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Abstract. We prove the Ax-Schanuel theorem for a general (pure)
Shimura variety.

A basic version of the theorem concerns the transcendence of the
uniformization map from a bounded Hermitian symmetric space to a
Shimura variety. We then prove a version of the theorem with deriva-
tives in the setting of jet spaces, and finally a version in the setting of
differential fields.

Our method of proof builds on previous work, combined with a new
approach which uses higher-order contact conditions to place varieties
yielding intersections of excessive dimension in natural algebraic fami-
lies.
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1. Introduction

Let Ω be a bounded Hermitian symmetric domain corresponding to a
semisimple arithmetic group G, and let Γ ⊂ G(Z) be a finite index subgroup.
Then X = Γ\Ω has the structure of a quasi-projective algebraic variety. A
variety X arising in this way is called a (connected, pure) Shimura variety .
We refer to [8, 9] or [23] for a detailed introduction to Shimura varieties. A
Shimura variety X is endowed with a collection of weakly special subvari-
eties. (There is a smaller collection of special subvarieties, where a special
subvariety is precisely a weakly special subvariety that contains a special
point ; these play no role in this paper). For a description of these see e.g.
[19].

Let q : Ω→ X be the natural projection map, and let D ⊂ Ω×X be the
graph of q. Recall that Ω sits naturally as an open subset in its compact

dual Ω̂, which has the structure of a projective variety. By an irreducible
algebraic subvariety W ⊂ Ω×X we mean a complex-analytically irreducible

component of Ŵ ∩(Ω×X) for some algebraic subvariety Ŵ ⊂ Ω̂×X. By an
algebraic subvariety of Ω×X we mean a finite union of irreducible algebraic
subvarieties of Ω×X. In the sequel, dimU denotes the complex dimension
of a complex analytic set. Though at some points we will refer implicitly
to sets in real Euclidean spaces, any reference to real dimensions will be
specifically noted.

Our basic result is the following.

Theorem 1.1. With notation as above, let W ⊂ Ω × X be an algebraic

subvariety such that W = Ŵ ∩ (Ω × X) for some irreducible subvariety

Ŵ ⊂ Ω̂×X. Let U be an irreducible component of W ∩D whose dimension
is larger than expected, that is,

(∗) codimU < codimW + codimD,

the codimensions being in Ω×X or, equivalently,

(∗∗) dimW < dimU + dimX.

Then the projection of U to X is contained in a proper weakly special sub-
variety of X.

If one takes q : Ω→ X to be the map

exp : Cn → (C×)n,

namely the Cartesian power of the complex exponential, then the statement
is an equivalent form of the Ax-Schanuel theorem of Ax [3]. In this form it
is given a new proof in [40]. Note however that (C×)n is a “mixed” Shimura
variety but not a “pure” one, so this case is not formally covered by the
above theorem.

One expects equality in (∗) and (∗∗) above, on dimensional considerations,
and such a component U always has dimension at least dimW −dimX (see
e.g. Lojasiewicz [20], III.4.6). Thus the theorem asserts that all components
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of such intersections which are atypical in dimension are accounted for by
weakly special subvarieties.

Since weakly special varieties are “bi-algebraic” in the sense of [19], they
do indeed give rise to atypical intersections. For example, in the extreme
case that W = Ω1×X1 where X1 is a weakly special subvariety of X and Ω1 a
connected component of its preimage in Ω, we get dimW = dimU+dimX1.

Upon taking W to be a product variety in Theorem 1.1, we recover the
following 2-sorted version:

Theorem 1.2. Let X,Ω be as in Theorem 1.1. Let Y ⊂ Ω be an irreducible
complex-analytic subset. We let Y WS ⊂ Ω be the smallest weakly special
subvariety containing Y . Then

dimY zar + dim q(Y )zar ≥ dimY + dimY WS ,

where Y zar and q(Y )zar denote the Zariski closures of Y and q(Y ) respec-
tively.

As in earlier papers [40, 19, 34], the proof combines arguments from com-
plex geometry (Hwang-To), the geometry/group theory underlying Shimura
varieties, o-minimality, and monodromy (Deligne-André). The ingredients
from o-minimality include the counting theorem of Pila-Wilkie, and results
of Peterzil-Starchenko giving powerful “definable” versions of the classical
theorems of Remmert-Stein and Chow.

What these ingredients end up giving is the invariance of W by a non-
trivial arithmetic subgroup H ⊂ G. However, in order to use H to reduce to
a smaller bounded Hermitian symmetric domain one needs to know that H is
normal, and this is where one encounters difficulties with previous methods.

The crucial new ingredient in this paper is the observation that one may
put W in a natural algebraic family of varieties with similar intersection
properties with respect to D. We then leverage the algebraicity to realize
strong monodromy restrictions on the invariance subgroup H and thereby
establish its normality. We establish the algebraicity by way of the results
of Peterzil-Starchenko. However, there is also a purely complex analytic
approach, which we allude to in §3 (see remark at the end of §3).

We expect that Theorem 1.1, which is sometimes called the “hyperbolic
Ax-Schanuel conjecture” [7], will find applications to the Zilber-Pink con-
jecture1, where it can play a role analogous to that of the “Ax-Lindemann
theorem”, which it generalizes, in proving cases of the André-Oort conjec-
ture, see e.g. [33]. One such application has been given by Daw-Ren [7]. An
application in a different direction is given in [2]. A generalization of The-
orem 1.1 to variations of Hodge structures is given by Bakker-Tsimerman
[4].

We will prove a strengthening of Theorem 1.1 involving the uniformizing
function together with its derivatives, along the same lines as the result of

1In the Zilber-Pink conjecture, it is really the 2-sorted Theorem 1.2 which is used.
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Pila-Tsimerman [33] for Cartesian powers of the j-function. For this we
first observe the following generalization of a result of Bertrand-Zudilin [5]
in the case of the Siegel modular varieties (but note that their result holds
over any algebraically closed subfield of C; we do not have any control over
the field of definition of the differential equations). The following result is
established in §9 as Corollary 9.3. Let N+ ⊂ G be the unipotent radical of
an opposite parabolic subgroup of the complex parabolic subgroup B ⊂ G

defining the symmetric space Ω̂ (= G(C)/B(C)).

Theorem 1.3. Let z1, . . . , zn be an N+(C)-invariant algebraic coordinate
system on Ω. Let {φ1, . . . , φN} be a C-basis of modular functions. Then the
field generated by {φi} and their partial derivatives with respect to the zj up
to order k ≥ 2 has transcendence degree over C equal to dimG. Furthermore,
the transcendence degree is the same over C(z1, . . . , zn).

As an example, one may consider the Shimura Variety Ag - the moduli
space of principally polarized abelian varieties of dimension g. In this case,
Ω = Hg is Siegel upper half space, and G = Sp2g. Recall that Hg consists
of symmetric g × g complex matrices whose imaginary parts are positive
definite. Let zij be the natural matrix co-ordinates on Hg, which are an
N+(C)-invariant set of algebraic co-ordinates forN+ being the strictly upper
triangular elements of G. Then one may take the φi to be a basis of Siegel
modular functions, and Theorem 1.3 applies to this case, recovering the
result of Bertrand-Zudilin [5] (though only over C).

To frame our result we need to study the form of the differential equations
satisfied by the uniformization map, for which we introduce and study, in
§7 and §8, the Schwarzian derivative for a Hermitian symmetric domain.
Differential equations associated with covering maps are studied by Scanlon
[37], who shows under quite general assumptions that one gets algebraic
differential equations. A key ingredient there, as here, is definability and the
results of Peterzil-Starchenko. However, our focus is on getting more specific
information (such as 1.2 above) in the special case of Shimura varieties. On
this circle of differential ideas see also Buium [6]. For a description of the
Schwarzian for PSLm see [42].

Our Ax-Schanuel theorem for q and its derivatives (Theorem 9.1) is most
naturally stated in the setting of jet spaces. These are introduced in §5 and
§6. Here we give the following jet-space-free consequence of Theorem 9.1.

Theorem 1.4. Let V ⊂ Ω be an irreducible complex analytic variety, not
contained in a proper weakly special subvariety. Let {zi, i = 1, . . . , n} be an

algebraic coordinate system on Ω. Let {φ(ν)
j } consist of a basis φ1, . . . , φN of

modular functions, all defined at at least one point of V , together with their
partial derivatives with respect to the zj up to order k ≥ 2. Then

tr.deg.CC
(
{zi}, {φ(ν)

j }
)
≥ dimG+ dimV

where all functions are considered restricted to V .
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We also give, in §12, a version of Ax-Schanuel in the setting of a differential
field, and show that it in turn directly implies the jet version. This depends
on the fact that all solutions of the relevant differential system are G(C)-
translates of q, and this is due to the provenance of the system in properties
of the Schwarzian associated with G and Ω.

Let (K,D, C) be a differential field with a finite set D of commuting
derivations and constant field C. We consider K-points (z, x, y) of suitable
varieties over C and establish a differential algebraic condition under which

such a point corresponds to a locus z in Ω̂, whose dimension equals the rank
of z, a corresponding locus x in X under some G(C)-translate Q of q, and
the restrictions y of suitable derivatives of Q to the locus x.

The precise definition of such a uniformized locus of rank k in K is given
§12, after the differential algebraic condition is established in §11. Under
suitable identifications, we can also speak of x being contained in a proper
weakly special subvariety of X. With these notions, the differential version
of Ax-Schanuel may be stated as follows.

Theorem 1.5 (Differential Ax-Schanuel). Let G, q, (K,D, C) be as above.
Let (z, x, y) be a uniformized locus of rank k. Then

tr.deg.CC(z, x, y) ≥ rank(z) + dimG

unless x is contained in a proper weakly special subvariety.

I. Basic Ax-Schanuel

This part is devoted to the proof of Theorem 1.1.

