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Abstract

Mathematical models of cardiology involve conductivity and massive parameters describing the

dynamics of ionic channels. The conductivity is space dependent and cannot be measured di-

rectly. The dynamics of ionic channels are highly nonlinear and the parameters have unavoidable

uncertainties since they are estimated using repeated experimental data. Such uncertainties can

impact model dependability and credibility since they spread to model parameters during model

calibration. It is necessary to study how the uncertainties in�uence the solution compared to

the deterministic solution and to quantify the di�erence resulting from uncertainty. In this

paper, the generalized polynomial chaos method and stochastic collocation method are used to

solve the corresponding stochastic partial di�erential equations. Numerical results are shown

to demonstrate that each parameter has di�erent e�ects on the model responses. More impor-

tantly, a quadratic convergence of the expectation is exhibited in the numerical results. The

amplitude of standard variance of the stochastic solution can be controlled by the parameter

uncertainty. More precisely, the standard variance of the stochastic solution is positively linear

to the standard variance of the random parameter. We utilized mono-domain equations which

are representative mathematical models to demonstrate the results with the most widely used

ionic models Hodgkin-Huxley model and Fitz-Hugh Nagumo model.

KEY WORDS: Computational cardiology, Uncertainty quanti�cation, Generalized polyno-

mial chaos, Hodgkin-Huxley model, Fitz-Hugh Nagumo model.

1 INTRODUCTION

Mathematical models of the Cardiac electro-physiology are important applications in biology. A

particularly large volume of researchers has been working on the deterministic models [11, 21, 26].

Owing to advances in both numerical methods and computer hardware, the accuracy and e�ciency
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of the simulating algorithms have been developed to a high level. The models as well as are devel-

oped highly detailed [6]. However, there are still many obstacles applying the simulation results to

practical problems since there are di�erent types of variability exist in the mathematical models. For

example, ionic channels in cardiac tissue are extremely diverse. Its dynamics are studied from the

experimental data of the real cardiac cells with inevitable variability. There are also measurement

errors arising from experiments. Except for cell level's variability, the conductivity of the tissue

cannot be directly measured easily and accurately neither. Moreover, there may exist intrinsic vari-

ability to make the process be stochastic. The papers [10, 14] exhibit several sources of uncertainty

in a mathematical model of a real system. With all the sources of uncertainty in cardiac problems,

this work gives explorative analysis on how the uncertainties in�uence the deterministic solutions.

For uncertainty analysis, Monte Carlo sampling (MCS) is one of the most commonly used method.

MCS is very powerful and �exible and can be easily extended to a complex system as long as

there is a well-established solver for the corresponding deterministic system. But the statistical

quantities of the solution converge relatively slowly, e.g., the mean value converges at the rate of
1√
N
, where N is the number of realizations. A large number of realizations should be simulated to

get a satis�ed accuracy which will involve huge computational cost. However, the expensiveness of

cardiac simulation is a well-known di�culty. To get rid of this di�culty, the stochastic collocation

method (SC) is a good choice to improve the convergence compared to the MCS [1, 13].

In this paper, we will use the generalized polynomial chaos (gPC) which was recently developed

[25, 24, 23, 16]. The original polynomial chaos (PC) method was �rst proposed by Wiener [22] and

in [8] the stochastic �nite elements method was proposed to elliptic PDEs parametrized by Gaussian

random variables. The gPC employs di�erent types of the orthogonal polynomial chaos of the input

random parameters including Hermite polynomial chaos as a subset. A gPC expansion is a spectral

representation in random space and converges fast if the expanded function is smooth about the

random parameters. By using stochastic Garlerkin (SG) procedures to minimize the error of the

�nite-order gPC expansion, we can solve the deterministic systems transformed from the stochastic

equations. To make sure the correctness of the numerical results, we also show the results of SC

method for comparison in this work.

Dynamically bi-orthogonal method [4, 5] is an e�ective tool to solve the time-dependent stochastic

partial di�erential equations which construct the sparsest representation of the stochastic solution via

a bi-orthogonal basis. This method explores the inherent low-dimensional structure of the stochastic

solution and tracks the Karhunen-Loeve expansion dynamically. When the expansion order is high,

we can choose the dynamically bi-orthogonal method to save considerable computational cost. We

remark that similar ideas were proposed in the literature to solve SPDEs e�ciently [17, 15]. Some

recent developments in high order numerical methods for SPDEs were reviewed in [19].

