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École normale supérieure de Cachan, CNRS, Université Paris-Saclay,
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Bonnet and PVI

I. INTRODUCTION

From the very beginning36, two representations have coexisted for the PVI equation. The
first one,

d2u

dx2
=

1

2

[
1

u
+

1

u− 1
+

1

u− x

](
du

dx

)2

−
[

1

x
+

1

x− 1
+

1

u− x

]
du

dx

+
u(u− 1)(u− x)

2x2(x− 1)2

[
θ2
∞ − θ2

0

x

u2
+ θ2

1

x− 1

(u− 1)2
+ (1− θ2

x)
x(x− 1)

(u− x)2

]
, (1)

in which the four θ2
j are arbitrary complex constants, displays the main property of this

“équation différentielle curieuse” (as Picard called it after he found it in the particular case
θj = 0, j = ∞, 0, 1, x): its general solution u(x) is singlevalued except at three points,
conveniently put at x =∞, 0, 1 so that x is the crossratio (∞, 0, 1, x).

The second representation also originates from Picard. It results from the invertible point
transformation (U,X, T ) 7→ (u, x, t) [we also give here its extension to the spectral parameter
t, to be used later] defined by36 (p. 298)

U =
1

2ω

∫ u

∞

du√
u(u− 1)(u− x)

,
X

aX

= Ω = iπ
ω′

ω
, T =

1

2ω

∫ t

∞

dt√
t(t− 1)(t− x)

, (2)

(with aX some normalization constant), whose inverse is

u =
℘(2ωU, g2, g3)− e1

e2 − e1

,
√
u(u− 1)(u− x) =

1

2
(e2 − e1)−3/2℘′(2ωU, g2, g3),

t =
℘(2ωT, g2, g3)− e1

e2 − e1

,
√
t(t− 1)(t− x) =

1

2
(e2 − e1)−3/2℘′(2ωT, g2, g3),

x =
e3 − e1

e2 − e1

· (3)

The new independent variable X (denoted Ω by classical authors like Halphen) is propor-
tional to the ratio of the two half-periods ω, ω′ of the elliptic function 2ωU 7→ u.

The transformed ordinary differential equation (ODE) for U(X), a systematic computa-
tion of which is recalled in Appendix A, was initially written by R. Fuchs17 (Eq. (8)), then
simplified by Painlevé34 (p. 1117) by insertion of the prefactor 1/(2ω) in (2), and much later
rediscovered by Manin29 and Babich and Bordag2.

In these new coordinates (U,X), PVI becomes quite simple,

d2U

dX2
=

(2ω)3

π2a2
X

∑
j=∞,0,1,x

θ2
j℘
′(2ωU + ωj, g2, g3), (4)

in which the summation runs over the four half-periods ωj of ℘, and ℘′ denotes the partial
derivative of ℘ with respect to its first argument, taken at point 2ωU + ωj. One advantage
of the elliptic representation (4) is its Hamiltonian description,

H(Q,P,X) =
P 2

2
+ V (Q,X), Q = U, P =

dQ

dX
,

d2Q

dX2
= −∂V

∂Q
, (5)

V (Q,X, {θ2
j}) = −(2ω)2

π2a2
X

∑
j=∞,0,1,x

θ2
j℘(2ωQ+ ωj, g2, g3).
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We will respectively call (u, x, t) and (U,X, T ) the rational coordinates and elliptic coor-
dinates and, depending on the context, denote the four half-periods as either (ω∞, ω0, ω1, ωx)
(like in (4)), or (0, ω, ω+ω′, ω′) (like in (2)), or (0, ω1, ω2, ω3) (to respect the correspondence
℘(ωj) = ej, j = 1, 2, 3 with the classical definition (A5)).

There exist various linear representations17,21,24,31,49 of this nonlinear ODE by a Lax pair,
and we restrict here to those which have minimal order, i.e. two. Their main characteristics
were outlined by Poincaré37 (p. 219) in the scalar case and by Schlesinger39 in the matrix
case, let us remind them. First of all, their singularities in the complex plane of the spectral
parameter t can be restricted to be only of the Fuchsian type (“regular” singularities).

In the scalar case, which can be defined as

∂2
t ψ +

S

2
ψ = 0, ∂xψ + C∂tψ −

Ct
2
ψ = 0, Sx + Cttt + CSt + 2CtS = 0, (6)

the first equation must have four Fuchsian singularities (characterized by their crossratio x
since three of them can be put at predefined locations by a homography), plus, as prescribed
by Poincaré37 (p. 219), one apparent singularity, also of the Fuchsian type, located at t = u.
Without such an apparent singularity, the system would be rigid and no nonlinear ODE
would come out.

In the matrix case, defined as

∂xψ = Lψ, ∂tψ = Mψ, Lt −Mx + LM −ML = 0, (7)

the second order matrices L and M can be chosen traceless without loss of generality, and
Schlesinger39 proved that the monodromy matrix M must be the sum of four simple poles
of crossratio x, and that the matrix L must be the sum of a simple pole and a regular term,
i.e. with the convention t =∞, 0, 1, x for the four Fuchsian singularities,

L = − Mx

t− x
+ L∞, M =

M0

t
+

M1

t− 1
+

Mx

t− x
, M∞ +M0 +M1 +Mx = 0. (8)

In particular, no apparent singularity is required in the matrix case.
Neither Poincaré nor Schlesinger performed the practical computations which they had

prescribed. This was first achieved in the scalar case by Richard Fuchs17 (the son of the
Lazarus Fuchs of Fuchsian equations and brother-in-law of Schlesinger), and in the matrix
case by Jimbo and Miwa24. However, while one would expect the just mentioned matrix
Lax pair to be “simpler” than the scalar one because of the unnecessity for an apparent
singularity, this is not the case, as detailed in11,26. The reason is that, in order to unveil PVI

during the resolution process, no additional assumption is required in the scalar case, while
in the matrix case one must make the following practical assumption: in order to implement
the property established by Schlesinger that the determinants of the four residues Mj are
constant (and equivalent to the four parameters of PVI), one must assume a representation
of the four second order traceless matrices Mj enforcing this prescription.

The present article, which is an extended version of a short note 12, contains three main
results.

1. We first show that a classical problem of geometry, set up and solved by Pierre-
Ossian Bonnet in 1867, yields as a by-product a new, isomonodromic, very symmetric
second order matrix Lax pair of a codimension-two PVI, which is easily extrapolated
to the generic PVI. The decisive advantage conferred by its geometric origin is that no
assumption is required concerning the four residues.
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2. The second result is a rigorous derivation of a nice property of PVI, unveiled by
Suleimanov42 and known as the “quantum correspondence”.

3. Finally, we match the completeness property of PVI (impossibilily to add complemen-
tary terms without losing the Painlevé property) and the completeness property of
the Gauss-Codazzi equations (they completely describe the geometry) by building a
solution of the Gauss-Codazzi equations in terms of the full PVI.

The paper is organized as follows.
In section II, we recall the classical analytic description of surfaces, a prerequisite to the

presentation of Bonnet surfaces and their moving frame, done in section III.
Section IV is the core of the paper: we upgrade this moving frame to a second order,

isomonodromic matrix Lax pair of PVI, and we compare this new Lax pair to the existing
ones. Next, in section V, we establish the link with the classical second order scalar Lax
pair and give a rigorous derivation of the “quantum correspondence”.

Finally, in section VI, by converting back the matrix Lax pair to the moving frame of some
surface, we lift Bonnet surfaces to surfaces which depend on two more degrees of freedom
and are described by the full PVI.

Most results are presented in both rational coordinates (u, x, t) and elliptic coordinates
(U,X, T ).

II. CLASSICAL GEOMETRY OF SURFACES

As shown by Gauss in 1827, surfaces in R3 are characterized by the two “fundamental”
quadratic forms < dF, dF >, − < dF, dN >, in which F(x1, x2) is the current point on the
surface, dF a vector in the tangent plane, N any unit vector normal to the tangent plane.
In “conformal coordinates”, these quadratic forms

I =< dF, dF >= eυdz dz̄, (9)

II = − < dF, dN >= Q dz2 + eυHdz dz̄ +Q dz̄2, (10)

define four fields: υ real, Q, its complex conjugate Q, H real, and the link with the two
principal curvatures 1/R1 and 1/R2 is,

1

2

(
1

R1

+
1

R2

)
= mean curvature = H,

1

R1R2

= total (or Gaussian) curvature = −2e−υυzz̄. (11)

If σ denotes some moving frame defined from F and N, the gradient of σ defines two
square matrices U, V,

σz = Uσ, σz̄ = Vσ, (12)

and the zero-curvature condition

[∂z − U, ∂z̄ − V] = Uz̄ − Vz + [U,V[ = 0, (13)

generates a set of nonlinear partial differential equations (PDEs) involving υ, Q, Q, H.
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An additional parameter c can be inserted in these moving frame equations (12) if one
replaces R3 by the three-dimensional Riemannian manifold R3(c) having a constant curvature
κ = −c2. When κ is respectively negative, zero, positive, this three-dimensional manifold is
respectively the hyperbolic space H3(c), the Euclidean space R3, the sphere S3(c) of radius
κ−1/2. The moving frame defined by

σ =

{
t(Fz,Fz̄,N) (c = 0),
t(F,Fz,Fz̄,N) (c 6= 0),

(14)

then yields matrices U, V of respective orders three (c = 0) and four (c 6= 0). Instead of
them, it proves quite convenient to use the representation by second order matrices3,41,

U =

 (1/4)υz −Qe−υ/2
(1/2)(H + c)eυ/2 −(1/4)υz

,


V =

(
−(1/4)υz̄ −(1/2)(H − c)eυ/2
Qe−υ/2 (1/4)υz̄

) (15)

The nonlinear PDEs generated by the zero-curvature condition (13) are known as the
Gauss-Codazzi equations50,

υzz̄ +
1

2
(H2 − c2)eυ − 2|Q|2e−υ = 0 (Gauss),

Qz̄ −
1

2
Hze

υ = 0, Qz −
1

2
Hz̄e

υ = 0 (Codazzi).
(16)

This is a classical result due to Bonnet that any solution (υ,H,Q,Q) determines a unique
surface up to rigid motion.

