−1
∑
φ∈HT

ωzφ(x) = Σω + Eω(9.6)
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where

Σω =
∑
m,m′

e−mm
′/x

mm′

∏
p`‖m
p`
′ ‖m′

∑
k

∑
k′

µz,`k µz,`
′

k′

∫
S1n/Sn

SkSk′ dµp

Eω � T−1/2
∑
m,m′

(mm′)L−1e−mm
′/x

∏
p`‖m
p`
′ ‖m′

∑
k

∑
k′

∣∣µz,`k µz,`
′

k′

∣∣.
As ∑

k

∑
k′

∣∣µz,`k µz,`
′

k′

∣∣ � C(n|z|, `)C(n|z|, `′)(`+ 1)n(`′ + 1)n

≤ τ(p`)n−1τ(p`
′
)n−1r|z|(p`)r|z|(p`

′
),

we deduce that

Eω � T−1/2

(∑
m

mLe−m/(2x)r|z|(m)

)2

(9.7)

� T−1/2xL+1 exp(cz′(log2 x+ log2 z
′))

by (9.3).

By Remark 8.1, (8.6), the Mellin transform of Γ(s) and Lemma 8.2 (3) with the choice

of σ = 1− 1/ log z′, we obtain that

Σω =
∑
m,m′

e−mm
′/x

mm′
E[λz(m)λ̌z(m′)],(9.8)

=
1

2πi

∫
(1)

E[L(1 + s, ρSt)
zL(1 + s, ρ̌St)

z]Γ(s)xs ds

= E[|L(1, ρSt)|2z] +O
(
x−1/ log z′ exp

(
cz′ log2 z

′)).
In view of the O-terms in (9.5), we set x = exp($ρ(log T )/(log2 T )) where $ > 0 is a

small enough constant. Then the O-terms in (9.5), (9.7) and (9.8) are

� exp

(
c

(
z′ log2 T − ρ

log T

log2 T

))
+ exp

(
c′
(
z′ log2 z

′ − ρ log T

(log2 T )(log z′)

))
,

which is absorbed in O(exp(−cρ(log T )/(log2 T )2)) when

z′ ≤ δZ(T ) = δρ(log T )/((log2 T )2 log3 T )

for a small constant δ > 0. Taking a smaller δ if necessary, we see from (9.2) that this

O-term suppresses Ez(x, T ) as well. Thus, from (9.4)-(9.8),

Λ(T )−1
∑
φ∈KT

|L(1, φ)|2z

= E[|L(1, ρSt)|2z] +O

(
exp

(
− c

log T

(log2 T )2(log3 T )1+η

))
for |z| ≤ δZ(T ). Our result follows by replacing Λ(T ) with #(KT ), which is legitimate

in light of Theorem 2.1 (1) and #(HT ) = Λ(T )(1 +O(T−1/2)); the constants c and δ are

suppressed as the exponents of log3 T ’s are relaxed (to bigger values).
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9.3. Proof of Theorems 2.2 and 2.3. Theorem 2.2 follows from Theorem 2.3 with

the choice of τ = log2 T − (2 + o(1)) log3 T , so τ = {1 + o(1)} log2 T and τ−1eτ =

(log T )/(log2 T )3+o(1). With Proposition 8.3 and Theorem 2.4, one may follow [36, Section

7] to obtain Theorem 2.3. The shorter range in our case is due to the smaller region of

z in Theorem 2.4. This ends our proof.
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Birkhäuser Boston, Inc., Boston, MA, 2002.

[13] Y. Lamzouri, Distribution of values of L-functions at the edge of the critical strip, Proc. Lond. Math.
Soc. (3) 100 (2010), 835–863.

[14] Y.-K. Lau & J. Wu, A density theorem on automorphic L-functions and some applications, Trans.
Amer. Math. Soc. 358 (2006), 441–472.

[15] Y.-K. Lau & J. Wu, A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic
forms and two applications, Int. Math. Res. Not. (2008), Art. ID rnm 162, 35 pp.

http://arxiv.org/pdf/1501.00453.pdf
http://arxiv.org/pdf/1501.00453.pdf
http://arxiv.org/pdf/1606.00330.pdf


ABSOLUTE VALUES OF L-FUNCTIONS FOR GL(n,R) AT THE POINT 1 39

[16] X. Li, Upper bounds on L-functions at the edge of the critical strip, Int. Math. Res. Not. (2010), p.
727–755.

[17] J.E. Littlewood, On the class-number of the corpus P (
√
−k), Proc. London Math. Soc. 27 (1928),

358–372.

[18] J. Liu, E. Royer & J. Wu, On a conjecture of Montgomery-Vaughan on extreme values of automorphic
L -functions at 1, Anatomy of integers, CRM Proc. Lecture Notes, 46 (Amer. Math. Soc., Providence,
RI, 2008), 217–245.

[19] W. Luo, Values of symmetric square L-functions at 1, J. Reine Angew. Math. 506 (1999), 215–235.

[20] W. Luo, Z. Rudnick & P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995),
387–401.

[21] I.G. Macdonald, Spherical functions on a group of p-adic type, Ramanujan Institute, Centre for
Advanced Study in Mathematics, University of Madras, Madras, 1971.

[22] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press,
New York, 1995.

[23] J. Matz & N. Templier, Sato-Tate equidistribution for families of Hecke-Maass forms on
SL(n,R)/SO(n), available at ArXiv, http://arxiv.org/pdf/1505.07285.pdf.

[24] H.L. Montgomery & R.C. Vaughan, Extreme values of Dirichlet L-functions at 1, Number theory in
progress, Vol. 2, de Gruyter, Berlin, 1999, 1039–1052.

[25] H.L. Montgomery & R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge
University Press, Cambridge, 2007.

[26] W. Müller, Weyl’s law for the cuspidal spectrum of SLn, Ann. of Math. 165 (2007), 275–333.

[27] A. Pasquale, Weyl’s integration formula for U(N), lecture notes, available at
http://www.math.tau.ac.il/∼rudnick/dmv.html

[28] M. Rapoport, A positivity property of the Satake isomorphism, Manuscripta Math. 101 (2000), 153–
166.

[29] E. Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de

la bande critique, Ann. Sci. École Norm. Sup. 36 (2003), 601–620.

[30] E. Royer & J. Wu, Taille des valeurs de fonctions L de carrés symétriques au bord de la bande
critique, Rev. Mat. Iberoamericana 21 (2005), 263–312

[31] E. Royer & J. Wu, Special values of symmetric power L-functions and Hecke eigenvalues, J. Théor.
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