For uncertainty analysis for cardiac problems, some researchers used sensitivity analysis (SA)

method to evaluate the contribution of each parameter to the outputs by plotting the mean e�ects

and calculating the main e�ect [2, 3, 10]. So far, these papers focus on the uncertainties in ion channel

and action potential model parameters, i.e., cell models. While we consider the uncertainties of tissue

level as well as the parameters of cell models, the parameters are randomized based on the original

values to observe the e�ects of randomization. The mean value of the parameter is set to be the

same as the default value while the standard variance (std) of the parameter is changing within a

certain range. We then choose mono-domain equations as the mathematical model and simulation
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of mono-domain equations is very heuristic. The di�erence between the original solution and the

stochastic solution is a random variable. So we can observe the statistic quantities of the di�erence,

e.g., the expectation and the standard variance.

An outline of this paper is as follows. In section 2, we will give the description of mono-domain

equation and randomization of parameters. In section 3, we will give the general procedure of gPC

and the solution procedure of mono-domain equations. In section 4, we will show the numerical

results that the expectations of the di�erences between deterministic solutions and stochastic so-

lutions are quadratically proportional to the standard variance of the random perturbation. And

the standard variances of the di�erences are linearly proportional to the standard variance of the

random perturbation. In section 5, some conclusions are given.

2 GOVERNING EQUATION

For the simplicity of exposition, we �rst introduce a general form of the di�erential equations

modeling the electrical activity of the heart. As stated, a typical mono-domain model consists of

a system of singularly perturbed reaction-di�usion equations coupled with a set of sti� nonlinear

ordinary di�erential equations, which read:

C
∂v

∂t
=

1

ρ
∇ · (k∇v)− Iion(v,q), x ∈ D, t ∈ [0, T ],

∂q

∂t
=M(v,q), x ∈ D, t ∈ [0, T ].

(1)

with suitable boundary and initial conditions. Here, D ⊂ Rd represents the computational domain; x

is the space variable; t is the time variable; v is a cardiac potential; q represents the gating variables;

C is the membrane capacitance matrix; ρ is the surface to volume ratio of the cardiac cells; k is the

spatially dependent conductivity tensor; Iion(v,q) and M(v,q) are nonlinear functions, describing

the cardiac membrane dynamics.

In e�ect, the complicated phenomenon of cardiac excitation is essentially determined by the

membrane dynamics (property) Iion andM. In this paper, we consider two representative models.

One representative model is the Hodgkin-Huxley (HH) model, which is the �rst membrane model for

the nerve action potentials [9]. In the model, there are three gating variables q = (q1, q2, q3)T ∈ R3.

The dynamics corresponding to each state variable qj has the same structure as the following:

∂qj
∂t

= αj(v)(1− qj)− βj(v)qj ,

where αj(v), βj(v) > 0 and 0 < qj < 1. Here, αj(v) and βj(v) are nonlinear functions of the

transmembrane potential v. The membrane dynamics are given by

Iion(v,q) = ḡNaq
3
1q2(v − ENa) + ḡKq

4
3(v − EK) + gleak(v − Eleak)

For a detailed description of the nonlinear dynamics of the Hodgkin-Huxley model, refer to the

original paper [9]. Many membrane models of Hodgkin-Huxley type for cardiac action potentials are

becoming more and more complex due to the advanced experimental data over years. So the HH

model is very representative of this subject.

Another model is a simple and widely used FitzHugh-Nagumo (FHN) model, which has only one

3



gating variable. The FHN model is given as follows:

Iion(v, q) = −λ(q − v(v − θ)(1− v)),

M(v, q) = αv − βq.

There are some restrictions on the parameters for the deterministic model [20]. For example, the

eigenvalue parameter |λ| � 1 is negative. The threshold parameter θ ∈ (0,
1

2
), the other two

parameters α, β are positive constants such that β = O(1) and α >
1

4
β(1 − θ)2. This inequality

guarantees that the only stationary state of the reaction in the limit of vanishing di�usion is (v, q) =

(0, 0) and the traveling wave has positive speed.

Taking the mono-domain equations with FHN model as an example, we give the elemental

annotation for this work. Based on the deterministic model, we set the random parameters by

giving the deterministic parameters a random perturbation. To distinguish whether the parameters

are randomly perturbed, we set the random parameters are as follows:

k = k̄ + εk(x)

λ = λ̄+ ελ

θ = θ̄ + εθ

α = ᾱ+ εα

β = β̄ + εβ

v(x, 0) = v̄(x, 0) + εv(x)

(2)

where εz = cz z̄, z = λ, θ, α, β, v are random perturbations to each parameter z. And the deterministic

parameters are represented by k̄, λ̄, θ̄, ᾱ, β̄, v̄(x, 0). Especially, εk = ckk̄p(x) which means the

perturbation of conductivity tensor k is related to the space variables. We should notice that z = v

particularly means the initial condition of v has a random perturbation. Set v(x, t; cz) be the

solution of the stochastic partial di�erential equations (Spde) with parameter z being perturbed.

The expectation of the random perturbation cz is zero , i.e., E[cz] = 0. Like many other researchers,

we consider the random perturbation is uniformly distributed [2, 3, 10].