2. Preliminaries

We gather some preliminary remarks, definitions, and results.

2.1. Shimura varieties

According to the definition given, a Shimura varietyX may not be smooth,
and the covering q : Ω → X may be ramified, if Γ contains elliptic ele-
ments. For example, j : H → C is ramified at SL2(Z)i and SL2(Z)ρ, where
ρ = exp(2πi/3), even though in this case the quotient C is still smooth.

By passing to a finite index subgroup we may always assume that the
uniformization is unramified and the Shimura variety is smooth, and hence
a complex manifold. This does not affect the validity of Theorem 1.1. Hence
we may and do assume throughout that X is smooth and that q : Ω→ X is
unramified.

2.2 Definability

The definition and basic results on o-minimal structures over a real closed
field may be found in [31]. In this paper, ‘definable’ will mean ‘definable
in the o-minimal structure Ran,exp’. However, the results of §2 hold more
generally.
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Let F be the classical Siegel domain for the action of Γ on Ω. Then the
uniformization q : Ω → X restricted to F is definable in the o-minimal
structure Ran,exp; see [11] and [10], where the o-minimality of Ran,exp is es-
tablished, building on [41]. For a general Shimura variety this result is due to
Klingler-Ullmo-Yafaev [19], generalizing results of Peterzil-Starchenko [32]
for moduli spaces of abelian varieties.

We shall need the following results, which can be see as definable gener-
alizations of GAGA-type theorems.

Theorem 2.1. [“Definable Remmert-Stein”, [31], Theorem 5.3] Let M be
a definable complex manifold and E a definable complex analytic subset of
M . If A is a definable, complex analytic subset of M\E, then its closure A
is a complex analytic subset of M . �

The following is a slight generalization of a theorem stated by Peterzil-
Starchenko [31], Theorem 4.5, which may be proved by combining their
statement with “Definable Remmert-Stein” above. This strengthening has
also been observed by Scanlon [37], Theorem 2.11, and, in a slightly less
general form, in [33].

Theorem 2.2. [“Definable Chow”] Let Y be a quasiprojective algebraic va-
riety, and let A ⊂ Y be definable, complex analytic, and closed in Y . Then
A is algebraic.

Proof. We follow the proof in [33]. By taking an affine open set in Y , it
suffices to consider the case where Y is an affine subset of projective space.
Then Y is a definable, complex analytic subset of M\E where M is a pro-
jective variety and E is a closed algebraic subset of M . Then, by “Definable
Remmert-Stein” above, the closure of A in M is a definable, complex ana-
lytic subset of M , hence complex analytic in the ambient projective space.
Thus A must be algebraic by Chow’s theorem, or by the Peterzil-Starchenko
version [31], Theorem 4.5. �

We say that a set is “constructible complex analytic” if it is in the boolean
algebra generated by closed, complex analytic varieties.

Corollary 2.3. Let Y be a quasiprojective algebraic variety, and let A ⊂ Y
be definable, constructible complex analytic. Then A is constructible alge-
braic.

Proof. Let B = Ā\A, so that B is definable, and constructible complex
analytic and dimB < dimA. By induction, B is constructible algebrai-
cred. Since Ā is closed, it follows from Theorem 2.2 that Ā is constructible
algebraic. Thus A is constructible algebraic. �

3. Some algebraicity results

We have the uniformization q : Ω → X in which X is a quasi-projective
variety, the map q is complex analytic and surjective. It is further invariant
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under the action of some discrete group Γ of holomorphic automorphisms of
Ω, and as noted above the restriction of q to a suitable fundamental domain
F for this action is definable.

Suppose that V ⊂ X is a relatively closed algebraic subvariety. Then
q−1(V ) ⊂ Ω is a closed complex analytic set which is Γ-invariant, and de-
finable on a fundamental domain F . The same statement holds for the
uniformization

q × id : Ω×X → X ×X
and V ⊂ X × X, which is invariant under Γ × {id}, where now q × id is
definable on F ×X. We observe that the converse holds.

Theorem 3.1. Let A ⊂ Ω × X be a closed, complex analytic set which is
Γ×{id}-invariant, and such that A∩(F×X) is definable. Then (q×id)(A) ⊂
X ×X is a closed algebraic subset.

Proof. The image (q× id)(A) is closed and complex analytic in X×X. Since
(q× id)(A) = (q× id)(A∩ (F ×X)) it is also definable, and so it is algebraic
by “Definable Chow” (Theorem 2.2). �

Corollary 3.2. Let A ⊂ Ω×X be a closed, constructible complex analytic
set which is Γ×{id}-invariant, and such that A∩(F×X) is definable. Then
(q × id)(A) ⊂ X ×X is a constructible algebraic subset.

Proof. It follows from Corollary 2.3 as above. �

3.1. Descending Hilbert scheme loci. For the purposes of proving The-
orem 1.1, we need to work with a family of varieties containing W which
is both closed under the action of G(C), and proper (the latter assumption
is made for reasons which are somewhat technical, and might be removable
with more effort). A convenient, well-known family to work with is provided
by the theory of the Hilbert scheme, and so that is the context in which we
work.

Fix a smooth, projective compactification X̂ of X. Now we fix some

algebraic subvariety W ⊂ Ω × X such that W = Ŵ ∩ Ω × X for some

irreducible algebraic subvariety Ŵ ⊂ Ω̂ × X, and let U be an irreducible
component of W ∩D. We make no assumptions here on the dimension of U .
By the Hilbert polynomial P = PW (ν) of W we mean the Hilbert polynomial

of Ŵ .
Let M be the Hilbert scheme of all subvarieties of Ω̂ × X̂ with Hilbert

polynomial P . Then M also has the structure of an algebraic variety. Cor-
responding to y ∈M we have the subvariety Wy ⊂ Ω×X, and we have the
incidence variety (universal family)

B = {(z, x, y) ∈ Ω×X ×M : (z, x) ∈Wy},

and the family of the intersections of its fibres over M with D, namely

A = {(z, x, y) ∈ Ω×X ×M : (z, x) ∈Wy ∩D}.
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Then A is a closed complex analytic subset of Ω ×X ×M . It has natural
projection θ : A→M , with (z, x, y) 7→ y. Then, for each natural number k,
the set

A(k) = {(z, x, y) ∈ Ω×X ×M : dim(z,x) θ
−1θ(z, x, y) ≥ k},

the dimension being the dimension at (z, x) of the fibre of the projection in
A, is closed and complex analytic; see e.g. the proof of [29], Lemma 8.2, and
references there.

Now we have the projection ψ : Ω×X ×M → Ω×X, and consider

Z = Z(k) = ψ(A(k)).

Then, as M is compact, ψ is proper and so Z is closed in Ω×X. Note that
Z is Γ-invariant and Z ∩ (F ×X) is definable.

Lemma 3.3. Let T = (q× id)(Z). Then T ⊂ X×X is closed and algebraic.

Proof. Since Z is Γ-invariant and Z ∩ (F ×X) is definable, this follows as
in Theorem 3.1. �

Remark. One may also prove Lemma 3.3 by more geometric methods along
the lines of the argument in [24], which uses the method of compactification
of complete Kähler manifolds of finite volume of [26] based on L2-estimates
of ∂.

4. Proof of Theorem 1.1

Proof. We argue by induction, in the first instance (upward) on dim Ω. For
a given dim Ω, we argue (upward) on dimW − dimU . Finally, we argue by
induction (downward) on dimU .

We now establish the base cases for the above inductions: First, if dim Ω =
0 then the statement is tautologically true as all varieties are dimension 0.
Now, if dimU = dimW , then W ⊂ D, and the projection q(W ) has the
same dimension as W . It follows that W is a component of the pre-image
q−1(q(W )), and thus invariant under the monodromy group of q(W ). Now,
assume q(W ) is not contained in a proper weakly special subvariety of X,
and thus by André-Deligne [1, §5, Theorem 1] the monodromy group of q(W )
is Zariski dense in G. It follows that W is invariant under G(R)+, which
contradicts the assumption that W ⊂ D. Finally, assume dimU = dimX.
Then W has to contain all of D, and thus W is invariant under G(Z). Since
W is algebraic it follows that W is invariant under all of G(R)+, and hence
that W = Ω × X which contradicts the assumptions on dimension. This
completes the analysis of the base cases.

We carry out the constructions of §3.1 with k = dimU and keep the no-
tation there. Let A(k)′ ⊂ A(k) be the irreducible component which contains
U × [W ], where [W ] is the moduli point of W in M . Let Z ′ = ψ(A(k)′) ⊂ Z
be the corresponding irreducible component of Z, and let V = (q × id)(Z ′)
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be the irreducible component of T , which is therefore algebraic by Lemma
3.3. Now, by assumption V contains (q × id)(U), and so it is not contained
in any proper weakly special of the diagonal ∆X , and thus its monodromy
group is Zariski-dense in G by André-Deligne [1, §5, Theorem 1].

Consider the family F0 of algebraic varieties corresponding to A(k)′. Let
Γ0 ⊂ Γ be the subgroup of elements γ such that every member of F0 is
invariant by γ. For any µ ∈ Γ define Eµ ⊂ F0 to be the subset corresponding
to algebraic subvarieties invariant under µ. Then, for µ ∈ Γ−Γ0, Eµ ( F0 is
an algebraic subvariety. Hence, a very general2 element W ′ of F0 is invariant
by exactly the subset Γ0 of Γ. Let Θ be the connected component of the
Zariski closure of Γ0 in G.

Lemma 4.1. Θ is a normal subgroup of G.

Proof. Note that there is an action of Γ on A(k) given by γ · (z, x, [W ]) =
(γz, x, [γW ]), and the map A(k) → Z is equivariant with respect to this
action. Since A(k) → Z is proper and the action of Γ is discrete, it follows
that Γ\A(k)→ Γ\Z ∼= T is a proper map of analytic varieties.

