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Abstract

The current article stems from our study on the asymptotic behavior of holo-
morphic isometric embeddings of the Poincaré disk into bounded symmetric
domains. As a first result we prove that any holomorphic curve exiting the
boundary of a bounded symmetric domain Ω must necessarily be asymptoti-
cally totally geodesic. Assuming otherwise we derive by the method of rescal-
ing a hypothetical holomorphic isometric embedding of the Poincaré disk with
Aut(Ω′)-equivalent tangent spaces into a tube domain Ω′ ⊂ Ω and derive a
contradiction by means of the Poincaré-Lelong equation. We deduce that
equivariant holomorphic embeddings between bounded symmetric domains
must be totally geodesic. Furthermore, we solve a uniformization problem on
algebraic subsets Z ⊂ Ω. More precisely, if Γ̌ ⊂ Aut(Ω) is a torsion-free dis-
crete subgroup leaving Z invariant such that Z/Γ̌ is compact, we prove that
Z ⊂ Ω is totally geodesic. In particular, letting Γ ⊂ Aut(Ω) be a torsion-free
cocompact lattice, and π : Ω → Ω/Γ =: XΓ be the uniformization map, a
subvariety Y ⊂ XΓ must be totally geodesic whenever some (and hence any)
irreducible component Z of π−1(Y ) is an algebraic subset of Ω. For cocom-
pact lattices this yields a characterization of totally geodesic subsets of XΓ

by means of bi-algebraicity without recourse to the celebrated monodromy
result of André-Deligne on subvarieties of Shimura varieties, and as such our
proof applies to not necessarily arithmetic cocompact lattices. In place of
the monodromy result of André-Deligne we exploit the existence theorem of
Aubin and Yau on Kähler-Einstein metrics for projective manifolds Y satis-
fying c1(Y ) < 0 and make use of Nadel’s semisimplicity theorem on automor-
phism groups of noncompact Galois covers of such manifolds, together with
the total geodesy of equivariant holomorphic isometric embeddings between
bounded symmetric domains.

1 Introduction

For a bounded symmetric domain Ω b CN in its Harish-Chandra realization, we

denote by ds2
Ω its Bergman metric. As a first motivation for the current article, we

are interested in the study of holomorphic isometries f : (Ω1, λds
2
Ω1

) → (Ω2, ds
2
Ω2

),
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λ > 0, between bounded symmetric domains. When Ω1 is irreducible and of rank

≥ 2, it follows from the proof of Hermitian metric rigidity that f is necessarily

totally geodesic (cf. Mok [Mo89], Clozel-Ullmo [CU03]). The interest lies therefore

in the cases where Ω1
∼= Bn, n ≥ 1, is the complex unit ball. By Mok [Mo12],

it follows from the rationality of Bergman kernels of bounded symmetric domains

in Harish-Chandra coordinates that any holomorphic isometry f : (Bn, λds2
Bn) →

(Ω, ds2
Ω), λ > 0, must necessarily be a proper holomorphic isometric embedding

such that Graph(f) ⊂ Bn × Ω can be analytically continued to an affine algebraic

variety V ⊂ Cn × CN . The first objective in the current article is to study the

case where Ω1 = ∆ := B1, and we prove a more general result ascertaining that

an arbitrary local holomorphic curve exiting Ω must necessarily be asymptotically

totally geodesic. More precisely, we have

Theorem 1.1. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra

realization equipped with the Bergman metric ds2
Ω. Let µ : U = B1(b0, ε)→ CN , ε >

0, be a holomorphic embedding such that µ(U ∩∆) ⊂ Ω and µ(U ∩∂∆) ⊂ ∂Ω, where

b0 ∈ ∂∆. Denote by σ(z) the second fundamental form of µ(U ∩∆) in (Ω, ds2
Ω) at

z = µ(w). Then, for a general point b ∈ U ∩∂∆ we have limw∈U∩∆, w→b‖σ(µ(w))‖ =

0.

For the last statement we also say for short that µ is asymptotically totally

geodesic at a general point b ∈ ∂∆. From Mok [Mo12] we deduce readily the asymp-

totic total geodesy of holomorphically embedded Poincaré disks on Ω, as follows.

Theorem 1.2. Let f : (∆, λds2
∆)→ (Ω, ds2

Ω) be a holomorphic isometric embedding,

where λ is a positive real constant and Ω b CN is a bounded symmetric domain in its

Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general

point b ∈ ∂∆.

Theorem 1.2 was stated in [Mo11, Theorem 3.5.1] where it was indicated that

the proof relies on the Poincaré-Lelong equation. Then, Mok [Mo14] obtained an

elementary proof of the special case of Theorem 1.1 where the local holomorphic

curve exits at a smooth boundary point, i.e., at p ∈ Reg(∂Ω), and the write-up of

a complete proof of Theorem 1.2 was delayed in part since the second author was

searching for a proof along the lines of argument of [Mo14]. In joint efforts towards

that goal we soon realized that the geometry of local holomorphic curves exiting

other strata of ∂Ω is much more subtle and a proof using the rescaling argument

and the Poincaré-Lelong equation remains methodologically the most useful for the

study of holomorphic isometries. This resulted in the write-up of the proof of The-

orem 1.1 in the current article and a substantial new application of Theorem 1.2 to

a uniformization problem on bounded symmetric domains arising from functional

transcendence theory given in Section 5.

The rescaling argument, which was discovered by Wong [Won77] and applied to

characterize the complex unit ball as the strictly pseudoconvex domain with smooth

boundary, unique up to biholomorphic equivalence, admitting an infinite number

of automorphisms, is currently made use of in the study of uniformization prob-

lems related to the hyperbolic Ax-Lindemann conjecture. The latter conjecture,
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which asserts that for a torsion-free arithmetic lattice Γ ⊂ Aut(Ω), the Zariski

closure of the image of an algebraic subset S ⊂ Ω under the uniformization map

π : Ω→ Ω/Γ =: XΓ is necessarily totally geodesic, has been established by Klingler-

Ullmo-Yafaev [KUY16] (after Ullmo-Yafaev [UY14] in the compact case and Pila-

Tsimerman [PT14] in the Siegel modular case) using methods of o-minimality in

model theory in combination with methods from Hodge theory and complex dif-

ferential geometry. However, when the arithmeticity assumption on the lattice Γ

is dropped, it has so far not been possible to adapt the methods of the aforemen-

tioned articles to the problem. In the rank-1 case, the approach of Mok [Mo10]

[Mo18] using methods from several complex variables, algebraic geometry and com-

plex differential geometry has yielded a resolution of the analogous conjecture in the

affirmative for not necessarily arithmetic lattices, and a key point of the method is

the rescaling argument applied to an irreducible component Z of the preimage of

the Zariski closure π(S)
Zar

with respect to the uniformization map π : Ω→ XΓ.

Here for bounded symmetric domains Ω of arbitrary rank we give for the first

time a geometric application of the rescaling argument in the proof of Theorem 1.1

for local holomorphic curves C exiting ∂Ω. We do this by pulling back C by a

divergent sequence of automorphisms of Ω to yield by taking limits of subvarieties

the image of a holomorphic isometric embedding of the Poincaré disk. Arguing

by contradiction, in the event that Theorem 1.1 fails, by rescaling we construct

holomorphically embedded Poincaré disks Z which are closed to being homogeneous,

e.g., the norm of the second fundamental form of Z ⊂ Ω can be made to be a

nonzero constant, in order to derive a contradiction by means of the Poincaré-Lelong

equation. The latter equation was applied in Mok [Mo02] for the characterization

of totally geodesic holomorphic curves in the case of tube domains. Exploiting the

parallelism of the curvature tensor on bounded symmetric domains and estimates

of the Kobayashi metric and the Kobayashi distance on bounded convex domains

(cf. Mercer [Me93]) we solve in this article a new type of integrability problem by

sandwiching a tube domain between Z and Ω, thereby allowing us to apply the

Poincaré-Lelong equation.

It should be noted that, in view of the construction in Mok [Mo16] of nonstandard

holomorphic isometric embeddings of the complex unit ball Bn into an irreducible

bounded symmetric domain of rank ≥ 2 by means of varieties of minimal rational

tangents, the analogue of Theorem 1.1 fails in general when local holomorphic curves

are replaced by local complex submanifolds of dimension≥ 2. But precisely Theorem

1.1 as it stands is enough to imply that any equivariant holomorphic embedding

between bounded symmetric domains must be totally geodesic (cf. Theorem 5.22),

a result which in the cases of classical domains was due to Clozel [Cl07], and we will

make use of the result to give an application of Theorem 1.1 to a uniformization

problem on algebraic subsets of bounded symmetric domains which is a first step

towards an affirmative resolution of the Ax-Lindemann conjecture for not necessarily

arithmetic lattices in the (locally reducible) higher rank case.

Theorem 1.3. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra

realization, Γ ⊂ Aut(Ω) be a not necessarily arithmetic torsion-free cocompact lat-
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tice. Write XΓ := Ω/Γ, π : Ω → XΓ for the uniformization map. Let Y ⊂ XΓ

be an irreducible subvariety, and Z ⊂ Ω be an irreducible component of π−1(Y ).

Suppose Z ⊂ Ω is an algebraic subset. Then, Z ⊂ Ω is a totally geodesic complex

submanifold.

The analogue of Theorem 1.3 in the case of arithmetic and not necessarily cocom-

pact lattices Γ ⊂ Aut(Ω) was established by Ullmo-Yafaev [UY11], and that gives

the characterization of totally geodesic subsets of XΓ as the unique bi-algebraic sub-

varieties, thus yielding a reduction of the hyperbolic Ax-Lindemann conjecture. The

proof of [UY11] relies heavily on the result of André-Deligne [An92] ascertaining the

Zariski density of the monodromy representation of the fundamental group of an

algebraic subvariety of XΓ unless it is contained in a proper totally geodesic alge-

braic subvariety, a deep result which relies on Hodge theory and which is in general

not available for nonarithmetic lattices. In its place we will deduce Theorem 1.3

from Theorem 5.22, by a proof which relies in the first place on the semisimplicity

theorem of Nadel [Na90] on the automorphism groups of universal covering spaces

of compact complex manifolds with ample canonical line bundle.

Using the maximum principle for plurisubharmonic functions and an adaptation

of [Na90] we deduce that Z ⊂ Ω is a nonsingular complex submanifold, and the

identity component H0 of the subgroup of Aut0(Ω) which stabilizes Z is a positive-

dimensional real semisimple Lie group without compact factors. Considering any

H0-orbit S in Z, the proof will have followed from Theorem 5.22 if we can show that

S = Z ⊂ Ω is a Hermitian symmetric space of the semisimple and noncompact type.

We prove that this is indeed the case by means of cohomological arguments using the

compactness of Y ⊂ XΓ. Using such arguments, we show on the one hand that an

H0-orbit S in Z must have real dimension equal to dimR(Z) and thus S = Z ⊂ Ω is

complex-analytic, and on the other hand that S ∼= H0/L for some maximal compact

subgroup L of H0. As a consequence, S = Z ⊂ Ω is a Hermitian symmetric space of

the semisimple and noncompact type, and Theorem 5.22 applies to yield Theorem

1.3. Our arguments actually yield a more general result (Theorem 5.23) in which

Γ ⊂ Aut(Ω) is any torsion-free discrete subgroup and Y ⊂ XΓ = Ω/Γ is a compact

complex-analytic subvariety.

For the link between the study of holomorphic isometries and uniformization

problems we refer the reader to the expository article Mok [Mo18].

Acknowledgment. Research work done by the second author for the current article

has been supported by GRF grant 17301518 of the Hong Kong Research Grants

Council. The authors would like to thank the referee for helpful suggestions.

2 Preliminaries

Let Ω b CN be an irreducible bounded symmetric domain of rank r. We may identify

Ω ∼= G0/K =: X0 as a Hermitian symmetric space X0 of the noncompact type, where

G0 = Aut0(Ω) and K ⊂ G0 is the isotropy subgroup at 0 ∈ Ω (cf. [Wol72], [Mo14]).

We follow some basic terminology introduced in [Wol72] (cf. [Mo89], [Mo14]). Let G



5

be the complexification of G0 and g be the complex Lie algebra of G. Let g0 ⊂ g be

the real Lie algebra of G0, which is a noncompact real form of g, and k ⊂ g0 be the

Lie algebra of K. Fixing a Cartan subalgebra h of k, the complexification hC of h lies

in the complexification kC of k. Then, hC ⊂ g is also a Cartan subalgebra of g, and

the set of all roots of g lies in
√
−1h∗. Let ∆+

M (resp. ∆−M) be the set of noncompact

positive (resp. negative) roots as a subset of the set of all roots of g. Then, we

have m+ =
⊕

ϕ∈∆+
M
Ceϕ and gϕ = Ceϕ with eϕ being of unit length with respect

to the canonical Kähler-Einstein metric h. Moreover, we have m− =
⊕

ϕ∈∆−M
Ceϕ

and the compact dual Hermitian symmetric space Xc = G/P of X0, where P is the

parabolic subgroup of G corresponding to the parabolic subalgebra p := kC�m−. We

let Ψ = {ψ1, . . . , ψr} be a maximal strongly orthogonal set of noncompact positive

roots. From the Polydisk Theorem (cf. [Wol72], [Mo14]), there is a maximal polydisk

∆r ∼= Π ⊂ Ω given by Π =
(⊕r

j=1 gψj

)
∩ Ω such that (Π, h|Π) ⊂ (Ω, h) is totally

geodesic and Ω =
⋃
γ∈K γ · Π.

For Λ ⊂ Ψ we let gΛ = [lΛ, lΛ] be the derived algebra of lΛ := hC +
∑

φ⊥ΨrΛ gφ,

where ⊥ means the orthogonality with respect to the metric induced by the Killing

form of g. Then, gΛ,0 := g0 ∩ gΛ is a real form of gΛ (cf. Wolf [Wol72, p. 287]).

Letting GΛ,0 be the connected Lie subgroup of G0 for gΛ,0, we define the orbit

XΛ,0 := GΛ,0(o) ⊂ X0 = G0/K, where o ∈ X0 is the base point identified with

0 ∈ Ω ∼= X0. Write m+
Λ := m+ ∩ gΛ. Note that we have the Harish-Chandra

embedding ξ : m+ → Xc = G/P . Denote by ξΛ the restriction of ξ to m+
Λ . The sets

ΩΛ := ξ−1
Λ (XΛ,0) b m+

Λ are called characteristic subdomains of Ω = ξ−1(X0), which

are also irreducible bounded symmetric domains of rank |Λ| by [Wol72, pp. 287–290].

Moreover, ΩΛ are also called the |Λ|-th characteristic subdomains of Ω. Actually,

Wolf [Wol72, p. 292] classified all the characteristic subdomains ΩΛ of any irreducible

bounded symmetric domain Ω. We refer the readers to Mok-Tsai [MT92] for details.

Let Xc = G/P be a Hermitian symmetric space of the compact type and hc be

a canonical Kähler metric on Xc, where G = Aut(Xc). In Tsai [Ts93], a complex

submanifold M ⊂ Xc = G/P is said to be an invariantly geodesic submanifold

of Xc if and only if ϕ(M) is a totally geodesic submanifold of (Xc, hc) for any

ϕ ∈ G = Aut(Xc). Let (X0, h) be the noncompact dual Hermitian symmetric space

of (Xc, hc) and X0 ⊂ Xc be the Borel embedding. We have the bounded symmetric

domain Ω := ξ−1(X0) corresponding to X0 and we identify Ω ∼= X0 ⊂ Xc. A complex

submanifold Σ ⊂ Ω of the bounded symmetric domain Ω is said to be an invariantly

geodesic submanifold if and only if there exists an invariantly geodesic submanifold

M ⊂ Xc such that M contains Σ as an open subset (see Mok [Mo08, p. 138]). Then,

any characteristic symmetric subdomain of Ω is an invariantly geodesic submanifold

of Ω by [Mo08, Lemma 2.1]. In addition, Tsai [Ts93, Proof of Proposition 4.6]

showed that for any irreducible bounded symmetric domain Ω of rank r ≥ 2, all

invariantly geodesic submanifolds of Ω are irreducible bounded symmetric domains

of rank ≤ r. More generally, let Ω = Ω1×· · ·×Ωm be a reducible bounded symmetric

domain with irreducible factors Ωj, 1 ≤ j ≤ m, any invariantly geodesic submanifold

Ω′ of Ω is of the form Ω′ = Ω′1 × · · · × Ω′m, where each Ω′j ⊆ Ωj is Ωj itself, or an

invariantly geodesic submanifold of Ωj, or of dimension 0.
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2.1 Canonical Kähler-Einstein metric on irreducible bounded

symmetric domains

Given an irreducible bounded symmetric domain Ω b CN in its Harish-Chandra

realization, denote by gΩ the canonical Kähler-Einstein metric on Ω normalized so

that minimal disks of Ω ∼= G0/K are of constant Gaussian curvature −2. Note that

the Bergman kernel of Ω may be written as

KΩ(z, z) =
1

Vol(Ω)
hΩ(z, z)−(p(Ω)+2),

where z = (z1, . . . , zN), hΩ(z, z) is some polynomial in (z1, . . ., zN , z1,. . .,zN) with

hΩ(0, z) ≡ 1, Vol(Ω) is the Euclidean volume of Ω in CN with respect to the standard

Euclidean metric on CN and p(Ω) := p(Xc) = dimC Co(Xc) is the complex dimension

of the VMRTs Co(Xc) of Xc
∼= Gc/K at o = eK. Here Gc is a compact real form of

G = (G0)C (cf. [Mo89]). Then, the Kähler form ωgΩ
with respect to gΩ on Ω is given

by ωgΩ
=
√
−1∂∂(− log(−ρ)), where ρ(z) := −hΩ(z, z).

Lemma 2.4 (cf. [Mo14, Mo16]). Let µ : U → CN be a holomorphic embedding such

that µ(U ∩∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω, where U ⊂ C is an open neighborhood of

some point b0 ∈ ∂∆ and Ω is an irreducible bounded symmetric domain of rank r ≥ 2.

Assume U ∩ ∂∆ is connected. There is an integer m ≥ 1 such that for a general

point b ∈ U ∩ ∂∆, (U ∩ ∆, µ∗gΩ|U∩∆) is asymptotically of Gaussian curvature − 2
m

along Ub ∩ ∂∆ for some open neighborhood Ub of b in U . More precisely, there is an

integer m such that, denoting by κ(w) the Gaussian curvature of (U ∩∆, µ∗gΩ|U∩∆)

at w ∈ U ∩∆, we have

κ(w) = − 2

m
+O(δ(w)2)

as w → b for a general point b ∈ U ∩ ∂∆, where δ(w) = 1− |w| for w ∈ ∆.

Proof. From [Mo14] and [Mo16], for a general point b ∈ U ∩ ∂∆, the real-analytic

function −ρ(µ(w)) vanishes to the order m on an open neighborhood of b in U ∩∂∆

for some integer m ≥ 1. Then, we have −ρ(µ(w)) = (1−|w|2)mχ(w) on Ub for some

positive smooth function χ defined on a neighborhood U ′ of Ub, where Ub is an open

neighborhood of b in U such that Ub b U . Then, on Ub ∩∆ we have

µ∗ωgΩ
=−
√
−1∂∂ log(−ρ(µ(w)))

=−m
√
−1∂∂ log(1− |w|2)−

√
−1∂∂ logχ(w)

=

(
m

(1− |w|2)2
+ q(w)

)
·
√
−1dw ∧ dw

where q(w) = −∂2 logχ
∂w∂w

is a smooth function defined on U ′ (cf. [Mo14]). From [Mo14],

it suffices to show that q(w)·(1−|w|2)2 = O(δ(w)2) on Ub∩∆, where δ(w) := 1−|w|.
It is clear that |q(w)|2 is bounded on Ub. Now, on Ub ∩∆ we have µ∗ωgΩ

= u
(1−|w|2)2 ·√

−1dw ∧ dw, where u := m + q(w)(1 − |w|2)2. After shrinking Ub if necessary, we

may suppose that u > 0 on a neighborhood of Ub because |q(w)|2 is locally bounded
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on U ′. Denote by κ(w) the Gaussian curvature of (U ∩∆, µ∗gΩ|U∩∆) at w ∈ U ∩∆.