Notice that the conductivity tensor k in the cardiac problem depends on the spatial variable x.

Actually, it is closely related to the rotational anisotropy and inhomogeneity of electrical conductiv-

ities [7], the microscopic structure as well as the �ber orientation of the cardiac tissue. In practice,

however, scientists never have access to all this information. Thus, we set the perturbation of the

conductivity tensor k is related to the space variables. In this paper, we set the perturbation of k

in two dimensions is

εk = ckk̄sin(π(x1 + x2)). (3)

Here ck is a uniformly random variable. Meanwhile the parameters in Iion andM are generated by

plenty of repeated experiments. So, there exit unavoidable measurement errors in experiments. In

this paper, we only consider the case that those cell model parameters are not related to the space

variables, i.e.,

εz = cz z̄, z = λ, θ, α, β, v, (4)
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where cz are random variables.

3 SOLUTION PROCEDURE

The generalized polynomial chaos (gPC) or the Wiener-Askey chaos expansion employs more or-

thogonal polynomials from Askey scheme including the classical Hermite polynomial chaos. The gPC

expansion basis represents general non-Gaussian processes more e�ciently. A general second-order

random process X(ω) can be represented by gPC as follows

X(ω) =

∞∑
i=0

aiHi(ξ(ω)), (5)

where ξ is a multi-dimensional random variable. Let Wiener-Askey polynomials {Hi(ξ)} denote the
one-dimensional, W (ξ)-orthogonal polynomials, i.e.,∫

Hi(ξ)Hj(ξ)W (ξ)dξ = δi,j . (6)

Here W (ξ) is the weighting function corresponding to the Wiener-Askey polynomial chaos basis

{Hi}. The gPC coe�cients in Eqn. (5) are ai =
E[X(ω)Hi(ξ(ω))]

E[HiHi]
, i = 0, . . . ,∞. These types of

polynomial basis satisfy that the weighting function is the same as the probability function of ξ.

For Gaussian distribution, Gamma distribution, Beta distribution and Uniform distribution, such

orthogonal polynomial sets are Hermite polynomials, Laguerre polynomials, Jacobi polynomials and

Legendre polynomials respectively.

In this paper, we will focus on uniformly random variables. We use Legendre chaos in one

dimension as an example. The one dimensional (n+ 1)th-order Legendre polynomials are de�ned as

Hn+1(ζ) =

√
2n+ 1

√
2n+ 3

n+ 1
ζHn(ζ)− n

√
2n+ 3

(n+ 1)
√

2n− 1
Pn−1(ζ),−1 < ζ < 1, (7)

with

H0(ζ) = 1, H1(ζ) =
√

3ζ, H2 =
√

5(
3

2
ζ2 − 1

2
), . . . . (8)

The weighting function in the orthogonality relation (6) is

W (ζ) =
1

2

Obviously, the weighting function is the same as the probability density function (PDF) of a uniform

random variable ζ ∼ U(−1, 1). Furthermore, by a tensor product representation, we can use the

one-dimensional polynomial Hi(ξ) to construct a su�cient orthonormal basis Hα(ξ)'s of L2(Ω) as

follows

Hα(ξ) =

r∏
i=0

Hαi(ξi),α ∈ =∞r ,

where α is a multi-index and =∞r is a multi-index set of countable cardinality,

=∞r = {α = (α1, α2, . . . , αr)|αi ≥ 0, αi ∈ N}.
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Here N is a set of non-negative integers. The zero multi-index corresponding to H0(ξ) = 1, which

is used to represent the mean of the solution. Clearly, the cardinality of =∞r is in�nite. For the

purpose of numerical computations, we prefer a �nite set of polynomials. There are many choices of

truncations. One possible choice is the set of polynomials whose total orders are at most p, i.e.,

=pr =

{
α|α = (α1, α2, . . . , αr), αi ∈ N , |α| =

r∑
i=1

αi ≤ p

}
. (9)

The cardinality of =pr in (9) or the number of polynomial basis functions, denoted by Np = |=pr |, is
equal to (p+ r)!/p!r!. Another good choice is the sparse truncation method proposed in Luo's thesis

[12]. We may simply write such a truncated set as = when no ambiguity arises. The orthonormal

basis Hα(ξ) is the standard generalized polynomial chaos (gPC) basis, see [25] for more details.