Let Γ\A(k)′ denote the image of A(k)′ in Γ\A(k). Then φ : Γ\A(k)′ → V
is a proper map of analytic varieties, and thus the fibers of φ have only
finitely many components. Let Γ1 be the image of π1(Γ\A(k)′)→ π1(V )→
Γ. Then π1(A(k)′) has finite index image in the monodromy group of V ,
and thus Γ1 is Zariski-dense in G by André-Deligne [1, §5, Theorem 1].

It is clear that F0 is invariant under Γ1.
Now, letting stab(W ′) denote the stabilizer of W ′, we have stab(γ ·W ′) =

γ · stab(W ′) · γ−1. It follows that Γ0, and hence also Θ is invariant under
conjugation by Γ1, and hence under its Zariski closure, which is all of G.
This completes the proof. �

Lemma 4.2. Θ is the identity subgroup.

Proof. We argue by contradiction. Without loss of generality we may assume
that W is a very general member of F0, and hence is invariant by exactly
Θ. Since Θ is a Q-group by construction, it follows that G is isogenous
to Θ × Θ′ and we have a splitting Ω = ΩΘ × ΩΘ′ of Hermitian symmetric
domains. Replacing Γ by a finite index subgroup we also have a splitting
X ∼= XΘ ×XΘ′ .

Now, as W is invariant under Θ it is of the form ΩΘ ×W1 where W1 ⊂
ΩΘ′ ×XΘ′ ×XΘ. Moreover, D splits as DΘ×DΘ′ . Let U1 be the projection
of U to W1. Since the map from DΘ to XΘ has discrete pre-images, it follows
that dimU = dimU1.

Now let W ′ be the projection of W1 to ΩΘ′ × XΘ′ . Then letting U ′ be
a component of W ′ ∩ DΘ′ we easily see that U ′ is the projection of U to
ΩΘ′ ×XΘ′ . Then the projection of U ′ to XΘ′ is not contained in a proper

2in the sense of being in the complement of countably many proper subvarieties
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weakly special subvariety of XΘ′ . Now let W ′′ be the Zariski closure of U ′.
It follows by induction on dim Ω that

dimU ′ + dimXΘ′ ≤ dimW ′′.

Now for the projection map ψ : W1 → W ′, the generic fiber dimension
over W ′′ ⊂W ′ is the same as the generic fiber dimension over U ′, and thus

dimU1 + dimXΘ′ ≤ dimψ−1(W ′′) ≤ dimW1,

from which it follows that

dimU + dimX ≤ dimW,

contradicting with the hypothesis dimW < dimU + dimX as in the state-
ment of Theorem 1.1, as desired. �

It follows that W is not invariant by any infinite subgroup of Γ. The
following lemma thus reaches a contradiction, and completes the proof.

Lemma 4.3. W is invariant by an infinite subgroup of Γ.

Proof. As before, let F be a fundamental domain for Γ on which the map q
is definable, and consider the definable set

I = {γ ∈ G(R) | dimR
(
(γ ·W ) ∩D ∩ (F ×X)

)
= dimR U}.

Clearly, I contains γ ∈ Γ whenever U intersects γF ×X.
We claim that the dimR U -dimensional volume of

(
(γ ·W )∩D∩(F×X)

)
is uniformly bounded over γ ∈ I. To see this, we proceed as in the work
of Klingler-Ullmo-Yafaev [19, Lemma 5.8]. They show that using Siegel
coordinates one can cover F by a finite union of sets Σ which embed into
a product of 1-dimensional sets

∏m
i=1 Ji, and that there are (1,1)-volume

forms ωi on Ji such that
∑

i ωi dominates the Kähler form of an invariant
hyperbolic metric, and

∫
Ji
ωi < ∞. For a subset I ⊂ {1, . . . ,m} containing

d = dimR U elements, let JI =
∏
i∈I Ji. Thus, it suffices to show that the

projections of
(
(γ · W ) ∩ D ∩ (F × X)

)
∩ Σ onto JI have finite fibers of

uniformly bounded cardinality. However, this is an immediate consequence
of the definability, which establishes the claim.

By the work of Hwang–To [15, Theorem 2], the volume of γ ·W ∩X∩B(R)
grows exponentially with R, where B(R) is a hyperbolic ball of radius R.
Thus, as in [34], it follows that I contains at least a polynomial number
of integer matrices3. It follows by the Pila-Wilkie theorem [35] that I con-
tains irreducible real algebraic curves C containing arbitrarily many integer
points, in particular, containing at least 2 integer points.

Write Wc := c ·W . If Wc is constant in c, then W is stable under C ·C−1.
Since C contains at least 2 integer points, it follows that W is stabilized by
a non-identity integer point, completing the proof that W is invariant under
an infinite group (since Γ is torsion free). So we assume that Wc varies with

3Ordered by height, there are at least T δ integer points of height at most T for some
fixed δ > 0 and arbitrarily large T .
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c ∈ C. Since C contains an integer point it follows from our assumption on
U that (q×id)(Wc∩D) is not contained in a proper weakly special subvariety
for at least one c ∈ C, and thus for all but a countable subset of C (since
there are only countably many families of weakly special subvarieties).

We now have 2 cases to consider. First, suppose that U ⊂ Wc for all
c ∈ C. Then we may replace W by Wc ∩Wc′ for generic c, c′ ∈ C and lower
dimW , contradicting our induction hypothesis on dimW − dimU .

On the other hand, if it is not true that U ⊂Wc for all c ∈ C then Wc∩D
varies with C, and so we may set W ′ to be the Zariski closure of C ·W .
This increases the dimension of W by 1, but then dimW ′ ∩D = dimU + 1
as well, and thus we again contradict our induction hypothesis, this time on
dimU . This completes the proof. �

This contradiction completes the proof of Theorem 1.1. �

II. Ax-Schanuel with derivatives

In this part we establish versions of Ax-Schanuel for q together with its
derivatives. The result is formulated in the setting of jet spaces. For back-
ground on jet spaces, see [13, §16.7] or [36] for a more differential-geometric
perspective.

5. Jet Spaces

5.1. Definition. Let X be a smooth complex algebraic variety and k, g ≥ 1
be positive integers. Set

Dgk = SpecC[ε1, . . . , εg]/M
k+1

where M is the ideal (ε1, ε2, . . . , εg). We define the jet space of order k to
be 4

JgkX := Hom(Dgk, X).

Note that Jg0X = X and J1
1X is the tangent bundle of X. It is evident that

Jgk is a functor and also that there are natural projection maps Jgk → Jgr
whenever k > r. As a matter of notation, we write simply JkX to denote
JdimX
k X.

5.2. Maps between Jet Spaces. For a, b > 0 there is a natural map

π#
a,b : C[ε1, . . . , εg]/M

a+b+1 → C[t1, . . . , tg]/M
a+1 ⊗ C[s1, . . . , sg]/M

b+1

defined by π#
a,b(εi) = 1⊗si+ti⊗1. This induces a map πa,b : Dga×Dgb → Dga+b,

which is just the truncation of the addition map. Now there are natural
identifications

JdimX
a JbX ∼= Hom(Dga,Hom(Dgb , X)) ∼= Hom(Dga × Dgb , X)

4This may also be naturally defined as a scheme representing the functor Y →
Hom(Dgk × Y,X) on the category of C-schemes.
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and therefore φ induces a natural map

πa,b : Ja+bX → JdimX
a JbX.

Since π#
a+b is injective as a map of rings, πa,b is injective on the level of

points.
Moreover, since Ja+b is postcomposition and πa,b is precomposition, it is

easy to see that they commute. In other words, for a map f : X → Y , we
have

(1) πa,b ◦ Ja+bf = JdimX
a (Jbf) ◦ πa,b.

To see this, consider the following diagram:

Dga × Dgb → Dga+b → X → Y.

6. Differential equations

6.1. The jet space formulation. Suppose φ : Cg → Cg is a holomorphic
function which satisfies an algebraic differential equation of degree m given
by a set of polynomials in the derivatives of the components of φ, which we

may write as ~F (
∂|J|φj
∂zJ

)|J |<m,j≤g = 0. We record this geometrically as follows:

Consider the natural section idm : Cg → JmCg given by idm(z) : Dm → Cg,
where the latter is given by

idm(z)(ε1, . . . , εg) = (z + ε1, . . . , z + εg)

and the corresponding map on sheaves is given by

idm(z)#(Z1, . . . , Zg) = (z1 + ε1, . . . , zg + εg).

Then, in the natural coordinates for JmX, the partial derivatives of φ are
the coordinates of Jmφ ◦ idm : Cg → JkCg.

We may record our differential equation in the following way: we stipulate
that Jmφ◦ idm(Cg) ⊂W for a specific subvariety W ⊂ JmCg. Of course, we
may then replace the target Cg with any space X and formulate a differential
equation by picking a subvariety W ⊂ JmX without having to pick local
coordinates on the image.

6.2. Differentiating a differential equation. If f(z) satisfies f ′(z) =
R(f(z)) then it also satisfies f ′′(z) = f ′(z)R′(f(z)) = R(f(z))R′(f(z)). We
explain now how to derive such relations geometrically.

Returning now to the case z ∈ Cg, we first note that Jga idb ◦ ida(z) is the
local map s 7→ (t 7→ z + t+ s). Thus, we see that

(2) Jga idb ◦ ida = πa,b ◦ ida+b.
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Now suppose that φ : Cg → X satisfies ImJgb φ ◦ idb ⊂ W . For any a > 0
we have

πa,b ◦ Ja+bφ ◦ ida+b = Jga (Jbφ) ◦ πa,b ◦ ida+b by (1)

= Jga (Jbφ) ◦ Jga idb ◦ ida by (2)

⊂ JaW ⊂ JgaJbX.

Thus, we learn that ImJa+bφ ◦ ida+b is contained in π−1
a,b(JaW ).