For w ∈ Ub ∩∆, we have

κ(w) =− (1− |w|2)2

u

∂2

∂w∂w
log

u

(1− |w|2)2

=− 1

u

∂2 log u

∂w∂w
(1− |w|2)2 − 2

u

=− 2

m
+

(
2q(w)

m · u
− 1

u

∂2 log u

∂w∂w

)
(1 + |w|)2 · δ(w)2.

Note that 2q(w)
m·u −

1
u
∂2 log u
∂w∂w

is smooth and real-valued on Ub. Therefore, we have

κ(w) = − 2
m

+O(δ(w)2) as w → b for a general point b ∈ U ∩ ∂∆.

2.2 Convention

LetM be a smooth manifold and E be a differentiable complex vector bundle overM .

We denote by A(E) the sheaf of germs of smooth sections of E. Thus, Γ(M,A(E))

is the complex vector space of smooth sections of E over M . When M is a complex

manifold and E is a holomorphic vector bundle over M , O(E) denotes the sheaf

of germs of holomorphic sections of E over M , but we write for short Γ(M,E) :=

Γ(M,O(E)). For germs of sheaves at a point x ∈M , to emphasize the background

manifold M we also write Γloc,x(M,A(E)) := Ax(E) and Γloc,x(M,E) := Ox(E).

3 Construction of embedded Poincaré disks

3.1 Holomorphic isometries via the rescaling argument

Let Ω b CN be an irreducible bounded symmetric domain of rank r in its Harish-

Chandra realization. Let µ : U = B1(b0, ε) → CN , ε > 0, be a holomorphic embed-

ding such that µ(U ∩∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω, where b0 ∈ ∂∆. Let {wk}+∞
k=1

be a sequence of points in U ∩∆ such that wk → b as k → +∞. Let ϕk ∈ Aut(∆)

be the map ϕk(ζ) = ζ+wk
1+wkζ

and Φk ∈ Aut(Ω) be such that Φk(µ(wk)) = 0, i.e.,

Φk(µ(ϕk(0))) = 0, for k = 1, 2, 3, . . .. For the sequence {Φk ◦ (µ◦ϕk)}+∞
k=1 of germs of

holomorphic maps from (∆; 0) to (Ω; 0), there exists ε′ > 0 such that all Φk ◦(µ◦ϕk)
are defined on U ′ := B1(0, ε′) ⊂ ∆.

Lemma 3.5. Let {wk}+∞
k=1 be a sequence of points in U∩∆ converging to b ∈ U∩∂∆.

Then, shrinking U ′ if necessary, there is a subsequence of {µ̃j = Φj ◦ (µ ◦ ϕj)}+∞
j=1

converging to a holomorphic map µ̃ on U ′ such that µ̃ : (∆,m0g∆; 0)→ (Ω, gΩ; 0) is

a germ of holomorphic isometry for some integer m0 ≥ 1.

Proof. It is clear that the sequence {µ̃j = Φj ◦ (µ ◦ ϕj)}+∞
j=1 is bounded on compact

subsets of U ′, so it contains a subsequence {µ̃jk}+∞
k=1 converging uniformly on compact

subsets of U ′ to a holomorphic map µ̃ by Montel’s Theorem. After shrinking U ′ if

necessary, we may suppose that such a sequence {µ̃jk}+∞
k=1 converges uniformly to µ̃

on U ′.
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In the proof of Lemma 2.4, we have µ∗ωgΩ
= m0ωg∆

+ q(w)
√
−1dw ∧ dw on

Ub ∩ ∆, where Ub = B1(b, εb) for some εb > 0, m0 > 0 is an integer and q(w) is

smooth and bounded on Ub. For k sufficiently large and w ∈ U ′, after shrinking U ′

if necessary we have ϕk(U
′) ⊂ Ub ∩ ∆ by choosing a suitable sequence {wk}+∞

k=1 in

U ∩∆ converging to b ∈ ∂∆ and we have

√
−1∂∂ log(−ρ(µ̃k(w))) =

√
−1∂∂ log(−ρ(µ(ϕk(w))))

= m0

√
−1∂∂ log(1− |w|2) + q(ϕk(w))|ϕ′k(w)|2

√
−1dw ∧ dw

so that ∂2

∂w∂w
log(−ρ(µ̃k(w))) = m0

∂2

∂w∂w
log(1 − |w|2) + q(ϕk(w))|ϕ′k(w)|2. Since ϕ′k

converges uniformly on compact subsets to 0, by taking limit as k → +∞ (pass-

ing to some subsequence of {µ̃k}+∞
k=1 if necessary) we have ∂2

∂w∂w
log(−ρ(µ̃(w))) =

m0
∂2

∂w∂w
log(1 − |w|2) so that µ̃∗gΩ = m0g∆ on some open neighborhood of 0, i.e.,

µ̃ : (∆,m0g∆; 0)→ (Ω, gΩ; 0) is a germ of holomorphic isometry.

3.2 Embedded Poincaré disks with uniform geometric prop-

erties

For the purpose of studying properties of certain holomorphically embedded Poincaré

disks in bounded symmetric domains, we need the following Lemma 3.6 and Lemma

3.7.

Lemma 3.6. Let φ(τ) = p(τ)
q(τ)

be a quotient of real-analytic functions p and q on Û ,

where Û is some open neighborhood of 0 in C. Denote by H = {τ ∈ C : Imτ > 0}
the upper half-plane in C. Assume that φ(τ) is bounded on Û ∩ H. Then, φ(τ)

extends real-analytically across a general point b ∈ Û ∩ ∂H.

Proof. We may regard p and q as functions of (x, y), where τ = x +
√
−1y ∈ Û

for x, y ∈ R. We write p(τ) = p(x, y), q(τ) = q(x, y) as real-analytic functions of

(x, y). Locally around 0, we have p(x, y) =
∑+∞

i,j=0 aijx
iyj and q(x, y) =

∑+∞
i,j=0 bijx

iyj

for some aij, bij ∈ C. Then, we have the local holomorphic functions on C2 around

(0, 0) ∈ C2 given by p̂(τ, ζ) :=
∑+∞

i,j=0 aijτ
iζj and q̂(τ, ζ) :=

∑+∞
i,j=0 bijτ

iζj with Reτ =

x and Reζ = y. Let φ̂(τ, ζ) = p̂(τ,ζ)
q̂(τ,ζ)

, which is a quotient of holomorphic functions

around (0, 0) ∈ C2. Then, φ̂ is a meromorphic function on an open neighborhood

U of (0, 0) in C2. The set of indeterminacy I(φ̂) of φ̂ is of dimension at most 0

because it is the intersection of the set Z(φ̂) of zeros and the set P (φ̂) of poles of φ̂.

Moreover, the restriction of φ̂ to U ′ := {(τ, ζ) ∈ U : Im τ = 0, Im ζ = 0} is bounded

after shrinking U if necessary, so U ′ does not intersect P (φ̂) r I(φ̂). Note that the

set of singular points of φ̂ on U is P (φ̂)∪ I(φ̂) = P (φ̂), so the above arguments show

that the set of potentially bad points of φ lies inside I(φ̂)∩U ′, which is of dimension

at most 0. Hence, for a general point b ∈ Û ∩ ∂H, φ(τ) extends real-analytically

around b.

Let v ∈ Tx(Ω) be a non-zero tangent vector, x ∈ Ω. Then, under the G0-action,

there is a unique normal form η = (η1, . . . , ηr) ∈ T0(Π) of v satisfying ηj ∈ R
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(1 ≤ j ≤ r) and η1 ≥ · · · ≥ ηr ≥ 0, where Π ∼= ∆r is a maximal polydisk in Ω

containing 0 and r := rank(Ω). We say that a non-zero vector v ∈ Tx(Ω) is of rank

k if its normal form η = (η1, . . . , ηr) satisfies η1 ≥ · · · ≥ ηk > 0 and ηj = 0 for

k+1 ≤ j ≤ r whenever k < r. A rank-r vector v ∈ Tx(Ω) is also said to be a generic

vector. Moreover, a zero vector in Tx(Ω) is said to be a vector of rank 0. For the

notion of normal forms of tangent vectors in Tx(Ω), x ∈ Ω, we refer the readers to

[Mo02, Mo89] for details.

Lemma 3.7. Let v ∈ Tx(Ω) be a tangent vector of unit length with respect to gΩ at

x ∈ Ω and η =
∑r

j=1 ηjeψj ∈ T0(Π) be the normal form of v. Then, the Hermitian

bilinear form Hη defined by Hη(α, β) = Rηηαβ(Ω, gΩ) has real eigenvalues lying inside

the closed interval [−2, 0] and the corresponding Hermitian matrix Ĥη of Hη can

be represented as a diagonal matrix with respect to the standard orthonormal basis

{eϕ : ϕ ∈ ∆+
M} of m+.

Proof. We write Rαα′ββ′ = Rαα′ββ′(Ω, gΩ) for simplicity. From the assumption,

we have
∑r

j=1 η
2
j = 1 and η1 ≥ · · · ≥ ηr ≥ 0 are real numbers. Writing α =∑

ϕ∈∆+
M
αϕeϕ, β =

∑
ϕ∈∆+

M
βϕeϕ ∈ T0(Ω) ∼= m+, we compute

Hη(α, β) =
r∑
j=1

η2
jReψj eψjαβ

=
r∑
j=1

∑
ϕ∈∆+

M

η2
jαϕβϕReψj eψj eϕeϕ

= −2
r∑
j=1

η2
jαψjβψj +

∑
ϕ∈∆+

MrΨ

(
r∑
j=1

η2
jReψj eψj eϕeϕ

)
αϕβϕ

From [Mo89], Reψj eψj eϕeϕ
= 0 (resp.−1) whenever ψj−ϕ is not a root (resp.ψj−ϕ is a

root). Eigenvalues of Hη are −2η2
j , 1 ≤ j ≤ r, and those of the form −(η2

i1
+. . .+η2

im)

corresponding to eϕ for some ϕ ∈ ∆+
M rΨ such that ψij −ϕ is a root for 1 ≤ j ≤ m

and ψl − ϕ is not a root for l 6∈ {ij : 1 ≤ j ≤ m}. Here we have −2 ≤ −2η2
j ≤ 0

(1 ≤ j ≤ r) and 0 ≥ −(η2
i1

+ . . . + η2
im) ≥ −1 because

∑r
j=1 η

2
j = 1 and ηj ≥ 0,

1 ≤ j ≤ r. In particular, the eigenvector corresponding to the eigenvalue −2η2
j

is precisely eψj , 1 ≤ j ≤ r. Note that the above computations imply that the

corresponding Hermitian matrix Ĥη can be represented as a diagonal matrix with

diagonal −2η2
1, . . . ,−2η2

r and those eigenvalues −(η2
i1

+ . . . + η2
im) mentioned above

with respect to the standard orthonormal basis {eϕ : ϕ ∈ ∆+
M} of m+.

By [Mo09, Proof of Proposition 1], Lemma 2.4 and Lemma 3.6, we have the

following result regarding the local real-analytic extension of the square of the norm

of the second fundamental form around a general boundary point of the unit disk.

Proposition 3.8 (cf. Mok [Mo09, Proposition 1]). Let Ω b CN be a bounded sym-

metric domain in its Harish-Chandra realization equipped with the Bergman metric

ds2
Ω. Let µ : U = B1(b0, ε) → CN , ε > 0, be a holomorphic embedding such that

µ(U ∩ ∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω, where b0 ∈ ∂∆. Denote by σ(z) the second

fundamental form of µ(U ∩∆) in (Ω, ds2
Ω) at z = µ(w). Then, on U ∩∆ the func-

tion ‖σ(µ(w))‖2 is a quotient p(s,t)
q(s,t)

of real-analytic functions p(s, t) and q(s, t) in
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(s, t), where s = Re(w) and t = Im(w). Moreover, for a general point b ∈ U ∩ ∂∆,

‖σ(µ(w))‖2 extends to a real-analytic function ϕb on Ub for some open neighbor-

hood Ub of b in U . In particular, ‖σ(µ(b))‖2 := ϕb(b) is defined for a general point

b ∈ U ∩ ∂∆.

Reinforcing the rescaling argument as introduced in Section 3.1 we are going to

construct special holomorphic embeddings of the Poincaré disk, as follows.

Proposition 3.9. Let Ω b CN be an irreducible bounded symmetric domain of

rank r in its Harish-Chandra realization. Let µ : U = B1(b0, ε) → CN , ε > 0, be

a holomorphic embedding such that µ(U ∩ ∂∆) ⊂ ∂Ω and µ(U ∩ ∆) ⊂ Ω, where

b0 ∈ ∂∆. Denote by σ(z) the second fundamental form of (µ(U ∩∆), gΩ|µ(U∩∆)) in

(Ω, gΩ) at z = µ(w). Let {wk}+∞
k=1 be some sequence of points in U ∩ ∆ converging

to a general point b ∈ U ∩ ∂∆ as k → +∞, and let ϕk ∈ Aut(∆) and Φk ∈ Aut(Ω)

be such that ϕk(0) = wk and Φk(µ(wk)) = 0, k = 1, 2, 3, . . .. Then, the sequence

of germs of holomorphic embeddings {µ̃k := Φk ◦ (µ ◦ ϕk)}+∞
k=1 at 0 ∈ ∆ into Ω

(passing to some subsequence if necessary) converges to the germ of holomorphic

isometry µ̃ : (∆,m0g∆; 0)→ (Ω, gΩ; 0) for some integer m0 ≥ 1, say µ̃ is defined on

U ′ = B1(0, ε′) for some ε′ > 0, satisfying the following properties:

1. ‖σ̃(µ̃(w))‖2 = ‖σ(µ(b))‖2 is independent of w ∈ U ′, where σ̃(z) denotes the

second fundamental form of (µ̃(U ′), gΩ|µ̃(U ′)) in (Ω, gΩ) at z = µ̃(w) for w ∈ U ′,

2. the normal form of µ̃′(w)
‖µ̃′(w)‖gΩ

is independent of w ∈ U ′ and so is the rank of
µ̃′(w)

‖µ̃′(w)‖gΩ
.

By the same procedure, this yields a holomorphic isometry from (∆, m0g∆) to

(Ω, gΩ), denoted also by µ̃, such that properties 1 and 2 hold true on ∆.

Proof. In Lemma 3.5 we have already constructed the germ of holomorphic isometry

µ̃:(∆,m0g∆; 0) → (Ω, gΩ; 0). We will show that µ̃ satisfies properties 1 and 2. We

have µ̃′(w) = limk→+∞ µ̃
′
k(w) 6= 0 for w ∈ U ′ because µ̃ : (∆,m0g∆; 0) → (Ω, gΩ; 0)

is a germ of holomorphic isometry. Let η̃k(w) (resp. η(w)) be the normal form of
µ̃′k(w)

‖µ̃′k(w)‖gΩ
(resp. µ′(w)

‖µ′(w)‖gΩ
) for w ∈ U ′ (resp.w ∈ U ∩ ∆). We also let η̃(w) be the

normal form of µ̃′(w)
‖µ̃′(w)‖gΩ

.

Writing a tangent vector υ =
∑r

j=1 υjeψj in normal form, we let Hυ(α, β) :=

Rυυαβ(Ω, gΩ) be the Hermitian bilinear form and Ĥυ be the corresponding Hermitian

matrix. Denote by Pυ(λ) := det(λIN − Ĥυ) the characteristic polynomial of Ĥυ.

We have shown that all eigenvalues of Hη(w) (resp.Hη̃k(w), resp.Hη̃(w)) belong to

[−2, 0] ⊂ R by Lemma 3.7. For simplicity, we may suppose that ϕk(U
′) ⊂ U ∩ ∆

for any k ≥ 1. Fix an arbitrary point w ∈ U ′. From the construction
µ̃′k(w)

‖µ̃′k(w)‖gΩ
is

equivalent to
ϕ′k(w)

|ϕ′k(w)|
µ′(ϕk(w))

‖µ′(ϕk(w))‖gΩ
under the G0-action so that the normal form η̃k(w)

is equivalent to η(ϕk(w)) under the K-action for k ≥ 1, where G0 := Aut0(Ω) and

K ⊂ G0 is the isotropy subgroup at 0. From the uniqueness of the normal form

(cf. Mok [Mo02]) we have η̃k(w) = η(ϕk(w)) and thus Hη̃k(w) = Hη(ϕk(w)) for any
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integer k ≥ 1. Since the eigenvalues of Hη(ζ) belong to [−2, 0] ⊂ R, the coefficients

of Pη(ζ)(λ) are bounded functions of ζ on U ∩ ∆ and may be written as quotients

of real-analytic functions of ζ on Ub = B1(b, εb) ⊂ U from the construction for some

εb > 0. It follows from Lemma 3.6 that for a general point b ∈ U ∩∂∆ all coefficients

of Pη(ζ)(λ) can be extended as real-analytic functions of ζ on Ub. By shrinking

U ′ if necessary, we may suppose that ϕk(U
′) lies inside Ub ∩ ∆ for k sufficiently

large. Since ϕk(w) → b as k → +∞ for any w ∈ U ′, {Pη(ϕk(w))(λ)}+∞
k=1 converges

to some polynomial P∞(λ) of λ which is independent of w ∈ U ′. In particular, the

roots of P∞(λ) are independent of w ∈ U ′. Since Pη̃k(w)(λ) = Pη(ϕk(w))(λ) and some

subsequence of {Pη̃k(w)(λ)}+∞
k=1 converges to Pη̃(w)(λ), we have Pη̃(w)(λ) = P∞(λ) so

that the roots of Pη̃(w)(λ), equivalently the eigenvalues of Hη̃(w), are independent of

w ∈ U ′.
Write η̃(w) =

∑r
j=1 aj(w)eψj , where a1(w) ≥ · · · ≥ ar(w) ≥ 0 are real. Then,

−2a1(w)2, . . ., −2ar(w)2 are some eigenvalues of Hη̃(w) by the proof of Lemma 3.7.

Since for each j, 1 < j < r, aj(w) varies continuously in w and there are only

finitely many nonnegative real numbers α such that each −2α2 is among the N

eigenvalues of Hη̃(w) (which are independent of w), we conclude that the normal

form η̃(w) =
∑r

j=1 aj(w)eψj is independent of w ∈ U ′ and so is the rank of η̃(w),

i.e., µ̃ satisfies property 2.