In addition to the classical conformal invariance,

∀G(z) : (z, eυ, H,Q)→
(
G(z), |G′(z)|2eυ, H,G′(z)

2
Q
)
, (17)

and the scaling invariance,

∀k : (z, eυ, H,Q, c)→
(
z, k2eυ, k−1H, kQ, k−1c

)
, (18)

the system (16) possesses another invariance, which only exists under the condition Q−Q =
c, this is the involution3 (Eq. (4.4))5 (p. 77)41 (§3 p. 6) defined by the permutation of the
two basis vectors of the moving frame (15)

(υ,H,Q,Q)→
(
−υ, 2Q− c = 2Q+ c,

H + c

2
,
H − c

2

)
. (19)

III. BONNET SURFACES AND THEIR MOVING FRAME

As an application of the newly discovered Gauss-Codazzi equations, the geometer Pierre-
Ossian Bonnet set up in 1867 a natural problem (the Bonnet problem) and solved it in full
generality. Since this achievement is often incompletely presented in modern articles, we
find it useful to recall in Appendix B the complete proof as given by Bonnet himself.
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The most interesting of the five solutions to the Bonnet problem is what is now called
the Bonnet surfaces. Characterized in local coordinates by conditions on υ, |Q| and H
(i.e. excluding argQ), eυ|Q|−2Hz̄ = g1(z) 6= 0, eυ|Q|−2Hz = g2(z̄) 6= 0,

2dH

g1dz + g2dz̄
+H2 − c2 6= 0,

(20)

they depend, after a conformal transformation detailed in the Appendix, on one fixed pa-
rameter (c, at least if one considers R3(c) instead of R) and six arbitrary movable constants.
Their metric υ and Q are given by

Q = 2cz coth 2cz(z − z0)− 2cz coth 4cz<(z − z0) =
sinh 2cz(z̄ − z̄0)

sinh 2cz(z − z0)

2cz

sinh 4cz<(z − z0)
,

Q = 2cz coth 2cz(z̄ − z̄0)− 2cz coth 4cz<(z − z0) =
sinh 2cz(z − z0)

sinh 2cz(z̄ − z̄0)

2cz

sinh 4cz<(z − z0)
,

|Q|2 =

(
2cz

sinh 4cz<(z − z0)

)2

,

eυ = 4|Q|2 d<(z)

dH
,

(21)

in which cz is an arbitrary (possibly zero) complex constant, and the mean curvature H,
which only depends on ξ = <(z), obeys the third order ODE (B19), whose first integral
(B20) defines a second order second degree ODE for H = h(ξ). Despite being just a partic-
ular case of the ODE labeled (B,V) by Chazy9 (p. 340), this second order ODE remained

unnoticed (even by Élie Cartan8 (p. 85)) and therefore unintegrated for nearly one century,
until Bobenko and Eitner4 expressed its general solution in terms of the sixth Painlevé equa-
tion PVI (1). More precisely, the mean curvature H is equal to the logarithmic derivative
d
dx

log τVI of a τ -function of PVI. Rather than the expression built by Chazy9 (expression t

page 341), it is preferable to adopt its homographic transform by Malmquist28,

d

dx
log τVI,M =

x(x− 1)

4u(u− 1)(u− x)

(
du

dx

)2

(22)

+
1

4x(x− 1)

[
θ2
∞

(
−u+

1

2

)
+ θ2

0

(
−x
u

+
1

2

)
+θ2

1

(
x− 1

u− 1
− 1

2

)
+ (θx − 1)2

(
−x(x− 1)

u− x
− x+

1

2

)]
,

for two (equivalent) reasons: (i) absence of a first degree term du/dx, (ii) choice of θx to
break the parity invariance of (1) in the θj’s (Chazy chose θ∞). Bonnet surfaces are then
analytically represented as

x =
1

1− e4cz(z+z̄)
, H = 8czY, Y = x(x− 1)

d

dx
log τVI,M, (23)

with however three constraints among the four monodromy exponents θj,

θ∞ = 0, c = cz(θ
2
1 − θ2

0), θ2
x = 1. (24)

The only movable singularities of H = h(ξ) are a unique movable simple pole.
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The moving frame (15) of these Bonnet surfaces

Udz + Vdz̄ = x(x− 1)
Y ′′

Y ′
(czdz̄ − czdz)

(
1 0
0 −1

)
+
√
Y ′

 0 −S1dz − Y − (θ2
0 − θ2

1)/8
Y ′

4czdz̄

S2dz̄ +
Y + (θ2

0 − θ2
1)/8

Y ′
4czdz 0

 ,

S1 =
2cz

sinh(2cz(z + z̄))

sinh(2czz̄)

sinh(2czz)
, S2 =

2cz

sinh(2cz(z + z̄))

sinh(2czz)

sinh(2czz̄)
,

(25)

then defines a linear representation of the variable d
dx

log τVI, however with several undesired

features:

: – lack of a spectral parameter,

: – nonrational dependence on z, z̄, Y ′,

: – restriction to θ∞ = 0, θ2
x = 1.

Remark. Under the involution (19), Bonnet surfaces are mapped to surfaces with a
harmonic inverse mean curvature5 (Prop. 4.7.1 page 77), which also integrate with PVI

6 and
whose moving frame is

Udz + Vdz̄ =

[
−X(X − 1)

Y ′′

Y ′
(czdz̄ − czdz)− 1

2
d log

sinh 2czz

sinh 2czz̄

](
1 0
0 −1

)

+
√
X(X − 1)Y ′

 0 −4czdz̄ − S1
Y + (θ2

0 − θ2
1)/8

X(X − 1)Y ′
dz

4czdz + S2
Y − (θ2

0 − θ2
1)/8

X(X − 1)Y ′
dz̄ 0

 . (26)

Since the transition matrix

P =

(
0 g
−1/g 0

)
, g =

(
sinh(2czz̄)

sinh(2czz)

)1/2

, (27)

maps (26) to (25), it is sufficient to consider the moving frame of Bonnet surfaces.

IV. FROM THE MOVING FRAME OF BONNET TO A LAX PAIR OF PVI

Let us convert the moving frame to a second order, isomonodromic matrix Lax pair for
the generic PVI for u(x), i.e. with the following properties,

: – dependence on an arbitrary parameter t (the spectral parameter),

: – rational dependence on t, the independent variable x and the dependent variables u(x),
u′(x) of PVI,

: – absence of any restriction on the four θj’s.

The successive steps are:
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1. Introduction of a spectral parameter t and creation of a rational dependence on x and
t. This is not achieved by a conformal transformation (17) like for constant mean
curvature surfaces, see Eq. (B8), but via a change of variables (z, z̄)→ (x, t). Indeed,
as shown in4, choosing for x and t any homographic transform of, respectively, e4cz(z+z̄)

and e4czz creates four poles in the monodromy matrix. For instance, the choice

x =
1

1− e4cz(z+z̄)
, t =

1

1− e4czz
, (28)

creates the set of poles t =∞, 0, 1, x,
4czdz =

dt

t(t− 1)
, 4czdz̄ =

dx

x(x− 1)
− dt

t(t− 1)
,

S1dz = − t− x
t(t− 1)

dt, S2dz̄ = − dx

t− x
+

x(x− 1)

t(t− 1)(t− x)
dt,

(29)

and therefore changes the moving frame (25) to an isomonodromic Lax pair (8) for an

incomplete d
dx

log τVI,M with an algebraic dependence on Y ′,

(z, z̄)→ (x, t), Udz + Vdz̄ = Ldx+Mdt, (30)

detM∞ = detMx = 0, −4 detM0 = θ2
0, −4 detM1 = θ2

1. (31)

For reference, the (x, t) representation of the Bonnet surfaces is
H =

c

κ
8czx(x− 1)

d

dx
log τVI,M, e

−υ =
c2

κ2

d

dx
[x(x− 1)

d

dx
log τVI,M],

Q = −κ
c

4cz(t− x), Q = −κ
c

4cz
x(x− 1)

t− x
, |Q|2 = 16

κ2

c2
c2

zx(x− 1),

θ∞ = 0, θ2
x = 1, κ = cz(θ

2
1 − θ2

0),

(32)

values in which c has been made arbitrary by the scaling invariance (18).

2. Switch from the d
dx

log τVI,M field Y to the PVI field u. This is done via the birational

transformation between PVI and its Hamiltonian d
dx

log τVI,M defined by the relations9

(p. 341)

Y = x(x− 1)
d

dx
log τVI,M, (33)

and32 (Table R),

u = x+

Θxx(x− 1)Y ′′ −
[
Y +

θ2
∞ + 3Θ2

x

8
(2x− 1)− θ2

1 − θ2
0

8

] [
Y ′ +

θ2
∞ + Θ2

x

4

]
(
Y ′ +

(θ∞ + Θx)
2

4

)(
Y ′ +

(θ∞ −Θx)
2

4

)

+

Θ2
x

2

[
Y +

3θ2
∞ + Θ2

x

8
(2x− 1) +

θ2
1 − θ2

0

8

]
(
Y ′ +

(θ∞ + Θx)
2

4

)(
Y ′ +

(θ∞ −Θx)
2

4

) , (34)
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in which Θx denotes the shifted exponent

Θx = θx − 1. (35)

While the Hamiltonian (22) breaks the parity of only one θj, the birational transfor-

mation between PVI and d
dx

log τVI breaks the parity of two θj’s.

For the Bonnet constraints θ∞ = 0, θ2
x = 1 (24), these two relations simplify to

Y = x(x− 1)
d

dx
log τVI,M,

8Y ′

8Y + θ2
0 − θ2

1

= − 1

u− x
,
Y ′′

Y ′
= − u′

u− x
, (36)

and now change the moving frame to an algebraic isomonodromic Lax pair for a
codimension-two PVI,

Ldx+Mdt = −x(x− 1)
u′

u− x
(czdz̄ − czdz)

(
1 0
0 −1

)
+

√
− Ys

u− x

 0 −S1dz +
(u− x)Y

Ys
4czdz̄

S2dz̄ − (u− x)Y
Ys

4czdz 0

 ,

Ys = x(x− 1)
d

dx
log τVI,M +

θ2
0 − θ2

1

8
,

(37)

in which dz and dz̄ are assumed replaced by their values (29).

3. Removal of the algebraic dependence on Y ′ by a change of basis vectors defined by
the transition matrix

P1 = diag(Y ′
1/4
, Y ′

−1/4
), Y ′ = − Ys

u− x
· (38)

The algebraic Lax pair (37) becomes rational, and its five terms as defined by (8)
evaluate to

θ∞ = 0, Θx = 0, Ys = x(x− 1)
d

dx
log τVI +

θ2
0 − θ2

1

8
,

M∞ =

(
0 −1
0 0

)
, Mx =

(
0 0

− Ys

u− x
0

)
,

M0 =
1

2

 −x(x− 1)
u′

u− x
2u

θ2
0 − θ2

1

2
− 2Ys − 2

x− 1

u− x
Ys x(x− 1)

u′

u− x

 ,

M1 =
1

2

 x(x− 1)
u′

u− x
−2(u− 1)

−θ
2
0 − θ2

1

2
+ 2Ys + 2

x

u− x
Ys −x(x− 1)

u′

u− x

 ,

L∞ = − u− x
x(x− 1)

M∞·

(39)
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4. (Last step) Extrapolation to arbitrary values of the θj’s. It is sufficient to notice that
all residues in (39) are polynomials of u′ of degree at most two. By only requiring the
conservation of such a dependence and enforcing M∞ = constant, one immediately
removes all the constraints on the θj’s. Each term u′ of (39) essentially extrapolates
to the left-hand-side of a Riccati equation which defines hypergeometric solutions of
PVI.

The final Lax pair can be defined in two canonical forms.

A. First canonical form of the matrix Lax pair

This first canonical form is valid for any value of the θj’s,

L = − Mx

t− x
− u− x
x(x− 1)

M∞, M =
M0

t
+

M1

t− 1
+

Mx

t− x
,

M∞ +M0 +M1 +Mx = 0,

M∞ =
1

4

(
2a −4

a2 − θ2
∞ −2a

)
,

M0 = − 1

2(u− x)

 e0 −2u(u− x)
e2

0 − θ2
0(u− x)2

2u(u− x)
−e0

 ,

M1 =
1

2(u− x)

 e1 −2(u− 1)(u− x)
e2

1 − θ2
1(u− x)2

2(u− 1)(u− x)
−e1

 ,

Mx =
1

2

(
−Θx 0

2Mx,21 Θx

)
,

Mx,21 = −e
2 − (u− x)2((θ2

∞ + Θ2
x − 2aΘx)u(u− 1)− θ2

0(u− 1) + θ2
1u)

4u(u− 1)(u− x)2
,

e = x(x− 1)u′ + Θxu(u− 1), Θ2
x = (θx − 1)2,

e0 = e− (Θx − a)u(u− x),
e1 = e− (Θx − a)(u− 1)(u− x),
−4 detMj = θ2

j , j =∞, 0, 1;−4 detMx = Θ2
x,

(40)

in which a is an arbitrary constant, which can be set to any convenient value, such as 0, Θx

or ±θ∞, by action of a constant transition matrix.
The main property of this Lax pair is ho have exactly the same dependence on all variables

as d
dx

log τVI,M, Eq. (22): second degree polynomial in u′, meromorphic dependence on u (the

only poles being those of PVI), meromorphic dependence on x (same), affine dependence on

three θ2
j ’s and break of the affine dependence on θ2

x (enjoyed by PVI but not by d
dx

log τVI,M).