6.2.1. Example. Suppose that φ′(z) = R(φ(z)). Let X = C, so J1X can be
identified with A2

z,r by the maps t 7→ z + rt. Let W ⊂ J1X be defined by

the relation r = R(z), so that ImJ1φ ◦ id1 ⊂W . Now J1
1J1X can be defined

by (z, r, z1, r1) by

s 7→ (t 7→ z + rt+ sz1 + str1).

Now an element of J1W has the form s 7→ (z + es,R(z) + eR′(z)s) and
so it maps to

s 7→ (t 7→ z + es+ tR(z) + teR′(z)s).

Now the image π1,1J2X in J1
1J1X consists of those elements that are func-

tions of s+t in the ring C[s, t]/(s2, t2). Thus, we need the s and t-coefficients
to be the same, so we must have e = R(z), and we get the map

s+ t→ z +R(z)(s+ t) +
1

2
R(z)R′(z)(s+ t)2.

Note that this exactly records the relation φ′′(z) = R(φ(z))R′((φ(z)) as
desired.

7. Schwarzians for Hermitian symmetric spaces

7.1. Setup. Let Ω be a Hermitian symmetric space of dimension n. We
may write Ω as G(R)/K for a semisimple group G and maximal compact
real subgroup K inside it. Then Ω sits naturally inside the flag manifold

Ω̂ := G(C)/B for a complex parabolic subgroup B. Now the Lie algebra of
G(C) decomposes as g = n− ⊕ kC ⊕ n+giving g a Hodge structure of weight
0, where k is the Lie algebra of K and b = n− ⊕ kC is the Lie algebra of
B. Let N−, N+ be the corresponding (abelian) unipotent groups. Picking

a base-point o ∈ X, we may give coordinates on an open subset of Ω̂ by
identifying it with N+ by ν → ν · o. Fixing an identification Cn → N+ of
vector spaces once and for all, we get sections idm : N+ → JmN

+ which are
compatible and invariant under N+.

We would like to characterize those functions F : Ω̂→ Ω̂ which look like
F (z) = g · z for an element g ∈ G(C). As such, we define the Schwarzian
differential equation to be

Wm := G(C) · idm(N+) = G(C) · idm(o) ⊂ JmΩ̂.
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Definition. We define Jnd,r
k Y ⊂ JrkY to be all those infinitesimal maps

which are surjective on tangent spaces. Note that this is only non-empty for
r ≥ dimY .

7.1.1. Example. Consider G = PSL2,Ω = H, o = 0 ∈ C. Let N− be the
strictly lower triangular matrices and N+ the strictly upper triangular ma-
trices. Then J3C can naturally be given coordinates (z, a, b, c) corresponding

to the map t → z + at + bt2

2 + ct3

6 . Note that W3 is G(C) - invariant. In
particular, since W3 is N+ - invariant it must be cut out by a function of
a, b, c and it is sufficient to consider it at z = 0, which is fixed by all of the
lower triangular matrices. Acting first by a diagonal element we transform
(0, a, b, c) to (0, 1, b/a, c/a) via z → z/a. Now acting by a lower triangular
matrix z → z

b
2a
z+1

we get

t+ b
2a t

2 + c
6a t

3

1 + b
2a t+ b2

4a2
t2 + bc

12a2
t3

= t+ (
c

6a
− b2

4a2
)t3

which transforms (0, 1, b/a, c/a) to (0, 1, 0, c6a −
b2

4a2
). Thus we recover the

classical Schwarzian in this setting.

7.2. Fixing the order 2 infinitesimal neighborhood. We have the fol-
lowing lemma:

Lemma 7.1. The subgroup of B which fixes id1(o) is N−.

Proof. We are looking for elements which act trivially on the tangent space

at o, ToΩ̂ ∼= g/b. The action of B on this space is induced the adjoint action.
We first claim that N− acts trivially. To see this, note that the Lie

bracket respects the Hodge grading on g, so [n−, n−] = 0 and [n−, k] ⊂ n−,
from which the claim follows.

Since B = KCN
+,to finish the proof it suffices to show that no element of

KC acts trivially. Conjugation by KC preserves n+ so if an element k ∈ KC
acts trivially on ToΩ̂ it must also act trivially on n+ and thus commute with
N+. Since N+o is open, and since k fixes o it must be the case that k acts

trivially on all of Ω̂ and thus be the identity, as desired. �

Proposition 7.2. The group G(C) acts freely on id2(o), and thus on all of

Jnd
k Ω̂ for k ≥ 2.

Proof. By Lemma 7.1 we need only show that no element of N− fixes id2(o).
Let N ⊂ N− be the stabilizer of id2(o) and note that N is normal in B.
Since KC contains a maximal Cartan algebra, the Lie algebra of N must be a
direct sum of root spaces. Assuming N is not trivial, we let α be one of those
roots, and Nα the corresponding one-dimensional subgroup. Now there is
a map SL2(R) → G(R) which sends SO(2) to K and the roots of SL2(R)
(which lie in SL2(C)) to Nα and its conjugate N−α. This map induces a map

of symmetric spaces H→ Ω and P1(C)→ Ω̂. Moreover, this map is evidently
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holomorphic. We have thus reduced the claim to the case of SL2(C) where
it may be easily checked by hand, since z

1+az = z − az2 +O(z3). �

Note that it follows from the proposition that Wm is closed in Jnd
m for

m ≥ 2.

Corollary 7.3. If F : Ω̂ → Ω̂ satisfies J3F ◦ id3(N+) ⊂ W3, then there
exists g ∈ G(C) such that F (z) = gz.

Proof. By Proposition 7.2 the variety W3 projects bijectively onto W2. Thus,
in local coordinates, we may write equations for all the third order deriva-
tives of F in terms of its lower order derivatives. Differentiating further gives
us the full power series expansion of F and thus characterizes it completely.
This completes the proof. �

7.3. Lowering the order of the differential equation. In this section
we improve over Corollary 7.3 in the following ways:

Theorem 7.4. Let n ≥ 2, Ω = Bn, G(C) = PGL(n+ 1;C). If f : (Ω̂;x0)→
(Ω̂; y0) satisfies J2f ◦ id2(N+) ⊂ W2, then there exists g ∈ G(C) such that
f(z) = gz wherever f is defined.

Theorem 7.5. Let Ω be an irreducible bounded symmetric domain of rank

≥ 2, G(C) = Aut(Ω̂). If f : (Ω̂;x) → (Ω̂; y) satisfies J1f ◦ id1(N+) ⊂ W1,
then there exists g ∈ G(C) such that f(z) = gz wherever f is defined.

Both Theorems 7.4 and 7.5 follow from known results, Theorem 7.4
from a local version (for holomorphic maps) of the Fundamental Theo-
rem of Projective Geometry in the case of the complex field, and Theorem
7.5 from Ochiai’s Theorem characterizing automorphisms of S-structures
(Ochiai [27]) for S being an irreducible Hermitian symmetric space of the
compact type of rank ≥ 2. They can be stated as follows.

Theorem A Let n ≥ 2, Ω = Bn, G(C) = PGL(n + 1;C), Bn b Cn ⊂
B̂n = Pn the standard embeddings. Suppose U ⊂ Cn is a convex open set

and f : U
∼=−→ V is a biholomorphism onto an open subset V ⊂ Pn such that,

for any nonempty (connected) intersection ` ∩ U of an affine line ` with U ,
we have f(` ∩ U) ⊂ `′ for some affine line `′ on Cn. Then, f extends to a
biholomorphic automorphism F : Pn → Pn, i.e., F ∈ PGL(n+ 1;C).

A proof of this is given in Mok [24 , Section (2.3)]. For the formulation
of Ochai’s Theorem recall that an irreducible Hermitian symmetric space of
the compact type is given by S = G/B where G is a simple complex Lie
group and B ⊂ G is some maximal parabolic subgroup. For any point x ∈ S
let Bx ⊂ G be the isotropy (parabolic) subgroup at x. Let Bx = U ·L be
the Levi decomposition of Bx where U ⊂ Bx is the unipotent radical and
L ⊂ Bx is a Levi factor. As is well-known, for any υ ∈ U , dυ(x) = idTx(X),
hence the map Φ(γ) = dγ(x) defines a representation of L = Bx/U on Tx(X)
which is independent of the choice of the Levi decomposition. We denote by
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Wx ⊂ PTx(X) the highest weight orbit of the action of L on PTx(X). Then,
Ochiai’s Theorem can be formulated as follows.

Theorem B (Ochiai [27]) Let S be an irreducible compact Hermitian
symmetric manifold of the compact type and of rank ≥ 2; U, V ⊂ S be

connected open subsets, and f : U
∼=−→ V be a biholomorphism. Suppose for

every x ∈ U the differential df(x) : Tx(S)→ Tf(x)(S) satisfies [df(x)](Wx) =

Wf(x). Then, there exists F ∈ Aut(S) such that F
∣∣
U
≡ f .

Ochiai [27] made use of Lie algebra cohomology. Observing thatWx agrees
with Cx(S), the variety of minimal rational tangents (VMRT) at x ∈ S con-
sisting of [α] ∈ PTx(X) tangent to minimal rational curves passing through
x ∈ X, Hwang-Mok [14] generalized Theorem B to Fano manifolds of Pi-
card number 1, proving analogously the Cartan-Fubini extension theorem
for VMRT-preserving germs of biholomorphisms between Fano manifolds of
Picard number 1 under mild geometric conditions. A differential-geometric
proof of Theorem B was given in Mok [24, Sections (2.2)-(2.4)].