Since µ̃ is a germ of holomorphic isometry from (∆,m0g∆) to (Ω, gΩ), from the

Gauss equation we have

‖σ̃(µ̃(w))‖2 = Rη̃(w)η̃(w)η̃(w)η̃(w)(Ω, gΩ)−
(
− 2

m0

)
= −2

r∑
j=1

aj(w)4 +
2

m0

,

which is independent of w ∈ U ′ because aj(w), 1 ≤ j ≤ r, are independent of

w ∈ U ′ from the last paragraph. Actually, denoting by κ(ζ) the Gauss curvature of

(U ∩∆, µ∗gΩ|U∩∆) at ζ ∈ U ∩∆ we have

Rη̃k(w)η̃k(w)η̃k(w)η̃k(w)(Ω, gΩ)− κ(ϕk(w)) = ‖σ(µ(ϕk(w)))‖2

for w ∈ U ′. Since the right-hand side of the above equality converges to ‖σ̃(µ̃(w))‖2

as k → +∞ (by passing to some subsequence if necessary) and ‖σ(µ(ζ))‖2 extends

as a real-analytic function around a general point b of U ∩ ∂∆ (cf. Mok [Mo09]), we

have ‖σ̃(µ̃(w))‖2 = ‖σ(µ(b))‖2 for w ∈ U ′.
Note that µ̃ extends to a holomorphic isometry µ̃ : (∆,m0g∆) → (Ω, gΩ) by

[Mo12]. By choosing a good boundary point b ∈ ∂∆ and by the same procedure, we

can construct a (global) holomorphic isometry from (∆,m0g∆) to (Ω, gΩ), denoted

also by µ̃, such that µ̃ satisfies properties 1 and 2 on ∆, as desired.

Remark 1. (a) The positive integer m0 is actually the vanishing order of ρ(µ(w))

as w → b and we have −ρ(µ(w)) = (1− |w|2)m0χ(w) on Ub = B1(b, εb), εb > 0,

for some positive smooth function χ on Ub.

(b) We equip a bounded symmetric domain Ω with the Bergman metric in the

statement of Theorem 1.1 since we need to apply the extension theorem of

Mok [Mo12] which was only proven for Bergman metrics.
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4 Proof of Theorem 1.1

We first prove a special case of Theorem 1.1 as follows where the bounded symmetric

domain Ω is irreducible and of tube type, and the argument will be generalized to

the case where Ω is reducible and of tube type. We will also show that the general

case of Theorem 1.1 where Ω is an arbitrary bounded symmetric domain is reducible

to the case where Ω is of tube type.

Theorem 4.10. Let Ω b CN be an irreducible bounded symmetric domain of rank

r ≥ 2 in its Harish-Chandra realization. Suppose Ω is of tube type. Let µ : U =

B1(b0, ε) → CN , ε > 0, be a holomorphic embedding such that µ(U ∩ ∆) ⊂ Ω and

µ(U ∩ ∂∆) ⊂ ∂Ω, where b0 ∈ ∂∆. Denote by σ(z) the second fundamental form of

µ(U ∩ ∆) in (Ω, gΩ) at z = µ(w). Then, for a general point b ∈ U ∩ ∂∆ we have

limw∈U∩∆, w→b‖σ(µ(w))‖ = 0.

4.1 Geometry on embedded Poincaré disks

4.1.1 Geometry on embedded Poincaré disks in tube domains

In this section, we suppose that Ω is an irreducible bounded symmetric domain of

tube type and of rank ≥ 2. Recall that we have constructed a holomorphic isometry

µ̃ : (∆,m0g∆) → (Ω, gΩ) from µ such that µ̃(0) = 0, ‖σ̃(µ̃(w))‖2 ≡ ‖σ(µ(b))‖2

for any w ∈ ∆ and µ̃′(w) = dµ̃
(
∂
∂w

)
(w) is of constant rank k on ∆ for some k,

1 ≤ k ≤ r = rank(Ω). We write Z = µ̃(∆) and η(w) =
∑k

j=1 ηj(w)eψj as the normal

form of µ̃′(w)
‖µ̃′(w)‖gΩ

with η1(w) ≥ · · · ≥ ηk(w) > 0, where Ψ = {ψ1, . . . , ψr} is a maximal

strongly orthogonal set of noncompact positive roots [Wol72]. Let Nη be the null

space of the Hermitian bilinear form Hη(α, β) = Rηηαβ(Ω, gΩ), which is of complex

dimension nk(Ω). Here nk(Ω) is the k-th null dimension of the irreducible bounded

symmetric domain Ω (cf. [Mo89]), noting that nr(Ω) = 0. We also write n0(Ω) :=

dimC(Ω). For x ∈ Ω, let Qx be the Hermitian bilinear form on Tx(Ω) � Tx(Ω) given

by Qx(α� β, α′ � β′) = Rαα′β′β(Ω, gΩ). For w ∈ ∆, we define

Wµ̃(w) =
{
v ∈ Tµ̃(w)(Ω) : Qµ̃(w)(v � ζ, ·) ≡ 0 ∀ ζ ∈ Nµ̃′(w)

}
,

where Nµ̃′(w) = Nη(w) =
{
v ∈ Tµ̃(w)(Ω) : Rη(w)η(w)vv(Ω, gΩ) = 0

}
= {v ∈ Tµ̃(w)(Ω) :

η(w) � v ∈ Ker(Qµ̃(w))}. Then, we have Tµ̃(w)(Z) ⊂ Wµ̃(w) ⊂ Tµ̃(w)(Ω). Letting

Nk =
⋂k
j=1{ϕ ∈ ∆+

M : ϕ 6= ψj, ϕ − ψj is not a root}, we have Nη =
⊕

ϕ∈Nk gϕ.

Define Ñ :=
⋂
ϕ∈Nk{ψ ∈ ∆+

M ;ψ 6= ϕ, ψ − ϕ is not a root}. Then, the normal form

of Wµ̃(w) is given by
⋂
ζ∈Nη Nζ =

⊕
ψ∈Ñ gψ.

Lemma 4.11. In the above construction, if Ω is of tube type, then for any x ∈ Z,

Wx = Tx(Ω
′
x) for some characteristic subdomain Ω′x ⊆ Ω of rank k passing through

x and Ω′x is of tube type.

Proof. Fix x ∈ Z. We first consider the case where Ω = DVI. If k = 3 = rank(Ω),

then Wx = Tx(Ω) so that the result follows directly and Ω′x = Ω. If k = 1, then
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Wx = Tx(Z) = Tx(∆η) with ∆η ⊂ Ω being the minimal disk passing through

x = µ̃(w) because
⋂
ζ∈Nη(w)

Nζ = Cη(w) (cf. [MT92, p. 98]). Suppose k = 2. Note

that the automorphism group of the exceptional domain DVI corresponds to the Lie

group E7. From [Zh84] and [Si81, p. 868], we put Ψ = {ψ1, ψ2, ψ3} with ψ1 = x1−x2,

ψ2 = x1 +x2 +x3 and ψ3 =
∑7

j=1 xj −x3, where xj, 1 ≤ j ≤ 7, is the standard basis

of R7. Write η(w) = η1(w)ex1−x2 + η2(w)ex1+x2+x3 . Then, we have

N2 =
2⋂
j=1

{ϕ ∈ ∆+
M : ϕ 6= ψj, ϕ− ψj is not a root}

=

{
7∑
j=1

xj − x3

}
= {ψ3}.

Actually, if η(w) = η1(w)eψj1 + η2(w)eψj2 for some distinct j1, j2 ∈ {1, 2, 3}, then

Nη(w) = Ceψj3 with j3 ∈ {1, 2, 3} r {j1, j2}. Since eψj3 is a characteristic vector,

the normal form of Wµ̃(w) is Neψj3 = T0(Ω′) for some characteristic subdomain Ω′ ⊂
Ω = DVI of rank 2 by [MT92, Proposition 1.8] and we have Ω′ ∼= DIV

10 by [Wol72].

When Ω is of type-IV and k = 1 (resp. k = 2), we have Wx = Tx(Z) = Tx(∆η)

for a unique minimal disk ∆η ⊂ Ω passing through x ∈ Z satisfying Tx(∆η) = Cη
(resp.Wx = Tx(Ω)). Note that these arguments not only work for DIV

N , but also for

any irreducible bounded symmetric domain of rank 2, including DV.

When Ω is of type I, II or III, the result follows from the use of normal form η

and the computations in [Mo89]. If k = r, then we have Wx = Tx(Ω). For each

x ∈ Z, we see that the normal form of Wx is the holomorphic tangent space to some

characteristic symmetric subdomain Ω′ ⊂ Ω of rank k at 0, as follows.

1. When Ω = DI
p,p, 2 ≤ p = r, and 1 ≤ k ≤ p, the normal form η = diagp,p

(η1, . . . , ηk, 0, . . . , 0) is a p-by-p diagonal matrix and it is clear that

⋂
ζ∈Nη

Nζ =

{[
Z ′

0

]
∈M(p, p;C) : Z ′ ∈M(k, k;C)

}
= T0(DI

k,k)

by [Mo89], where we identify Ω′ = DI
k,k with its image via the standard em-

bedding DI
k,k ↪→ DI

p,p, Z
′ 7→

[
Z ′

0

]
.

2. When Ω = DIII
r , the normal form η = diagr,r(η1, . . . , ηk, 0, . . . , 0) is a r-by-r

diagonal matrix, and it is clear that⋂
ζ∈Nη

Nζ =

{[
Z ′

0

]
∈Ms(r;C) : Z ′ ∈Ms(k;C)

}
= T0(DIII

k )

by [Mo89], where we identify Ω′ = DIII
k with its image via the standard em-

bedding DIII
k ↪→ DIII

r , Z ′ 7→
[
Z ′

0

]
.
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3. When Ω = DII
2r, the normal form η = diag2r,2r(η1J1, . . . , ηkJ1,0) is a 2r-by-2r

block diagonal matrix, where J1 :=

(
0 1

−1 0

)
. Then, it is clear that

⋂
ζ∈Nη

Nζ =

{[
Z ′

0

]
∈Ma(2r;C) : Z ′ ∈Ma(2k;C)

}
= T0(DII

2k)

by [Mo89], where Ω′ = DII
2k is identified with its image via the standard em-

bedding DII
2k ↪→ DII

2r, Z
′ 7→

[
Z ′

0

]
.

From the classification of boundary components of any irreducible bounded symmet-

ric domain and the notion of the characteristic subdomains in [Wol72] and [MT92],

we see that Ω′ ⊂ Ω is a characteristic subdomain of rank k. Then, by using the

G0-action and the fact that Ω′ is an invariantly geodesic submanifold of Ω, we see

that Wx = Tx(Ω
′
x) for some characteristic subdomain Ω′x ⊆ Ω of rank k. Since Ω is

of tube type, all its characteristic subdomains are of tube type (cf. [Wol72]).

Remark 2. Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2 which

is not necessarily of tube type. Assume that Tx(Z) is spanned by a rank-k vector

ηx ∈ Tx(Ω) for each x ∈ Z with k < r. Then, for any x ∈ Z we have Wx = Tx(Ω
′
x) for

some invariantly geodesic submanifold Ω′x ⊆ Ω passing through x such that Ω′x is an

irreducible bounded symmetric domain of rank k and of tube type. More precisely,

when Ω is of non-tube type and η is of rank k < r, we have

(a) If Ω ∼= DI
p,q, q > p = r ≥ 2, then Wx

∼= T0(DI
k,k) = M(k, k;C) and Ω′x

∼= DI
k,k.

(b) If Ω ∼= DII
2r+1, r ≥ 2, then Wx

∼= T0(DII
2k) = Ma(2k;C) and Ω′x

∼= DII
2k.

(c) When Ω ∼= DV (which corresponds to the Lie group E6), the result already

follows as we have mentioned in the proof of Lemma 4.11.

From now on the holomorphic vector bundle W is taken to be defined for Ω

irreducible and for Z ⊂ Ω a holomorphically embedded Poincaré disk with Aut(Ω)-

equivalent holomorphic tangent spaces Tx(Z) = Cηx of rank k < r =: rank(Ω), i.e.,

ηy ∈ Ty(Ω) is a rank-k tangent vector for any y ∈ Z.

Lemma 4.12. In the above construction, W :=
⋃
x∈ZWx ⊂ TΩ|Z is a holomorphic

vector subbundle.

Proof. On the holomorphic curve Z we write N :=
⋃
w∈∆Nη(w). For x ∈ Z = µ̃(∆),

we have Nx = {ζ ∈ Tx(Ω) : Q(ξ � ζ, ·) ≡ 0, ∀ ξ ∈ Tx(Z)} and Wx = {γ ∈ Tx(Ω) :

Q(γ�ζ, ·) ≡ 0, ∀ ζ ∈ Nx}. We claim first of all that the vector subbundle N ⊂ TΩ|Z
is ∇-invariant. We consider arbitrary ξ ∈ Tx(Z), ζ ∈ Nx and α, β ∈ Tx(Ω) and by

abuse of notation use the same symbols to denote extensions of these vectors at the

point x to smooth local sections at x sometimes subject to additional conditions,

and the same convention will be adopted throughout the rest of the section. Since

TZ ⊂ TΩ|Z is a holomorphic line subbundle, any ξ ∈ Tx(Z) can be extended to
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ξ ∈ Γloc,x(Z, TZ). Since ∇R ≡ 0, for any (1, 0)-tangent vector v of Z at x, for the

extensions ζ ∈ Γloc,x(Z,A(N )) and α, β ∈ Γloc,x(Z,A(TΩ|Z)), we have

0 = ∇v(Q(ξ � ζ, α� β)) = Q(ξ �∇vζ, α� β).

It follows that ∇vζ ∈ Nx, hence N is ∇-invariant, as claimed. If we identify TΩ|Z
with T ∗Ω|Z by means of the lifting operator defined by the Kähler metric gΩ, N can be

identified with a holomorphic vector subbundle of T ∗Ω|Z . Through this identification,

any ζ ∈ Nx can be extended to ζ ∈ Γloc,x(Z,A(N )) such that ∇vζ ≡ 0.

We fix x ∈ Z. Let γ ∈ Γloc,x(Z,A(W )). Then, for any (1, 0)-tangent vector v of

Z at x and any ζ ∈ Γloc,x(Z,A(N )) so that ∇vζ ≡ 0, we have

0 = ∇v(Q(γ � ζ, α� β)) = Q(∇vγ � ζ, α� β)

for α, β ∈ Γloc,x(Z,A(TΩ|Z)). Therefore, we have (∇vγ)(x) ∈ Wx. As a consequence,

W ⊂ TΩ|Z is ∇-invariant, i.e., ∂-invariant, hence W ⊂ TΩ|Z is a holomorphic vector

subbundle, as desired.

Lemma 4.13. Define the (1, 0)-part of the second fundamental form τ : TZ �W →
TΩ|Z/W of the holomorphic vector subbundle (W, gΩ|W ) ⊂ (TΩ|Z , gΩ) by τx(η� γ) =

(∇ηγ)(x) mod Wx for each x ∈ Z, η ∈ Tx(Z) and γ ∈ Wx. Then, τ is holomorphic.

Proof. We fix x ∈ Z. It suffices to show that for any (1, 0)-tangent vectors β and

η of Z at x, and any γ ∈ Γloc,x(Z,W ), ∇β(∇ηγ)(x) ∈ Wx. This would imply

that ∇β(τ(η � γ)) = 0, i.e., τ is holomorphic, by projecting ∇β(∇ηγ)(x) to the

quotient bundle TΩ|Z/W . Note that R(η, β)γ = −∇β(∇ηγ), so it suffices to show

that Rηβγξ(Ω, gΩ) = 0 for any ξ orthogonal to W , equivalently R(η, β)γ takes values

in W . For each x ∈ Z, Wx = Tx(Ω
′
x) for some characteristic subdomain Ω′x ⊂ Ω

of rank k containing x. Note that Ω′x ⊂ Ω is an invariantly geodesic submanifold,

we can regard x as a base point of Ω and thus [[m−,Wx],Wx] ⊂ Wx by [Ts93,

Lemma 4.3]. This shows that (R(η, β)γ)(x) = [[β(x), η(x)], γ(x)] ∈ Wx because

η(x) ∈ Tx(Z) ⊂ Wx and γ(x) ∈ Wx. Then, −∇β(∇ηγ) = R(η, β)γ takes value in W

so that τ is holomorphic. Moreover, we can regard τ ∈ Γ(Z, T ∗Z �W ∗ � (TΩ|Z/W ))

as a holomorphic section.

Our next goal is to show that τ vanishes identically. The first step is to obtain the

asymptotic vanishing of ‖τ |TZ�TZ (ζ)‖2 as ζ approaches a general point b̂ ∈ ∂∆. For

this purpose, we will need the local holomorphic extension of the second fundamental

form τ around a general point b′ ∈ ∂∆. Therefore, we will extend the definition

of Wµ̃(ζ), ζ ∈ ∆, to some open neighborhood of b′ by making use of the local

holomorphic extension f of µ̃ to Ub′ := B1(b′, ε) for some ε > 0. Actually, we will

define a complex vector space Vx for any x ∈ Z = µ̃(∆) (resp.x ∈ f(Ub′)). Then, we

show that the vector bundles V =
⋃
x∈Z Vx and W are identical (when Ω is of tube

type) and that V ′ :=
⋃
x∈S Vx is also a holomorphic vector bundle over S := f(Ub′).

Before defining the vector bundles V and V ′, we need the following basic setting.

Identify Ω ∼= G0/K, where G0 = Aut0(Ω) and K ⊂ G0 is the isotropy subgroup at

0. Note that we have the Harish-Chandra decomposition g = m− � kC � m+ of the
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Lie algebra g of the Lie group G, where G is the complexification of G0. Moreover,

we have Ω b m+ ∼= T0(Ω) = CN and we can identify Tx(Ω) ∼= m+ for any x ∈ Ω.

Recall that p = m−� kC is the parabolic subalgebra of g and P ⊂ G is the parabolic

subgroup with Lie algebra p. We identify Ω b m+ ∼= CN ⊂ Xc = G/P as an

open subset by the Harish-Chandra and Borel embeddings, where Xc = G/P is the

compact dual of Ω. Note that we may regard g as the Lie algebra of holomorphic

vector fields on Xc, and m− as the vector space of holomorphic vector fields vanishing

to the order ≥ 2 at x for x ∈ Xc. We write px = m−� kCx , where px is the Lie algebra

of the parabolic isotropy subgroup Px ⊂ G at x ∈ Xc and kCx is the Lie algebra of a

Levi factor KC
x ⊂ Px of Px.

In Lemma 4.12 we have proven thatW ⊂ TΩ|Z is a holomorphic vector subbundle.

From [Mo12] there is a local holomorphic extension f of µ̃ to Ub′ = B1(b′, ε), ε > 0,

for a general point b′ ∈ ∂∆, namely, f : Ub′ → CN is a holomorphic embedding

such that f |Ub′∩∆ = µ̃|Ub′∩∆. For any x ∈ S := f(Ub′) ⊂ m+, we can also identify

Tx(S) ⊂ m+ as an affine linear subspace. Now, for any x ∈ Z = µ̃(∆) we define

Vx := Ex/px ⊂ g/px ∼= m+ ∼= Tx(Ω), where

Ex :=

{
[[ξ1, π], ξ2](x) ∈ g :

ξj, π ∈ g, ξj(x) mod px ∈ Tx(Z), j = 1, 2,

π vanishes to the order ≥ 2 at x

}
.

Replacing Tx(Ω) by m+ and Z by S, Vx ⊂ m+ is also defined for any x ∈ S. Let

F := m+ ×m+ be the trivial vector bundle over m+.

Lemma 4.14. Let the notation be as before. Suppose Ω is an irreducible bounded

symmetric domain of rank ≥ 2 which is not necessarily of tube type. Defining V :=⋃
x∈Z Vx ⊆ TΩ|Z, V ⊂ TΩ|Z is a holomorphic vector subbundle such that Tx(Z) ⊆

Vx ⊆ Wx for any x ∈ Z. Moreover, for a general point b′ ∈ ∂∆, we have a local

holomorphic extension f of µ̃ to Ub′ := B1(b′, ε), ε > 0, such that V ′ :=
⋃
x∈S Vx ⊂

F |S is a holomorphic vector bundle, where S := f(Ub′).