Another property if that the four residues are always nonzero; although not required in the
matrix case (see section IV C 1 hereafter), such a property is an essential requirement in the
scalar case: three Fuchsian singularities are insufficient to generate PVI.

The structure of PVI (u′′ a second degree polynomial of u′) makes it possible to find an
even simpler Lax pair, whose matrices L, M would be first degree polynomials of u′, so that
the zero-curvature condition does not generate powers of u′ higher than u′2. Such a Lax pair
does not exist in the class (8), but it does exist outside this class, see (55) hereafter.
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B. Second canonical form of the matrix Lax pair

About the matrix Lax pair (8), Schlesinger39 (p. 105) proved two results, which are indeed
obeyed by (40): (i) the residue M∞ must be a constant, (ii) the regular term L∞ must be
a scalar multiple of M∞. He also proved that, if M∞ is invertible, there exists a change of
basis allowing one to cancel the term L∞ in (8) and therefore to uniquely define the Lax
pair.

If θ∞ vanishes, M∞ is a Jordan matrix and the pair (40) is final. If θ∞ is nonzero, the
transition matrix P2P3,

P2 =

(
2 2

a− θ∞ a+ θ∞

)
, P3 =

(
g−1/2 0

0 g1/2

)
,
g′

g
= θ∞

u− x
x(x− 1)

, (41)

yields the second canonical form,

θ∞ 6= 0 : L = − Mx

t− x
, M =

M0

t
+

M1

t− 1
+

Mx

t− x
, Θ2

x = (θx − 1)2,

M∞ +M0 +M1 +Mx = 0,

M∞ =
1

2

(
θ∞ 0
0 −θ∞

)
,

M0,11 =
u− 1

N

[
(e−Θxu(u− x))2 − (u− x)2(θ2

0 + θ2
∞u

2)
]
,

M0,12 =
u− 1

N

[
(e− (Θx + θ∞)u(u− x))2 − (u− x)2θ2

0

]
g,

M0,21 = −u− 1

N

[
(e− (Θx − θ∞)u(u− x))2 − (u− x)2θ2

0

]
g−1,

M1,11 = − u
N

[
(e−Θx(u− 1)(u− x))2 − (u− x)2(θ2

1 + θ2
∞(u− 1)2)

]
,

M1,12 = − u
N

[
(e− (Θx + θ∞)(u− 1)(u− x))2 − (u− x)2θ2

1

]
g,

M1,21 =
u

N

[
(e− (Θx − θ∞)(u− 1)(u− x))2 − (u− x)2θ2

1

]
g−1,

Mx,11 =
1

N

[
e2 − (u− x)2

[
(θ2
∞ + Θ2

x)u(u− 1)− θ2
0(u− 1) + θ2

1u)
]]
,

Mx,12 =
1

N

[
e2 − (u− x)2

[
(Θx + θ∞)2)u(u− 1)− θ2

0(u− 1) + θ2
1u)
]]
g,

Mx,21 = − 1

N

[
e2 − (u− x)2

[
(Θx − θ∞)2)u(u− 1)− θ2

0(u− 1) + θ2
1u)
]]
g−1,

−4 detMj = θ2
j , j =∞, 0, 1;−4 detMx = Θ2

x,

(42)

with the notation

g′

g
= θ∞

u− x
x(x− 1)

, e = x(x− 1)u′ + Θxu(u− 1), N = 4θ∞u(u− 1)(u− x)2. (43)

This Lax pair displays a nice symmetry with respect to the diagonal,

M12(θ∞) = M21(−θ∞). (44)

This result puts an end to our previous attempts11,26.

12
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C. Comparison with existing matrix Lax pairs

Among the two other second order matrix Lax pairs of PVI we are aware of, one24

(Eq. (C.47))27 has four Fuchsian singularities in the complex plane of its spectral parameter
t, like (40) or (42), while the other49 has four Fuchsian singularities on the torus and depends
on its spectral parameter T through the function σ of Weierstrass.

1. Matrix Lax pair of Jimbo and Miwa

Let us start with the rational one, which has the structure (8) (four Fuchsian singularities
in the complex t plane). Any isomonodromic deformation of the Fuchsian system

∂

∂t
ψ =

(
M0

t
+

M1

t− 1
+

Mx

t− x

)
ψ, M∞ = −M0 −M1 −Mx, (45)

has to overcome a technical difficulty, already mentioned in the introduction, which consists
in finding a “nice” representation of the property detMj = constant. The representation
chosen by Jimbo and Miwa24 (Eq. (C.47)) can be made traceless27 (Eq. (3.6)), this is

M∞ =
1

2

(
θ∞ 0
0 −θ∞

)
, Mj =

1

2

(
zj (θj − zj)uj

(θj + zj)/uj −zj

)
, j = 0, 1, x. (46)

It defines four functions z0, z1, u0, u1 of three variables x, u, u′ to be determined by the zero-
curvature condition, and this results in quite intricate expressions for Lij,Mij as detailed
in26 (Table 1) and in15 (p. 211). For θ∞ = 0, the Lax pair still exists although one of the
four residues vanishes.

The decisive advantage of the geometric origin of the linear representation is to avoid this
difficulty, and the structure of the residues of (42) is a posteriori

M∞ =
1

2

(
θ∞ 0
0 −θ∞

)
, Mj =

fj
θ∞

(
Pj,11 Pj,12g

−Pj,21g
−1 −Pj,11

)
, j = 0, 1, x, (47)

involving two rational functions fj(x, u) and six monic second degree polynomials of x(x−
1)u′ whose coefficients are polynomial in (x, u).

2. Matrix Lax pair affine in θj

Let us now turn to the Lax pair defined in elliptic coordinates (U,X, T )49. It is affine in
θj and it only involves one dimensionless function ϕ49 (Eq. (A.10)) which mainly depends
on the two dimensionless variables U, T and also on one of the four half-periods ωj,

ϕ(U + ωj/(2ω), T ) = 2ω
σ(2ωU + ωj + 2ωT, g2, g3)

σ(2ωU + ωj, g2, g3)σ(2ωT, g2, g3)
e−2η(2ωU + ωj)T + njT , (48)

in which nj is an integer multiple of iπ characterized by the property

nj = 2(ηωj − ηjω), d
ωj
2ω

= − nj
2π2

dX

aX

, (49)

(with the classical notation ηj = ζ(ωj), η = ζ(ω)).
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Such a function ϕ is classically called20 an elliptic function of the second kind of U
(resp. T ) (i.e. not doubly periodic, but multiplied by the exponential of an affine function
of U (resp. T ) under addition of one period).

Denoting ϕ′ the derivative of ϕ with respect to its first argument, this Lax pair is

dΨ = LΨdX +MΨdT, (50)

L =
1

(2π)2

∑
j=∞,0,1,x

θj

(
0 ϕ′(U + ωj/(2ω), T )

ϕ′(−U + ωj/(2ω), T ) 0

)
, (51)

M = −1

2

∑
j=∞,0,1,x

θj

(
0 ϕ(U + ωj/(2ω), T )

ϕ(−U + ωj/(2ω), T ) 0

)
+ π2

(
1 0
0 −1

)
dU

dX
·

Once converted to rational coordinates (see Appendix A), this Lax pair still depends on
W (u, x) and W (t, x), with W defined in (A22). Fortunately, there exists a transition matrix

P = diag(e−F (u,x,t)/2, eF (u,x,t)/2), (52)

e−2F (u,x,t) =
ϕ(U, T )

ϕ(−U, T )
=
σ(2ω(T + U), g2, g3)

σ(2ω(T − U), g2, g3)
e−8ηωUT , (53)

able to eliminate all W terms. The resulting Lax pair

dΨ1 = L1Ψ1dx+M1Ψ1dt, Ψ = PΨ1, (54)

has all its elements algebraic in u, x, t, affine in u′, θj, and it displays the same remarkable
symmetry between u and t as the scalar Lax pair of Fuchs,

L1 =
1

4x(x− 1)

[
− x(x− 1)t(t− 1)(u− x)u′√

t(t− 1)(t− x)
√
u(u− 1)(u− x)(t− u)

(
1 0
0 −1

)
−θ∞

t(t− 1)(u− x)√
t(t− 1)(t− x)

√
t− u

(
0 1
1 0

)
+ θ∞

√
u(u− 1)(u− x)√

t− u

(
0 1
−1 0

)
+

3∑
j=1

θj

(
t(t− 1)√

t(t− 1)(t− x)
− 4Aj,+

)
√
t− u

√
Bj,+

(
0 1
0 0

)

+
3∑
j=1

θj

(
t(t− 1)√

t(t− 1)(t− x)
− 4Aj,−

)
√
t− u

√
Bj,−

(
0 0
1 0

)]
,

M1 =
1

4
√
t(t− 1)(t− x)

√
u(u− 1)(u− x)

[
−x(x− 1)u′ +

u(u− 1)(t− x)

t− u

](
1 0
0 −1

)
− (t− u)

4
√
t(t− 1)(t− x)

[
θ∞

(
0 1
1 0

)
+

3∑
j=1

θj

(
0

√
Bj,+√

Bj,− 0

)]
. (55)
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The algebraic functions of (u, x, t) appearing above are

Aj,± =
℘′(2ωT )− ℘′(±2ωU + ωj)

8
√
e2 − e1(℘(2ωT )− ℘(±2ωU + ωj)

= − 1

4αj

α3
j

√
t(t− 1)(t− x)∓ α2

jβj
√
u(u− 1)(u− x)± (u(u− 1)(u− x))3/2

u(u− 1)(u− x)− α2
jγj

,

Bj,± =
℘(2ω(±U + T ))− ej

℘(2ωU)− ej
=

(
√
t(t− 1)(t− x)∓

√
u(u− 1)(u− x))2 − γj(t− u)2

αj(t− u)2
,

αj = u− ej − e1

e2 − e1

, βj = u+
2ej + e1

e2 − e1

, γj = t+ u+
ej + 2e1

e2 − e1

· (56)

3. Third order matrix Lax pair of Harnad

Finally, it is worth saying a few words on a nice third order matrix Lax pair21, associated
to a three-degree of freedom Hamiltonian system. This Lax pair, which has one Fuchsian
singularity and one nonFuchsian, admits a dual, second order matrix Lax pair defined in21

(Eq. (3.55), (3.61)), which has the structure (8) and whose residues can be found in14

(Eqs. (65)–(68)). Its identification to the present Lax pair (42) could define a rational
representation of the Hamilton variables (qj, pj), j = 1, 2, 3, instead of the algebraic ones
obtained by identification to the Lax pair of Jimbo and Miwa. This could also help to solve
the factorization problem of the three-wave system mentioned in14 (§7.2).

V. QUANTUM CORRESPONDENCE

In 1994 Suleimanov42 noticed remarkable properties for PVI, which are inherited by all
the lower Painlevé equations under the confluence.