Next, we will introduce the solution procedure based on the generalized polynomial chaos frame-

work. To simplify notations, we consider the following time-dependent stochastic di�erential equa-

tions:
dv

dt
= Lv{v, q, ω} =

1

ρ
∇ · k∇v − Iion(v, q),

dq

dt
= Lq{v, q, ω} = αv − βq,

(10)

with x ∈ D, ω ∈ Ω, t ∈ [0, T ]. k(x, ω) is the conductivity tensor de�ned on Dd×d×Ω, with Ω de�ned

as a proper probability space. Suitable initial and boundary conditions will be assumed later. By

using the gPC expansion, we expand the random processes in the system of (10) follow the form

below:

v(x, t;ω) =

M∑
i=0

vi(x, t)Hi(ξ) , VĤT ,

q(x, t;ω) =

M∑
i=0

qi(x, t)Hi(ξ) , QĤT ,

(11)

where row vectors V = (v0, v1, v2, . . . , vM ), Q = (q0, q1, q2, . . . , qM ), K = (k0, k1, k2, . . . , kM ) and

M = Np − 1. Ĥ is the assemble vector of polynomial chaos {Hi} in an giving order and Ĥ0 = 1.

Note the multi-index can be ordered in an ascending order following a single index, for example, the

graded lexicographic order. Similar expansions are applied to the initial conditions and boundary

conditions. The random parameters also have the same formulation as other random processes:

k(x;ω) =

M∑
i=0

ki(x)Hi(ξ) , KĤT ,

λ(ω) =

M∑
i=0

λiHi(ξ) , LĤT ,

θ(ω) =

M∑
i=0

θiHi(ξ) , TĤT ,

α(ω) =

M∑
i=0

αiHi(ξ) , AĤT ,

β(ω) =

M∑
i=0

βiHi(ξ) , BĤT ,

(12)
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where the row vectors areK = (k0, k1, k2, . . . , kM ), L = (λ0, λ1, λ2, . . . , λM ), T = (θ0, θ1, θ2, . . . , θM ),

A = (α0, α1, α2, . . . , αM ), and B = (β0, β1, β2, . . . , βM ) respectively. The random parameter ω is ab-

sorbed into the polynomial basis, thus the expansion coe�cients are deterministic. Next, a Galerkin

projection is used to transform the stochastic governing equations into deterministic equations.

Substitute the expansion into governing equation (10), we obtain

dV

dt
ĤT =

1

ρ
∇ ·KĤT∇VĤT − Iion(VĤT ,QĤT )

dQ

dt
ĤT = AĤT ĤVT −BĤT ĤQT

(13)

where

Iion(VĤT ,QĤT ) = −LĤT (QĤT −TĤT ĤVT − (1 + TĤT )(VĤT )2 + (VĤT )3) (14)

A Galerkin projection of the above equation onto each polynomial basis {Hi} is then conducted in or-
der to ensure that the residual is orthogonal to the functional space spanned by the �nite-dimensional

basis {Hi}. By projecting with Hi for each i = {0, . . . ,M} and applying the orthogonality relation

(6), we obtain the following system:

dV

dt
= E[

1

ρ
∇ ·KĤT∇VĤT Ĥ]− E[Iion(VĤT ,QĤT )Ĥ]

dQ

dt
= E[AĤT ĤVT Ĥ]− E[BĤT ĤQT Ĥ]

(15)

where

E[Iion(v, q)Ĥ] = E[LĤT ĤQT Ĥ]− E[LĤT ĤVTVĤT Ĥ] + E[LĤTĤVTVĤTĤVTĤ]

+ E[LĤT ĤVTTĤT Ĥ]− E[LĤT ĤVTTĤT ĤVT Ĥ]
(16)

The above equation (15) is a set of Np coupled partial di�erential equations. The initial conditions

and boundary conditions are expanded in the same form as (11). By matching the coe�cients in the

expansions, we obtain the initial conditions and boundary conditions for each expanded equation in

Eqn. (15) to complete the system. By solving the system (15), we have an approximate solution to

the Spde (10) as follows

vgPC =

M∑
i=0

vi(x, t)Hi(ξ).

The gPC procedure of the HH mono-domain models is the same while we can not precisely compute

the multiple tensor product E[Iion(v, q)Ĥ]. For the nonlinear functions in the HH model, there are

exponential type functions in both denominator and numerator, we use Gauss points to compute

the integration approximately.

The fourth order Runge-Kutta (RK4) methods are used for time discretization which can decou-

ple the system (15) and center di�erence is used for space discretization .

Finally, Smolyak's method [18] is utilized to generate the collocation nodes and the collocation

weights. Set the collocation nodes are {ξj}Ns
j=1 which create Ns sets parameters {zj}Ns

j=1, and the

collocation weights are {wj}Ns
j=1. Let vj(x, t) be the solution of governing equation Eq. (1) with a

�xed value zj . Then the mean solution is followed as
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v̄SC =

Ns∑
j=1

wjvj(x, t),

and the variance of the solution is

D(vSC) =

Ns∑
j=1

wj(vj(x, t)− v̄SC)2.

