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Abstract

The G-equation is a well-known model for studying front propagation in turbulent com-

bustion. In this paper, we shall develop an efficient model reduction method for solving

viscous G-equations in incompressible steady and time periodic cellular flows. Our method

is based on the Galerkin proper orthogonal decomposition (POD) methods. To facilitate

the algorithm design and convergence analysis, we decompose the solution of the viscous

G-equation into a mean-free part and a mean part, where their evolution equations can

be derived accordingly. We construct the POD basis from the solution snapshots of the

mean-free part. With the POD basis, we can efficiently solve the evolution equation for

the mean-free part of the solution to the viscous G-equation. After we get the mean-free

part of the solution, the mean of the solution can be recovered. We also provide rigor-

ous convergence analysis for our numerical method. Numerical results are presented to

demonstrate the accuracy and efficiency of the proposed method. Specifically, we study

the turbulent flame speeds of the viscous G-equations in incompressible cellular flows

based on the POD method and fully resolved computations.

AMS subject classification: 65M12, 70H20, 76F25, 78M34, 80A25.

Keywords: Viscous G-equation; Hamilton-Jacobi equation; front speed computation;

cellular flows; proper orthogonal decomposition (POD); error estimates.

1. Introduction

Front propagation in turbulent combustion is a nonlinear and complicated dynamical

process. The G-equation has been a very popular field model in combustion and physics

literature for studying premixed turbulent flame propagation [8, 9, 3, 12, 10, 16]. The

G-equation model is a sound phenomenological approach to study turbulent combustion,

which uses the level-set formulation to study the flame front motion laws with the front
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width ignored. The simplest motion law is that the normal velocity of the front is equal

to a constant Sl (the laminar speed) plus the projection of fluid velocity V (x, t) along the

normal. This gives the inviscid G-equation

Gt + V · ∇G+ Sl|∇G| = 0 (1)

where the set {(x, t) : G(x, t)} = 0 corresponds to the location of the flame front at time

t. As fluid turbulence is known to cause stretching and corrugation of flames, additional

modeling terms may be incorporated into the basic G-equation. If the curvature term is

added into the basic equation to model the curvature effects and the curvature term is

further linearized, then we will arrive at the viscous G-equation

Gt + V · ∇G+ Sl|∇G| = dSl∆G (2)

In order to get numerical solutions of Eq.(2), Liu, Xin and Yu in [7] first approximated

the G-equations by a monotone discrete system, then applied high resolution numerical

methods such as WENO (weighted essentially non-oscillatory finite difference methods)

[5] with a combination of explicit and semi-implicit time stepping strategies, depending

on the size and property of dissipation in the equations. However, these existing numer-

ical methods become expensive when we need to solve Eq.(2) many times with different

parameters. This motivates us to explore the low-dimension structures of the viscous

G-equation (2) and develop efficient model reduction methods to solve them.

One of the most successful model reduction ideas in the study of turbulent flows

has been the proper orthogonal decomposition (POD) method. The POD method uses

the data from an accurate numerical simulation and extracts the most energetic modes

in the system by using the singular value decomposition. This approach may generate

low-dimensional structures that play an important role in the dynamics of the flow. The

Galerkin POD method has been used to solve many types of partial differential equations,

including linear parabolic equations and Burgers equations; see [2, 15] and references

therein for details. The interested reader is referred to [1] for a comprehensive introduction

of the model reduction methods.

In this paper, we shall study the POD method to solve the viscous G-equation (2).

To deal with the periodic boundary condition of the problem, we decompose the solution

of the viscous G-equation into a mean-free part and a mean part, where their evolution

equations can be derived accordingly. We construct the POD basis from the solution

snapshots of the mean-free part since the mean of the solution can be recovered from

the mean-free part. The POD basis can be used to compute long-time solution of the

viscous G-equation or the viscous G-equations with different parameters. We provide

rigorous convergence analysis and show that the accuracy of our method is guaranteed.

Finally, we conduct numerical experiments to demonstrate the accuracy and efficiency of

the proposed method. In particular, we numerically study the turbulent flame speeds of

the viscous G-equations in incompressible steady and time periodic cellular flows, which

has many important applications in the turbulent combustion. We remark that our POD

2



method can be easily extended to solve other types of G-equations [7]. To the best of our

knowledge, our study is the first one on POD method to solve G-equations.

The rest of this paper will be organized as follows. In Section 2, we shall give a

brief derivation of G-equation models. In Section 3, we show the detailed derivations

of the model reduction method for G-equations. In Section, we provide the convergence

analysis of the proposed method for G-equations. Our proof is based on the backward

Euler-Galerkin-POD approximation scheme. However, the proofs for other discretization

schemes can be obtained in a similar manner. In Section 5, we shall perform numerical

experiments to test the performance and accuracy of the proposed method. We find

that POD method can provide considerable savings over existing numerical methods in

solving the G-equation while its numerical error is relatively small. Finally, the concluding

remarks will be given in Section 6. In the two appendices, we provide the derivation of

a finite difference scheme in solving G-equation proposed in [7] and the procedure of the

POD method in constructing basis.