Deduction of Theorem 7.4 from Theorem A
Proof of Theorem 7.4 Let U ⊂ Cn be a domain of definition of f :

(Ω̂;x0) → (Ω̂; y0) which we may assume to be convex. By assumption
J2f ◦ id2 ⊂ W2. In other words, for any x ∈ U , J2f(x) = J2γx(x) for some
γx ∈ PGL(n+ 1;C) such that γx(x) = y := f(x). Let ` ⊂ Pn be a projective
line passing through x, then γx(`) =: `′ ⊂ Pn is a projective line passing
through y, thus from the assumption f(`) is tangent to `′ to the order ≥ 2.

On Pn there is a canonical projective structure, defined as follows. For

each projective line ` on Pn denote by ̂̀⊂ PTPn the tautological lifting of `
obtained as the image of the map associating the pair (`, t), t ∈ `, to PTt(`) ∈
PTt(Pn). Then this gives a 1-dimensional (holomorphic) foliation F on the
total space PT (Pn) of the projective tangent bundle over Pn. We call F the
canonical projective structure on Pn. In the notation of the last paragraph,
the germ (f(`); y) is second order tangent to (γx(`); y). Lifting to PTPn ,
it means that the tautological lifting Λ of the germ of holomorphic curve

(f(`); y) is tangent (to the order ≥ 1) to the lifting ̂̀′ of the unique projective
line `′ = γx(`) passing through y and tangent to f(`) at y. Let `0 ⊂ Pn be
an arbitrary projective line passing through x. We have proven that for
some neighborhood V of [df ](PTx0(`0)) ∈ PTy0(Pn), the tautological liftings
of images of projective lines under f define a holomorphic 1-dimensional
foliation E = f∗F on V which is tangent to the canonical projective structure
F at every point [α] ∈ V. But F itself is a 1-dimensional foliation, hence
E , where defined, agrees with F . This translates to the statement that

f(` ∩ U) ⊂ `′, and we may apply Theorem A to deduce that f : U
∼=−→ V

extends to a biholomorphic automorphism F : Pn
∼=−→ Pn, as desired. �

Deduction of Theorem 7.5 from Theorem B
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Proof of Theorem 7.5 In analogy to the proof of Theorem 7.4 we deduce
Theorem 7.5 from Theorem B (Ochiai’s Theorem) and the hypothesis J1f ◦
id1 ⊂ W1 that given x ∈ U and ` a projective line passing through x,
f(` ∩ U) must be tangent to some projective line `′ = γx(`) at y = f(x)
for some γx ∈ G such that γx(x) = y. Thus [df ](C(S)|U ) = C(S)|V , and by
Theorem B f extends to a biholomorphic automorphism F ∈ Aut(S). �

Theorem 7.4 and Theorem 7.5 when Ω is reducible
The analogue of Theorem 7.4 holds for any bounded symmetric domain Ω
provided that there are no irreducible factors biholomorphic to the disk B1.
Likewise, the analogue of Theorem 7.5 holds for any bounded symmetric
domain Ω provided that each irreducible factor of Ω is of rank ≥ 2. The
proofs are small variations of the irreducible case. (For Ω = Ω1 × · · · × Ωm

one considers the m moduli spaces of projective lines K1, · · · ,Km of the

compact duals Ω̂1, · · · , Ω̂m.)

8. Connection Formula and Automorphic Functions

8.1. Definition of Schwarzian variety. Notice that since N+ acts with

an open orbit on Ω̂, it follows that

G(C)\JkΩ̂ ∼= B\(JkΩ̂)o

birationally, where (JkΩ̂)o denotes the fiber above o. We define this latter

variety to be the k-th Schwarzian variety Sk(Ω̂). Now for any rational map

F : Ω̂→ Ω̂ we may define the Schwarzian of F to be

Sk(F )(z) = G · JkF (idk(z)) ∈ Sk(Ω̂).

at any point z ∈ Ω̂ where F is a morphism. If we restrict to the upper half
plane and k = 3, then S3(P1(C)) may be identified with P1(C) and Sk(F )
becomes the usual Schwarzian.

We may define a rational map

ψk : Sk(Ω̂)× (N+\Jk(Ω̂))→ Sk(Ω̂)

as follows: an element of Jk(Ω̂) corresponds naturally to a point z ∈ Ω̂ and a

germ of a map F : Ω̂→ Ω̂ sending o to z. An element of Sk(Ω̂) corresponds

to the germ at o of a map H : Ω̂→ Ω̂ sending o to o modulo terms of order
> k in the Taylor expansion of H at o and up to a left B-translation. If
z ∈ N+o we let νz ∈ N+ be the element sending z to o, we may consider

the composition H ◦ νz ◦ F as defining an element of Sk(Ω̂). It is clear that
this is well defined.

For any positive integer d,we can naturally extend this to a map

ψk : Sk(Ω̂)d × (N+\Jk(Ω̂))d → Sk(Ω̂)d
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8.2. Connection Formula. For 2 maps F1, F2 : Ω̂ → Ω̂, it follows that
JkF1 ◦ JkF2 = Jk(F1 ◦ F2), from which it follows that

ψk

(
Sk(F1)(F2(z)), JkF2(idk(z))

)
= Sk(F1 ◦ F2)(z).

We refer to this equation as the connection formula.

8.3. Schwarzians of Automorphic Functions. Let Γ ⊂ G(R) be a dis-
crete subgroup such that X = Γ\Ω is a Shimura Variety. Consider a ratio-

nal embedding5 φ = (φ1, φ2) : X → Ω̂2, and let pi = φi ◦ q : Ω → Ω̂. Set
p = (p1, p2). Writing the connection formula for pi, p

−1
i gives:

ψk

(
Sk(p

−1
i (pi(z)), Jkpi(idk(z))

)
= Sk(id).

Now, inverting the action yields the relation

(∗) Sk(p
−1
i )(pi(z)) = ψk

(
Sk(id), Jkpi(idk(z))

−1
)
.

Since (∗) shows that
(
Sk(p

−1
1 )(p1z)), Sk(p

−1
2 )(p2(z))

)
is definable on a fun-

damental domain, and it is clearly Γ invariant, it must be a (single-valued)
algebraic function of q(z). Since φ = (φ1, φ2) is a rational embedding, we
conclude the following:

Proposition 8.1.
(
Sk(p

−1
1 )(φ1(x))), Sk(p

−1
2 )(φ2(x))

)
is an algebraic func-

tion Rk(x) for x ∈ X.

Theorem 8.2. Suppose that U ⊂ Ω̂ be a connected open set, and F : U →
φ(X) ⊂ Ω̂2 satisfies

ψ3

(
R3(φ−1(F (z))), J3F (id3(z))

)
= (S3(id), S3(id))

Then there exists g ∈ G(C) such that F (z) = p(gz).

Proof. Using the connection formula and Proposition 8.1, we see that

S(p−1 ◦ F ) = ψ3

(
S3(p−1)(F (z)), J3F (id3(z))

)
= ψ3

(
R3(φ−1(F (z))), J3F (id3(z))

)
= (S3(id), S3(id))

But now Theorem 7.3 shows that (p−1 ◦ F )(z) = gz for some g ∈ G(C),
which completes the proof. �

Note that Theorem 7.4 shows that one may use R2(z) in 8.2 in the case
where Ω = Bn, n ≥ 2, and Theorem 7.5 shows that one may use R1(z) in the
case where Ω is irreducible and of rank ≥ 2, with obvious generalizations to
the reducible cases (cf. the last paragraph of §7).

5Since the complex function field of the n-dimensional projective variety X is always

isomorphic to that of an irreducible hypersurface in Pn+1 and since Ω̂ is rational, such an
embedding always exists, and we could deal with only a single function if X were rational,
as is the case of X(1) and the j-function.
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9. Ax-Schanuel with Derivatives

9.1. Main theorem with Derivatives.

Theorem 9.1. Let k ≥ 2 and r ≥ dimX be positive integers. With notation

as above, let W ⊂ Jnd,r
k Ω×Jnd,r

k X be an algebraic subvariety such that W =

Ŵ ∩ Jnd,r
k Ω× Jnd,r

k X for some irreducible subvariety Ŵ ⊂ Jnd,r
k Ω̂× Jnd,r

k X.

Let U be an irreducible component of W ∩Jnd,r
k D whose dimension is larger

than expected, that is,

dimW < dimU + dimG.

Then the projection of U to X is contained in a proper weakly special sub-
variety of X.

Here Jnd,r
k Ω̂×Jnd,r

k X inherits the structure of a quasi-projective manifold

resulting from a projective compactification6 of JrkY for a quasi-projective
manifold Y .

We first need to state a lemma.

Lemma 9.2. For k ≥ 2, consider the graph

Jnd,r
k D ⊂ Jnd,r

k Ω× Jnd,r
k X

of the projection map Jrkq : Jnd,r
k Ω → Jnd,r

k X. Then G(C) · Jnd,r
k D is a

closed, algebraic subvariety, and it is the Zariski closure of Jnd,r
k D.

Proof. First, note that Jnd,r
k D is invariant under Γ, and therefore its Zariski

closure is invariant under G(C). Thus, it is sufficient to show that Y :=

G(C) · Jnd,r
k D ⊂ Jnd,r

k Ω̂× Jnd,r
k X is a (closed) algebraic subvariety.

We claim that Y ⊂ Jnd,r
k Ω̂ × Jnd,r

k X is constructible complex analytic.