It is also possible to calculate the mean and the variance of the solution's derivative as

¯dvSC
dt

=

Ns∑
j=1

wj
dvj(x, t)

dt
,

and

D(
dvSC
dt

) =

Ns∑
j=1

wj(
dvj(x, t)

dt
−

¯dvSC
dt

)2.

4 NUMERICAL RESULTS

4.1 Fitz-Hugh Nagumo Model

We consider the dimensionless FHN monodomain model in two space dimensions
∂v

∂t
=

1

ρ
∇· (k∇v) + λ(q − v(1− v)(v − θ))

∂q

∂t
= αv − βq

(17)

for t > 0 and x = (x1, x2)T ∈ (0, 1)2, with deterministic parameters:
1

ρ
= 0.01, λ = −100, θ = 0.25,

α = 0.16875, β = 1.0 and k = 1. We give an initial stimulus at the lower left corner of this square

as followed:

v(x, 0) =
1

1 + e50(
√
x2
1+x

2
2−0.1)

q(x, 0) = 0,

(18)

and homogeneous Neumann boundary conditions are applied. In the experiments, the space step

size is ∆x = 1/128 and the time step size is ∆t = 0.001. In the following part, we analyze the

e�ects of uncertainty on the deterministic solution by giving the model parameters di�erent types

of perturbation.

4.1.1 Deterministic perturbation

Firstly, we observe four metrics of action potential shape (action potential duration (APD), action

potential duration to 90% polarization (APD90), the derivative of voltage, max v), one metrics of

action potential propagation (conduction time) and the solution itself at a �xed time and a given

point with di�erent parameters. Here, the conduction time is calculated by the �rst recording the

time taken for an upstroke to begin at the furthest location from the stimulus.

For simplicity, let the perturbation be deterministic. The model parameters vary with a change
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of ±15% around the default values, i.e., |cz| ≤ 0.15. This range can assure that there is an upstroke

with di�erent perturbation. We can scale this total range normalized to range from −1 to 1, i.e., 0

represents the original values. In this setting, we can quantitatively analyze the in�uences of model

parameters (ε, λ, α, β, θ and v(x, 0)) to the outputs were given. The outputs change with the model

parameters change around their default values and the results are shown in Fig. 1.

The Fig. 1(a) shows that the solution is continuous on all the model parameters and di�erentiable

to all the model parameters. That allows us to give the solution a Taylor expansion analysis when

the perturbation is small enough. According to Fig. 1, we can observe that the model parameter

θ has strong e�ects on all the outputs. The parameters α and β have a strong e�ect on APD and

APD90 which means the action potential shape is most sensitive to a and β. Furthermore, the ionic

dynamicsM have a strong e�ect on the shape of the AP. The voltage derivative is restricted at some

�xed point and �xed time, and sensitive to all the parameters. The parameters θ, λ and α have

a signi�cant in�uence on the maximum voltage. And numerical results show that the maximum

voltage does not change a lot once there exists an upstroke. The conduction times is much sensitive

to θ which means the conduction velocity is not only in�uenced by the di�usion parameter k.

Above all, we can demonstrate that the parameters λ and θ which are contained in the dynamics

Iion have large e�ects on all the outputs. APD and APD90 have the same behavior, and they are

most sensitive to the parameters α and β. It is easy to see that the computation accuracy of APD,

APD90 and time for conduction is limited by the time step size ∆t.

4.1.2 Random perturbation

Next, we focus on the e�ects of small random perturbation to the original solution. Assume that the

expectation of the random perturbation is 0 and only one model parameter is perturbed at a time.

Since the perturbation is uniformly distributed, we can rewrite the perturbation coe�cient cz as cξ,

ξ ∼ U(−1, 1). In this assumption, the standard variance of the randomized parameter is σ(cξ) =
1

3
|c|.

When the random perturbation is su�ciently small, we can get a quadratic relationship between the

std of the randomized parameter and the expectation of the di�erence between the original solution

and the stochastic solution. Meanwhile, there is a positive linear relationship between the std of

randomized parameter and the std of the di�erence.

Let Yz(cz) be the outputs that we observe with one parameter z is randomly perturbed cz. Since

the limitation to the computation accuracy, we give the results of Y represents solution itself and

derivation of voltage. In stochastic case, the di�erence ∆Yz(cz) = Yz(cz) − Yz(cz = 0) is a random

variable. Generally, the �rst and the second moment are the most commonly used information to

analyze the stochastic variables. So we try to analysis the relationship between di�erence's �nite

moment and the �nite moment of the random perturbation. The numerical results show that the

expectation of the di�erence is quadratically proportional to the std of the perturbation cz and the

standard variance (std) of the di�erence is linearly proportional to the std of the perturbation cz.