1. There exists a linear PDE of the parabolic type[
x(x− 1)(∂x + gh(x))− t(t− 1)(t− x)∂2

t + v(x, t)
]
ψh = 0, (57)

(the subscript h refers to the heat equation), in which the potential v is a rational
function, and gh an irrelevant arbitrary function, both of them independent of the
nonlinear field u. This generalized heat equation, which is defined up to the multipli-
cation of ψh by an arbitrary function of (x, t, θj), can be normalized in different ways,
either affine in the four θ2

j ’s
42, or affine in (θ0, θ1, θx, θ

2
∞ − (θ0 + θ1 + θx − 1)2)13,30.

2. There exists a representation of PVI by a classical Hamiltonian H(q, p, x) with q = u,
different from the one of Malmquist28, and there exists a quantization q → t, p→ ∂t,
H(q, p, x)→ H(t, ∂t, x) (with an appropriate ordering of the noncommuting operators
t, ∂t) allowing the identification of the generalized heat equation (57) to the time-
dependent Schrödinger equation of quantum mechanics,

[x(x− 1)(∂x + gh(x))− H(t, ∂t, x)]ψh = 0. (58)
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3. This “quantum correspondence” extends47,48 to the representation of PVI in elliptic
coordinates (X,T ). The heat equation (57) then takes the form48 (Eq. (5.21))[

−a(∂X −GH(X)) +
1

2
(∂2
T + V (T,X, {θ2

j − 1/4}))
]

ΨH = 0, (59)

and the potential V is deduced from the elliptic potential V in (5) by shifting each θ2
j

by −1/4.

However, as pointed out in47 (p. 4), the quantum correspondence in rational coordinates
(58) relies, at least for PVI, PV, PIV and PIII (see details in42,43), on a skilful, unexplained,
choice of the ordering of the products of t and ∂t. Indeed, while the Hamiltonian (5) in elliptic
coordinates is the sum of a “kinetic energy” P 2/2 and a “potential energy” V (Q,X), this is
no more the case in rational coordinates (u, x, t). Moreover, if one uses a nonoptimal matrix
Lax pair, the derivation of the heat equation in elliptic coordinates makes the computations
rather involved48.

It is therefore necessary to give a direct, deterministic derivation of all these results. Let
us do that only starting from the matrix Lax pair provided by the moving frame of Bonnet
surfaces.

First step. Since the heat equation is scalar, one must first derive a scalar Lax pair from
the matrix one. Each of the four off-diagonal elements M12, M21 of (40) and (42) possesses
a single zero t = f(u′, u, x) (provided one sets a = ±θ∞ in (40)), and each of these four
zeroes obeys a PVI equation. These contiguous PVI are linked by birational transformations
as sketched in26 (Eq. (4.4)). The simplest of these elements is

(40) : M12 =
t− u
t(t− 1)

· (60)

The elimination of anyone of the two components of the moving frame, whether in (40) or
in (42), therefore generates the unique apparent singularity (t = u in the above example,
t = another PVI function in the three other cases) which the scalar Lax pair must possess37

(p. 219).
If one denotes the two components of (40) and (42) as, respectively, ψj,q (q like quadratic

in the θj’s), ψj,m (m like meromorphic in θ∞), then the scalar wave vector

ψd =

√
t(t− 1)

t− u
ψ1,q, (61)

obeys the scalar Lax pair (6) of R. Fuchs17,(
∂2
t +

S

2

)
ψd = 0,

(
∂x + C∂t −

Ct
2

+ gd(x, u, u′)

)
ψd = 0, (62)

in which the arbitrary function gd, which depends on x, u(x), u′(x) but not on t, will be later
used to cancel various terms independent of t.

The coefficient C is independent of the four θj’s and the coefficient S (the Schwarzian),
which has five double poles in t (hence the notation ψd) has two nice properties which we
will preserve throughout this section: (i) it is an even function of the four θj’s; (ii) as noticed
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by Garnier18 (p. 51), it displays a remarkable symmetry between u and t. Indeed, if one
introduces the potential function

VG(z, s) =
1

4

[
−3z + (θ2

∞ − s)(z − x) + (θ2
0 − s)

(x
z
− 1
)

+(θ2
1 − s)

(
−x− 1

z − 1
+ 1

)
+ (θ2

x − s)
(
x(x− 1)

z − x
+ 2x− 1

)]
, (63)

the dependence of S on the θj’s is only through the difference VG(u, s) − VG(t, s) in which
the shift s is unity,

C = − t(t− 1)(u− x)

x(x− 1)(t− u)
, (64)

S

2
= − 3/4

(t− u)2
− β1u

′ + β0

t(t− 1)(t− u)
− [(β1u

′)2 − β2
0 ](u− x)

u(u− 1)t(t− 1)(t− x)

+
1

t(t− 1)(t− x)
[VG(u, 1)− VG(t, 1)] , (65)

β1 = −x(x− 1)

2(u− x)
, β0 = −u+

1

2
· (66)

Remark. In the correspondence matrix-scalar, defined by (41) and

ψ1,q =

√
t− u
t(t− 1)

ψd, ψ2,q =

(
x(x− 1)

u− x

(
∂x −Θx

1

2(t− x)

)
+
a

2

)
ψ1,q, (67)

only ψ1,q has a simple dependence on ψd, and the correspondence between the second com-
ponent ψ2,q and ψd is indeed quite difficult11,26 to find simply by some good guess.

Second step. This is the elimination of u between the two equations of the scalar Lax
pair (62). It is realized13 by the linear combination x(x−1)(∂x+. . . )−t(t−1)(t−x)(∂2

t +. . . )
of the two scalar equations (62), followed by a change of the wave function ψd and a suitable
choice of the arbitrary function gd(x, u, u′). This change is essentially ψd = (t − u)−1/2ψh

but, because of the freedom ψh → f(x, t)ψh with f independent of u, it is more convenient
to define it as

ψd = (t− u)−1/2tk0/2(t− 1)k1/2(t− x)kx+1/2ψh, (68)

with k0, k1, kx adjustable constants independent of the θj’s. The transformed Lax pair thus
retains the parity in the θj’s.

The crucial question at this point is to find the Hamiltonian H(q, p, x) whose quantization
H(t, ∂t, x) is unambiguous and succeeds to describe the resulting scalar heat equation (58) for
the ψh defined in (68). Indeed, the Hamiltonian description of PVI (at least in rational coordi-
nates) is not unique. The three Hamiltonians we are aware of (Malmquist28, Suleimanov42,
Tsegel’nik44) have different properties: polynomial in q (Malmquist), even functions of p
(Malmquist, Suleimanov), even functions of the four θj’s (Suleimanov, Tsegel’nik), but none
of these properties is relevant, and this is a fourth property which dictates the Hamiltonian.

Indeed, in order to prove the Painlevé property of PVI, Painlevé built33 (p. 26)34 (Eq. (3))
four rational functions of u′, u, x having as only movable singularities two movable simple
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poles of residue unity (reached when u ∼ ±x(x− 1)θ−1
∞ (x− x0,±)−1 in the expression below,

and similarly for the three other rational functions),

d

dx
log τVI,P =

x(x− 1)u′2

2u(u− 1)(u− x)
− u′

u− x
(69)

+
1

2x(x− 1)

[
θ2
∞

(
1

2
− u
)

+ θ2
0

(
1

2
− x

u

)
+θ2

1

(
x− 1

u− 1
− 1

2

)
+ (θ2

x − 1)

(
1

2
− x− x(x− 1)

u− x

)
− x+ 1

]
,

and this is the Hamiltonian associated to this tau-function which correctly defines the quan-
tum correspondence. The Hamiltonians of Malmquist and Suleimanov are associated to a
different tau-function, which is the one built by Chazy9 (expression t page 341) and whose
logarithmic derivative has only one (instead of two) movable simple pole of residue unity
(reached when u ∼ x(x− 1)θ−1

∞ (x− x0)−1).
The Hamiltonian44 associated to (69),

HVI,T(q, p, x) =
1

aTx(x− 1)

[
q(q − 1)(q − x)a2

Tp
2 + q(q − 1)aTp

+
1

4

(
(θ2
∞ − 1)

(
1

2
− q
)

+ θ2
0

(
1

2
− x

q

)
+θ2

1

(
−1

2
+
x− 1

u− 1

)
+ θ2

x

(
1

2
− x− x(x− 1)

u− x

)
+ 2x− 1

)]
,

q = u, p =
1

2aT

(
x(x− 1)u′

u(u− 1)(u− x)
− 1

q − x

)
,

(70)

(aT being a constant of normalization), only differs from (69) by an additive term which
reflects the singling out of one singular point among four,

d

dx
log τVI,P − 2aTHVI,T(q, p, x) +

d

dx
log(q − x) = 0. (71)

Then, if one defines the quantum Hamiltonian as

∀ψ : HVI,T(t, ∂t, x)ψ = aT
t(t− 1)(t− x)

a2
Tx(x− 1)

∂2
t ψ +

t(t− 1)

aTx(x− 1)
∂tψ + (∂0

t terms)ψ, (72)

and chooses the above adjustable parameters as k0 = 0, k1 = 0, kx = 1, the scalar Lax pair
for the ψh defined in (68) can be written as

[
∂x − aTHVI,T(t, ∂t, x, θ

2
j + sj) + gh(x)

]
ψh = 0,[

∂x −
t(t− 1)(u− x)

x(x− 1)(t− u)
∂t −

1

2

d

dx
log τVI,P + gh(x)− 3

4x
− 3

4(x− 1)

+

x(x− 1)u′ + u(u− 1)(u− x)

(
1

u
+

1

u− 1
− 2

u− x

)
2x(x− 1)(t− u)

ψh = 0,

gd − gh = −1

2

d

dx
log τVI,P −

3

4x
− 3

4(x− 1)
,

s∞ = 1, s0 = s1 = sx = −1,

(73)
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and the quantum correspondence is realized by taking gh as the arbitrary function. The
reason why only three θ2

j display the same shift is a consequence of the necessity to single
out one of the four singular points in order to define a tau-function.

Third step. The conversion of this Lax pair to elliptic coordinates (U,X, T ) is per-
formed in a systematic way following the guidelines and the formulae of Halphen recalled
in Appendix A. In order that the heat equation in elliptic coordinates takes the normalized
form (59) (i.e. without ∂T term), the wave function ΨH must be

ΨH = (t(t− 1))−1/4(t− x)3/4eFψh,

dF =
W (t, x)

2(t(t− 1)(t− x))1/2
dt+

GH(X)

x(x− 1)
dx

+
−2(t(t− 1)(t− x))1/2W (t, x)− (t− x)W 2(t, x)− (t− x)2

4x(x− 1)(t− x)
dx,

(74)

in whichGH(X) is an arbitrary function. As expected, the link between the wave function ΨH

of the heat equation in elliptic coordinates and the wave function ψ1,q of the first canonical
form of the matrix Lax pair of PVI does not involve the apparent singularity t = u,

ΨH = (t(t− 1))1/4(t− x)−3/4eFψ1,q. (75)

In the elliptic coordinates, the Lax pair (73) then becomes

[
2aXπ

2∂X −
1

2
GH(X) +

1

2
∂2
T −

1

2
(2ω)2

∑
j=∞,0,1,x

(
θ2
j −

1

4

)
℘(2ωT + ωj)

]
ΨH = 0,[

aXπ
2∂X + ω

[
1

2

℘′(2ωT )

℘(2ωT )− ℘(2ωU)
+ ζ(2ωT )− 2ηT

]
∂T + (e2 − e1)ω2GH(X)

− (e2 − e1)ω2[θ2
∞℘(2ωU) + θ2

0℘(2ωU + ω1) + θ2
1℘(2ωU + ω2) + (θ2

x − 1)℘(2ωU + ω3)]

+
(2ω)2(e3 − e2)2(e1 − e3)2

℘′2(2ωU)

(
du

dx

)2

+
2ω2(e3 − e2)(e1 − e3)(℘(2ωT )− e3)

(℘(2ωT )− ℘(2ωU))(℘(2ωU)− e3)

du

dx

− ω2(ζ(2ωT )− 2ηT )2 − ω2 (ζ(2ωT )− 2ηT )℘′(2ωT )

℘(2ωT )− ℘(2ωU)
− ω(η + e3ω)

− ω2 (℘(2ωT )− e3)2 − (e3 − e1)(e3 − e2)

℘(2ωT )− ℘(2ωU)

]
ΨH = 0,

(76)

in which du/dx should be replaced by the expression (A14).
The reduction ∂X = 0 of the remarkable parabolic PDE (76)1 is a generalization to

nonconstant half-periods of the equation introduced by Darboux16,[
d2

dT 2
− λ− (2ω)2

∑
j=∞,0,1,x

nj(nj + 1)℘(2ωT + ωj)

]
Ψ = 0, (77)

integrated for arbitrary complex λ and integer nj’s by de Sparre40, and rediscovered by
Treibich and Verdier more than one century later. Its writing in rational coordinates is
identical to the Heun equation23. For a modern account on this Darboux ODE, see38,45.
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Remark. The shifts −1/4 in (76)1 are a direct consequence of the identity nj(nj + 1) =
(nj + 1/2)2 − 1/4.