Consider the holomorphic map Ψ0 : G(C) × Jnd,r
k Ω̂ → Jnd,r

k Ω̂ defined by

Ψ0(γ, ω) = γ · ω. Since G(C) acts algebraically on Ω̂, there exist projec-

tive compactifications G(C)′ of G(C) and (Jnd,r
k Ω̂)′ of Jnd,r

k Ω̂ such that Ψ0

extends to a rational map Ψ′0 : G(C)′ × (Jnd,r
k Ω̂)′ → (Jnd,r

k Ω̂)′. Write Ψ =

Ψ0× id, i.e., Ψ : (G(C)× (Jnd,r
k Ω̂))× Jnd,r

k X → Jnd,r
k Ω̂× Jnd,r

k X is given by

Ψ(γ, ω, ν) = (γ ·ω, ν). Define Ψ′ := Ψ′0× id : (G(C)′×(Jnd,r
k Ω̂)′)×Jnd,r

k X →
(Jnd,r
k Ω̂)′ × Jnd,r

k X. Applying the proper mapping theorem to the graph of

the restriction of Ψ′ to G(C)′ × Jnd,r
k D ⊂ G(C)′ × ((Jnd,r

k Ω̂)′ × Jnd,r
k X)

and noting that Y is Γ-invariant, we deduce that Y ⊂ Jnd,r
k Ω̂′× Jnd,r

k X is a

complex analytic subvariety, hence Y ⊂ Y is constructible complex analytic.

Next, we argue that Y ⊂ Jnd,r
k Ω̂ × Jnd,r

k X is a closed subset. Observe

by Proposition 7.2 that G(C) acts freely on Jnd,r
k Ω̂ × Jnd,r

k X so that any

6We postpone to §9.2 the construction of a projective compactification of JrkY as a

bundle of weighted projective spaces of a nonsingular projective compactification Ŷ of Y .
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G-invariant constructible complex analytic subset of Jnd,r
k Ω̂ × Jnd,r

k X is of
dimension ≥ dimG. Now, note that Y is invariant under the automorphisms
A of the disc Drk and under the action of G(C). Moreover, these actions

commute and A × G(C) acts transitively on Jnd,r
k Ω̂. It follows that if we

let Z = Y − Y be the boundary of Y , then Z is equidimensional over

the first factor Jnd,r
k Ω̂. However, the pullback of Y to Jnd,r

k Ω̂ × Jnd,r
k Ω̂ is

symmetric, and so Z is also equidimensional over the second factor Jnd,r
k X.

Note that the fibers of Y over the second factor Jnd,r
k X are of dimension

dimG. Now since dimZ < dimY it follows that the dimension of the fibers
of Z over the second factor Jnd,r

k X are less than dimG, which means they
are empty since Z is closed under the action of G(C), proving the claim that

Y ⊂ Jnd,r
k Ω̂× Jnd,r

k X is closed.

Since Y ⊂ Jnd,r
k Ω̂× Jnd,r

k X is closed and constructible complex analytic,
it must be a complex analytic subvariety. On the other hand, since Y is

given by G(C) acting on the restriction of Jnd,r
k D to Jnd,r

k F it follows that it
is definable, and by Theorem 2.2 Y is an algebraic subvariety, as desired. �

Corollary 9.3. Let z1, . . . , zn be an N+-invariant algebraic coordinate sys-
tem on Ω. Let {φ1, . . . , φN} be a C-basis of modular functions. Then the
field generated by {φi} and their partial derivatives with respect to the zj up
to order k ≥ 2 has transcendence degree over C equal to dimG. Furthermore,
the transcendence degree is the same over C(z1, . . . , zn).

Proof. From Lemma 9.2 and Proposition 7.2 applied to r = dimX = n, it
follows that

tr.degCC({zi}, {φ(ν)
j }) = dimG+ n.

The algebraic independence will therefore follow as soon as we show that
the transcendence degree of C(z1, . . . , zn) is equal to dimG.

To see this, consider

V = Jk(id× q)(idk(Ω)) ⊂ Jnd,n
k D.

We have to show that the Zariski-closure W of the projection of V to Jnd,n
k X

has dimension dimG. Let p ∈ X be a point, and, without loss of generality,
let o ∈ Ω be a pre-image.

Identifying N+\Jnd,n
k (N+o) with Jnd,n

k (idk(o)) by quotienting out by the

action of N+, we get a rational map ψ : G(C)→ Jnd,n
k (o) by ψ(g) = g·idk(o).

Now, the pre-image of p in W contains ψ(Γ) so it must contain ψ(G(C)).
It follows that W contains q

(
G(C) · idk(o)

)
, hence by definability must be

equal to its closure (definable since we can restrict to a fundamental domain,

and its closure is complex analytic since it is algebraic in Ω̂). Since G(C) acts

freely on Jnd,n
k Ω̂ by Proposition 7.2 it follows that dimG(C)·idk(o) = dimG,

as desired. �
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Remark. The same argument shows that the projection

Jk+1q
(
G(C) · Jnd,n

k+1 (idk+1(o))
)
→ Jkq

(
G(C) · Jnd,n

k (idk(o))
)

is bijective for k ≥ 2, and that Jkq
(
G(C) · Jnd,n

k (idk(o))
)

is the Zariski

closure of the graph of the ν’th partial derivatives of q for |ν| ≤ k. It follows
that, for k ≥ 2, the k-th partial derivatives of q are rational in the ν’th
partial derivatives of q for |ν| ≤ 2. In other words, the field generated by
all the partial derivatives of q is generated by the partial derivatives of order
≤ 2.

9.2. Compactifying jet spaces. We shall require a compactification of
jet spaces to discuss Hilbert schemes. Thus, for a complex manifold Y we
define

BJrkY :=
(
Hom(Drk, Y )× A1

C
)
/Gm,C

where the action is defined via r · (t 7→ f(t), s) := (t 7→ f(rt), rs). It is
easy to see, by expanding into local coordinates given by Taylor series co-
efficients, that BJrkY is a weighted projective space over Y , and is thus a
projective variety if Y is projective. This then gives a functorial compacti-

fication of JrkY for Y projective. For Y quasi-projective, taking Ŷ ⊃ Y to

be a nonsingular projective compactification, BJrk Ŷ ⊃ Jrk Ŷ ⊃ JrkY gives a
projective compactification of JrkY .

9.3. Descending Hilbert scheme loci. Now we fix some algebraic sub-

variety W ⊂ Jnd,r
k Ω× Jnd,r

k X, with Ŵ ⊂ BJrk Ω̂×BJrkX̂ its Zariski closure,

and U an irreducible component of W ∩ Jnd,r
k D. We make no assumptions

here on the dimension of U .
Let M be the Hilbert scheme of all subvarieties of BJrk Ω̂ × BJrkX̂ with

Hilbert polynomial P . Then M also has the structure of an algebraic variety.

Corresponding to y ∈M we have the subvariety Wy ⊂ Jnd,r
k Ω×Jnd,r

k X, and
we have the incidence variety (universal family)

B = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : (z, x) ∈Wy},

and the family of the intersections of its fibres over M with Jnd,r
k D, namely

A = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : (z, x) ∈Wy ∩ Jnd,r
k D}.

Then A is a closed complex analytic subset of Jnd,r
k Ω× Jnd,r

k X ×M . It has
natural projection θ : A → M , with (z, x, y) 7→ y. Then, for each natural
number k, the set

A(k) = {(z, x, y) ∈ Jnd,r
k Ω× Jnd,r

k X ×M : dim(z,x) θ
−1θ(z, x, y) ≥ k},

the dimension being the dimension at (z, x) of the fibre of the projection in
A, is closed and complex analytic see e.g. the proof of [29], Lemma 8.2, and
references there.
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Now we have the projection ψ : Jnd,r
k Ω×Jnd,r

k X×M → Jnd,r
k Ω×Jnd,r

k X,
and consider

Z = Z(k) = ψ(A(k)).

Then as M is compact, ψ is proper and so Z is closed in Jnd,r
k Ω × Jnd,r

k X.

Note that Z is Γ-invariant and Z ∩ Jnd,r
k F × Jnd,r

k X is definable.

Lemma 9.4. Let T = (q × id)(Z). Then T ⊂ Jnd,r
k X × Jnd,r

k X is closed
and algebraic.

Proof. The same as Lemma 3.3. �

10. Proof of Theorem 9.1

Proof. We argue by induction, in the first instance (upward) on dim Ω. For
a given dim Ω, we argue (upward) on dimW − dimU . We then argue by
induction (downward) on dimU , and finally upward on r. The base cases
are established in a way similar to Theorem 1.1.

We carry out the constructions of §9.3 with k = dimU and keep the
notation there. We let A(k)′ ⊂ A(k) be the irreducible component which
contains U × [W ], Z ′ = ψ(A′(k)) ⊂ Z be the corresponding irreducible
component of Z, and V = (q × id)(Z ′) be the irreducible component of
T , which is therefore algebraic by Lemma 3.3. Now, by assumption V
contains q(U), and so it is not contained in any proper weakly special of

the diagonal Jnd,r
k ∆X , and thus its monodromy group is Zariski-dense in G

by [1, §1,Theorem 5.1].

Consider the family F0 of algebraic varieties corresponding to A(k)′. Let
Γ0 ⊂ Γ be the subgroup of elements γ such that a very general member of
F0 is invariant by γ. Note that a very general element W ′ of F0 is invariant
by exactly the subset Γ0 of Γ. Let Θ be the connected component of the
Zariski closure of Γ0 in G(R).

Lemma 10.1. Θ is a normal subgroup of G.

Proof. This is proven exactly as in Lemma 4.1. �

Lemma 10.2. Θ is the identity subgroup.

Proof. We argue by contradiction. Without loss of generality we may assume
that W is a very general member of F0, and hence is invariant by exactly
Θ. Since Θ is a Q-group by construction, it follows that G is isogenous
to Θ × Θ′ and we have a splitting of Hermitian symmetric domains Ω =
ΩΘ × ΩΘ′ . Replacing Γ by a finite index subgroup we also have a splitting
X ∼= XΘ ×XΘ′ . Moreover, D splits as DΘ ×DΘ′ .
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By our induction on dimW , it follows from Lemma 9.2 that W ⊂ G(C) ·
Jnd,r
k D. Now, we let

W1 ⊂ Jnd,r
k ΩΘ′ × Jnd,r

k XΘ′ × Jnd,r
k XΘ

be the projection of W . Let U1 be the projection of U to W1. Since the map
from DΘ to XΘ has discrete pre-images, it follows that dimU = dimU1.