Proof. The existence of a local holomorphic extension f of µ̃ around a general point

b′ ∈ ∂∆ follows from Mok [Mo12]. From the definition of Vx for any x ∈ Z (resp.x ∈
S), it follows readily that V ′ ⊂ F |S (resp.V :=

⋃
x∈Z Vx ⊂ TΩ|Z) is a holomorphic

vector subbundle because Vx varies holomorphically as x varies on S (resp.Z).

Note that [kC,m+] ⊂ m+, [kC,m−] ⊂ m−, [m+,m−] ⊂ kC, [m+,m+] = 0, [m−,m−] =

0, and m− is the vector space of holomorphic vector fields on Xc vanishing to the

order ≥ 2 at x. Thus, for any x ∈ Z, Vx = Ex/px is identical to [[Tx(Z),m−], Tx(Z)].

From now on we can identify Vx = [[Tx(Z),m−], Tx(Z)] for any x ∈ Z. Thus, for any

x ∈ Z we have Vx = [[Tx(Z),m−], Tx(Z)] ⊆ [[Wx,m
−],Wx] ⊆ Wx by Lemma 4.11

and [Ts93, Lemma 4.3].

We may assume that η is of rank k and write η =
∑k

j=1 ηjeψj in normal form,

where η1 ≥ · · · ≥ ηk > 0. From Lie theory we have [[eϕ, e−ϕ], eϕ] = ϕ(Hϕ)eϕ with

ϕ(Hϕ) 6= 0, [eϕ, e−ϕ] = Hϕ for any ϕ ∈ ∆+
M , and [Hψj , e±ψi ] = 0 for distinct i, j,
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1 ≤ i, j ≤ r = rank(Ω). Thus, we have

[[η, e−ψj ], η] =
k∑

s,t=1

ηsηt[[eψs , e−ψj ], eψt ] =
k∑
t=1

ηjηt[[eψj , e−ψj ], eψt ]

=
k∑
t=1

ηjηt[Hψj , eψt ] = η2
j [Hψj , eψj ]

=η2
jψj(Hψj)eψj .

Since σj := η2
jψj(Hψj) 6= 0 for 1 ≤ j ≤ k, we choose αj = 1

σj
e−ψj ∈ m− and we have

eψj = [[η, αj], η] ∈ Vx for 1 ≤ j ≤ k. Therefore, we have η =
∑k

j=1 ηjeψj ∈ Vx. In

particular, Tx(Z) = Cη ⊂ Vx and we conclude that Tx(Z) ⊆ Vx ⊆ Wx for any x ∈ Z,

as desired.

From Lemma 4.14 we have Tx(Z) ⊆ Vx ⊆ Wx for any x ∈ Z = µ̃(∆). But our

goal here is to construct a holomorphic vector bundle which extends the definition of

W to some open neighborhood of a general point on the unit circle ∂∆. Therefore,

when Ω is of tube type, we will show that Vx = Wx for any x ∈ Z and thus

V :=
⋃
x∈Z Vx = W . Then, we will have the local extension V ′ =

⋃
x∈S Vx of

V = W , where S := f(Ub′) as in the above. Recall that Tx(Z) is spanned by a

rank-k vector ηx for any x ∈ Z and 1 ≤ k ≤ rank(Ω). In the notation as above we

have

Lemma 4.15. Suppose Ω is an irreducible bounded symmetric domain of rank r ≥ 2

which is not necessarily of tube type, and ηx is of rank k < r for any x ∈ Z. Then,

we have Vx = Wx for any x ∈ Z.

Proof. Since we have Vx ⊆ Wx for any x ∈ Z by Lemma 4.14, it remains to show

that Wx ⊆ Vx for any x ∈ Z. In what follows we simply write η = ηx in normal

form. Recall that Vx = [[Tx(Z),m−], Tx(Z)] and Tx(Z) = Cη. We will also make use

of the normal form of Wx as in the proof of Lemma 4.11 and Remark 2.

(1) Consider the case where Ω ∼= DI
p,q, q ≥ p = r ≥ 2. Then, we have

m+ =

{[
0 A

0 0

]
∈M(p+ q, p+ q;C) : A ∈M(p, q;C)

}
and

m− =

{[
0 0

B 0

]
∈M(p+ q, p+ q;C) : B ∈M(q, p;C)

}
.

Write η =

[
0 η′

0 0

]
∈ m+ in normal form so that

η′ = diagp,q(η1, . . . , ηk, 0, . . . , 0)
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and η1 ≥ · · · ≥ ηk > 0. For any β =

[
0 0

B 0

]
∈ m− we have [η, β] = ηβ − βη =[

η′B 0

0 −Bη′
]

and thus

[[η, β], η] =

[
η′B 0

0 −Bη′
]
η − η

[
η′B 0

0 −Bη′
]

=

[
0 2η′Bη′

0 0

]
.

Writing B =

[
B1 B2

B3 B4

]
so that B1 ∈M(k, k;C) and

η′′ = diagk,k(η1, . . . , ηk) ∈M(k, k;C),

we have 2η′Bη′ =

[
2η′′B1η

′′ 0

0 0

]
. Note that η′′ is invertible because det η′′ =∏k

j=1 ηj 6= 0. Thus, for any γ =

[
0 A

0 0

]
∈ Wx ⊂ Tx(Ω) ∼= m+ so that A =

[
A′ 0

0 0

]
for some A′ ∈ M(k, k;C) (by the proof of Lemma 4.11), we may choose β :=[

0 0

B 0

]
∈ m− such that B =

[
B1 B2

B3 B4

]
with B1 = 1

2
(η′′)−1A′(η′′)−1 ∈ M(k, k;C).

Then, from the above computations we have [[η, β], η] = γ. Hence, Wx ⊆ Vx so that

Vx = Wx
∼= M(k, k;C).

(2) When Ω ∼= DII
2r orDII

2r+1, r ≥ 2, we may replace η′′ by η̂ = diag2k,2k(η1J1, . . . , ηkJ1)

∈ Ma(2k;C), η1 ≥ · · · ≥ ηk > 0, in the above, where J1 =

(
0 1

−1 0

)
. Then, η̂ is

invertible and B1 = 1
2
η̂−1A′η̂−1 ∈ M(2k, 2k;C) is antisymmetric whenever A′ is

antisymmetric. Hence, we also obtain Wx ⊆ Vx so that Vx = Wx
∼= Ma(2k;C).

(3) Consider the case where Ω ∼= DIII
p , p ≥ 2. By restricting to the space of p-by-p

symmetric matrices, we also have Wx ⊆ Vx in this case by the same arguments in

the above. This is because η′′ is a diagonal matrix and thus B1 = 1
2
(η′′)−1A′(η′′)−1 ∈

M(k, k;C) is symmetric whenever A′ is symmetric. Hence, we have Vx = Wx
∼=

Ms(k;C).

For any irreducible bounded symmetric domain Ω of rank ≥ 2, if η is of rank

k = 1, then from the proof of Lemma 4.11 we already have Tx(Z) = Wx
∼= Tx(∆η)

and thus Vx = Wx
∼= Tx(∆η) by the fact that Tx(Z) ⊆ Vx ⊆ Wx, where ∆η = Cη∩Ω

is a minimal disk of Ω.

(4) For Ω ∼= DIV
N , N ≥ 3, or Ω ∼= DV , we have r = rank(Ω) = 2. Then, η is of rank

k = 1 and the result follows from the last paragraph.

(5) Finally, we consider the case where Ω ∼= DVI, which is of rank 3. We are done if η

is of rank 1 as in the above. Thus, it remains to show that Wx ⊆ Vx when η is of rank

k = 2. We will make use of the data obtained from [Zh84] as in the proof of Lemma

4.11. When η is of rank 2, we may assume η = η1ex1−x2 +η2ex1+x2+x3 with η1 ≥ η2 >

0. From direct computation, for each ϕ ∈ ∆+
M r Ψ, if [[ex1−x2 , e−ϕ], ex1+x2+x3 ] 6= 0,

then [[ex1−x2 , e−ϕ], ex1+x2+x3 ] is a nonzero scalar multiple of one of the ex1−xj , 4 ≤
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j ≤ 7, and ex1+x3+xi , 4 ≤ i ≤ 7. Moreover, recall that [[eψ, e−ψ], eψ] is a nonzero

scalar multiple of eψ for ψ ∈ Ψ. Write Ψ = {ψ1, ψ2, ψ3} with ψ1 = x1 − x2, ψ2 =

x1 + x2 + x3 and ψ3 = d− x3. From the Jacobi identity and [m+,m+] = 0, we also

have [[eψ1 , e−ϕ], eψ2 ] = [[eψ2 , e−ϕ], eψ1 ]. For 1 ≤ j ≤ 3, we have [[eψj , e−ϕ], eψj ] = 0

for any ϕ ∈ ∆+
M r {ψj} because ψj − ψi is not a root for i 6= j and 2ψj − ϕ is not a

root whenever ϕ ∈ ∆+
M r Ψ. Fixing any ϕ ∈ {x1 − xj, 4 ≤ j ≤ 7, x1 + x3 + xi, 4 ≤

i ≤ 7} ⊂ ∆+
M , we have shown that eϕ = cϕ[[eψ1 , e−φ], eψ2 ] for some φ ∈ ∆+

M rΨ and

some scalar constant cϕ 6= 0. Thus, we have

[[η, e−φ], η] =
2∑

s,t=1

ηsηt[[eψs , e−φ], eψt ] = 2η1η2[[eψ1 , e−φ], eψ2 ]

=2η1η2
1

cϕ
eϕ

so that [[η, β], η] = eϕ, where β := cϕ
2η1η2

e−φ ∈ m−. Since Vx = [[Tx(Z),m−], Tx(Z)]

and Tx(Z) = Cη, Vx contains the C-linear span of ex1−xj , 4 ≤ j ≤ 7, ex1+x3+xi ,

4 ≤ i ≤ 7, ex1−x2 and ex1+x2+x3 . On the other hand, we have Wx = Ned−x3
as in

the proof of Lemma 4.11, where d :=
∑7

j=1 xj. By direct computation Ned−x3
=

Nex1−x2
∩ Nex1+x2+x3

is the C-linear span of ex1−xj , 4 ≤ j ≤ 7, ex1+x3+xi , 4 ≤ i ≤ 7,

ex1−x2 and ex1+x2+x3 . Hence, we have Wx ⊆ Vx and thus Wx = Vx, as desired.

Remark 3. (a) It is evident from the arguments in the proof of Lemma 4.15 that

analogue of the statement of Lemma 4.15 holds true when Ω is of tube type

and of type I, II or III, and η is of rank r = rank(Ω).

(b) When Ω is of type IV or of type VI, the analogue of the statement of Lemma

4.15 also holds true when η is of rank r = rank(Ω). More precisely, when Ω is

of type IV, we have rank(Ω) = 2 and the result follows from Tsai [Ts93, Proof

of Lemma 5.2]. When Ω is of type VI, we have rank(Ω) = 3 and the result

follows from explicit computation by taking Lie brackets of root vectors.

4.1.2 Estimates on the Kobayashi metric and the Kobayashi distance

and vanishing of the second fundamental form

By applying the rescaling argument to the local holomorphic extension of the holo-

morphic isometry µ̃ around a general point b′ ∈ ∂∆ as in Proposition 3.9, we can

obtain another holomorphic isometry from (∆,m0g∆) to (Ω, gΩ) satisfying the two

properties in Proposition 3.9. We will still denote such a holomorphic isometry by

µ̃ and its image by Z. Then, we may construct the vector subbundle W ⊂ TΩ|Z and

the holomorphic vector bundle V over Z for the holomorphic curve Z as we have

done before. By the same arguments, the statements of Lemmas 4.11, 4.12, 4.13,

4.14 and 4.15 hold true.

Lemma 4.16. Under the above assumptions, for any x ∈ Z and η, β ∈ Γloc,x(Z, TZ),

we have τx(η(x) � β(x)) = 0, i.e., (∇ηβ)(x) ∈ Wx, equivalently τ |TZ�TZ ≡ 0.
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Proof. By Lemma 4.13 we may regard τ |TZ�TZ as a holomorphic section τ̂ ∈ Γ(Z,

S2T ∗Z � (TΩ|Z/W )). Let νk = εk mod W be holomorphic basis of the quotient bundle

TΩ|Z/W , namely,

νk(ζ) = εk(ζ) mod Wµ̃(ζ),

where εk(ζ) = ∂
∂zk

∣∣
z=µ̃(ζ)

. By identifying Z = µ̃(∆) ∼= ∆ we may write τ̂(ζ) =∑
k τ

k
11(ζ)dζ � dζ � νk(ζ). Then, we have

‖τ̂(ζ)‖ ≤
∑
k

|τ k11(ζ)|‖dζ‖2‖νk(ζ)‖.

Since µ̃ is a holomorphic isometry, we have ‖µ̃′(ζ)‖2
gΩ

=
∥∥∥ ∂
∂ζ

∥∥∥2

m0g∆

= m0

(1−|ζ|2)2 . Thus,

we have ‖dζ‖ ≤ C ′′ · δ(ζ) for some real constant C ′′ > 0, where δ(ζ) := 1 − |ζ|.
Moreover, we have ‖νk(ζ)‖ ≤ ‖εk(ζ)‖gΩ

(cf. [Mo10]). We claim that

‖εk(ζ)‖gΩ
≤ C ′

1

δ(ζ)

for some positive real constant C ′. The idea is to use the Kobayashi distance, the

Kobayashi metric on Ω, and the convexity of Ω. Denote by d∆(·, ·) (resp. dΩ(·, ·)) the

Kobayashi distance on ∆ (resp. Ω) with d∆(0, ζ) = log 1+|ζ|
1−|ζ| and d∆(·, ·) is defined

by using the Bergman metric ds2
∆ on ∆ (cf. [Ko98]). From [Ko98], for a complex

manifold M we define the Kobayashi pseudo-metric by

FM(v) = inf
{
‖v̂‖ds2∆ : v̂ ∈ T0(∆), f ∈ Hol(∆,M), f(0) = x, f∗v̂ = v

}
for v ∈ Tx(M), x ∈ M . For x ∈ Ω, let δΩ(x) = δ(x, ∂Ω) be the Euclidean distance

from x to the boundary ∂Ω. Note that 1√
2
FBN (ξ) = ‖ξ‖gBN . Fix x ∈ Ω. By

the definition of δΩ(x) = δ(x, ∂Ω), we have BN(x, δΩ(x)) ⊆ Ω and thus we have

a holomorphic map f : BN → Ω given by f(w) = δΩ(x)w + x. Then, f maps

BN biholomorphically onto BN(x, δΩ(x)) and df0

(
1

δΩ(x)
∂
∂wj

∣∣
0

)
= ∂

∂zj

∣∣
x
. For v =

εj(ζ) = ∂
∂zj

∣∣
µ̃(ζ)
∈ Tµ̃(ζ)(Ω), by the Ahlfors-Schwarz lemma and [Ko98, p. 90] there is

a positive real constant C0 (independent of the choice of vectors tangent to Ω) such

that

‖v‖gΩ
≤ C0FΩ(v) ≤ C0FBN

(
1

δΩ(x)

∂

∂wj

∣∣∣∣
0

)
=
√

2C0

∥∥∥∥ 1

δΩ(x)

∂

∂wj

∣∣∣∣
0

∥∥∥∥
gBN

=

√
2C0

δΩ(x)
,

where x = µ̃(ζ). In particular, there is a positive real constant C such that ‖εj(ζ)‖gΩ

≤ C 1
δΩ(µ̃(ζ))

for 1 ≤ j ≤ N and ζ ∈ ∆. Since Ω b CN is convex, it follows from

[Me93, Proposition 2.4] that there is C1 ∈ R such that C1 − 1
2

log δΩ(z) ≤ 1
2
dΩ(0, z)

for any z ∈ Ω (cf. Remark below). (Noting that Mercer [Me93] defined the Kobayashi

distance to be kΩ(·, ·) = 1
2
dΩ(·, ·).) Then, we have e−2C1δΩ(z) ≥ e−dΩ(0,z) so that

δ(ζ) ≤ 2 · e−d∆(0,ζ) ≤ 2 · e−dΩ(0,µ̃(ζ)) ≤ 2e−2C1 · δΩ(µ̃(ζ)).
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It follows that ‖εj(ζ)‖gΩ
≤ C 1

δΩ(µ̃(ζ))
≤ C ′ 1

δ(ζ)
for ζ ∈ ∆ and 1 ≤ j ≤ N , where C ′ is

some positive real constant. The claim is proved. Thus, we have

‖τ̂(ζ)‖ ≤ Ĉ δ(ζ) ·
∑
k

|τ k11(ζ)|

for some positive real constant Ĉ. Here the summation in the above inequality is a

finite sum. By Lemma 4.14 and Lemma 4.15 we can extend the definition of τ̂ to an

open neighborhood of a general point on ∂∆. Thus, ‖τ̂(ζ)‖2 can be extended as a

real-analytic function on some open neighborhood Ub′ of a general point b′ ∈ ∂∆ in

C (by Lemma 3.6) and each |τ k11(ζ)| is bounded from above by a uniform positive real

constant on Ub′ . In particular, we have ‖τ̂(ζ)‖ → 0 as ζ → b′′ for any b′′ ∈ Ub′ ∩ ∂∆.

Hence, we have ‖τ̂(ζ)‖ → 0 as ζ → b′ for a general point b′ ∈ ∂∆.

From Mok [Mo12] we have a local holomorphic extension F of the holomorphic

isometry µ̃ around any general point b̂ ∈ ∂∆. By applying the rescaling argument

to F as in Proposition 3.9 and choosing a good boundary point b̂ ∈ ∂∆, we can

obtain another holomorphic isometry from (∆,m0g∆) to (Ω, gΩ), still denoted by µ̃

for simplicity, such that the following hold true.

(a) µ̃ satisfies the two properties in Proposition 3.9.

(b) Constructing the vector subbundle W ⊂ TΩ|Z over the holomorphic curve

Z := µ̃(∆) as we have done before, the statements of Lemmas 4.11, 4.12 and

4.13 hold true by the same arguments as in the corresponding proofs.

(c) For the holomorphic section τ̂ ∈ Γ(Z, S2T ∗Z � (TΩ|Z/W )) representing τ |TZ�TZ
over the (new) holomorphic curve Z, ‖τ̂(ζ)‖2 extends real-analytically around

a general point in ∂∆ and that ‖τ̂(ζ)‖ → 0 as ζ → b′ for a general point

b′ ∈ ∂∆ by the above arguments.

By the analogous arguments in the proof of Proposition 3.9 for showing that ‖σ̃‖2 ≡
constant, we may also obtain that ‖τ̂(ζ)‖2 is identically constant on ∆. Together

with part (c) in the above, we have ‖τ̂(ζ)‖2 ≡ 0 on ∆, i.e., τ |TZ�TZ (ζ) ≡ 0 on ∆.

Remark 4. For any bounded symmetric domain Ω the inequality from [Me93,

Proposition 2.4] can be derived using the Polydisk Theorem. We refer the read-

ers to the Appendix (i.e., Section 6) of the current article.

Lemma 4.17. In the above construction, we have τ ≡ 0.