2. Turbulent combustion and G-equations

2.1. Derivation of the G-equations

In this section, we briefly introduce the derivation of the G-equation in turbulent com-

bustion. In a thin reaction zone regime and the corrugated flamelet regime of premixed

turbulent combustion (Chapter 2 of [12]), the flame front is modeled by a level set function:

{(x, t) : G(x, t) = 0, x ∈ Rn}, which is the interface between the burned area, denoted

by {G < 0} and the unburned area, denoted by {G > 0}, respectively. Therefore, one

can study the propagation of the flame front by solving the dynamic equation for the

level set function, namely the G-equation. The simplest motion law for the particles on
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Figure 1: Illustration of local interface velocities in the G-equation and a flame front in a 2D space

the interface is that the normal velocity of the interface is the sum of a constant Sl and
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the projection of fluid velocity V(x, t) along the normal direction (see Fig.1). Hence, the

trajectory of a particle x(t) on the interface satisfies,

dx

dt
= V(x, t) + Sln (3)

where Sl is the laminar flame speed and n is the normal vector. In terms of the level set

function, the motion law (3) gives the inviscid G-equation,

Gt + V · ∇G+ Sl|∇G| = 0 (4)

where ∇ denotes the gradient operator. Thus, the normal vector in (3) can be computed

using n = ∇G/|∇G|. Notice that the set {G(x, t) = 0} corresponds to the location of the

flame front at time t.

To take into account the effect of flame stretching and corrugation, additional modeling

terms may be added into the inviscid G-equation (4). Then, one can obtain extended G-

equation models involving curvature effects. The curvature G-equation is

Gt + V · ∇G+ Sl|∇G| = dSl|∇G|(∇ ·
∇G
|∇G|

), (5)

where d is called the Markstein number. The curvature dependent motion is well-known;

see [11, 10] and references therein. If the curvature term is linearized, we obtain the

viscous G-equation as follows, which is the research focus here.

Gt + V · ∇G+ Sl|∇G| = dSl∆G. (6)

2.2. A periodic initial value problem

Now given a unit vector P ∈ Rn, where n is the dimension of the physical space, we shall

consider the viscous G-equation (6) with planar initial condition{
Gt + V · ∇G+ Sl|∇G| = dSl∆G in Rn × (0,∞),

G(x, 0) = P · x on Rn × {t = 0}.
(7)

Here, we assume the flame front propagates in direction P with the initial front being

{P · x = 0} and x = (x1, x2, ..., xn). In this paper, we assume V (x, t) is spatially periodic

with C1 in x and C0 in t. Moreover, V (x, t) is divergence-free (i.e., ∇x · V (x, t) = 0, ∀t)
and uniformly bounded (i.e., ||V (x, t)||∞ ≤ A).

If we write G(x, t) = P · x + u(x, t), then u(x, t) is also spatially periodic and satisfies

the following periodic initial value problem{
ut + V · (P +∇u) + Sl|P +∇u| = dSl∆u in Tn × (0,∞),

u(x, 0) = 0 on Tn × {t = 0},
(8)
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where Tn = [0, 1]n. Hence we can reduce the numerical computation of Eq.(7) on the

whole domain to Eq.(8) on [0, 1]n by imposing the affine periodic condition:{
Gt + V · ∇G+ Sl|∇G| = dSl∆G in Tn × (0,∞)

G(x, 0) = P · x on Tn × {t = 0}
(9)

with the assumption G(x + z, t) = G(x, t) + P · z.

To illustrate the main idea of our method, we choose P = e1 = (1, 0, ..., 0) and have

G(x, t) = x1 + u(x, t). Let A(t) denote the volume of the burned area that has invaded

during time interval (0, t). Then, the turbulent flame speed ST is defined as the linear

growth rate of A(t). Notice that G(x, 0) = x1 and G(x + e1, t) = G(x, t) + 1. Then, the

ST can be evaluated by G(x, t) or u(x, t) in [0, 1]n,

ST = lim
t→∞

−1

t

∫
[0,1]n

G(x, t)dx = lim
t→∞

−1

t

∫
[0,1]n

(x1 + u(x, t))dx (10)

There are many numerical methods to sovle the viscous G-equation (9) or Eq.(8) on a

bounded physical domain Tn. For instance, we can employ the Hamilton-Jacobi weighted

essentially non-oscillatory (HJ-WENO) scheme and the total variation diminishing Runge-

Kutta (TVD-RK) scheme in higher order spatial and time discretization respectively. See

[13, 5, 10, 7] for details of the schemes. To make our paper self-contained, we show the

numerical schemes proposed by the second author in the appendix 7.1; see [7] for more

details.

3. Model reduction method for G-equations

In practice, we are interested in studying the dependence of the turbulent flame speed ST
on different parameters in the viscous G-equation, such as the Markstein number d. As

such, we have to solve the viscous G-equation many times, which is an expensive task.