Now let W ′ be the projection of W1 to Jnd,r
k ΩΘ′ × Jnd,r

k XΘ′ and U ′ be a

component of W ′ ∩DΘ′ . Since W ⊂ G(C) · Jnd,r
k D and W is closed under

Θ(R)+ we see that U ′ is the projection of U to Jnd,r
k ΩΘ′×Jnd,r

k XΘ′ . Now let
W ′′ ⊂W ′ be the Zariski closure of U ′. It follows by the induction hypothesis
that

dimU ′ + dim Θ′ ≤ dimW ′′.

Now for the projection map ψ : W1 →W ′, the generic fiber dimension of
W ′′ is the same as the generic fiber dimension over U ′, and thus

dimU1 + dim Θ′ ≤ dimψ−1(W ′′) ≤ dimW1.

Since W is invariant under Θ(C) it follows that

dimU + dimG ≤ dimW,

contradicting with the hypothesis dimW < dimU + dimG as in the state-
ment of Theorem 9.1, as desired. �

It follows that W is not invariant by any infinite subgroup of Γ. The
following lemma thus gives a contradiction, and completes the proof.

Lemma 10.3. W is invariant by an infinite subgroup of Γ.

Proof. This is proven exactly as Lemma 4.3. �

This contradiction completes the proof of Theorem 9.1. �

As a corollary, we have the following concrete statement about transcen-
dence degrees of modular functions and their derivatives on analytic subva-
rieties.

Corollary 10.4. Let V ⊂ Ω be an irreducible complex analytic variety, not
contained in a proper weakly special subvariety. Let {zi, i = 1, . . . , n} be an

algebraic coordinate system on Ω. Let {φ(ν)
j } consist of a basis φ1, . . . , φN of

modular functions, all defined at at least one point of V , together with their
partial derivatives with respect to the zj up to order k ≥ 2. Then

tr.deg.CC
(
{zi}, {φ(ν)

j }
)
≥ dimG+ dimV

where all functions are considered restricted to V .

Proof. Let
U = (id2 × J2q ◦ id2)(V ) ⊂ J2Ω× J2X,

so that U is an analytic subvariety of the diagonal J2D. Note that U does
not record any of the differential information concerning V , but instead
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a coordinate system for U is given by z1, . . . , zn, φ1, . . . , φN . The result
now follows immediately from Theorem 9.1 applied to the Zariski closure of
U . �

III. Ax-Schanuel in a differential field

In this part we formulate a version of Ax-Schanuel in the setting of a
differential field. We further show that the jet version (9.1) may be deduced
directly from the differential version (12.1).

11. Characterizing the uniformization map

We would like to have a criterion in a differential field to determine when
a pair of maps

w : ∆→ Ω̂, u : ∆→ X = Γ\Ω,
where ∆ is a disk of given dimension, satisfies u = q(gv) for some g ∈ G(C).
To this end, we need a finer version of the Schwarzian varieties introduced
in section §8 that serves the same purpose for jets of lower rank, i.e., those
which are non-surjective on tangent spaces.

Lemma 11.1. Let k be a positive integer. There exists a positive integer
m = m(G, q, k) with the following property. Let ∆k be a k-dimensional disk,

and consider a pair of maps (w, u) : ∆k → Ω̂× Ω̂. If at every t ∈ ∆k there
exists gt ∈ G(C) such that u(t) = gtw(t) up to order m, then there exists a
global g ∈ G(C) with u(t) = gw(t).

Proof. Let d = dimG. For positive integers a ≥ b we define

Xa,b = {(φ, ψ) | ∃γ ∈ G(C), γ ◦ φ = ψup to orderb} ⊂ Jka Ω̂× Jkb Ω̂.

We partition Xd,d into subsets Xi
d,d consisting of all pairs (φ, ψ) satisfying

Stabφi = Stabφi+1, where φi denotes φ up to the i-th order, and i is the
smallest such integer. Note that this is indeed a partition since each time
Stabφi 6= Stabφi+1 the dimension of Stabφi+1 is at least 1 smaller than
that of Stabφi. Without loss of generality, assume that (w, u) has image
generically in Xi

d,d. Now, for all elements in Xi
d,d it follows that there exists

a universal equation for all (i+ 1)-st partial derivatives of ψ in terms of the
degree ≤ d partial derivatives of φ and the degree ≤ i partial derivatives of
ψ at o. Thus one can solve for u given w and all the partial derivatives of
degree ≤ i of u at 0 ∈ ∆k. Clearly u(t) = g−1

o w(t) is one such solution, and
so that must be the only solution. This completes the proof. �

With k,m as above let JkmD ⊂ JkmΩ̂×JkmX be the graph of the projection
morphism. Now let V k

m = G(C) · JkmD, where the group G(C) acts only on

the factor JkmΩ̂. Note that V k
m is definable, since

V k
m = G(C) · (JkmD|JkmF×JkmX).
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Also, V k
m is the image of Xm,m under the projection map on the second

factor, so its closure is analytic and of the same dimension. It follows from
Definable Chow that V k

m is constructible algebraic.

If now w : ∆k → Ω̂ and g ∈ G(C) then the image of (w, q(gw)) in

JkmΩ̂× JkmX is contained in V k
m. We show the converse.

Theorem 11.2. Let k be a positive integer and let m = m(G, q, k) and V k
m

be as above. Let (w, u) : ∆k → Ω̂×X. If the image of Jk(w, u) is contained
in V k

m then there exists a global g ∈ G(C) with u(t) = q(gw(t)).

Proof. Suppose Jk(w, u) lands in V k
m. Let ũ(t) be a local lift of u(t) such that

u(t) = q(ũ(t)). By Lemma 11.1 it follows that there exists some g0 ∈ G(C)
such that w(t) = g0ũ(t). Thus, u(t) = q(g−1

0 w(t)) as desired. �

11.1. Uniformized loci. Given a map w : ∆k → Ω̂, an element g ∈ G(C),
and an integer r ≥ 2, we get in a natural way a map

L(w, g, r) : ∆k → Ω̂×X × Jnr X,

where the second map is q(gw) and the third map is Jnr
(
q◦g

)
◦ idr ◦w, which

records the partial derivatives of qg, where qg(z) = q(gz), to order |ν| ≤ r,
restricted to the image of w. Such a map we will call a uniformized locus.
Note that the second map is repeated in the zero-order terms of the third
map, and so is superfluous in a way, but we find it convenient to keep track
of it.

From such a map we obtain an image in the jet spaces (to some order m)

J∗mL(w, g, r) = ṽgk : ∆k → JkmΩ̂× JkmX × Jnr X,

where the first map is Jkm(w) ◦ idm, the second map is Jkm
(
q ◦ g ◦ w

)
◦ idm,

and the third map is (again) Jnr
(
q ◦ g

)
◦ idr ◦ w.

We want differential equations which characterize when a trio of maps

(w, v, u) : ∆k → Ω̂×X × Jnr X

arising in this way. For (w, u) this is dealt with by 11.2.
Now, we cannot directly talk about the map q, though we do have access

to the map to JnmX. There is a complication when w has a stabilizer, in
that we could replace w by g ◦ w for any g in the stabilizer, and in fact
by a different, holomorphically varying, g at every point. This would not
affect the map or any of its derivatives, but it would affect the restrictions
of the derivatives of q ◦ g. Thus, we will equip the third coordinate with an
extra differential equation to insist that the g ‘stays constant’. We do this
as follows.

We have an algebraic map G(C) × Jn` Ω̂ → Jn` Ω̂ given by the natural

action. Let V ′n,` be the image of G(C) × id`(Ω̂) restricted to Jn` Ω, and Vn,`
its constructible algebraic (by Corollary 3.2) image in Jn` X. Note that for
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` ≥ 3 the variety V ′n,` is fibered by varieties Ω over G(C)/N+(C)7. If we
descend to X, we lose the fibration but we retain an algebraic foliation.

To make this precise, let W ′n,` be the restriction to TV ′n,` of the image

of the natural holomorphic map G(C)× T id`(Ω̂)→ TJn` Ω̂. Then the image
Wn,` of W ′n,` in TJn` X determines an integrable algebraic (by Corollary 3.2)
foliation of Vn,`.

A map L(w, g, r) has its image in Vk,m × Vn,r and the tangent lands in
Wn,r. We show that these properties characterize such maps.

Theorem 11.3. Let k be a positive integer, r ≥ 2, and m as above. Consider
a map

(w, u, v) : ∆k → Ω̂×X × Jnr X.
If the image of (w, u, v) lands in Vk,m × Vn,r and the image of Tv lands in
Wn,r, and v restricts to u then there exists g ∈ G(C) such that (w, u, v) =
L(w, g, r).

Proof. Suppose that the hypotheses are satisfied. By Theorem 11.2 it follows
that there exists g ∈ G(C) with u = q ◦ g ◦ w. So it remains to address
the third coordinate. Note that if w has no stabilizer, the claim follows
immediately. As it stands, the third map must be of the form t→ q ◦ g(t) ◦
idk ◦w for some function g : ∆k → G(C). However, by assumption Tv lands
in Wn,r which is an integrable foliation whose leaves are precisely the set
where g(t) ∈ gN . Thus we may write g(t) = gn(t) for a function n(t) ∈ N .
However, since v restricts to u it follows that n(t) is the identity function.
Thus the function g(t) = g must be constant and the claim is proved. �

12. Ax-Schanuel in a differential field

12.1. The setting. We fix G and q : Ω → X. Let n = dimX. We take
a field of definition L0 ⊂ C, of finite type, for X and for the system of
differential equations satisfied by q.

The weakly special subvarieties of X come in countably many families,
and so correspond to points in suitable (possibly constructible) subvarieties
of countably many Hilbert schemes. These families are defined over Q and
the collection of families is stable under Galois automorphisms. So we may
take them to be (not necessarily irreducible but) defined over L0.