The confluence to the lower Painlevé equations of the results presented in this section
can be found in Appendix C.

VI. GENERALIZED BONNET SURFACES

Given the previous results, it is natural to ask whether there exist analytic surfaces
represented by the full PVI, which would therefore generalize Bonnet surfaces. The answer
is indeed positive.

The matrix Lax pair (40) can be converted back to the moving frame (15) of some surface
by solving the six scalar equations

UP−1dz + VP−1dz̄ = Ldx+Mdt, P =

(
G 0
0 1/G

)
, (78)

for the five unknowns eυ, H, Q, Q, G2 (indeed, c scales out because of (18)), thus defining
an extrapolation of the Bonnet moving frame (25) to arbitrary values of the four θj’s. If one
defines fjk and gjk by

Ljkdx+Mjkdt = fjk(x, t)dz + gjk(x, t)dz̄, (79)

this system of six scalar equations,
Qe−υ/2G−2 = −4cz(t− x), Qe−υ/2G2 = g21,

(H + c)eυ/2G2 = 2f21, (H − c)eυ/2G−2 = 8cz(u− x),

d log(eυG4) = −f11dz + 2cz

[
a(u− x)−Θx

x(x− 1)

t− x

]
dz̄,

(80)

is equivalent to

G4 = −4
f21

4cz(u− x)

H − c
H + c

, eυ = −16cz(u− x)f21

H2 − c2
,

Q = −8cz(t− x)f21

H + c
, Q = −8cz(u− x)g21

H − c
,

dH = (H − c)Adz + (H + c)Bdz̄,

A(x, t) = −2f11 + 4x(x− 1)
u′ − 1

u− x
,

B(x, t) = 4cz

[
Θx

x(x− 1)

t− x
− a(u− x) + x(x− 1)∂x log(f21)

]
,

(81)

and the condition d2H = 0,

(H − c) [AB − 4czx(x− 1)Ax]

−(H + c) [AB − 4czt(t− 1)Bt − 4czx(x− 1)Bx] = 0, (82)

admits three solutions
(A) c 6= 0, (θ∞,Θx) 6= (−1,−1) :

H

c
= the unique solution of (82),

(B) c = 0, θ∞ = Θx 6= −1, θ2
1 = θ2

0 : H = any integral of (81)3,
(C) c arbitrary, (θ∞,Θx) = (−1,−1) : H = any integral of (81)3.

(83)
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The generic solution (A)

c 6= 0, (θ∞,Θx) 6= (−1,−1) :
H

c
=

(θ∞ −Θx)P5 + (θ∞ + Θx − 2)P3

(θ∞ −Θx)P4 + (θ∞ + Θx − 2)P5

,

H − c
H + c

=
P5

x(x− 1)P3
d
dx

log τVI,M

, (84)

where the Pn’s, all different, are polynomials of u′, u, x, t, θ∞, θ2
0, θ2

1, Θx of degree n in u′,
defines an extrapolation of Bonnet surfaces to more general surfaces in R3(c) represented by
the generic PVI, in which, as a consequence of (18), the nonzero value of c is arbitrary and
independent of the θj’s. Its Bonnet limit is, by construction,

lim
θ∞→0,Θx→0

H

c
=

8czx(x− 1) d
dx

log τVI,M

cz(θ2
1 − θ2

0)
, (85)

but for arbitrary θj’s the value of H is different from 8czx(x−1) d
dx

log τVI,M and does depend
on t.

As to the two nongeneric solutions (B) and (C), in which d2H is identically zero, they
are not essentially different from the solution of Bonnet. For instance, in the third solution
(C), two θj’s are the same as those of Bonnet and the two others are shifted by ±1, therefore
this third solution is the Schlesinger transform19,39 of the Bonnet solution, and we leave it
to the interested reader to establish the explicit expressions for H.

Remark. One can similarly define an extrapolation of harmonic inverse mean curvature
surfaces to the full PVI. It is sufficient to first transpose the moving frame and therefore,
instead of solving (78), to solve

tUP−1dz + tVP−1dz̄ = Ldx+Mdt, P =

(
G 0
0 1/G

)
. (86)

VII. CONCLUSION

The present results are threefold: (i) the natural Lax pair of PVI; (ii) a rigorous derivation
of the quantum correspondence of PVI; (iii) an extension of Bonnet surfaces to two more
parameters, thus matching the completeness of PVI and the completeness of Gauss-Codazzi
equations.

In future work, we plan two directions of research.
(i) To find a geometric characterization of these extended Bonnet surfaces.
(ii) To similarly improve the discrete matrix Lax pair of q-PVI introduced by Jimbo and

Sakai25, i.e. to remove its meromorphic dependence on a fixed parameter of this q-PVI.
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Appendix A: Conversion between rational and elliptic coordinates

This Appendix has two guidelines. The first one is to define the Weierstrass functions ℘,
ζ, σ as functions of three arguments (z, g2, g3), not two arguments (z|τ) by setting one period
to unity. The reason is that ℘(z, g2, g3) is a homogeneous function, thus making all formulae
homogeneous and therefore easy to check. Our second guideline is to never deal with partial
derivatives, always with differentials, in order to avoid thinking about which depends on
what. The reference is, naturally, the first volume of Halphen20 (t. I Chap. IX–X).

The ratio of the two periods 2ω, 2ω′ and the discriminant are respectively denoted Ω and
∆20 (t. I p. 321),

Ω = iπ
ω′

ω
, ∆ = g3

2 − 27g2
3. (A1)

The transformation (2)–(3) between rational and elliptic coordinates is equivalently de-
fined as

(u, 0, 1, x) = (℘(2ωU), e1, e2, e3), Ω = iπ
ω′

ω
· (A2)

In order to obtain (4), it is sufficient to establish the differentials of u, x, du/dx in terms
of dU , dΩ, d(dU/dΩ), then to substitute these values in (1).

Since x, u and Ω, U have no dimension, it is convenient to replace the triplet (2ωU, g2, g3)
of the arguments of ℘ by a triplet containing two dimensionless variables, for instance
(U,Ω,∆), whose Jacobian

D(2ωU, g2, g3)

D(U,Ω,∆)
= 2ω

2ω2

9π2
(A3)

never vanishes. The differential of a dimensionless variable will therefore have no contribu-
tion of d∆, without the need for assuming the period 2ω to be unity.

If one denotes (z, g2, g3) the three arguments of ℘, ζ, σ, and L the dimension of the first
argument z, the various variables have the dimensions

[z] = [ω] = [σ] = L, [℘] = [eα] = L−2, [ζ] = [η] = L−1,

[g2] = L−4, [g3] = L−6, [∆] = L−12. (A4)

Abbreviating ℘(z, g2, g3) (resp. ζ(z, g2, g3), σ(z, g2, g3)) as ℘ (resp. ζ, σ), and denoting
by a quote ′ the derivative with respect to the first argument, the only necessary formulae,
apart (A1), are the following20 (t. I Chap. IX–X)51,

℘′
2

= 4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3), ζ ′ = −℘, σ′ = σζ, (A5)

dσ = σζdz +
1

∆

(
−9

4
g3σ

′′ +
1

4
g2

2zσ
′ −
(

1

4
g2

2 +
3

16
g2g3z

2

)
σ

)
dg2

+
1

∆

(
3

2
g2σ

′′ − 9

2
g3zσ

′ +

(
9

2
g3 +

1

8
g2

2z
2

)
σ

)
dg3, (A6)

ζ(ω, g2, g3) = η, ζ(ω′, g2, g3) = η′, ηω′ − η′ω = i
π

2
, (A7)

dω =
1

∆

(
−1

4
g2

2ω +
9

2
g3η

)
dg2 +

1

∆

(
9

2
g3ω − 3g2η

)
dg3, (A8)

dη =
1

∆

(
−3

8
g2g3ω +

1

4
g2

2η

)
dg2 +

1

∆

(
1

4
g2

2ω −
9

2
g3η

)
dg3. (A9)
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In particular, the expressions of dζ and d℘ result from dσ by action of the operator ′ (we
hope that no confusion occurs with ω′), which commutes with the operator d. To this list
one should add the transformed of (A8)–(A9) under (ω, η)→ (ω′, η′).

From the above formulae, one deduces the quite useful formula,

deα =
eαdg2 + dg3

12e2
α − g2

, (A10)

together with the formulae of the change of variables

dg2 =
1

∆

(
−12g3

dΩ

π2
+
g2

3
d∆

)
, dg3 =

1

∆

(
−2

3
g2

2

dΩ

π2
+
g3

2
d∆

)
, (A11)

dω = 2ηω2 dΩ

π2
− ω

12∆
d∆, dη = −g2ω

3 dΩ

6π2
+

η

12∆
d∆. (A12)

1. From rational to elliptic coordinates

Given the definitions (3) and now taking z = 2ωU , the differentials dx and du are then
linear forms of dU , dΩ independent of d∆,

dx = −4ω2(e3 − e1)(e3 − e2)

π2(e2 − e1)
dΩ,

du =
2ω℘′

(e2 − e1)
dU + [(ζ − 2ηU)℘′ + 2(℘− e1)(℘− e2)]

2ω2

π2(e2 − e1)
dΩ,

(A13)

hence the value of du/dx,

du

dx
=

1

2ω(e3 − e1)(e3 − e2)

[
π2℘′

dU

dΩ
+ ((ζ − 2ηU)℘′ + 2(℘− e1)(℘− e2))ω

]
. (A14)

The differential of du/dx is similarly expressed as a linear form of dU , dΩ, d(dU/dΩ),
and one obtains

d2u

dx2
=

e2 − e1

8ω3(e3 − e1)2(e3 − e2)2

[
π4℘′

d2U

dΩ2
+ 2π4ω℘′′

(
dU

dΩ

)2

−π2ω2 {12℘℘′ + 4(ζ − 2ηU)℘′′} dU

dΩ

+ω3
(

2(ζ − 2ηU)2℘′′ + 12(ζ − 2ηU)℘℘′ + 3℘′
2
)]
. (A15)

The transformed equation of (1) then results from the substitution of the expressions x,
u, du/dx, d2u/dx2 respectively defined by (3), (A14), (A15),

π2

(2ω)3

d2U

dΩ2
− θ2

∞℘
′

− θ2
0

(e3 − e1)(e1 − e2)℘′

(℘− e1)2
− θ2

1

(e1 − e2)(e2 − e3)℘′

(℘− e2)2
− θ2

x

(e2 − e3)(e3 − e1)℘′

(℘− e3)2
= 0. (A16)

Finally, the addition formula

∀x1, x2 : ℘(x1 + x2) + ℘(x1) + ℘(x2) =
1

4

(
℘′(x1)− ℘′(x2)

℘(x1)− ℘(x2)

)2

, (A17)
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applied to the choice x2 = ωα, ℘(x2) = eα reduces to

∀z : ℘(z + ωα)− eα =
(eα − eβ)(eα − eγ)

℘(z)− eα
, (A18)

whose z-derivatives are the last three terms of (A16).
The usual normalization (4) is achieved by taking the independent variable X to be an

adequate multiple of Ω, cf. Eq. (2).