The relationship can be represented in the following formula:
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E[∆Yz(cz)] =
∂2Yz
∂c2z

σ(cz)
2,

σ(∆Yz(cz)) = |∂Yz
∂cz
|σ(cz),

(19)

Figs. 2 and 3 illustrate the results of Y = v(x, t). The results for derivation of voltage is shown

in Figs. 4 and 5. And the slope of the lines in Figs. 3 and 5 is positive which is consistent with that

the coe�cient in (19) is positive.

We also can get the conclusion that the standard variance varies markedly along the space. Its

value is large where the mean solution changes fast with a �xed random perturbation. There is a

known property that an action potential consists of �ve phases: upstroke or depolarization, early

re-polarization, plateau, re-polarization and resting. A second action potential cannot be triggered

immediately after an action potential upstroke which causes the phenomenon called refractoriness.

The time during which it is not possible to trigger a second action potential is familiar as the

refractory period. Here, a second stimulus given by

Istim =

1 if
√

(x1 − 0.5)2 + (x2 − 0.5)2 < 0.2

0 otherwise

is applied to the membrane potential around the center of the domain at time t = 4. We observe

the mean and the standard variance of the stochastic solution giving k a random perturbation. Set

ck = 0.05ξ, ξ ∼ U(−1, 1). Fig. 6 displays the results at some �xed time.

According to the results, there still exists a spiral wave phenomenon when the random pertur-

bation is small. Fig. 6(a) shows only half of the second action potential can be propagated. Fig. 6

shows that the standard variance is almost zeros except for space where mean solution changes fast.

4.2 Hodgkin-Huxley Model

In this subsection, we consider the HH monodomain model in two space dimensions

∂v

∂t
=

1

ρ
∇· (k∇v)− (ḡNam

3h(v − ENa) + ḡKn
4(v − EK) + gleak(v − Eleak))

∂m

∂t
= (1−m)αm(v)−mβm(v)

∂h
∂t = (1− h)αh(v)− hβh(v)
∂n

∂t
= (1− n)αn(v)− nβn(v)

(20)
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for t > 0 and x = (x1, x2)T ∈ (0, 1)2, with deterministic parameters:
1

ρ
= 0.01, ḡNa = 120,

ENa = 115, ḡK = 36, EK = −12, ḡleak = 0.3, Eleak = 10.613, k = 1. Here, the rate functions are

given by

αm(v) = 0.1
25− v

exp(
25− v

10
)− 1

, βm(v) = 4.0exp(− v

18
);

αh(v) = 0.07exp(
−v
20

), βh(v) =
1

exp(
30− v

10
) + 1

;

αn(v) = 0.01
10− v

exp(
10− v

10
)− 1

, βn(v) = 0.125exp(− v

80
);

Set the initial stimulus at the lower left corner of this square is as followed:

v(x, 0) = 0.003621 +
20

1 + e20(
√
x2
1+x

2
2−0.5)

m(x, 0) = 0.052955

h(x, 0) = 0.595994

n(x, 0) = 0.317732

(21)

and homogeneous Neumann boundary conditions are applied. The space step size and the time step

size is the same as the space step size and the time step size in section 4.1. Then, we analyze the

e�ects of uncertainty on the deterministic solution by giving the model parameters di�erent types

of perturbation.

We only consider the case that one of the parameters k, ḡNa, ENa, v, has a random perturbation.

Other parameters have the same default values.

Same as before, we �rst consider the perturbation is deterministic and quantitatively analyze

the in�uences of model parameters on the six metrics (v, APD, APD90, max v,
dv

dt
, conduction

times). Set the model parameters vary with a change of ±15% around the default values. Fig. 7(a)

shows the continuity and di�erentiability of the model parameters. The parameter ENa represents

the value of the sodium reversal potential. Fig. 7 illustrates that the parameter ENa has a strong

in�uence on APD and APD90, also has an impact on other outputs. Except for the parameter ENa,

other parameters rarely a�ect the maximum voltage.

When the perturbation is a random variable and small enough, we also get the quadratic re-

lationship and the linear relationship which described as the Eqn. (19). Fig. 8 displays that the

expectation of the di�erence ∆Yz = v(x, t; cz)− v(x, t) is quadratically proportional to the standard

variance of the perturbation cz while Fig. 9 shows the standard variance of the di�erence is lin-

early proportional to σ(cz). Figs. 10 and 11 illustrate the same conclusion when the output is the

derivation of the voltage.
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An simple explanation of the results (19) is given. Numerical results show that the outputs

Yz(cz) are continuous and di�erentiable to the model parameters. So when the perturbation is small

enough, we can take Taylor expansion to the Yz(cz) as follows

Yz(cz) = Yz(cz = 0) +
∂Yz
∂cz

cz +
1

2

∂2Yz
∂c2z

c2z + o(c2z). (22)

The di�erence is as followed

∆Yz = Yz(cz)− Yz(cz = 0)

=
∂Yz
∂cz

cz +
1

2

∂2Yz
∂c2z

c2z + o(c2z).
(23)

Note ∆Yz is the di�erence between the original output Y and the perturbed solution Yz(cz). It

is obvious that the di�erence ∆Yz is linearly proportional to the perturbation cz when it is small

enough.