Proof. By Lemma 4.16, we have τ |TZ�TZ ≡ 0, i.e., (∇ηη̂)(x) ∈ Wx for any η ∈ Tx(Z),

η̂ ∈ Γloc,x(Z, TZ) and x ∈ Z. Note that Rηζαβ = 0 for η ∈ Tx(Z), ζ ∈ Nη, and any

α, β ∈ Tx(Ω), where x ∈ Z. From the definition of W , we have R(∇ηη̂, ζ, α, β) = 0,

because γ ∈ Γ(Z,W ) if and only if for any x ∈ Z we have Rγ(x)ζαβ = 0 for any

α, β ∈ Tx(Ω) and any ζ ∈ Nη, where η ∈ Tx(Z). Thus, for any x ∈ Z we have

R(η, (∇ηζ)(x), α, β) = 0 for any α, β ∈ Tx(Ω). In particular, (∇ηζ)(µ̃(w)) ∈ Nη(w)
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for any w ∈ ∆. For any γ ∈ Γloc,x(Z,W ), ζ ∈ Nη and any α, β ∈ Γloc,x(Z, TΩ|Z), we

have Rγζαβ = 0 so that

R(∇ηγ, ζ, α, β) +R(γ,∇ηζ, α, β) = 0.

Since (∇ηζ)(µ̃(w)) ∈ Nη(w), we have R((∇ηγ)(µ̃(w)), ζ, α, β) = 0 for arbitrary ζ ∈
Nη(w), α, β ∈ Tµ̃(w)(Ω). Therefore, (∇ηγ)(µ̃(w)) ∈ Wµ̃(w) for arbitrary w ∈ ∆, i.e.,

τ ≡ 0.

Lemma 4.18. In the above construction, we have Z = µ̃(∆) ⊂ Ω′ for some charac-

teristic subdomain Ω′ ⊆ Ω of rank k.

Proof. From the above construction, Tx(Z) is spanned by a rank-k vector η(w) at

any point x = µ̃(w) ∈ Z (w ∈ ∆) and there is a holomorphic vector subbundle

W ⊂ TΩ|Z with TZ ⊂ W ⊂ TΩ|Z . We first show that there is a characteristic

subdomain Ω′ ⊂ Ω of rank k such that Z is tangent to Ω′ to the order at least 2

at some point µ̃(w0), w0 ∈ ∆, and Tµ̃(w0)(Ω
′) = Wµ̃(w0). By considering the normal

form of Wµ̃(w0), it is clear that there is a characteristic subdomain Ω′ ⊂ Ω of rank

k such that µ̃(w0) ∈ Ω′ and Tµ̃(w0)(Ω
′) = Wµ̃(w0). Moreover, such Ω′ is unique for

each fixed w0. Actually, if there is a characteristic subdomain Ω′′ ⊂ Ω such that

µ̃(w0) ∈ Ω′′ and Tµ̃(w0)(Ω
′′) = Wµ̃(w0), then by choosing some Φ ∈ Aut(Ω) with

Φ(µ̃(w0)) = 0, both Φ(Ω′) and Φ(Ω′′) are linear sections of Ω by complex vector

subspaces in CN ∼= m+. But then their holomorphic tangent spaces at 0 coincide to

each other so that Φ(Ω′) = Φ(Ω′′), i.e., Ω′ = Ω′′. Since τ ≡ 0 by Lemma 4.17, we have

(∇ηγ)(µ̃(w)) ∈ Wµ̃(w) for any w ∈ ∆, where η ∈ Tµ̃(w)(Z) and γ ∈ Γloc,µ̃(w)(Z,W ).

Denote by π : G(TΩ, nr−k(Ω)) → Ω the Grassmann bundle, where G(Tx(Ω),

nr−k(Ω)) is the Grassmannian of the complex nr−k(Ω)-dimen- sional vector subspaces

of Tx(Ω) for each x ∈ Ω. From [MT92, p. 99], we let NSr−k(Ω) be the collection of

all nr−k(Ω)-planes which are holomorphic tangent spaces to the k-th characteristic

subdomains of Ω. Then, NSr−k(Ω) lies in the Grassmann bundle G(TΩ, nr−k(Ω))

and is a holomorphic fiber bundle over Ω with NSr−k(Ω) ∼= NSr−k,0(Ω) × Ω. For

each x ∈ Ω and each k-th characteristic subdomain Ω′x ⊂ Ω containing x, we can

lift Ω′x to NSr−k(Ω) as

Ω̂′x = {[Ty(Ω′)] ∈ NSr−k,y(Ω) : y ∈ Ω′x}.

Such a lifting of k-th characteristic subdomains of Ω forms a tautological foliation

F on NSr−k(Ω) with nr−k(Ω)-dimensional leaves Ω̂′x. Then, we let Ẑ be the tauto-

logical lifting of Z to NSr−k(Ω) defined by

Ẑ = {[Wx] ∈ NSr−k,x(Ω) : x ∈ Z}.

Since (∇ηγ)(µ̃(w0)) ∈ Wµ̃(w0), Ẑ is tangent to Ω̂′ at [Wµ̃(w0)]. Actually, since

(∇ηγ)(x) ∈ Wx for any x ∈ Z, Ẑ is tangent to the leaf Ω̂′x of F at [Wx] for

any x ∈ Z, where Ω′x ⊂ Ω is the characteristic subdomain of rank k at x satisfying

Tx(Ω
′
x) = Wx. Therefore, Ẑ is an integral curve of the integrable distribution defined

by the foliation F . From the general theory of foliations, such an integral curve of
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the distribution induced from F must lie inside the single leaf Ω̂′ of F , which is also

the maximal integral submanifold of the induced integrable distribution. Therefore,

Ẑ itself should lie inside the leaf Ω̂′ of the foliation F because Ẑ is path connected.

Note that Z is the image of Ẑ under the canonical projection G(TΩ, nr−k(Ω))→ Ω.

But then the above argument shows that Z should lie in Ω′ because Ẑ ⊂ Ω̂′.

Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2 which is not

necessarily of tube type. Recall that any invariantly geodesic submanifold of Ω is

an irreducible bounded symmetric domain of rank ≤ r. From the results in Section

3 and in this section, we have

Proposition 4.19. Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2

which is not necessarily of tube type, and Z = µ̃(∆) be constructed as above. Assume

that the tangent vector ηx spanning Tx(Z) is of rank k, 1 ≤ k < r. Then, there is an

invariantly geodesic submanifold Ω′ ⊂ Ω such that Ω′ is a rank-k irreducible bounded

symmetric domain of tube type and Z ⊆ Ω′. In particular, ηx ∈ Tx(Ω′) is a rank-k

tangent vector in Tx(Ω
′) for x ∈ Z.

4.1.3 The Poincaré-Lelong equation and proof of Theorem 4.10

From the above construction and lemmas, we can complete the proof of Theorem

4.10, as follows.

Proof of Theorem 4.10. From the holomorphic embedding µ : U → CN , by choosing

an arbitrary general point b ∈ U ∩ ∂∆ we have constructed in Proposition 3.9 a

holomorphic isometry µ̃ : (∆,m0g∆) → (Ω, gΩ) such that µ̃(0) = 0, ‖σ̃(µ̃(w))‖2 ≡
‖σ(µ(b))‖2 on ∆ and the normal form of µ̃′(w)

‖µ̃′(w)‖gΩ
is independent of w ∈ ∆ and

of rank k, where k is some integer satisfying 1 ≤ k ≤ r = rank(Ω). By Lemma

4.18, Z = µ̃(∆) lies inside a characteristic subdomain Ω′ ⊆ Ω of rank k. When

k = r = rank(Ω), we have Ω′ = Ω. Note that Ω is of tube type, so Ω′ is also of

tube type. Denote by σ′(x) the second fundamental form of (Z, gΩ′ |Z) in (Ω′, gΩ′) at

x ∈ Z, where the Kähler metric gΩ′ = gΩ|Ω′ on Ω′ is precisely the restriction of gΩ

to Ω′.

We write Ω′ = G′0/K
′ and fix an arbitrary point w ∈ ∆. If µ̃′(w) is a rank-

k′ vector in Tµ̃(w)(Ω
′), then by applying the K ′-action, the normal form of µ̃′(w)

is tangent to some totally geodesic polydisk Πk′
∼= ∆k′ in the maximal polydisk

Πk
∼= ∆k of Ω′, which also lies in ∆r ∼= Π ⊂ Ω. This implies that the normal form

of µ̃′(w) as a tangent vector in Tµ̃(w)(Ω) is of rank k′. Therefore, we have k = k′ and

µ̃′(w) is a generic vector in Tµ̃(w)(Ω
′) for w ∈ ∆.

Since Ω′ is of tube type, it follows from [Mo02, Proposition 1] that the (k−1)-th

characteristic bundle Sk−1(Ω′) of Ω′ is of codimension 1 in the projectivized tangent

bundle PTΩ′ of Ω′. We refer the readers to Mok [Mo02, p. 293] for the notion of the

l-th characteristic bundles. From [Mo02], we have the Poincaré-Lelong equation

√
−1

2π
∂∂ log‖s‖2

o = mc1(L, ĝΩ′)− lc1(π∗E, π∗go) + [Sk−1(Ω′)], (1)
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where s ∈ Γ(PTΩ′ , L
−m � π∗El) such that the zero divisor of s is precisely Sk−1(Ω′),

E = O(1)|Ω′ , L → PTΩ′ is the tautological line bundle and [Sk−1(Ω′)] denotes the

current of integration over Sk−1(Ω′). Here, O(1) denotes the positive generator of

the Picard group of the compact dual Hermitian symmetric space X ′c of Ω′. (We

may also write OX′c(1) in place of O(1) in order to avoid ambiguity, and such a

notational convention will be adopted later on in Section 4.2.3 where we deal with

reducible bounded symmetric domains.) Actually, we also have m = k and l = 2

by [Mo02, Proposition 3]. Denote by ω the Kähler form of (Ω′, gΩ′). Since µ̃ :

(∆,m0g∆)→ (Ω, gΩ) is a holomorphic isometry and Z = µ̃(∆) ⊂ Ω′, we may regard

µ̃ : (∆,m0g∆)→ (Ω′, gΩ′) as a holomorphic isometry. Let

Ẑ = {[α] ∈ P(Tx(Ω
′)) : x ∈ Z, Tx(Z) = Cα}

be the tautological lifting of Z to PTΩ′ . Then, we have Ẑ ∩Sk−1(Ω′) = ∅. Since the

normal form of µ̃′(w)
‖µ̃′(w)‖gΩ

is constant from the construction, ‖s‖o > 0 is constant on

Ẑ and thus
√
−1∂∂ log‖s‖o ≡ 0 on Ẑ. Since Ẑ is disjoint from Sk−1(Ω′), restricting

Eq. (1) to Ẑ we have an identity of smooth (1,1)-forms on Ẑ

kc1(L, ĝΩ′)|Ẑ − 2c1(π∗E, π∗go)|Ẑ ≡ 0 (2)

as a consequence of Eq. (1) and the fact that
√
−1∂∂ log‖s‖o ≡ 0 on Ẑ. In particular,

we have

kc1(TZ , gΩ′ |Z)− 2c1(E, go)|Z ≡ 0 (3)

by Eq. (2). Note that c1(TZ , gΩ′|Z) = 1
2π
κZω|Z by the formula for the Gaussian

curvature κZ of (Z, gΩ′ |Z) and [Mo89, p. 36]. In addition, we have c1(E, go)|Z =

− c
4π
ω|Z for some c > 0. Thus, we obtain k

2π
κZω|Z + c

2π
ω|Z ≡ 0 by Eq. (3), i.e.,

κZ ≡ − c
k
. Denote by ∆k the holomorphic disk of maximal Gaussian curvature

− 2
k
, i.e., of diagonal type in the maximal polydisk ∆k ∼= Πk ⊂ Ω′. Then, we have

−kκ∆k
≡ c and κ∆k

≡ − 2
k

so that c = 2 (cf. [Mo02, p. 297]). Therefore, we have

κZ ≡ − 2
k
. By the Gauss equation we have ‖σ′(µ̃(w))‖2 ≤ − 2

k
− κZ = − 2

k
+ 2

k
= 0 so

that ‖σ′(µ̃(w))‖2 ≡ 0 on ∆, i.e., (Z, gΩ|Z) ⊂ (Ω′, gΩ|Ω′) is totally geodesic. But then

(Ω′, gΩ|Ω′) ⊆ (Ω, gΩ) is totally geodesic so that (Z, gΩ|Z) ⊂ (Ω, gΩ) is totally geodesic

and thus ‖σ̃(µ̃(w))‖2 ≡ 0 on ∆. In particular, we have ‖σ(µ(b))‖2 = ‖σ̃(µ̃(w))‖2 = 0.

Since b ∈ U ∩ ∂∆ is an arbitrary general point, we have ‖σ(µ(w))‖2 → 0 as w → b′

for a general point b′ ∈ U ∩ ∂∆.

4.2 Complete proof of Theorem 1.1

In Section 3, we constructed a holomorphic isometry µ̃ : (∆,m0g∆) → (Ω, gΩ) into

an irreducible bounded symmetric domain with certain properties. The following

shows that our study on such a holomorphic isometry may be reduced to the case

where Ω is of tube type.

Proposition 4.20. Let Ω b CN be an irreducible bounded symmetric domain of

rank r ≥ 2 and let µ̃ : (∆,m0g∆)→ (Ω, gΩ) be the constructed holomorphic isometry
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so that the holomorphic tangent spaces Tx(Z) = Cηx of Z := µ̃(∆) are Aut(Ω)-

equivalent and ηy ∈ Ty(Ω) is a generic vector for any y ∈ Z. Then, there exists an

invariantly geodesic submanifold Ω′ ⊂ Ω containing Z such that Ω′ is an irreducible

bounded symmetric domain of rank r and of tube type. In particular, (Z, gΩ|Z) ⊂
(Ω, gΩ) is totally geodesic.

Proof. If Ω is of tube type, then the result follows from the proof of Theorem

4.10. From now on we consider the case where Ω is of non-tube type. From the

classification of irreducible bounded symmetric domains, Ω is biholomorphic to ei-

ther DI
p,q (p < q), DII

2n+1 (n ≥ 2) or DV. Define P : TΩ � TΩ → TΩ � TΩ by

g(P (α�β), γ� δ) = Rαγβδ(Ω, gΩ). Here gx(·, ·) is a natural Hermitian pairing of the

basis for S2Tx(Ω), i.e., gx(ei · ej, es · el) = 1 (resp. 0) if {i, j} = {s, l} (resp. {i, j} 6=
{s, l}). Then, P is parallel because ∇R ≡ 0. We define ρ : (TΩ � TΩ) � T ∗Ω → TΩ

so that for each x ∈ Ω, ρx : (Tx(Ω) � Tx(Ω)) � T ∗x (Ω) → Tx(Ω) is a multilinear

map given by ρx(µ � ν)(ω∗) = ω∗(ν)µ for decomposable elements (µ � ν) � ω∗ ∈
(Tx(Ω) � Tx(Ω)) � T ∗x (Ω). We have P (α � α) =

∑
ϕ,ϕ′∈∆+

M
Rαeϕαeϕ′

(Ω, gΩ)eϕ � e′ϕ
and ρ(P (α � α) � e∗µ) =

∑
ϕ∈∆+

M
Rαeϕαeµ(Ω, gΩ)eϕ. Define the vector subbundle

V := ρ(P (η � η) � T ∗Ω) ⊂ TΩ|Z , where η is a non-zero holomorphic vector field on

Z = µ̃(∆) ⊂ Ω.

By using the normal form η(w) ∈ T0(Ω) of µ̃′(w)
‖µ̃′(w)‖gΩ

, if Ω is of the classical type,

then it follows from direct computation of the Riemannian curvature of (Ω, gΩ)

that the normal form of Vx (x ∈ Z) as a complex vector subspace of T0(Ω) is

exactly M(p, p;C) = T0(DI
p,p) (resp.Ma(2n;C) = T0(DII

2n)) if Ω ∼= DI
p,q (p < q)

(resp.DII
2n+1 (n ≥ 2)). When Ω ∼= DV, it follows from the computation of Tsai

[Ts93, pp. 149–151] and R(v, w)v′ = −[[v, w], v′] that the normal form of Vx (x ∈ Z)

as a complex vector subspace of T0(Ω) is exactly T0(Ω′) for some invariantly geodesic

submanifold Ω′ ⊂ Ω satisfying Ω′ ∼= DIV
8 . Actually, we write the normal form η(w) =

η1(w)ex1−x2 + η2(w)ex1+x2+x3 and we compute R(η(w), eϕ)η(w) = [[e−ϕ, η(w)], η(w)]

for each noncompact positive root ϕ. It follows from Tsai [Ts93, pp. 149–151] that

the normal form of Vx is ρ(P (η(w) � η(w)) � T ∗0 (Ω)), which is spanned by ex1−xi ,

4 ≤ i ≤ 6; ex1+x3+xi , 4 ≤ i ≤ 6; ex1−x2 and ex1+x2+x3 . Here η(w) = ηµ̃(w) for

w ∈ ∆. In particular, the normal form of Vx is exactly T0(Q8) = T0(DIV
8 ), where 0

is identified with the base point o ∈ Q8. It is then obvious that SpanC{eψj(x) : j =

1, . . . , k} ⊂ Vx and ηx ∈ Vx for each x ∈ Z for each x ∈ Z. By similar arguments

as in the proof of Lemma 4.12, V ⊂ TΩ|Z is a holomorphic vector subbundle with

TZ ⊂ V .

Define the second fundamental form τ : TZ � V → TΩ|Z/V by τ(η � γ) = ∇ηγ

mod V . Then, it follows from the arguments in the proof of Lemma 4.13 that τ is

holomorphic since Vx = Tx(Ω
′
x) for some invariantly geodesic submanifold Ω′x ⊂ Ω.

Note that the vector bundle V here is actually the same as the vector bundle V in

Lemma 4.14 and Lemma 4.15. Representing τ |TZ�TZ as a holomorphic section τ̂ ∈
Γ(Z, S2T ∗Z�(TΩ|Z/V )), we can extend the definition of τ̂(ζ) to an open neighborhood

of a general point on ∂∆ by Lemma 4.14 and Lemma 4.15. Then, by the arguments in

the proof of Lemma 4.16 we have τ |TZ�TZ ≡ 0 after applying the rescaling argument

to a local holomorphic extension of µ̃ around a general point b′ ∈ ∂∆ if necessary.
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From the definition of V ⊂ TΩ|Z and the fact that (∇ηη̂)(x) ∈ Vx for any x ∈ Z,

η ∈ Tx(Z) and η̂ ∈ Γloc,x(Z, TZ), we have τ ≡ 0. Actually, ρ is a contraction and

thus for η̂ ∈ Tx(Z) and η ∈ Γloc,x(Z, TZ), we have

∇η̂(ρ(P (η � η) � ω∗))(x)

=ρ(∇η̂(P (η � η)) � ω∗))(x) + ρ(P (η � η) � (∇η̂ω
∗))(x)

=ρ(P ((∇η̂η)(x) � η(x)) � ω∗(x)) + ρ(P (η(x) � (∇η̂η)(x)) � ω∗(x))

+ ρ(P (η(x) � η(x)) � (∇η̂ω
∗)(x)),

which lies in Vx because (∇η̂η)(x) ∈ Vx and [[m−, Vx], Vx] ⊂ Vx (cf. Tsai [Ts93,

Lemma 4.3]). In other words, V is parallel on Z. By applying the foliation technique

as in the proof of Lemma 4.18, there is an invariantly geodesic submanifold Ω′ ⊂ Ω

such that Z ⊂ Ω′ and Tx(Ω
′) = Vx for any x ∈ Z. In addition, such a submanifold Ω′

is irreducible and of tube type as a Hermitian symmetric space of the noncompact

type. More precisely, we have

(i) If Ω ∼= DI
p,q (p < q) (resp. Ω ∼= DII

2n+1 (n ≥ 2)), then Ω′ ∼= DI
p,p (resp. Ω′ ∼= DII

2n).

(ii) If Ω ∼= DV, then Ω′ ∼= DIV
8 .