We consider a differential field (K,D, C). Here D = {D1, . . . , Dd} is a
finite set of commuting derivations and C is the constant field.

It is a deep theorem of Kazhdan [16, 17, 18]; see also Milne [21, 22] that
a conjugate of an arithmetic variety is again arithmetic. It will therefore
be important to ensure that our differential fields are identified correctly
with the complex object. We therefore assume (initially) that C contains a
subfield Λ0 isomorphic to L0 under ι0 : Λ0 → L0.

7In fact, V ′
n,` is fibered by G(C)/N+(C) over Ω, and is indeed isomorphic to the product

Ω×G(C)/N+(C).
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We take further a field of finite type L ⊂ C which is a field of definition
for the constructible algebraic varieties in §11 and assume that C contains
a field Λ isomorphic (by ι) to L. Then we can identify the various varieties
in §11 with their corresponding varieties in K.

12.2. Rank and transcendence degree. Let V be an algebraic variety 8

over the constant field C, and let p ∈ V (K) be a K-point. Let U ⊂ V be an
open affine set defined over C which contains p. Let R = O(U) be the ring of
functions on U , and let S be the image of R in K induced by evaluation on
p. We define the transcendence degree of p to be the transcendence degree
of the fraction field of S over C.

We define the rank of p to be the rank of the matrix rank(p) = (Dis)1≤i≤n
s∈S

.

Finally, given two varieties V1, V2 and points p1 ∈ V1(K), p2 ∈ V2(K) we
say that p2 is a function of p1 if rank(p1, p2) = rank(p2).

12.3. Statement and proof of Differential Ax-Schanuel. We consider

K points (z, x, y) of Ω̂×X × Jnr X where r ≥ 2.
We assume that x and z have the same rank , and that x is a function of

z. Set k = rank(x) = rank(z), and assume k ≥ 1 (for k = 0 our theorems
are true but trivial).

If (z, x, y) satisfies the differential conditions corresponding to the hy-
potheses of Theorem 11.3 then, under any Seidenberg embedding over ι,
meaning extending ι, as may always be assumed (see the version given in
Scanlon [37]), we get tuples of regular functions

(z, x, y) : ∆k → Ω̂×X × JrX
which give a uniformized locus. It is thus a natural abuse of notation to
refer to a tuple (z, x, y) satisfying these conditions as a uniformized locus in
K. We will say similarly that x is contained in a weakly special subvariety if
it gives a K point of one of the varieties defining the weakly special families.

We can now state a differential version of Ax-Schanuel, making precise
Theorem 1.5.

Theorem 12.1. (Differential Ax-Schanuel) Fix G, q, L as above. Let (K,D, C)
be a differential field with Λ ⊂ K, ι as above. Let (z, x, y) be a uniformized
locus. Then

tr.deg.CC(z, x, y) ≥ rank(z) + dimG

unless x is contained in a proper weakly special subvariety.

Proof. Suppose the transcendence degree tr.deg.CC(z, x, y) is less, so that
there is a varietyW defined over C containing these quantities with dimW <
rank(z) + dimG. Take a suitable finitely generated differential K ′ ⊂ K field
containing Λ and all constants appearing in the algebraic dependencies, the
z and the associated q-quantities, and a field of definition of W . Take a

8or a scheme of finite type
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Seidenberg embedding of K ′ over ι into a field of meromorphic functions of
t ∈ ∆k where k = rank(z).

Then x = qg(z) for some g ∈ G(C) for which the partial derivatives

of qg, restricted to the image of z as a function of t ∈ ∆k, agree with the
Seidenberg embeddings y of y (note that the tuple y records the co-ordinates
of x). Define Q = qg, and let Ωg = g−1Ω be the domain of Q.

Let U ′ be the locus in Jn2 Ωg × Jn2 X which is the graph under JnQ of the
locus

(z, 1n×n, 0, . . . , 0) ⊂ Jn2 Ωg.

By assumption (z, x, y) is a uniformized locus, and therefore U ′ is the locus
(i.e. over t ∈ ∆k) described by

(z, 1n×n, 0, . . . , 0;x, y)

and is clearly in Jnd,n
2 Ωg × Jnd,n

2 X, (recall the assumption that q is unram-
ified).

We let W ′ be the Zariski closure (over C) of U ′ and U ⊂ W ′ ∩ JnQ
the component containing U ′. We have dimC U

′ = k = rank(z), while
W ′ is a subvariety of the image of W under the Seidenberg embedding, so
dimCW

′ ≤ dimCW . By assumption, we have rank(z) > dimCW − dimG,
and therefore we have

dimC U ≥ dimC U
′ = rank(z) > dimCW − dimG ≥ dimCW

′ − dimG.

Hence by Theorem 9.1 for the map Q, which is just the same statement as
for q, we conclude that x is contained in a proper weakly special subvariety
of X. But then x also has this property. �

We next show that the jet version of Ax-Schanuel (Theorem 9.1) may in
fact be deduced directly from Theorem 12.1.

12.4. Direct proof of Theorem 9.1 from Theorem 12.1. As in [33].
We assume Theorem 12.1 holds.

If A = {f1, . . . , f`} is a set of regular functions of t ∈ ∆k, we set

dimA = dim(f1, . . . , fM ) = dim{
(
f1(t), . . . , fM (t)

)
: t ∈ ∆k},

where {
(
f1(t), . . . , fM (t)

)
: t ∈ ∆k} is the locus parameterized by A. The

transcendence degree tr.deg.CC(f1, . . . , fM ) is the dimension of the Zariski
closure of this locus, which we denote dim Zcl(A) = dim Zcl(f1, . . . , fM ).

We consider a locus U ⊂ Jnd,n
` D, of dimension k say, where ` ≥ 2, meaning

the graph of q on some locus of non-degenerate jets.
We take z = (z1, . . . , zn), x = (x1, . . . , xN ) as affine coordinates on Ω

and an open affine subset of X containing an open subset of U . We assume
that x1, . . . , xn are algebraically independent on X and the further variables
dependent upon them. We take coordinates

(z, r, s, . . . ;x,R, S, . . .)
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in Jn` Ω× Jn` X, where r = (rij , i, j = 1, . . . , n) with ri representing the coor-

dinates of the first derivatives of zi, likewise R = (Rij) for xi, i = 1, . . . , N ,

s = (sijk) and S = (Sijk) the second derivatives of zi, xi etc. The non-
degeneracy condition means that the matrix r has rank n.

Then the action of q on the jets is given by xi = qi(z) and

Rij =
∑
`

∂qi
∂z`

r`j , Sijh =
∑
`

∂qi
∂z`

s`jh +
∑
m

∑
`

∂qi
∂z`∂zm

rmh r
`
j , etc

with summations `,m = 1, . . . , n.
Thus U is locally parameterized by t ∈ ∆k in the form

(z(t), r(t), s(t), . . . ; q(z(t)), R(t), S(t), . . .)

where

Rij(t) =
∑
`

∂qi
∂z`

r`j(t), S
i
jh(t) =

∑
`

∂qi
∂z`

s`jh(t)+
∑
m

∑
`

∂qi
∂z`∂zm

rmh (t)r`j(t), etc

and the derivatives of q are evaluated at z(t).
We must prove that, as functions of t,

dim Zcl(z, r, s, . . . ;x,R, S, . . .) ≥ dim(z, r, s, . . .) + dimG.

We claim that C(z, r, s, . . . ;x,R, S, . . .) = C(z, r, s, . . . ;x, q
(ν)
i ◦ z(t), |ν| ≤

`). Clearly the LHS is contained in the right. On the other hand, since r has
full rank, by our non-degeneracy we may definably find a map φ : Ω → ∆j

definable in C(z, r, s, . . . ) such that (z, r, s, ...) ◦ φ is the identity, and thus
the two fields are equal. Thus we need to prove

dim Zcl(z, r, s, . . . ;x, q
(ν)
i ◦ z(t), |ν| ≤ `) ≥ dim(z, r, s, . . .) + dimG.

We consider the differential field containing the functions z, x, y = q
(ν)
i ◦z.

The hypotheses of Theorem 12.1 hold: that is (z, x, y) is a uniformized locus
of rank k = rank(z) = dimU .

If the projection of U to X is not contained in a proper weakly special
subvariety then we have

dim Zcl(z, x, y, . . .) ≥ dim(z) + dimG

and the conclusion then follows because, for any sets A,B of functions,

dim Zcl(A,B)− dim Zcl(A) ≥ dim(A,B)− dimA.

This concludes the proof. �

12.5. A special case. We state a special case of Theorem 12.1 which clari-
fies the relationship between it and the modular and exponential cases. This
version views q as an analogue of exp /j, and concerns differential avatars
of the Cartesian product map

q` : Ω` → X`
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which are suitably non-degenerate on each factor so that the differential
equation can be straightforwardly imposed on the corresponding coordinate
functions.

The point is that if z, x have rank n and (z, x) ∈ V k
m then y is uniquely

determined and lies in Jnr (K) by solving suitable systems of linear equations
in the derivatives of z, x.

Theorem 12.2. Suppose z =
(
z(1), . . . , z(`)

)
∈ Ω̂`(K), with rank(z(k)) = n

for each k = 1, . . . , `, and x =
(
x(1), . . . , x(`)

)
∈ X`(K), each of rank n, such

that x(i) is a function of z(i) for each i. Let y(i) be the partial derivatives of
x(i) with respect to z(i) up to order r ≥ 2 and put y =

(
y(1), . . . , y(`)

)
.

Suppose further that (z(k), x(k)) ∈ V k
m for each k = 1, . . . , `. Then

tr.deg.CC
(
z, x, y

)
≥ rank(z) + `dimG

unless x is contained in a proper weakly special subvariety of X.
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