In stochastic case, the di�erence ∆Yz is a random variable. We already have the Taylor expansion

of the perturbed outputs Yz and formulation (23) of ∆Yz. Firstly, both sides of the Eqn. (23) take

expectation

E(∆Yz) = E(
∂Yz
∂cz

cz +
1

2

∂2Yz
∂c2z

c2z + o(c2z))

=
1

2

∂2Yz
∂c2z

E(c2z) + o(E(c2z))

≈ 1

2

∂2Yz
∂c2z

σ(cZ)2

(24)

Next, both sides of the Eqn. (23) take variance

D(∆Yz) = D(
∂Yz
∂cz

cz +
∂2Yz
∂c2z

· 1

2
c2z + o(c2z))

= (
∂Yz
∂cz

)2σ(cz)
2 + o(c2z)

≈ (
∂Yz
∂cz

)2σ(cz)
2

(25)

So the std of the di�erence satis�es

σ(∆YZ) ≈ |∂Yz
∂cz
|σ(cZ)

We notice that the coe�cient |∂Yz
∂cz
| > 0. So we can get the results that the expectation of the

di�erence is quadratically proportional to the std of the perturbation cz and the standard variance

(std) of the di�erence is linearly proportional to the std of the perturbation cz. The relationships

12



are shown as follows

E[∆Yz(cz)] =
∂2Yz
∂c2z

σ(cz)
2,

σ(∆Yz(cz)) = |∂Yz
∂cz
|σ(cz).

(26)

The quadratically �tting coe�cient
∂2Yz
∂c2z

should be the same as the second order derivative at 0

when the perturbation is deterministic. Meanwhile, the linearly �tting coe�cient |∂Yz
∂cz
| should be

the same as the �rst order derivative at 0 when perturbation is deterministic. Numerical results

show that the coe�cients
∂2Yz
∂c2z

and |∂Yz
∂cz
| getting from gPC method and SC method are almost the

same as the derivatives at 0.

5 CONCLUSIONS

In order to improve the model reliability, this paper presents an explorative research on the e�ects

of the uncertainties by observing the di�erence arising from parameters uncertainties. Firstly, each

parameter has di�erent e�ects on the solution responses. Then, the numerical results show that the

expectation of the solution converges to the original solution at a speed of order 2. Meanwhile, the

std of the solution converges linearly proportional to the std of the perturbation. And the standard

variance of the solution has spatial variability., i.e., the standard variance is large where the mean

solution changes fast. With these conclusions in mind, we should stress that the numerical results

are not con�ned to the mono-domain equations with FHN model or HH model as long as the outputs

surface are smooth to the parameters. Finally, there are some properties we can consider further,

including spiral wave phenomenon and its chaotic behavior with longtime simulation.
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Figure 1: (a): the e�ects of model parameters on v(x, t; cz) at time t = 3.0 and point x = (0.5, 0.5);
(b): the e�ects of model parameters on APD; (c): the e�ects of model parameters on APD90; (d):

the e�ects of model parameters on
dv

dt
; (e): the e�ects of model parameters on maximum voltage;

(f): the e�ects of model parameters on conduction times from the lower left corner to the upper
right corner.

16



0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

0.025

s(c
q
)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

0 0.005 0.01 0.015 0.02
0

1

2

3

4
x 10

−4

s(c
v
)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

0 0.005 0.01 0.015 0.02
0

1

2

3

4

5
x 10

−3

s(c
b

)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

s(c
l

)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

s(c
a

)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3
x 10

−3

s(c
k
)

E
(
D

v
)

 

 

Gpc

SC

Gpc quadratic fit

SC quadratic fit

(a)

(e)(b)

(d)

(c) (f)

Figure 2: We observe the solution itself, i.e., ∆Yz = v(x, t; cz)− v(x, t). Fix at a point x = (0.5, 0.5)
and in time T = 3.0. The blue lines are the numerical results of gPC and the red lines are the
quadratically �tting lines; the green lines are the numerical results of SC and the black lines are
the quadratically �tting lines. (a): only k has a random perturbation; (b): only λ has a random
perturbation; (c): only θ has a random perturbation; (d): only α has a random perturbation; (e):
only β has a random perturbation; (f): only v(x, 0) has a random perturbation; The quadratic
relationship is shown.
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Figure 3: We observe the solution itself, i.e., ∆Yz = v(x, t; cz)− v(x, t). Fix at a point x = (0.5, 0.5)
and in time T = 3.0. The blue lines are the numerical results of gPC and the red lines are the
linearly �tting lines; the green lines are the numerical results of SC and the black lines are the
linearly �tting lines. (a): only k has a random perturbation; (b): only λ has a random perturbation;
(c): only θ has a random perturbation; (d): only α has a random perturbation; (e): only β has a
random perturbation; (f): only v(x, 0) has a random perturbation; The linear relationship is shown.
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Figure 4: We observe the voltage derivative, i.e., ∆Yz =
dv(x, t; cz)