From the arguments in the proof of Theorem 4.10, (Z, gΩ|Z) ⊂ (Ω′, gΩ|Ω′) is totally

geodesic and thus (Z, gΩ|Z) ⊂ (Ω, gΩ) is totally geodesic.

By Proposition 4.19, Proposition 4.20 and the proof of Theorem 4.10, we have

actually proven Theorem 1.1 under the assumption that the bounded symmetric

domain Ω is irreducible.

Now, it remains to consider the case where the bounded symmetric domain Ω is

reducible. The idea is to generalize the methods to the case where Ω is reducible

throughout Section 3, Section 4.1, and that in Proposition 4.20. Then, this will

complete the proof of Theorem 1.1.

We write Ω = Ω1 × · · · × Ωm b CN1 × · · · × CNm = CN for some integer m ≥ 1,

where Ωj b CNj is an irreducible bounded symmetric domain in its Harish-Chandra

realization for j = 1, . . . ,m. Equipping Ω (resp. ∆) with the Bergman metric ds2
Ω

(resp. ds2
∆), by slight modifications we obtain analogues of Lemma 2.4, Lemma 3.5,

Lemma 3.7, Proposition 3.9 and the results in Section 4.1 when Ω is reducible. Recall

that µ : U = B1(b0, ε)→ CN1 × · · ·×CNm = CN , ε > 0, is a holomorphic embedding

such that µ(U ∩ ∆) ⊂ Ω and µ(U ∩ ∂∆) ⊂ ∂Ω, where b0 ∈ ∂∆. We also write

µ = (µ1, . . . , µm) with µj : U → CNj being a holomorphic map for j = 1, . . . ,m.

4.2.1 Basic settings

We write the Bergman kernel KΩ(z, ξ) = 1
QΩ(z,ξ)

for some polynomial QΩ(z, ξ) in

(z, ξ). Then, we have the Kähler form ωds2Ω = −
√
−1∂∂ logQΩ(z, z) of (Ω, ds2

Ω).

When Ω = ∆, we have Q∆(z, ξ) = π · (1 − zξ)2 for z, ξ ∈ C. We can construct a

germ of holomorphic isometry µ̃ as in Lemma 3.5 and Proposition 3.9. Actually, for
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a general point b ∈ U ∩ ∂∆ there is an open neighborhood Ub of b in U ⊂ C such

that

QΩ(µ(w), µ(w)) = χ(w)(1− |w|2)λ
′
=
χ(w)

π
λ′
2

Q∆(w,w)
λ′
2

on Ub for some positive smooth function χ on a neighborhood of Ub and some positive

integer λ′. We may construct the sequence {µ̂j = Φj ◦ µ ◦ ϕj}+∞
j=1 as in Section 3

such that

µ̂∗jωds2Ω =
λ′

2
ωds2∆ −

√
−1∂∂ logχ(ϕj(ζ)).

Then, we obtain a germ of holomorphic isometry µ̃ :
(
∆, λ

′

2
ds2

∆; 0
)
→ (Ω, ds2

Ω; 0)

by taking the limit of some subsequence of {µ̂j}+∞
j=1. Note that such a germ µ̃

could be extended to a holomorphic isometry from
(
∆, λ

′

2
ds2

∆

)
to (Ω, ds2

Ω) by the

extension theorem of Mok [Mo12]. We also denote the extension of µ̃ by µ̃ and write

Z = µ̃(∆). By decomposing Tx(Ω) = Tx1(Ω1)� · · ·�Txm(Ωm) for x = (x1, . . . , xm) ∈
Ω1 × · · · × Ωm, we may decompose the normal form η(w) = η1(w) + . . . + ηm(w) ∈
T0(Ω1)�· · ·�T0(Ωm) of µ̃′(w)

‖µ̃′(w)‖
ds2

Ω

. Then, we have analogous results as in Proposition

3.9 for the case where Ω is reducible. More precisely, the normal form η(w) is

independent of w ∈ ∆ and ‖σ̃(µ̃(w))‖2 ≡ ‖σ(µ(b))‖2 on ∆, where σ̃(x) denotes the

second fundamental form of (Z, ds2
Ω|Z) in (Ω, ds2

Ω) at x ∈ Z.

From now on Z = µ̃(∆) has Aut(Ω)-equivalent holomorphic tangent spaces

Tx(Z) = Cηx and ηy ∈ Ty(Ω) is of rank k for any y ∈ Z.

4.2.2 Insertion of a tube domain containing the embedding Poincaré

disk

The first step is to show that since the holomorphic tangent spaces of Z := µ̃(∆) are

Aut(Ω)-equivalent and of rank k, Z lies inside an invariantly geodesic submanifold

Ω′ ⊂ Ω of rank k and of tube type as a bounded symmetric domain. Write µ̃ =

(µ̃1, . . . , µ̃m), where µ̃j : ∆→ Ωj b CNj is a holomorphic map for j = 1, . . . ,m.

By permuting the irreducible factors Ωj’s of Ω, we may assume that η(w) =

η1(w) + . . . + ηm(w) ∈ T0(Ω) = T0(Ω1) � · · · � T0(Ωm) is of rank k =
∑m

j=1 kj and

each ηi(w) ∈ T0(Ωi) is of rank ki such that kl > 0 for l = 1, . . . ,m′, kj = 0, ηj(w) = 0

and µ̃j(w) ≡ x′j is a constant map for m′ + 1 ≤ j ≤ m provided that m′ < m.

Tube type: We first consider the case where Ω is of tube type, equivalently all

Ωj’s are of tube type. For x ∈ Ω, let Qx be a Hermitian bilinear form on Tx(Ω) �
Tx(Ω) given by Qx(α � β, α′ � β′) = Rαα′β′β(Ω, ds2

Ω). For xj ∈ Ωj, we also let

Q
(j)
xj be a Hermitian bilinear form on Txj(Ωj) � Txj(Ωj) defined by Q

(j)
xj (α � β, α′ �

β′) := Rαα′β′β(Ωj, ds
2
Ωj

) and let N (j)
αj be the null space of the Hermitian bilinear

form H
(j)
αj (v, v′) := Rαjαjvv′

(Ωj, ds
2
Ωj

) for αj ∈ Txj(Ωj). For w ∈ ∆, we define

Wµ̃(w) :=
{
v ∈ Tµ̃(w)(Ω) : Qµ̃(w)(v � ζ, ·) ≡ 0 ∀ ζ ∈ Nµ̃′(w)

}
. Then, we have Wµ̃(w) =⊕m

j=1W
(j)
µ̃j(w), where

W
(j)
µ̃j(w) :=

{
vj ∈ Tµ̃j(w)(Ωj) : Q

(j)
µ̃j(w)(vj � ζ, ·) ≡ 0 ∀ ζ ∈ N (j)

µ̃′j(w)

}
,
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j = 1, . . . ,m. For x = (x1, . . . , xm) ∈ Z ⊂ Ω = Ω1 × · · · × Ωm, we have

Wx =
m⊕
j=1

W (j)
xj

=

{
Tx1(Ω′1,x1

) � · · ·� Txm′ (Ω
′
m′,xm′

) � {0}� · · ·� {0} if m′ < m

Tx1(Ω′1,x1
) � · · ·� Txm(Ω′m,xm) if m′ = m

for some characteristic subdomain Ω′j,xj ⊆ Ωj of rank kj, j = 1, . . . ,m′. Note that it

is possible that Ω′i,xi = Ωi for some i. Similarly, we may define the holomorphic vector

bundle V (resp.V ′) as in Lemma 4.14 and Lemma 4.15. Then, by the arguments

in the proofs of Lemma 4.14 and Lemma 4.15 we have Vx = Wx for any x ∈ Z.

Thus, our results in Section 4.1 can be generalized to the case where Ω (resp. Ω′) is

reducible. It follows from the arguments in Section 4.1 that there is a characteristic

subdomain Ω′ of Ω containing Z = µ̃(∆) such that Ω′ = Ω′1× · · · ×Ω′m′ ×{xm′+1}×
· · ·× {xm} (resp. Ω′ := Ω′1× · · ·×Ω′m) if m′ < m (resp.m′ = m), where Ω′j ⊂ Ωj is a

characteristic subdomain of rank kj, 1 ≤ j ≤ m′. Note that each Ω′j is of tube type

and each ηj(w) ∈ T0(Ω′j) is of rank kj = rank(Ω′j) for j = 1, . . . ,m′.

Non-tube type: Suppose Ω = Ω1 × · · · ×Ωm is of non-tube type. If kl < rank(Ωl)

for some l, 1 ≤ l ≤ m′, then we have Z ⊂ Ω1× · · · ×Ωl−1×Ω′l×Ωl+1× · · · ×Ωm for

some invariantly geodesic submanifold Ω′l of Ωl such that Ω′l is an irreducible bounded

symmetric domain of tube type and of rank kl by making use of Proposition 4.19.

Inductively, there is an invariantly geodesic submanifold Ω′ of Ω such that Ω′ is a

bounded symmetric domain of rank k and Z ⊆ Ω′. In this case, Tx(Z) is spanned by

a generic vector in Tx(Ω
′) for any x ∈ Z. From now on we may suppose that Tx(Z)

is spanned by a generic vector in Tx(Ω) for any x ∈ Z and m′ = m without loss of

generality.

In analogy to the case in which we consider the holomorphic vector subbundle

W ⊂ TΩ|Z , we generalize the method in the proof of Proposition 4.20 to the case

where Ω is reducible and equipped with the Bergman metric ds2
Ω. The key point is

that our construction of the holomorphic vector subbundle V ⊂ TΩ|Z comes from

the Riemannian curvature tensor of (Ω, ds2
Ω), which is decomposed into the sum of

Riemannian curvature tensors of (Ωj, ds
2
Ωj

) for j = 1, . . . ,m. Note that we may also

define V as in Lemma 4.14 and we also have the vector bundle V ′ extending V locally

in the sense of Lemma 4.14. Then, it follows that there is an invariantly geodesic

submanifold Ω′j ⊆ Ωj of rank equal to that of Ωj and of tube type for j = 1, . . . ,m

such that Z ⊂ Ω′ := Ω′1 × · · · ×Ω′m. In particular, Ω′ ⊂ Ω is an invariantly geodesic

submanifold which is of tube type and rank(Ω′) = rank(Ω).

In any case, given a bounded symmetric domain Ω of rank r, the Poincaré disk

Z lies inside an invariantly geodesic submanifold Ω′ ⊂ Ω of rank k and of tube type

such that the holomorphic tangent spaces Tx(Z) are Aut(Ω′)-equivalent and Ty(Z)

is spanned by a generic vector in Ty(Ω
′) for any y ∈ Z. This completes the first step

of the proof of Theorem 1.1.
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4.2.3 Application of the Poincaré-Lelong equation in the reducible case

We note that the method of using the Poincaré-Lelong equation as in the proof of

Theorem 4.10 may be extended to the case where the bounded symmetric domain

Ω′ is reducible.

Proposition 4.21. Let Ω′ = Ω′1 × · · · × Ω′m′ be a bounded symmetric domain of

tube type and of rank k, where Ω′j, 1 ≤ j ≤ m′, are the irreducible factors of Ω′

and m′ is a positive integer. Equip Ω′ with a Kähler metric g′Ω′ :=
∑m′

j=1 Pr∗jg
′
Ω′j

on Ω′, where g′Ω′j
:= λjgΩ′j

for some positive integer λj and Prj : Ω′ → Ω′j is the

canonical projection onto the j-th irreducible factor Ω′j of Ω′, j = 1, . . . ,m′. We

also let Z ⊂ Ω′ be the holomorphic curve, i.e., Z is the image of the holomorphic

isometry µ̃ : (∆, λds2
∆) → (Ω′, g′Ω′) for some positive real constant λ > 0, such that

Tx(Z) is spanned by a rank-k unit vector ηx ∈ Tx(Ω′) for any x ∈ Z and the normal

form of ηy is independent of y ∈ Z. Then, (Z, g′Ω′|Z) ⊂ (Ω′, g′Ω′) is totally geodesic.

Proof. If Ω′ is irreducible, then we are done by the proof of Theorem 4.10. Con-

sider the case where Ω′1 × · · · × Ω′m′ is reducible and of tube type with irreducible

factors Ω′j, 1 ≤ j ≤ m′, and m′ ≥ 2 is an integer. Under the assumptions,

each Ω′j is an irreducible bounded symmetric domain of rank kj ≥ 1 and of tube

type, 1 ≤ j ≤ m′, so that k =
∑m′

j=1 kj. We only need to apply the method in

the proof of Theorem 4.10 and that in [Mo02], and we generalize the settings to

the case where Ω′ is reducible. Denote by S(j)
l,xj

(Ω′j) the l-th characteristic vari-

ety for Ω′j at xj ∈ Ω′j, j = 1, . . . ,m′. For x = (x1, . . . , xm′) ∈ Ω′, we denote by

Sjk−1,x(Ω
′) =

{
[v1 � · · ·� vm′ ] ∈ P

(
Tx1(Ω′1) � · · ·� Txm′ (Ω

′
m′)
)

: vj ∈ Ŝ(j)
kj−1,xj

(Ω′j)
}

,

where Ŝ(j)
kj−1,xj

(Ω′j) is the affine cone over S(j)
kj−1,xj

(Ω′j) in Txj(Ω
′
j), 1 ≤ j ≤ m′. Then,

Sk−1,x(Ω
′) :=

⋃m′

j−1 S
j
k−1,x(Ω

′) is a union of m′ hypersurfaces of P(Tx(Ω
′)). Moreover,

we obtain a divisor Sjk−1(Ω′) =
⋃
x∈Ω′ S

j
k−1,x(Ω

′) ⊆ PTΩ′ , which yields a divisor line

bundle [Sjk−1(Ω′)] over PTΩ′ for 1 ≤ j ≤ m′.

Let L → PTX′c be the tautological line bundle and π : PTX′c → X ′c be the

projectivized tangent bundle over the compact dual Hermitian symmetric space X ′c
of Ω′. Writing X ′c = X ′c,1 × · · · × X ′c,m′ so that each X ′c,j is the compact dual

Hermitian symmetric space of Ω′j, we have Pic(X ′c)
∼= Pic(X ′c,1) × · · · × Pic(X ′c,m′).

In analogy to the case of Ω′, we define the divisor Sjk−1(X ′c) ⊂ PTX′c and a divisor

line bundle [Sjk−1(X ′c)] over PTX′c for 1 ≤ j ≤ m′. Denote by Prc,j : X ′c → X ′c,j the

canonical projection onto the j-th irreducible factor X ′c,j of X ′c and πc,j := Prc,j ◦ π,

j = 1, . . . ,m′. Therefore, Pic(PTX′c) is generated by π∗c,jOX′c,j(1), j = 1, . . . ,m′, and

L. Since Sjk−1,x(X
′
c) is of degree kj as a subvariety of P(Tx(X

′
c)) for any x ∈ X ′c,

Lkj � [Sjk−1(X ′c)] is a holomorphic line bundle which is trivial on every fiber of

π : PTX′c → X ′c by Mok [Mo02, p. 293]. Then, it follows from the proof of [Mo02,

Proposition 3] that [Sjk−1(X ′c)]
∼= L−kj � π∗c,jOX′c,j(2) when Ω′j is of rank ≥ 2. If

Ω′j
∼= ∆ is the unit disk for some j, then we also have [Sjk−1(X ′c)]

∼= L−1�π∗c,jOX′c,j(2)

with X ′c,j
∼= P1.
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We also denote by π : PTΩ′ → Ω′ the canonical projection for simplicity, and

recall that Prj : Ω′ → Ω′j is the canonical projection onto the j-th irreducible factor

of Ω′. Write πj := Prj ◦ π and let Ej be the restriction of OX′c,j(1) to Ω′j for

j = 1, . . . ,m′. We also denote by L the restriction of L to Ω′ and ĝ′Ω′ the canonical

Hermitian metric on L|Ω′ induced from the Kähler metric g′Ω′ on Ω′. By duality, we

have [Sjk−1(Ω′)] ∼= L−kj � π∗jE
2
j for j = 1, . . . ,m′. It follows from [Mo02] that for

j = 1, . . . ,m′ we have the Poincaré-Lelong equation

√
−1

2π
∂∂ log‖sj‖2

o = kjc1

(
L, ĝ′Ω′

)
− 2c1

(
π∗jEj, π

∗
jh

j
o

)
+ [Sjk−1(Ω′)], (4)

where sj is a non-trivial holomorphic section of L−kj�π∗jE2
j whose zero set is precisely

Sjk−1(Ω′) and [Sjk−1(Ω′)] denotes the current of integration over Sjk−1(Ω′). Here the

Hermitian metric hjo on Ej = OX′c,j(1)|Ω′j is induced from the Kähler metric g′Ω′j
on Ω′j. Let Ẑ be the tautological lifting of Z to PTΩ′ . Then, Ẑ is disjoint from

Sjk−1(Ω′) for any j. Since the normal form of the unit tangent vector ηx in Tx(Z) is

independent of x ∈ Z, ‖sj‖o > 0 is constant on Ẑ from the construction of Ẑ and

thus ∂∂ log‖sj‖2
o ≡ 0 on Ẑ. Therefore, by Eq. (4) we have

kjc1

(
L, ĝ′Ω′

)
|Ẑ − 2c1

(
π∗jEj, π

∗
jh

j
o

)
|Ẑ = 0

and thus

−kjc1(TZ , g
′
Ω′|Z) + 2c1

(
Pr∗jEj,Pr∗jh

j
o

)
|Z = 0. (5)

It follows from [Mo02] and the proof of Theorem 4.10 that

2c1

(
Pr∗jEj,Pr∗jh

j
o

)
= − 2

2π
Pr∗jωgΩ′

j

= − 1

πλj
Pr∗jωg′

Ω′
j

for any j. Moreover, we have c1(TZ , g
′
Ω′ |Z) = 1

2π
κZωg′

Ω′
|Z . Therefore, we have

−λjkj 1
2π
κZωg′

Ω′
|Z = 1

π
Pr∗jωg′

Ω′
j

|Z for any j by Eq. (5) and thus

−
m′∑
j=1

λjkjκZωg′
Ω′
|Z = 2

m′∑
j=1

Pr∗jωg′
Ω′
j

|Z = 2ωg′
Ω′
|Z .

Writing l0 := −
∑m′

j=1 λjkj, the above equality becomes l0κZωg′
Ω′
|Z = 2ωg′

Ω′
|Z , i.e.,

l0κZ ≡ 2. Denote by ∆k a totally geodesic holomorphic disk in (Ω′, g′Ω′) of con-

stant Gaussian curvature κ∆k
which is equal to the maximal holomorphic sectional

curvature of (Ω′, g′Ω′). Then, we have κ∆k
= − 2∑m′

j=1 λjkj
, where kj = rank(Ω′j),

j = 1, . . . ,m′. Let σ′(x) be the second fundamental form of (Z, g′Ω′|Z) ⊂ (Ω′, g′Ω′)

at x ∈ Z and ηx ∈ Tx(Z) ⊂ Tx(Ω
′) be a unit tangent vector. Then, we have

‖σ′(x)‖2 = Rηxηxηxηx(Ω
′, g′Ω′) − κZ ≤ κ∆k

− κZ = 2
l0
− 2

l0
= 0 for any x ∈ Z by the

Gauss equation, i.e., ‖σ′‖2 ≡ 0, and thus (Z, g′Ω′|Z) ⊂ (Ω′, g′Ω′) is totally geodesic.
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4.2.4 Conclusion of the proof

From our construction and the above two steps, we complete the proof of Theorem

1.1 as follows.