2. From elliptic to rational coordinates

Because of homogeneity, any function of the elliptic coordinates (U,Ω, T ) can be written
as the product of a function of (u, x, t) by a monomial of ω (or (e2 − e1) since (e2 − e1)ω2

has no dimension). For instance, Eq. (3) implies

℘(2ωU)

u− x+ 1

3

=
℘(2ωU + ω1)
x

u
− x+ 1

3

=
℘(2ωU + ω2)

−x− 1

u− 1
− x− 2

3

=
℘(2ωU + ω3)

−x(x− 1)

u− x
+

2x− 1

3

=
3e1

−(x+ 1)
=

3e2

−(x− 2)
=

3e3

2x− 1
=
e2 − e1

1
=
e3 − e2

x− 1
=
e1 − e3

−x
, (A19)

and similarly by changing (u, U) to (t, T ).
The expressions of dU , dT , dΩ in terms of du, dt, dx result from the differentials (A13)

and their transform under (u, U)→ (t, T ),

dU =
(e2 − e1)

2ω℘′(2ωU)
du− (e2 − e1) [(ζ(2ωU)− 2ηU)℘′(2ωU) + 2(℘(2ωU)− e1)(℘(2ωU)− e2)]

2(e3 − e1)(e3 − e2)ω℘′(2ωU)
dx,

dT =
(e2 − e1)

2ω℘′(2ωT )
dt− (e2 − e1) [(ζ(2ωT )− 2ηT )℘′(2ωT ) + 2(℘(2ωT )− e1)(℘(2ωT )− e2)]

2(e3 − e1)(e3 − e2)ω℘′(2ωT )
dx,

dΩ = − π2(e2 − e1)

4ω2(e3 − e1)(e3 − e2)
dx.

(A20)

After elimination of e3, ℘(2ωU), ℘(2ωT ), ℘′(2ωU), ℘′(2ωT ) with the definitions (3), the
one-form π2dUdT/dΩ, defined by

dU

dΩ
= − ω(e2 − e1)1/2

π2
√
u(u− 1)(u− x)

[
x(x− 1)

du

dx
− u(u− 1)−

√
u(u− 1)(u− x)W (u, x)

]
,

dT =
(e2 − e1)−1/2

4ω
√
t(t− 1)(t− x)

[
x(x− 1)dt− t(t− 1)dx−

√
t(t− 1)(t− x)W (t, x)dx

] 1

x(x− 1)
,

dΩ = − π2

4ω2(e2 − e1)x(x− 1)
dx,

(A21)

depends algebraically on u, t, x, du, dt, dx and on a dimensionless function W defined by

W (u, x) =
ζ(2ωU)− 2ηU√

e2 − e1

, W (t, x) =
ζ(2ωT )− 2ηT√

e2 − e1

, (A22)
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which obeys a closed differential system with coefficients depending only on u, t, x, du, dt,
dx,

dW (z, x) =
W (z, x)

2x(x− 1)
V3(x)dx−

√
z(z − 1)(z − x)

2x(x− 1)
dx+ [z − x+ V3(x)]

z(z − 1)dx− x(x− 1)dz

2x(x− 1)
√
z(z − 1)(z − x)

,

dV3(x) =

[
1

2
+

V 2
3 (x)

2x(x− 1)

]
dx, V3(x) =

η + e3ω

(e2 − e1)ω
· (A23)

This system integrates with the complete elliptic integrals,
V3 = −2x(x− 1)(logψ)′, ψ = c1K(

√
x) + c2KC(

√
x),

K(k) =

∫ 1

0

dλ√
(1− λ2)(1− k2λ2)

, KC(k) =

∫ 1

0

dλ√
(1− λ2)(1− (k2 − 1)λ2)

.
(A24)
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Appendix B: The solution of Bonnet to his problem

Problem7 (§11 pp. 72–73). Given a surface in R3, to find all surfaces which are
applicable52 on that surface and possess the same two principal radii of curvature.

Solution. Using conformal coordinates, Bonnet gave a complete solution to his problem
in R37 (§11–12 pp 72–92). What we present here is the (easy to perform, see10) extrapolation
to R3(c) of his solution, using the method of Bonnet and the usual notation for the Gauss
and Codazzi equations.

Since a surface in R3(c) is characterized by (υ, H, Q, Q), the problem is equivalent to:
given a solution (υ, H, |Q|2) of the Gauss-Codazzi equations (16), to determine all the values
of eiω = Q/|Q| = |Q|/Q.

By elimination of |Q| between the two Codazzi equations (16)2,3, the variable eiω obeys
a second degree algebraic equation whose coefficients only depend on υ, H, |Q|7 (§11 p. 75)

Hz̄(logα)z̄e
iω +Hz(log β)ze

−iω − 4e−υ|Q|υzz̄ + eυ|Q|−2HzHz̄ = 0, (B1)

α = eυ|Q|−2Hz̄, β = eυ|Q|−2Hz. (B2)

Therefore the discussion splits into three cases (Hz̄, Hz) = (0, 0), (0, 6= 0), ( 6= 0, 6= 0),
the third case splits into two cases (αz̄, βz) = (0, 0), (6= 0, 6= 0), and finally the case
(Hz̄, Hz, αz̄, βz) = ( 6= 0, 6= 0, 0, 0) splits into two cases.

Totally, there are five solutions, summarized in Table I.

TABLE I. The different types of analytic surfaces which solve the Bonnet problem7 (§11 and 12).

The page numbers refer to Bonnet7. CMC is short for constant mean curvature surfaces.

Characterization Applicable surfaces Comment Pages

1 Hz̄ = 0, Hz = 0 CMC (two arb f + one PDE) sine-Gordon or Liouville 76–78

2 Hz̄ = 0, Hz 6= 0 one cone (two arb f) not real7 78–81

3 Hz̄Hz 6=0
h′+h2−c2=0 Dual to minimal (two arb f) not real8 82–84

4 Hz̄Hz 6=0
h′+h2−c2 6=0 Bonnet surfaces (6-param) Painlevé VI 84–85

5 αz̄βz 6= 0 One surface (Bonnet pair) 3 PDEs p 90 85–92

These five types of applicable surfaces sharing the same first fundamental form and mean
curvature were obtained by Bonnet as follows.

1. Type 1 (constant mean curvature surfaces). Defined by

Hz = Hz̄ = 0, (B3)

this solution is characterized by υzz̄ +
h2 − c2

2
eυ − 2g2

1(z)g2
2(z̄)e−υ = 0,

H = h, Q = g2
1(z), Q = g2

2(z̄),
(B4)
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in which h is the constant mean curvature and g1, g2 are two nonzero integration
functions.

If h2 = c2, the Liouville equation for eυ integrates as

h2 = c2 : eυ = −(g1(z)g2(z̄))2 (g3(z) + g4(z̄))2

g′3(z)g′4(z̄)
, (B5)

with g3 and g4 arbitrary, and the relations (B4) and (B5) are identical to the so-called
Weierstrass representation of minimal surfaces (Weierstrass 1863),

H = c, Q = −η2(z)ψ′(z), eυ =
(
1 + |ψ|2

)2 |η|4, (B6)

with the correspondence

g2
1 = −η2ψ′, g2

2 = −η̄2ψ̄′,
g3

ψ
= g4ψ̄ = arbitrary constant. (B7)

If h2 6= c2, a conformal transformation (17) with G′1 = λg1, G′2 = λ−1g2 and λ constant
maps the PDE for υ to the sine-Gordon equation

υZZ̄ +
h2 − c2

2
eυ − 2e−υ = 0, (B8)

and the reduced moving frame equations depend on λ which is then a spectral param-
eter.

2. Type 2 (single complex cone). Defined by

Hz̄ = 0, (eυ|Q|−2Hz)z̄ = 0, dH 6= 0, (B9)

this surface is characterized by eυ = 2i
g′3(z)g′4(z̄)

c cos g3(z)
, H = c sin g3(z),

Q = i(g′3(z))2g4(z̄), Q = −i(g′4(z))2/g4(z̄),
(B10)

and it is not real7 (p. 81).

3. Types 3 and 4. The defining relations

eυ|Q|−2Hz̄ = g1(z) 6= 0, eυ|Q|−2Hz = g2(z̄) 6= 0, (B11)

imply thatH and eυ|Q|−2 only depend on one variable, whose differential is (1/2)(g1dz+
g2dz̄). After the conformal transformation (17) with G′1 = 2/g1, G′2 = 2/g2 followed
by the elimination of υ, the variables H = h(ξ) and Q(z, z̄) obey the coupled system (log h′)′′ + 2h′ − 8|Q|2

(
h′ + h2 − c2

h′

)
= 0, ξ =

z + z̄

2
,

(log |Q|)zz̄ − |Q|2 = 0,
(B12)
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therefore two subcases arise, depending on whether h obeys or not the Riccati ODE
defined by canceling the coefficient of |Q|2 in (B12)1.

In both cases, the remaining equations are

eυ = 4
|Q|2

h′(ξ)
, Qz̄ = Qz = |Q|2. (B13)

4. Type 3 (Surfaces dual to minimal surfaces). If h obeys the Riccati ODE, the general
solution

eυ = 4
h′1(z)h′2(z̄)

(h1(z) + h2(z̄))2c2 cosh2 c<(z − z0)
, H = c tanh c<(z − z0),

Q = − h′1(z)

h1(z) + h2(z̄)
, Q = − h′2(z̄)

h1(z) + h2(z̄)
,

(B14)

depends on one arbitrary constant <(z0) and two arbitrary functions of one variable.
These analytic surfaces are not real8 (p. 57), and at least when c is zero there exists a
conformal transformation46,5 (Remark 4.3.1 p. 68) mapping them to minimal surfaces
in R3.