dt
− dv(x, t)

dt
. Fix at a point

x = (0.5, 0.5) and in time T = 3.0. The blue lines are the numerical results of gPC and the red lines
are the quadratically �tting lines; the green lines are the numerical results of SC and the black lines
are the quadratically �tting lines. (a): only k has a random perturbation; (b): only λ has a random
perturbation; (c): only θ has a random perturbation; (d): only α has a random perturbation; (e):
only β has a random perturbation; (f): only v(x, 0) has a random perturbation; The quadratic
relationship is shown.
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Figure 5: We observe the voltage derivative, i.e., ∆Yz =
dv(x, t; cz)

dt
− dv(x, t)

dt
. Fix at a point

x = (0.5, 0.5) and in time T = 3.0. The blue lines are the numerical results of gPC and the red lines
are the linearly �tting lines; the green lines are the numerical results of SC and the black lines are the
linearly �tting lines. (a): only k has a random perturbation; (b): only λ has a random perturbation;
(c): only θ has a random perturbation; (d): only α has a random perturbation; (e): only β has a
random perturbation; (f): only v(x, 0) has a random perturbation; The linear relationship is shown.
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Figure 6: The sub-�gures on the top line display the mean solutions while the sub-�gures on the
bottom line display the standard variances of the solutions. (a): at time t = 5, only half of the
second action potential can be propagated; (b): at time t = 8.5, the half stimulation generates the
new wave; (c): at time t = 10, the wave fused in the shape of semicircle approximately; (d): the
standard variance at time t = 5; (d): the standard variance at time t = 8.5; (d): the standard
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Figure 7: (a): the e�ects of model parameters on v(x, t; cz) at time t = 3.0 and point x = (0.5, 0.5);
(b): the e�ects of model parameters on APD; (c): the e�ects of model parameters on APD90; (d):

the e�ects of model parameters on
dv

dt
; (e): the e�ects of model parameters on maximum voltage;

(f): the e�ects of model parameters on conduction times from the lower left corner to the upper
right corner.
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Figure 8: Observe the solution itself, i.e., ∆Yz = v(x, t; cz)−v(x, t). Fix at a point x = (0.5, 0.5) and
in time T = 3.0. The blue lines are the numerical results of gPC and the red lines are the quadrati-
cally �tting lines; the green lines are the numerical results of SC and the black lines are quadratically
�tting lines. (a): only k has a random perturbation; (b): only ḡNa has a random perturbation; (c):
only ENa has a random perturbation; (d): only v(x, 0) has a random perturbation;The quadratic
relationship is shown.
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Figure 9: We observe the solution itself, i.e., ∆Yz = v(x, t; cz)− v(x, t). Fix at a point x = (0.5, 0.5)
and in time T = 3.0. The blue lines are the numerical results of gPC and the red lines are the
linearly �tting lines; the green lines are the numerical results of SC and the black lines are linearly
�tting lines. (a): only k has a random perturbation; (b): only ḡNa has a random perturbation;
(c): only ENa has a random perturbation; (d): only v(x, 0) has a random perturbation; The linear
relationship is shown.
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Figure 10: We observe the voltage derivative, i.e., ∆Yz =
dv(x, t; cz)

dt
− dv(x, t)

dt
. Fix at a point

x = (0.5, 0.5) and in time T = 3.0. The blue lines are the numerical results of gPC and the red
lines are the quadratically �tting lines; the green lines are the numerical results of SC and the black
lines are quadratically �tting lines. (a): only k has a random perturbation; (b): only ḡNa has a
random perturbation; (c): only ENa has a random perturbation; (d): only v(x, 0) has a random
perturbation; The quadratic relationship is shown.
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Figure 11: We observe the voltage derivative, i.e., ∆Yz =
dv(x, t; cz)

dt
− dv(x, t)

dt
. Fix at a point

x = (0.5, 0.5) and in time T = 3.0. The blue lines are the numerical results of gPC and the red
lines are the linearly �tting lines; the green lines are the numerical results of SC and the black lines
are the linearly �tting lines. (a): only k has a random perturbation; (b): only ḡNa has a random
perturbation; (c): only ENa has a random perturbation; (d): only v(x, 0) has a random perturbation;
The linear relationship is shown.
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