Proof of Theorem 1.1. The case where Ω is of rank 1 is obviously true by our con-

struction in Section 3, so we assume that Ω is of rank≥ 2. Following the construction

of the holomorphic curve Z throughout Sections 3 and 4, we first consider the case

where Ω is of tube type. Then, we have shown that Z ⊂ Ω′ for some rank-k charac-

teristic subdomain Ω′ ⊂ Ω of tube type such that the holomorphic tangent spaces

Tx(Z) = Cηx are Aut(Ω′)-equivalent and ηy ∈ Ty(Ω
′) is a generic vector for any

y ∈ Z. It follows from Proposition 4.21 that (Z, ds2
Ω|Z) ⊂ (Ω′, ds2

Ω|Ω′) is totally

geodesic. Then, (Z, ds2
Ω|Z) ⊂ (Ω, ds2

Ω) is totally geodesic by the total geodesy of

(Ω′, ds2
Ω|Ω′) in (Ω, ds2

Ω). From the proof of Theorem 4.10, we have ‖σ(µ(w))‖2 → 0

as w → b for a general point b ∈ U ∩ ∂∆. Hence, the proof is complete under the

assumption that Ω is of tube type.

Now, it remains to consider the case where Ω is of non-tube type. In Section

4.2.2, we have shown that Z ⊂ Ω′ for some invariantly geodesic submanifold Ω′ ⊂ Ω

such that Ω′ is of tube type, the holomorphic tangent spaces Tx(Z) = Cηx are

Aut(Ω′)-equivalent and ηy ∈ Ty(Ω
′) is a generic vector for any y ∈ Z. Writing

Ω′ = Ω′1×· · ·×Ω′m ⊂ Ω = Ω1×· · ·×Ωm, we have ds2
Ω|Ω′ =

∑m
j=1(p(Ωj) + 2)Prj

∗gΩ′j
,

where Prj : Ω′ → Ω′j is the canonical projection onto the j-th irreducible factor of

Ω′ for 1 ≤ j ≤ m. Here, for 1 ≤ j ≤ m, p(Ωj) denotes the complex dimension of

the VMRTs of the compact dual Hermitian symmetric space of Ωj at the base point

(see Section 2.1). Then, Proposition 4.21 asserts that (Z, ds2
Ω|Z) ⊂ (Ω′, ds2

Ω|Ω′) is

totally geodesic. This yields the total geodesy of (Z, ds2
Ω|Z) ⊂ (Ω, ds2

Ω). In analogy

to the case where Ω is of tube type, from our construction we have ‖σ(µ(w))‖2 → 0

as w → b for a general point b ∈ U ∩ ∂∆.

5 Applications

5.1 Total geodesy of equivariant holomorphic embeddings

As a first application of Theorem 1.2 we have a result on the total geodesy of

equivariant holomorphic isometries between bounded symmetric domains, as follows.

Theorem 5.22 (Theorem 3.5.2 [Mo11]). Let D and Ω be bounded symmetric do-

mains, Φ : Aut0(D) → Aut0(Ω) be a group homomorphism, and F : D → Ω be

a Φ-equivariant holomorphic map. Then, F (D) ⊂ Ω is a totally geodesic complex

submanifold with respect to the Bergman metric ds2
Ω.

In Mok [Mo11, p. 255] a brief sketch of the deduction of Theorem 5.22 from

Theorem 1.2 was given. To make the article self-contained we give here the full

proof, and in the next application we will make use of Theorem 5.22 to study the

uniformization map π : Ω→ XΓ := Ω/Γ from a bounded symmetric domain Ω to a
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not necessarily arithmetic quotient XΓ := Ω/Γ by a torsion-free discrete subgroup

Γ ⊂ Aut(Ω).

Proof of Theorem 5.22. Let D = D1×· · ·×Dm be the decomposition of D into irre-

ducible factors, where m ≥ 1. Denote by σ the (1, 0)-part of the second fundamental

form of D in Ω. F ∗ds2
Ω is Aut0(D)-equivariant, hence F ∗ds2

Ω = λ1π
∗
1ds

2
D1

+ · · · +
λmπ

∗
mds

2
Dm

for some λi ≥ 0, 1 ≤ i ≤ m, where πi : D = D1×· · ·×Dm → Di denotes

the canonical projection onto the i-th Cartesian factor. Thus, removing factors Di

for which λi = 0 we may assume without loss of generality that F is a holomor-

phic immersion. Let now x0 ∈ D and U be a sufficiently small open neighborhood

of x0 in D such that F |U : U → Ω is a holomorphic embedding. We identify U

with S := F (U) ⊂ Ω, and denote by RΩ resp.RS the curvature tensor of (Ω, ds2
Ω)

resp. (S, ds2
Ω|S).

Denote by σ the (1,0)-part of the second fundamental form of (S, ds2
Ω|S) ↪→

(Ω, ds2
Ω). For α, β ∈ Tx0(U) ∼= TF (x0)(S), by the Gauss equation we have RS

ααββ
=

RΩ
ααββ

− ‖σ(α, β)‖2. If now we take i 6= j, 1 ≤ i, j ≤ m, and α = ηi resp.β = ηj,

where, by an obvious abuse of notation, ηi ∈ Tx0(Di) resp. ηj ∈ Tx0(Dj), then

0 = RS
ηiηiηjηj

= RΩ
ηiηiηjηj

− ‖σ(ηi, ηj)‖2 ≤ −‖σ(ηi, ηj)‖2,

which implies in particular that σ(ηi, ηj) = 0. To prove that σ ≡ 0 it suffices therefore

to show that for any i, 1 ≤ i ≤ m, we have σ(η′i, η
′′
i ) = 0 whenever η′i, η

′′
i ∈ Tx0(Di).

When Di is of rank ≥ 2, for α, ζ ∈ Tx0(Di) such that RS
ααζζ

= 0, by the Gauss

equation

0 = RS
ααζζ

= RΩ
ααζζ
− ‖σ(α, ζ)‖2 ≤ −‖σ(α, ζ)‖2,

so that σ(α, ζ) = 0. From the proof of Hermitian metric rigidity (Mok [Mo87,

Proposition 3.4]), by polarization this already implies that σ(η′i, η
′′
i ) = 0 whenever

η′i, η
′′
i ∈ Tx0(Di). On the other hand, when Di is of rank 1, for any nonzero vector ηi ∈

Tx0(Di) there is a (totally geodesic) minimal disk ∆ηi ⊂ Di such that Tx0(∆ηi) = Cηi.
From the Φ-equivariance of F the norm of the second fundamental form σ1 of F (∆ηi)

in Ω is a constant. Hence, by Theorem 1.2 F |∆ηi
is totally geodesic, i.e., σ1 ≡ 0.

Since by the Gauss equation we have ‖σ(ηi, ηi)‖2 ≤ ‖σ1(ηi, ηi)‖2 we conclude that

σ(ηi, ηi) = 0. As we vary ηi ∈ Tx0(Di), by polarization we conclude that σ(η′i, η
′′
i ) = 0

for any η′i, η
′′
i ∈ Tx0(Di). The proof of Theorem 5.22 is complete.

5.2 Total geodesy of algebraic subsets admitting compact

quotients

We now apply Theorem 5.22 to study a problem arising from functional transcen-

dence theory (cf. Ullmo-Yafaev [UY11]). It is given by Theorem 1.3 in the Introduc-

tion concerning varieties which are bi-algebraic with respect to the uniformization

map π : Ω → XΓ := Ω/Γ (cf. Theorem 1.3 for the precise statement). Our proof of

Theorem 1.3 yields a stronger statement.
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Theorem 5.23. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra

realization, and Z ⊂ Ω be an irreducible algebraic subset. Suppose there exists

a torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such that Γ̌ stabilizes Z and Z/Γ̌ is

compact. Then, Z ⊂ Ω is totally geodesic.

In Theorem 1.3, which generalizes the cocompact case of Ullmo-Yafaev [UY11],

Y̌ := Z/Γ̌ is assumed to be a subvariety on some projective quotient manifold

XΓ := Ω/Γ where Γ ⊂ Aut(Ω) is a torsion-free and not necessarily arithmetic

cocompact lattice. In Theorem 5.23 by contrast there is no ambient projective

manifold XΓ.

Deduction of Theorem 1.3 from Theorem 5.23 In the notation of Theorem 1.3 let Γ ⊂
Aut(Ω) be a torsion-free cocompact lattice and write XΓ := Ω/Γ, which is a projec-

tive manifold. Let π : Ω→ XΓ be the uniformization map, Y ⊂ XΓ be an irreducible

subvariety, and Z ⊂ Ω be an irreducible component of π−1(Y ). Let Γ̌ ⊂ Γ be the

subgroup given by Γ̌ :=
{
γ ∈ Γ : γ(Z) = Z

}
. Then Γ̌ acts as a torsion-free discrete

group of automorphisms on Z, and, defining Y̌ := Z/Γ̌, the canonical map α : Y̌ →
XΓ is a birational morphism onto Y , hence Y̌ is projective, and Theorem 1.3 follows

from Theorem 5.23. �

5.2.1 Strategy of proof of Theorem 5.23

When Γ ⊂ Aut0(Ω) is an arithmetic but not necessarily cocompact lattice, Theorem

1.3 was established by Ullmo-Yafaev [UY11]. Their proof makes use of a monodromy

result of André-Deligne (cf. [An92]) which relies on Hodge Theory, for which arith-

meticity of the lattices plays a crucial role. Our proof of Theorem 5.23, which implies

Theorem 1.3 as we have seen, will rely on the existence of Kähler-Einstein metrics

on compact Kähler manifolds with ample canonical line bundle and the proof of the

semisimplicity theorem for the identity component of a regular covering of such a

manifold due to Nadel [Na90].

Our proof of Theorem 5.23 breaks up into several steps culminating in the use

of Theorem 5.22. We will prove that Z is nonsingular and that the Kähler manifold

(Z, ds2
Ω|Z) is the image of some bounded symmetric domain by an equivariant holo-

morphic isometric embedding in order to be able to apply Theorem 5.22 to conclude

that (Z, ds2
Ω|Z) ⊂ (Ω, ds2

Ω) is totally geodesic.

To start with let H0 ⊂ G0 be the identity component of the stabilizer subgroup

of Z. It follows readily from the algebraicity of Z ⊂ Ω that dimRH0 > 0. We cannot

show directly that H0 acts transitively on Z. In its place we show using methods of

complex analysis that there exists a complex algebraic subgroup H ⊂ G := Aut(Xc)

which is at the same time a complexification of H0 in G, such that the orbit Hz0 for

any z0 ∈ Z contains Z. (Recall that Ω ⊂ Xc = G/P is the Borel embedding.) In

particular, Z is nonsingular. These first steps of the argument remain valid when

Z/Γ̌ is only assumed quasi-projective.

Since Z is nonsingular and the discrete group Γ̌ acts without fixed points on

Z, it follows that Y̌ := Z/Γ̌ is nonsingular. To proceed further we will make use

of the compactness of Y̌ , so that it is a projective manifold with ample canonical
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line bundle, implying the existence on Y̌ of a Kähler-Einstein metric of negative

Ricci curvature (Aubin [Au78], Yau [Ya78]). By Nadel [Na90], which exploited

the polystability of the holomorphic tangent bundle of Y̌ as a consequence of the

existence of Kähler-Einstein metrics, we know that the identity component of Aut(Z)

is semisimple and of the noncompact type. The same proof applies to show that

H0 ⊂ G0 is a semisimple Lie subgroup of the noncompact type. Let S := H0x ⊂ Z

for some x ∈ Z. By cohomological arguments, we will deduce that dimR(S) =

dimR(Z). At the same time, this will also imply S ∼= H0/L for some maximal

compact subgroup L of H0 by dimension arguments. As a consequence, S = Z ⊂ Ω

is a Hermitian symmetric space of the noncompact type and Theorem 5.23 will follow

from Theorem 5.22.

5.2.2 Pseudo-homogeneity of algebraic subsets admitting quasi-projective

quotients

We say that an irreducible algebraic subset E ⊂ Ω ⊂ Xc is pseudo-homogeneous to

mean that it is an open subset in the complex topology of an orbit in Xc under some

complex algebraic subgroup of G = Aut0(Xc). We will prove that the algebraic

subset Z ⊂ Ω in Theorem 5.23 is pseudo-homogeneous in this sense by means

of methods of complex analysis, more precisely by means of Riemann extension

theorem on bounded plurisubharmonic functions and the maximum principle on

plurisubharmonic functions on compact complex spaces.

It is convenient to introduce the Zariski topology on Ω and its algebraic subsets.

A subset E ⊂ Ω is Zariski closed if and only if it is an algebraic subset of Ω. For a

Zariski closed subset V ⊂ Ω, V inherits the Zariski topology from Ω by restriction,

and a subset E ⊂ V is Zariski closed if and only if E ⊂ Ω is Zariski closed.

In what follows we make use of gothic letters to denote real or complex Lie alge-

bras of real or complex Lie groups in a self-evident manner. The Lie algebra of a real

(resp. complex) Lie group will be identified with its tangent space (resp. holomorphic

tangent space) at the identity element.

In order to convert the problem concerning discrete groups Γ̌ ⊂ Aut(Ω) which

stabilize an algebraic subset Z ⊂ Ω to questions on Lie groups of holomorphic

isometries, to start with we prove

Proposition 5.24. In the notation of Theorem 5.23, there exists a positive-dimen-

sional algebraic subgroup H0 ⊂ G0 such that h(Z) = Z for any h ∈ H0 and such

that H0 ∩ Γ̌ is of finite index in Γ̌.

Proof. Recall that by definition Z is an irreducible component of Ẑ ∩ Ω for some

irreducible subvariety Ẑ ⊂ Xc = G/P , where G = Aut0(Xc) and P ⊂ G is some

parabolic subgroup. Define now H :=
{
h ∈ G : h(Ẑ) = Ẑ

}
. H ⊂ G is a subgroup

defined by a set of algebraic equations on G, and as such it is a complex algebraic

subgroup. For any γ ∈ Γ̌ we have γ(Z) = Z, hence also γ(Ẑ) = Ẑ by the identity

theorem for holomorphic functions. Therefore, Γ̌ ⊂H .

We claim that Γ̌ is an infinite group. This is obvious when Y̌ is compact by the

maximum principle. In general, let Y̌ ⊂ W be a projective compactification, and
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let σ : W † → W be a desingularization. Suppose Γ̌ is finite. Then, any continuous

bounded plurisubharmonic function ϕ on Ω, when restricted to Z, gives rise to a

continuous bounded plurisubharmonic function ψ on Y̌ † obtained by summing over

the finite fibers of the uniformization map $ : Z → Y̌ and pulling back to the

nonsingular model Y̌ † = σ−1(Y̌ ) by σ : W † → W . Clearly one can choose ϕ so

that ψ is nonconstant. On the other hand, by the Riemann extension theorem for

bounded plurisubharmonic functions, ψ extends to a plurisubharmonic function on

the compact complex manifold W † and must hence be constant by the maximum

principle, a plain contradiction.

Define H ′0 := H ∩G0 ⊂ G0. Since Γ̌ ⊂H ∩G0 and the algebraic group H ′0 has

at most a finite number of connected components, from Card(Γ̌) = ∞ we conclude

that dim(H ′0) > 0. Moreover, writing H0 for the identity component of the algebraic

group H ′0, H0 ∩ Γ̌ is of finite index in Γ̌, and we have proven Proposition 5.24, as

desired.

Proposition 5.25. Let H0 ⊂ G0 be a connected real algebraic subgroup. Then there

exists a connected complex algebraic subgroup H ⊂ G such that Te(H) agrees with

h0 ⊗R C.

Proof. At the level of Lie algebras we have h0 ⊂ g0. Define h := h0 ⊗R C and write

r := dimRH0. Let H be the simply connected complex Lie group with Lie algebra
∼= h. Then, there exists a holomorphic homomorphism α : H → G with discrete

kernel such that dα(Te(H)) = h ⊂ g. There exists thus a complex submanifold

U containing e of some open subset W ⊂ X such that U is the image under α

of some open neighborhood of e ∈ H. We will assume without loss of generality

that U is closed under taking inverses, i.e., U = U−1. It remains to prove that

(U ; e) is the germ of a complex algebraic subgroup H ⊂ G. Embed G0 ⊂ G,

G0 ⊂ RN , G ⊂ RN ⊗RC = CN , as the real form of a complex algebraic group. H0 ⊂
G0 is defined as the common zero set of a finite-dimensional real vector subspace

I(H0) ⊂ R[x1, · · · , xN ]. Let Λ : R[x1, · · · , xN ] → R[z1, · · · , zN ] be the R-algebra

homomorphism defined from Λ(xi) = zi for 1 ≤ i ≤ N . Define E := Λ(I(H0))⊗RC,

and denote by V ⊂ G ⊂ CN the irreducible component containing e of the common

zero set of E. From the definition we have H0 ⊂ V . From the implicit function

theorem V is smooth along H0 and we have dimC V = r = dimRH0, hence the

germs of complex submanifolds (V ; e) and (U ; e) of (G; e) are identical. Therefore,

the complex affine algebraic subvariety V ⊂ G contains U and it remains to check

that (a) V is closed under multiplication induced from G and (b) any x ∈ V is

invertible in V . Granting this, the proof is completed by setting H = V .

Define F :=
{
y ∈ V : yV ⊂ V, y−1V ⊂ V

}
. Then, F ⊂ V is defined as the

common zero set of a set of complex polynomials and it is hence a complex algebraic

subvariety. On the other hand, for any x ∈ U , xU contains an open neighborhood

of x in U , hence xV ⊂ V , and similarly x−1V ⊂ V , so that U ⊂ V and hence

F = V by the identity theorem for holomorphic functions. In particular, V is closed

under multiplication, proving (a). Moreover, for any y ∈ V , we have yV ⊂ V and

y−1V ⊂ V , so that also V ⊂ yV , hence yV = V . Therefore, there exists w ∈ V
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such that yw = e, hence also wy = e, so that any y ∈ V is invertible, proving (b),

as desired.

We call H ⊂ G the complexification of H0 inside G.

Proposition 5.26. Let Ω b CN ⊂ Xc be a bounded symmetric domain in its Harish-

Chandra realization and Borel embedding into Xc = G/P , the compact dual of Ω,

where G is the identity component of Aut(Xc). Let G0 be the identity component

of Aut(Ω), G0 ⊂ G being a noncompact real form. Let Z ⊂ Ω be an irreducible

algebraic subset. Suppose there exists a torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω)

such that Γ̌ stabilizes Z and Y̌ = Z/Γ̌ is quasi-projective. Let H0 ⊂ G0 be the identity

component of the (positive-dimensional) stabilizer subgroup of Z, and H ⊂ G be the

complexification of H0 inside G. Then, Z is an irreducible component of Hx ∩ Ω.

Proof. Recall that by definition the irreducible algebraic subset Z ⊂ Ω is an ir-

reducible component of Ẑ ∩ Ω for some irreducible projective algebraic subvariety

Ẑ ⊂ Xc. Consider the orbit Hx ⊂ Ẑ of x ∈ Z under the complex algebraic group

H ⊂ G. Since S = H0x ⊂ Z and Z ⊂ Ω is a complex-analytic subvariety, we

have the inclusion (Hx;x) ⊂ (Ẑ;x) of germs of subvarieties, hence Hx ⊂ Ẑ. We

prove first of all that Hx ∩ Z is dense in Z with respect to the Zariski topology on

Z. Suppose otherwise. Then there exists a Zariski closed subset E ( Z such that

E ⊃ Hx ∩ Z. There exists a projective algebraic subvariety Ê such that E is the

union of a finite number of irreducible components of Ê ∩Ω. Writing N = dimC(Ω),

let now P (z1, · · · , zN) be a polynomial in N complex variables such that P |Ê∩CN ≡ 0

and such that P |Ẑ∩CN 6≡ 0.