5. Type 4 (Bonnet surfaces). They are characterized by

eυ|Q|−2Hz̄ = g1(z) 6= 0, eυ|Q|−2Hz = g2(z̄) 6= 0,

2dH

g1dz + g2dz̄
+H2 − c2 6= 0. (B15)

Since |Q|2 is defined by (B12)1, it only depends on <(z) and the equation (B12)2 is
an ODE for |Q| which integrates as

|Q| = ε
2cz

sinh 4cz<(z − z0)
, ε2 = 1, (B16)

in which <(z0) and cz are arbitrary, while the Codazzi equations (B13) integrate as
Q = 2cz coth 2cz(z − z0)− 2cz coth 4cz<(z − z0) =

sinh 2cz(z̄ − z̄0)

sinh 2cz(z − z0)

2cz

sinh 4cz<(z − z0)
,

Q = 2cz coth 2cz(z̄ − z̄0)− 2cz coth 4cz<(z − z0) =
sinh 2cz(z − z0)

sinh 2cz(z̄ − z̄0)

2cz

sinh 4cz<(z − z0)
,
(B17)

with z0 and z̄0 arbitrary. As a consequence, ω = argQ is characterized by the nice
relation7 (Eq. (53) p. 85),

tan
ω

2
= i

tanh cz(z − z0 − ε(z̄ − z̄0))

tanh cz(z − z0 + ε(z̄ − z̄0))
, ε2 = 1. (B18)

As to H(z, z̄) = h(ξ), with ξ = <(z), it obeys the third order ODE7 (Eq. (52) p. 84),

(log h′)′′ + 2h′ − 2

(
4cz

sinh 4cz(ξ − ξ0)

)2(
h′ + h2 − c2

h′

)
= 0, (B19)
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which admits the first integral (22 (p. 48) for c = 0,5 for arbitrary c)

K =

(
h′′

h′
+ 8cz coth 4cz(ξ − ξ0)

)2

+ 8

[(
4cz

sinh 4cz(ξ − ξ0)

)2
h2 − c2

h′
+ h′ + 8cz coth 4cz(ξ − ξ0)h

]
. (B20)

The general solution4 of this ODE (which Bonnet could not obtain for obvious chrono-
logical reasons) is a Hamiltonian of either a codimension-two PVI (cz 6= 0) or a
codimension-three PV (cz = 0). This defines a family of analytic surfaces, called
Bonnet surfaces, which, in addition to the fixed parameter c, depend on six arbitrary
movable constants (the two origins of z and z̄, the first integrals cz and K, and the
two constants of integration of the ODE (B20)). Their main property is to be ap-
plicable on a surface of revolution but to never be a surface of revolution7 (Eq. (53)
p. 85). The real surfaces defined by these analytic surfaces have been determined by

É. Cartan8, they require c2
z to be real and consist of three disjoint classes denoted A,

B, C corresponding respectively to c2
z negative, positive, zero.

Remark 1. Bonnet surfaces are characterized by the local condition

|Q|2(log |Q|)zz̄ − g1(z)g2(z̄)/4 = 0, (B21)

i.e., after elimination of g1 and g2, by the global conditions10

(logQ)zz̄ − (logQ)z̄(logQ)z = 0, (logQ)zz̄ − (logQ)z(logQ)z̄ = 0. (B22)

Remark 2. Since a Liouville PDE such as (B21) is equivalent to a d’Alembert PDE
ϕzz̄ = 0 (i.e. ϕ harmonic), many geometers like to characterize Bonnet surfaces by the
condition that some function (e.g. Q−Q in Eq. (B17), or 1/Q in22) be harmonic, but
one should keep in mind that such a condition is only local.

6. Type 5 (Bonnet pairs). They are characterized by

(eu|Q|−2Hz̄)z̄ 6= 0, (eu|Q|−2Hz)z 6= 0. (B23)

Since there are exactly two applicable surfaces, the proof of Bonnet can be simplified
as follows5 (§4.8.1). Denoting Qj, j = 1, 2 the two solutions, the difference of the two
sets of Gauss-Codazzi equations,

Q1Q1 −Q2Q2 = 0, (Q1 −Q2)z̄ = 0, (Q1 −Q2)z = 0, (B24)

integrates as

Q1 =
q

g2

+ g1, Q2 =
q

g2

− g1, Q1 = − q

g1

+ g2, Q2 = − q

g1

− g2, (B25)
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in which q(z, z̄), g1(z) and g2(z̄) are integration functions. Then, to the half-sum of
the two sets of Gauss-Codazzi equations

υzz̄ +
H2 − c2

2
eυ + 2

(
q2

g1g2

− g1g2

)
e−υ = 0,(

q

g2

)
z̄

− 1

2
eυHz = 0,

(
q

−g1

)
z

− 1

2
eυHz̄ = 0,

(B26)

one applies the conformal transformation (17), completed by

∀G(z) : (z, q)→
(
G(z), |G′(z)|2q

)
. (B27)

The system resulting from the choice G′2 = g1, G
′2

= g2
7 (p. 90)

υzz̄ +
1

2
(H2 − c2)eυ − 2(1− q2)e−υ = 0,

qz̄ −
1

2
Hze

υ = 0, −qz −
1

2
Hz̄e

υ = 0,
(B28)

is a particular Gauss-Codazzi system in R3(c), with

Q = 1 + q, Q = 1− q. (B29)

A member Q = Qj of a Bonnet pair is characterized by the local condition

Q

g1

+
Q

g2

+ (−1)j2 = 0, (B30)

i.e., after elimination of g1 and g2, by the two global conditions
(
Qz

QQ

)
z̄(

log Q

Q

)
zz̄


z̄

= 0 and c.c.. (B31)

This terminates the solution given by Bonnet to his problem.

The five types of surfaces which solve the Bonnet problem can also be characterized by
the following global conditions which only involve Q and Q,

R3(c) :



1. Qz̄ = 0, Qz = 0,
2. (logQ)zz̄ = 0, (logQ)zz̄ = 0,
3. (Qz̄/|Q|2)z = 0, (Qz/|Q|2)z̄ = 0,
4. (logQ)zz̄ − (logQ)z̄(logQ)z = 0, (logQ)zz̄ − (logQ)z(logQ)z̄ = 0,

5.


(
Qz

QQ

)
z̄(

log Q

Q

)
zz̄


z̄

= 0 and c.c..

(B32)
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Appendix C: Confluence to the lower Painlevé equations

Following Garnier18, we define the lower Pn as four-parameter equations derived from
PVI(u, x, α, β, γ, δ) by the classical confluence of poles.

Definition in rational coordinates18,

PVI : u′′ =
1

2

[
1

u
+

1

u− 1
+

1

u− x

]
u′2 −

[
1

x
+

1

x− 1
+

1

u− x

]
u′

+
u(u− 1)(u− x)

x2(x− 1)2

[
α + β

x

u2
+ γ

x− 1

(u− 1)2
+ δ

x(x− 1)

(u− x)2

]
,

PV : u′′ =

[
1

2u
+

1

u− 1

]
u′2 − u′

x
+

(u− 1)2

x2

[
αu+

β

u

]
+ γ

u

x
+ δ

u(u+ 1)

u− 1
,

PIII : u′′ =
u′2

u
− u′

x
+
αu2 + γu3

4x2
+

β

4x
+

δ

4u
,

PIV
′ : u′′ =

u′2

2u
+ γ

(
3

2
u3 + 4xu2 + 2x2u

)
+ 4δ(u2 + xu)− 2αu+

β

u
,

PII
′ : u′′ = δ(2u3 + xu) + γ(6u2 + x) + βu+ α,

J : u′′ = 2δu3 + 6γu2 + βu+ α.

The added equation J (like “Jacobi”) is the autonomous limit of PII
′, which is itself the

synthesis of PII and PI made by Garnier.

Transformation between rational and elliptic or degenerate elliptic coordinates2,

PVI : x =
e3 − e1

e2 − e1

, u =
℘(2ωU, g2, g3)− e1

e2 − e1

, t =
℘(2ωT, g2, g3)− e1

e2 − e1

,

PV : x = e2X , u = coth2 U, t = coth2 T,

PIII : x = e2X , u = eXe2U , t = eXe2T ,

PIV
′ : x = X, u = U2, t = T 2,

PII
′ : x = X, u = U, t = T.

Pn in elliptic or degenerate elliptic coordinates2,

PVI :
d2U

dX2
=

(2ω)3

π2a2
X

∑
j=∞,0,1,x

θ2
j℘
′(2ωU + ωj, g2, g3),

PV :
d2U

dX2
= −2α

coshU

sinh3 U
− 2β

sinhU

cosh3 U
− 2γe2X sinh(2U)− 1

2
δe4X sinh(4U),

PIII :
d2U

dX2
=

1

2
eX(αe2U + βe−2U) +

1

2
e2X(γe4U + δe−4U),

PIV
′ :

d2U

dX2
= −αU +

β

2U3
+ γ

(
3

4
U5 + 2XU3 +X2U

)
+ 2δ(U3 +XU),

PII
′ :

d2U

dX2
= δ(2U3 +XU) + γ(6U2 +X) + βU + α.
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1. Matrix Lax pairs holomorphic in the four parameters

The confluence preserves the unique zero t = u of M12 and the invertibility of M∞ under
one nonvanishing condition.

PVI see (40).

PV



L = − M1

t− 1
− u− 1

x
M∞, M = −M∞

t− 1
+

xM1

(t− 1)2
+

(
1

t
− 1

t− 1

)
M0,

M∞ =
1

2

(
0 −2
−α 0

)
,

M0 =
1

4u(u− 1)2

(
−2u(u− 1)r5 4u2(u− 1)2

−r2
5 − 2β(u− 1)2 2u(u− 1)r5

)
,

M1 = 2d

(
1 0
0 −1

)
+
dr5 + (γ − d)(u− 1)

2(u− 1)2

(
0 0
1 0

)
,

r5 = x(u′ − du),
−4 detM∞ = 2α, −4 detM0 = −2β, −4 detM1 = −2δ = d2;

(C1)

PIII



L = −L0

t
− u

x
M∞, M =

xL0

t2
+
M0

t
−M∞, M∞ =

1

8

(
0 −4
−γ 0

)
,

M0 =
2r3

4u

(
1 0
0 −1

)
− u

2

(
0 1
0 0

)
+
γu+ 2α

8

(
0 0
1 0

)
,

L0 = −d
4

(
1 0
0 −1

)
+
−2dr3 + (β + 2d)u

4u2

(
0 0
1 0

)
,

r3 = xu′ +
d

2
x, −4 detM∞ =

γ

4
, −4 detL0 = −δ

2
=
d2

4
;

(C2)

PIV
′


L = 2(t+ u)M∞ + 2M0, M = tM∞ +M0 +

M−1

t
, M∞ =

1

4

(
−c 0
2δ c

)
,

M0 =
1

4

(
−2cx 2

cr4 + 2δ(u+ 2x)− 2(α + c) 2cx

)
, M−1 =

1

8u

(
2ur4 −4u2

r2
4 + 2β −2ur4

)
,

r4 = u′ + cu2 + 2cxu, −4 detM∞ =
γ

4
=
c2

4
, −4 detM−1 =

β

2
;

(C3)

PII
′



L =
t+ u

2
M∞ +

M1

2
, M = t2M∞ + tM1 +M0,

M∞ =

(
−d 0
2γ d

)
, M1 =

(
0 2

dr2 + β
2

+ 2γu 0

)
,

M0 =

(
u′ + du2 −2u

d(2ur2 + 1/2) + α + βu/2 + γ(2u2 + x) 2− (u′ + du2)

)
,

r2 = u′ + d
(
u2 +

x

2

)
, −4 detM∞ = 4δ = 4d2.

(C4)

For PV, the two Fuchsian singularities of M are naturally put at t = ∞ and t = 0 by
the confluence. The choice t = 0, 1 for their location made in Ref.24 ((C.38)) breaks the
symmetry between t and u, resulting in distorted values of the invariants detMj.

32



Bonnet and PVI

2. Matrix Lax pairs symmetric with respect to the diagonal

They are generated from (42) by the confluence. Alternatively, they are obtained from
those in section C 1 by action of the transition matrix P displayed in the first line of each
entry. They have a meromorphic dependence in one of the four parameters. From PIV

′

down, M∞ is no more diagonal and all elements are rational.
PVI see (42).