Next, using P ∈ C[z1, · · · , zN ] we will derive a contradiction by means of the

maximum principle. Define a real function Φ : Ω→ R by Φ(z) = sup{|P (γz)| : γ ∈
Γ̌}. Write fγ(z) := P (γz) for z ∈ Ω. Regarding {fγ}γ∈Γ̌ as a family of holomorphic

functions on Ω, we have the uniform bound |fγ(z)| ≤ sup{|P (z)| : z ∈ Ω} < ∞.

From Cauchy estimates, the family of holomorphic functions {fγ}γ∈Γ̌ is uniformly

Lipschitz on any compact subset of Ω and it follows that Φ is uniformly Lipschitz

on any compact subset of Ω. In particular, Φ : Ω → R is a continuous bounded

plurisubharmonic function on Ω. Restricting to Z we have Φ(z) = 0 whenever

z ∈ Hx ∩ Z ⊂ E and Φ(z0) 6= 0 for some z0 ∈ Reg(Z) − E. By the definition of

Φ we have Φ(γz) = Φ(z) for any γ ∈ Γ̌, hence we obtain by descent a nonconstant

bounded plurisubharmonic function ϕ : W−A→ R. Denote by Y̌ ⊂ W a projective

compactification, and define A := Sing(W ) ∪ (W − Y̌ ). Let σ : W ] → W be a

desingularization of W and define ϕ] : W ] − σ−1(A) → R by ϕ] = ϕ ◦ σ. Then,

ϕ is a nonconstant bounded plurisubharmonic function defined on the nonempty

Zariski open subset W ] − σ−1(A) ⊂ W ]. By the Riemann extension theorem for

bounded plurisubharmonic functions, ϕ] extends to a plurisubharmonic function, to

be denoted by the same symbol, on the projective manifold W ]. By the maximum

principle for plurisubharmonic functions ϕ] must necessarily be a constant, a plain

contradiction.

Since H ⊂ G acts algebraically on Xc, the Zariski closure of Hx in Ẑ ⊂ Xc is the

same as its topological closure, and we conclude from the above that Hx ∩ Z = Z.
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Suppose now Hx∩Z ( Z and let y ∈ Z −Hx. The same argument applies to y (in

place of x) and we have Hy ∩ Z = Z, contradicting with the fact that Hx and Hy

are distinct and hence disjoint orbits. We conclude that Hx∩Z = Z for any x ∈ Z,

i.e., Z ⊂ Hx for any x ∈ Z. Hence, the germs of subvarieties (Z;x) and (Hx;x) at

x ∈ Z are identical and Z is an irreducible component of Hx ∩ Ω.

As a direct consequence of Proposition 5.26, Z ⊂ Ω is a complex submanifold

because Z is an irreducible component of Hx ∩ Ω for x ∈ Z. To anticipate the use

of this assertion, we state this result as a corollary in the following.

Corollary 5.27. Let Ω b CN be a bounded symmetric domain in its Harish-Chandra

realization, and Z ⊂ Ω be an irreducible algebraic subset. Suppose there exists

a torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such that Γ̌ stabilizes Z and Z/Γ̌ is

quasi-projective. Then, Z ⊂ Ω is a complex submanifold.

5.2.3 Preliminaries from Riemannian geometry on bounded symmetric

domains

The following lemma in Riemannian geometry is well-known but we include a proof

for easy reference. Note that for any Riemannian symmetric space (M,h) of the

semisimple and noncompact type, the underlying manifold M is real-analytic, and

h is a real-analytic metric.

Lemma 5.28. Let (M,h) be a Riemannian symmetric manifold (M,h) of the semisim-

ple and noncompact type, and γ be an isometry of (M,h). Then, an irreducible com-

ponent Σ(γ) of the fixed point set Fix(γ) of any isometry γ of (M,h) is necessarily

a totally geodesic submanifold.

Proof. Fix(γ) ⊂ M is a real-analytic subvariety. Let Σ(γ) ⊂ Fix(γ) be any ir-

reducible component, and x ∈ Σ(γ) be a smooth point. Since γ(x) = x and

γ|Σ(γ) = idΣ(γ), we have dγ(η) = η for any η ∈ Tx(Σ(γ)). Let ` ⊂ M be a geodesic

passing through x such that Tx(`) ⊂ Tx(Σ(γ)). From dγ(η) = η for η ∈ Tx(`) we

conclude that γ(y) = y for any y ∈ ` by the uniqueness of parametrized geodesics

with fixed initial point and fixed initial velocity. Hence, ` ⊂ Σ(γ). It follows that

σ(η, η) = 0 for the second fundamental from σ of Σ(γ) ⊂ M at x, and by polar-

ization we have σ ≡ 0 on Reg(Σ(x)). Finally, being the image of a vector subspace

V ⊂ Tx(M) under the exponential map expx : Tx(M)→ M at a nonsingular point

x ∈ Σ(γ), the totally geodesic subset Σ(γ) ⊂ M of the Cartan-Hadamard manifold

(M,h) is necessarily nonsingular, and it follows that Σ(γ) ⊂M is a totally geodesic

submanifold, as desired.

We have the following lemma on the stabilizer subgroup of Z ⊂ Ω.

Lemma 5.29. Let Z ⊂ Ω be an algebraic subset, and let Ω′ ⊂ Ω be the smallest

totally geodesic complex submanifold containing Z. Suppose γ ∈ Aut(Ω′) such that

γ|Z = idZ. Then, γ = idΩ′.
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Proof. By hypothesis γ ∈ Aut(Ω′) is such that γ|Z = idZ . Note that (Ω′, ds2
Ω|Ω′) is a

Hermitian symmetric space of the noncompact type. Let now Σ(γ) be an irreducible

component of Fix(γ) such that Z ⊂ Σ(γ). Since γ is a holomorphic automorphism

on Ω′, Σ(γ) ⊂ Ω′ is a complex-analytic subvariety. By Lemma 5.28, Σ(γ) ⊂ Ω′ is

a totally geodesic complex submanifold. From the minimality of Ω′ ⊂ Ω among all

totally geodesic complex submanifolds containing Z, we have Σ(γ) = Ω′. In other

words, γ = idΩ′ , as desired.

From now on, replacing Z ⊂ Ω by Z ⊂ Ω′ if necessary we assume without loss

of generality that Ω is the smallest bounded symmetric domain containing Z so

that the natural homomorphism Φ : H0 → Aut(Z, ds2
Ω|Z) defined by Φ(γ) = γ|Z is

injective.

5.2.4 Nadel’s semisimplicity theorem on automorphism groups of uni-

versal covers of projective manifolds with ample canonical line

bundle

To prove that Z ⊂ Ω is totally geodesic it would suffice to prove that (Z, ds2
Ω|Z)

is abstractly biholomorphically isometric to a Hermitian symmetric manifold of the

semisimple and noncompact type in such a way that Aut0(Z, ds2
Ω|Z) embeds equiv-

ariantly into G0 = Aut0(Ω, ds2
Ω), from which the total geodesy of Z ⊂ Ω will follow

from Theorem 5.22. We have a positive-dimensional algebraic subgroup H0 ⊂ G0

acting on Z, but to proceed further there are two difficulties. First of all, we are

short of proving that H0 acts transitively on Z. Secondly, even when we know that

H0 acts transitively on Ω it is not clear that the inclusion H0 ⊂ G0 extends to an

equivariant homomorphism Aut0(Z, ds2
Ω|Z) ↪→ G0.

While the preparation towards proving Theorem 5.23 works so far equally well

when Y̌ = Z/Γ̌ is quasi-projective, from now on we return to the situation where

Y̌ = Z/Γ̌ is compact as in the hypothesis of the theorem. For compact Kähler

manifolds we have the following result of Nadel [Na90].

Theorem 5.30. Let X be a compact Kähler manifold with ample canonical line

bundle, and denote by π : X̃ → X the uniformization map. Then, Aut0(X̃) is a

semisimple Lie group of the noncompact type.

Here a semisimple Lie group Q is said to be of the noncompact type if and only

if in the direct product decomposition of the universal covering group Q̃ of Q there

are no compact factors.

We have proven that Z ⊂ Hx for some complex algebraic subgroup H ⊂ G =

Aut0(Xc), so that in particular Z ⊂ Ω is nonsingular, and Y̌ := Z/Γ̌ is a pro-

jective manifold. The Kähler metric ds2
Ω|Z is of nonpositive bisectional curvature

and strictly negative holomorphic sectional curvature by the monotonicity on bisec-

tional curvatures resulting from Gauss’ equation, hence Y̌ inherits a Kähler metric

of strictly negative Ricci curvature, proving that Y̌ has ample canonical line bundle.

Hence, Nadel [Na90] applies to Y̌ . However, we will need a modified version as given

below, which follows immediately from the proof in [Na90], since we are dealing with
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holomorphic isometries of (Z, ds2
Ω|Z) which are restrictions of holomorphic automor-

phisms of Ω which stabilize Z. Recall that we have assumed that there is no proper

totally geodesic complex submanifold Ω′ ⊂ Ω which contains Z. We have

Proposition 5.31. Suppose there exists a torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω)

such that Γ̌ stabilizes Z and Z/Γ̌ is compact. Let H0 ⊂ G0 := Aut0(Ω) be the identity

component of the subgroup of G0 which stabilizes Z. Then, H0 ⊂ G0 is a semisimple

Lie group without compact factors.

5.2.5 Proof of Theorem 5.23

By Corollary 5.27, Z ⊂ Ω ∼= G0/K is a complex submanifold. Recall Γ̂ := H0∩Γ̌ ⊂ Γ̌

is a subgroup of finite index by Proposition 5.24. Thus, by the assumption that Z/Γ̌

is compact, Ŷ := Z/Γ̂ is a compact complex manifold. Let x ∈ Z and S := H0x ⊂ Z.

For any z ∈ Ω, write Kz := {g ∈ G0 : g(z) = z} and (H0)z = {h ∈ H0 : h(z) =

z}. Since (H0)z ⊂ Kz and Kz is a compact group, the isotropy subgroup (H0)z
is compact, where z ∈ Ω. Thus, there is a maximal compact subgroup L of H0

containing (H0)x, i.e., (H0)x ⊆ L ⊆ H0. By Cartan’s fixed point theorem, L has

a fixed point y ∈ Ω so that L ⊂ Ky. In particular, L ⊆ (H0)y ⊂ H0 and thus

L = (H0)y because L ⊂ H0 is maximal compact and (H0)y is compact. Since H0

is a connected real algebraic group, H0/L ∼= Rn is homeomorphic to Rn for some

integer n ≥ 0 (see Borel [Bo98, p. 124]).

Now, SΓ̂ := Γ̂\H0/L is aK(Γ̂, 1) sinceH0/L ∼= Rn is contractible andH0/L→ SΓ̂

is the universal covering map. For the notion of K(π, n)’s, we refer the readers to

Whitehead [Wh78, Chapter V, p. 244]. Recall the following fundamental theorem in

Algebraic Topology.

Theorem 5.32 (cf. Whitehead [Wh78, (4.3) Theorem, p. 225]). Let N be a con-

nected CW complex and M be a K(π, 1). Then, the correspondence f 7→ f∗ induces

the one-to-one correspondence between [N, x0;M, y0] and Hom(π1(N), π1(M)), where

[N, x0;M, y0] denotes the set of homotopy classes of continuous maps from N to M

which map x0 ∈ N to y0 ∈M , and Hom(π1(N), π1(M)) denotes the set of all group

homomorphisms from π1(N) to π1(M).

The inclusion map ιŶ : Ŷ ↪→ Ω/Γ̂ =: XΓ̂ induces a group homomorphism

Φ := (ιŶ )∗ : π1(Ŷ )→ π1(XΓ̂).

Let g : SΓ̂ = Γ̂\H0/L ↪→ XΓ̂ := Ω/Γ̂ be the inclusion map which is induced from

the natural inclusion H0/L ↪→ Ω. Recall that H0/L ∼= Rn is contractible as shown

above, hence H0/L is simply connected. On the other hand, Ω is a Cartan-Hadamard

manifold, hence contractible, a fortiori simply connected, and thus XΓ̂ = Ω/Γ̂ is a

K(Γ̂, 1). Therefore, the fundamental group π1(SΓ̂) (resp.π1(XΓ̂)) of SΓ̂ (resp.XΓ̂)

can be naturally identified with the group CovSΓ̂

∼= Γ̂ (resp. CovXΓ̂

∼= Γ̂) of all

covering transformations of the universal covering map H0/L→ SΓ̂ (resp. Ω→ XΓ̂),

and it follows readily that the induced group homomorphism g∗ : π1(SΓ̂)→ π1(XΓ̂)

is an isomorphism. Define the group homomorphism (g∗)
−1 ◦ Φ : π1(Ŷ ) → π1(SΓ̂).
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Then, by Theorem 5.32 we have a continuous map f : Ŷ → SΓ̂ such that f∗ =

(g∗)
−1 ◦ Φ. Now, the composition

g ◦ f : Ŷ → XΓ̂

is a continuous map inducing the homomorphism (g ◦ f)∗ = g∗ ◦ f∗ = Φ. Thus,

Theorem 5.32 asserts that g ◦ f : Ŷ → XΓ̂ and ιŶ : Ŷ → XΓ̂ are homotopic to

each other. Note that the inclusion map g : SΓ̂ ↪→ XΓ̂ is a smooth map. Since Ŷ

and SΓ̂ are smooth manifolds, by Whitney’s approximation theorem (cf. Lee [Lee13,

Theorem 6.26, p. 141]) we may choose f so that f : Ŷ → SΓ̂ is a smooth map. As

a consequence, g ◦ f : Ŷ → XΓ̂ and ιŶ : Ŷ → XΓ̂ are homotopic smooth maps. By

the homotopy invariance of cohomology (cf. Lee [Lee13, Proposition 17.10, p. 445])

we have the same pullback maps (g ◦ f)∗ = ι∗
Ŷ

: Hp
dR(XΓ̂)→ Hp

dR(Ŷ ) for all p. With

these results, we are ready to finish the proof of Theorem 5.23, as follows.

Proof of Theorem 5.23. We may suppose dimC(Z) ≥ 1; otherwise, the statement is

trivial. By the previous results, Ŷ := Z/Γ̂ is a compact complex manifold. Choose

a point x ∈ Z and define S := H0x ⊂ Z. The Bergman metric ds2
Ω induces a Kähler

metric gXΓ̂
on XΓ̂ := Ω/Γ̂. Write ω̂ for the Kähler form of (XΓ̂, gXΓ̂

). We have the

compact Kähler submanifold (Ŷ , gXΓ̂
|Ŷ ) of (XΓ̂, gXΓ̂

). Writing s := dimC(Ŷ ), we

have dimC(Z) = s and

ηŶ := ι∗
Ŷ

ω̂s

s!
= (g ◦ f)∗

ω̂s

s!
+ dη0 =

1

s!
f ∗ (g∗ω̂s) + dη0

for some (2s − 1)-form η0 on Ŷ . Moreover, ηŶ is the volume form of the compact

Kähler manifold (Ŷ , gXΓ̂
|Ŷ ). Note that ω̂s is a differential 2s-form on XΓ̂. Suppose

dimR(SΓ̂) < 2s. Then, we have g∗ω̂s = 0 and thus

ηŶ =
1

s!
f ∗(g∗ω̂s) + dη0 = dη0

globally on Ŷ . Since Ŷ is a compact manifold, we have

Vol(Ŷ ) =

∫
Ŷ

ηŶ =

∫
Ŷ

dη0 = 0

by Stokes’ Theorem, a plain contradiction. Thus,

dimR(H0x) ≥ dimR(H0/L) = dimR(SΓ̂) ≥ 2s

because (H0)x ⊂ L and H0x ∼= H0/(H0)x. On the other hand, dimR(H0x) ≤
dimR(Z) = 2s. Hence, we have

dimR(H0x) = dimR(H0/L) = dimR(Z) = 2s.

Since S := H0x ⊆ Z is a smooth embedded submanifold that is closed in Z, and

dimR(S) = dimR(Z) = 2s, S = Z ⊂ Ω is a complex submanifold. Moreover, it

follows from H0x ∼= H0/(H0)x and dimR(H0x) = dimR(H0/L) that

dimR(L) = dimR((H0)x).
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Note that H0 is connected so that the maximal compact subgroup L ⊂ H0 is con-

nected. Then, we have (H0)x = L and thus S = H0x ∼= H0/(H0)x = H0/L.

Therefore, Z = S ∼= H0/L and H0 acts transitively on Z.

Since Ŷ = Z/Γ̂ is compact, by Proposition 5.31 H0 is semisimple of the non-

compact type, and thus H0/L is a Riemannian symmetric space of the semisimple

and noncompact type. Hence, the complex manifold Z = H0x ∼= H0/L is indeed a

Hermitian symmetric space of the semisimple and noncompact type. By Theorem

5.22, S = Z ⊂ Ω is totally geodesic, as desired.

6 Appendix

In the proof of Lemma 4.16 we made use of an inequality obtained by Mercer [Me93,

Proposition 2.4]. In order to make the proof of Lemma 4.16 self-contained, we give

a proof of the inequality for bounded symmetric domains in which we only make use

of the Polydisk Theorem, as follows.

Proposition 6.33. Let Ω b CN be a bounded symmetric domain of rank r and

identify Ω ∼= G0/K, where K is the isotropy subgroup of G0 := Aut0(Ω) at 0.

Denote by dD(·, ·) the Kobayashi pseudo-distance of any bounded symmetric domain

D b Cn so that d∆(0, ζ) = log 1+|ζ|
1−|ζ| for any ζ ∈ ∆. Then, for any point z ∈ Ω we

have

dΩ(0, z) ≥ − log δ(z, ∂Ω),

where δ(x, ∂D) denotes the Euclidean distance from x ∈ D to the boundary ∂D of

any bounded domain D b Cn.

Proof. Note that there is b ∈ ∂Ω such that δ(z, ∂Ω) = ‖z−b‖CN . Here ‖v‖Cn denotes

the complex Euclidean norm of any vector v ∈ Cn. In terms of the Harish-Chandra

coordinates (w1, . . . , wN) on Ω we have the maximal polydisk Π = ∆r×{0} ⊂ Ω and

a holomorphic map π : Ω→ Cr defined by π(w1, . . . , wN) := (w1, . . . , wr) such that

π maps Ω onto the r-disks ∆r (cf. Lemma 2.2.2 in Mok-Ng [MN12]). Up to the K-

action on Ω, we may assume that b ∈ ∂Π, i.e., b = (b1, . . . , br,0) ∈ ∂∆r×{0} = ∂Π,

because any γ ∈ K is a unitary transformation on CN and dΩ(·, ·) is invariant

under the G0-action on Ω. Write b′ = (b1, . . . , br) ∈ ∂∆r, z = (z1, . . . , zN) and

z′ = π(z) = (z1, . . . , zr) ∈ ∆r. Note that there exists k, 1 ≤ k ≤ r, such that

δ(z′, ∂∆r) = 1− |zk|. Then, we have

dΩ(0, z) ≥ d∆r(0, z′) = max

{
log

1 + |zj|
1− |zj|

: 1 ≤ j ≤ r

}
≥ log

1 + |zk|
1− |zk|

≥ − log(1− |zk|) = − log δ(z′, ∂∆r).

On the other hand, since b′ ∈ ∂∆r we have δ(z′, ∂∆r) ≤ ‖z′ − b′‖Cr ≤ ‖z − b‖CN =

δ(z, ∂Ω). Hence, we have dΩ(0, z) ≥ − log δ(z′, ∂∆r) ≥ − log δ(z, ∂Ω), as desired.
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