PV



α =
θ2
∞
2
6= 0 : P =

(
2 2

a− θ∞ a+ θ∞

)(
g−1/2 0

0 g1/2

)
,

L = − M1

t− 1
, M = −M∞

t− 1
+

xM1

(t− 1)2
+

(
1

t
− 1

t− 1

)
M0,

M∞ =
θ∞
2

(
1 0
0 −1

)
,

M0 =
r2

5 + 2βu2(u− 1)2

4θ∞u(u− 1)2

(
1 g
−1/g −1

)
− r5

2(u− 1)

(
0 g

1/g 0

)
+
θ∞u

4

(
−1 g
−1/g 1

)
,

M1 =
1

2θ∞(u− 1)2
[−dr5 − (γ − d)(u− 1)]

(
1 −g

1/g −1

)
+
d

2

(
0 g

1/g 0

)
,

r5 = x(u′ − du),
g′

g
= θ∞

u− 1

x
, δ = −d

2

2
,

−4 detM∞ = 2α = θ2
∞, −4 detM0 = −2β, −4 detM1 = d2;

(C5)

PIII



γ = c2 6= 0 : P =

(
2 2
−c c

)(
g−1/2 0

0 g1/2

)
,

L = −L0

t
, M =

xL0

t2
+
M0

t
−M∞, M∞ =

c

4

(
1 0
0 −1

)
,

L0 =
2dr3 − (β + 2d)u

4cu2

(
1 g
−1/g −1

)
− d

4

(
0 g

1/g 0

)
,

M0 =
r3

2u

(
0 g

1/g 0

)
− α

4c

(
1 g
−1/g −1

)
− cu

4

(
0 g
−1/g 0

)
,

r3 = xu′ +
d

2
x,

g′

g
= c

u

2x
, γ = c2, δ = −d2,

−4 detM∞ = c2/4, −4 detL0 = d2/4;

(C6)

PIV
′



γ = c2 6= 0 : P =

(
2 2
c −c

)
, L = 2(t+ u)M∞ + 2M0, M = tM∞ +M0 +

M−1

t
,

M∞ =
1

4c

(
2δ 2δ − c2

−2δ − c2 −2δ

)
,

M0 =
cr4 + 2δ(u+ 2x)− 2α + 2c

4c

(
1 1
−1 −1

)
− cx

2

(
0 1
1 0

)
, +

c

8

(
1 −1
1 −1

)
M−1 =

r2
4 + 2β

8cu

(
1 1
−1 −1

)
+
r4

4

(
0 1
1 0

)
− cu

8

(
1 −1
1 −1

)
,

r4 = u′ + cu2 + 2cxu, γ = c2, −4 detM∞ =
c2

4
, −4 detM−1 = −β

2
;

(C7)
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PII
′



δ = d2 6= 0 : P =

(
2 2
d −d

)
, L =

t+ u

2
M∞ +

M1

2
, M = t2M∞ + tM1 +M0,

M∞ =
1

d

(
2γ 2γ − d2

−2γ − d2 −2γ

)
,

M1 = −d
2

(
1 −1
1 −1

)
+

2dr2 + 4γu+ β

2d

(
1 1
−1 −1

)
,

M0 = −du
2

(
1 −1
1 −1

)
+

2dur2 + 4γu2 + βu+ 2γx+ 2α + d

2d

(
1 1
−1 −1

)
+

2r2 − dx
2

(
0 1
1 0

)
,

r2 = u′ + d
(
u2 +

x

2

)
, −4 detM∞ = 4δ = 4d2.

(C8)

3. Quantum correspondence

First step. The classical Hamiltonians are generated by the confluence acting on (70).
As explained in the text, these Hamiltonians for PVI, PV and PIII are different from those
in Ref.42, they only coincide at the PIV

′ and PII
′ levels because of the absence of a p term.

Second step. One defines the scalar Lax pairs (62) of the four-parameter Pn’s by their two
coefficients (S,C), see Ref.18 (pp. 49, 52), reproduced in Ref.15 (p. 211), and one changes
the scalar wave vector from ψd to ψh.

Third step. The quantum Hamiltonians are defined from the classical ones as the conflu-
ence of the quantization rule (72). If one chooses the normalization constant aT adequately
for each Pn, the quantization rule (72) is the same for every Pn,

∀Pn, ∀f(q, x), ∀k = 1, 2 : f(q, x)pkψh → f(t, x)a−kT ∂kt ψh. (C9)

The result is as follows.
Equations (62) (scalar Lax pair), (C9) (quantization) and q = u are common to all Pn.

PV



V (z) = αz +
β

2
z2 + γ(2z3 + zx) +

δ

2
(z4 + z2x),

d2u

dx2
−
[

1

2u
+

1

u− 1

]
u′2 +

u′

x
− u(u− 1)2

x

∂V (u)

∂u
= 0,

S = − 3

2(t− u)2
+ 2

xu′ + (u− 1)(2u− 1)

(u− 1)t(t− 1)(t− u)
− 1

2tu

(
xu′

(t− 1)(u− 1)

)2

+
x

t(t− 1)2
(V (u)− V (t)) +

1

2

(
2t− 1

t(t− 1)

)2

, C = −t(t− 1)(u− 1)

x(t− u)
,

H(q, p, x, α, β, γ, δ) =
q(q − 1)

x
((q − 1)aTp

2 + p)− 1

2aT

V (q),

p =
1

2aT

(
xu′

u(u− 1)2
− 1

u− 1

)
,

gd − gh = −aTH(q, p, x, α, β, γ, δ) +
xu′ − (u− 1)

2x(u− 1)
, ψd = ψh(t− u)−1/2(t− 1),

[∂x + gh(x)− aTH(t, ∂t, x, α + 1/2, β + 1/2, γ, δ)]ψh = 0,[
∂x + gh(x)− aTH(q, p, x, α, β, γ, δ) + C∂t +

(xu′ − (u− 1))(t− 1)

2x(u− 1)(t− u)

]
ψh = 0,

(C10)
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PIII



V (z) =
1

16

(
2α
z

x
− 2

β

z
+ γ

z2

x
− δ x

z2

)
,

(
xdu

udx

)′
− 2u

∂V (u)

∂u
= 0,

S = − 3

2(t− u)2
+ 2

xu′ + u

tu(t− u)
− 1

2

(
xu′

tu

)2

+
2x

t2
(V (u)− V (t)) , C = − tu

x(t− u)
,

H(q, p, x, α, β, γ, δ) =
q2

x
aTp

2 +
q

x
p− 1

aT

V (q) +
1

4aTx
, p =

1

2aT

(
xu′

u2
− 1

u

)
,

gd − gh = −aTH(q, p, x, α, β, γ, δ) +
u′

2u
, ψd = ψh(t− u)−1/2tx−1/2,

[∂x + gh(x)− aTH(t, ∂t, x, α, β, γ, δ)]ψh = 0,[
∂x + gh(x)− aTH(q, p, x, α, β, γ, δ) + C∂t +

(xu′ − u)t

2xu(t− u)

]
ψh = 0,

(C11)

PIV
′



V (z) = −2αz − β

z
+ γ(

z3

2
+ 2xz2 + 2x2z) + δ(2z2 + 4xz),

d2u

dx2
− u′2

2u
− u∂V (u)

∂u
= 0,

S = − 3

2(t− u)2
+ 2

u′ + 2

2t(t− u)
− u′2

8tu
+

1

2t2
+

1

4t
(V (u)− V (t)) , C = − 2t

t− u
,

H(q, p, x, α, β, γ, δ) = qaTp
2 − 1

4aT

V (q), p =
u′

4aTu
,

gd − gh = −aTH(q, p, x, α, β, γ, δ), ψd = ψh(t− u)−1/2,
[∂x + gh(x)− aTH(t, ∂t, x, α, β, γ, δ)]ψh = 0,[
∂x + gh(x)− aTH(q, p, x, α, β, γ, δ) + C∂t +

u′ + 2

2(t− u)

]
ψh = 0,

(C12)

PII
′



V (z) = αz +
β

2
z2 + γ(2z3 + zx) +

δ

2
(z4 + z2x),

d2u

dx2
+
∂V (u)

∂u
= 0,

S = − 3

2(t− u)2
+ 2

u′

t− u
− 2u′

2
+ 4V (u)− 4V (t), C = − 1

2(t− u)
,

H(q, p, x, α, β, γ, δ) = aT
p2

2
− 1

aT

V (q), p =
u′

aT

,

gd − gh = −aTH(q, p, x, α, β, γ, δ), ψd = ψh(t− u)−1/2,
[∂x + gh(x)− aTH(t, ∂t, x, α, β, γ, δ)]ψh = 0,[
∂x + gh(x)− aTH(q, p, x, α, β, γ, δ) + C∂t +

u′

2(t− u)

]
ψh = 0.

(C13)

4. Generalized heat equations and associated Lax pairs

The confluence of the relations (73) yields for each Pn a scalar Lax pair made of a
generalized heat equation and a first order PDE.

If one denotes Hn(q, p, x, α, β, γ, δ) the above classical Hamiltonians, the generalized heat
equations are (we omit the gh(x) terms),

∀Pn : [∂x − aTHn(t, ∂t, x, α + sα, β + sβ, γ + sγ, δ + sδ)]ψh = 0, (C14)
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in which the shifts s∗ of the parameters are nonzero only for PVI and PV,

(sα, sβ, sγ, sδ) =

 (1/2, 1/2,−1/2, 1/2), PVI

(1/2, 1/2, 0, 0), PV

(0, 0, 0, 0), PIII,PIV
′,PII

′.
(C15)

The second half of the Lax pairs is as follows,

PV



[
∂x −

t(t− 1)(u− 1)

x(t− u)
∂t +

xu′ − u+ 1

2x(t− u)
− xu′2

4u(u− 1)2
+

xu′

2x(u− 1)

+ α

(
u

2x
− 1

4x

)
+ β

(
1

4x
− 1

2xu

)
+ γ

(
1

4
− u

2(u− 1)

)
− δ xu

2(u− 1)2

]
ψh = 0,

(C16)

PIII

[
∂x −

tu

x(t− u)
∂t +

xu′ − u
2(t− u)

− xu′2

4u2
+
u′

2u
− 1

2x
+

1

8

(
α
u

x
− β

u
+ γ

u2

2x
− δ x

2u2

)]
ψh = 0,(C17)

PIV
′



[
∂x −

2t

t− u
∂t +

u′ + 2

2(t− u)
− u′2

8u

− 1

4

(
2αu+

β

u
− γu

3 + 4xu2 + 4x2u

2
− δ(2u2 + 4xu)

)]
ψh = 0,

(C18)

PII
′

[
∂x −

2

t− u
∂t +

u′

2(t− u)
− u′2

2
+ αu+ β

u2

2
+ γ(2u3 + xu) + δ

u4 + xu2

2

]
ψh = 0.

(C19)
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J. École polytechnique 42, 1–151 (1867).
http://gallica.bnf.fr/ark:/12148/bpt6k433698b/f5.image
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19R. Garnier, Sur un théorème de Schwarz, Comment. Math. Helvetici 25, 140–172 (1951).
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equations satisfied by polynomial Hamiltonians, Proc. Japan Acad. A 56 367–371 (1980).
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i Matematicheskaya Fizika 151 54–65 (2007). [English : Theor. and Math. Phys. 151 482–
491 (2007)].

45A.P. Veselov, On Darboux-Treibich-Verdier potentials, Letters in mathematical physics 96
209–216 (2011). http://arXiv.org/abs/1004.5355 math-ph. doi:10.1007/s11005-010-0420-6

46K. Voss, Bonnet surfaces in spaces of constant curvature, Lecture notes, First MSJ In-
ternational research on geometry and global analysis, Research institute Sendai, Japan
295–307 (1993).

47A. Zabrodin and A. Zotov, Quantum Painlevé-Calogero correspondence,
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