Therefore, we need to design numerical methods that allow us to efficiently and accurately

solve the viscous G-equation. We shall develop an efficient model reduction method to

achieve this goal.

3.1. A decomposition strategy

According to the definition in (10), we can either solve Eq.(8) to obtain u(x, t) or solve

Eq.(9) to obtain G(x, t), in order to compute the turbulent flame speed ST . We shall

consider to solve Eq.(8) since it is easier to deal with the boundary condition. Let us

decompose the solution u of Eq.(8) into û+ ū, where û is the mean-free part and ū is the

mean of u. This decomposition means that∫
Tn

û(x, t)dx = 0, ∀t and ū(t) =

∫
Tn

u(x, t)dx. (11)
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Then, substituting u = û+ ū into (8), we obtain

ût + ūt + V · (P +∇û) + Sl|P +∇û| − dSl∆û = 0. (12)

Integrating the above equation over the domain Tn gives∫
Tn

[
ût + ūt + V · (P +∇û)− dSl∆û

]
dx = −

∫
Tn

Sl|P +∇û|dx. (13)

The definitions of ū and û in (11) imply that
∫
Tn ût = 0 and

∫
Tn ūt = ūt. Furthermore,

the periodic conditions of V and û imply
∫
Tn V ·P = 0,

∫
Tn ∆û = 0, and

∫
Tn V · ∇û = 0,

where we have used the facts that V is divergence-free and û is the mean-free. Combining

these results, we can simplify the Eq.(13) as,

ūt = −
∫
Tn

Sl|P +∇û|dx. (14)

Finally, we find that the Eq.(8) is equivalent to
ût + V · ∇û− dSl∆û+ Sl|P +∇û| −

∫
Tn Sl|P +∇û|dx + V ·P = 0 in Tn × (0,∞)

ūt = −
∫
Tn Sl|P +∇û(x, t)|dx on t ∈ (0,∞)

û(x, 0) = 0 on Tn × {t = 0}
ū(0) = 0

(15)

The strategy of decomposing the solution u into û and ū plays a crucial role in the

convergence analysis of our model reduction method.

3.2. Construction of the POD basis

In this section, we shall present our model reduction method to solve Eq.(15). Since the

evolution equation for ū depends on û, we first consider to solve the equation for û, i.e.,

ût + V · ∇û− dSl∆û+Sl|P +∇û| −
∫
Tn

Sl|P +∇û|dx + V ·P = 0, in Tn× (0,∞). (16)

Let H1
per(Tn) denote the Sobolev space on the domain Tn with a periodic boundary

condition, and let 〈·, ·〉 denote the standard inner product on L2(Tn). Let H ⊂ H1
per(Tn)

be the subspace consisting of all mean-free functions. Since H is a closed subspace of

H1
per(Tn), H itself is a Hilbert space. Let 〈·, ·〉H denote the standard inner product on H.

Define the bilinear form a(·, ·) : H ×H → R to be

a(u, v) =

∫
Tn

[(V · ∇u)v + dSl(∇u · ∇v)]dx. (17)

Also, define a nonlinear map from H to L2(Tn) to be

F (u) = Sl|P +∇u| −
∫
Tn

Sl|P +∇u|dx. (18)
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The weak formulation of (16) is

〈ût, ψ〉+ a(û, ψ) + 〈F (u), ψ〉 = 〈−P ·V, ψ〉, ∀ψ ∈ H, (19)

which can be solved using numerical methods, such as the finite element method.

Assume we have obtained a set of numerical solutions {û(·, tk)} to Eq.(16), where

tk = k∆t, ∆t = T/m, k = 0, ...,m. Then, we use 2m+ 1 snapshots {û(·, t0), . . . , û(·, tm),

∂̄û(·, t1), . . . , ∂̄û(·, tm)}, where ∂̄û(ti) = (û(ti) − û(ti−1))/∆t, to generate the POD basis

functions. By adding the terms ∂̄û(ti), i = 1, ...,m into the snapshots, we can obtain

more accurate POD basis functions and avoid an extra (∆t)−2 factor in the convergence

analysis; see Section 4 for more details.

Let Sr = {ψ1(·), ψ2(·), · · · , ψr(·)} denote the r-dimensional POD basis functions ob-

tained from the 2m+ 1 snapshots, which minimize the following error

1

2m+ 1

m∑
i=0

‖û(ti)−
r∑
j=1

〈û(ti), ψj〉Hψj‖2
H +

1

2m+ 1

m∑
i=0

‖∂̄û(ti)−
r∑
j=1

〈∂̄û(ti), ψj〉Hψj‖2
H .

(20)

Remark 3.1. In practice, we can use experimental data or reference numerical methods

to generate solution snapshots. Moreover, we can compute a set of numerical solutions

{G(·, t)} to Eq.(9) and extract the mean-free parts to obtain our solution snapshots.

Remark 3.2. The construction of the POD basis can be costly. However, once the con-

struction is done, POD basis can be used to solve the viscous G-equations with different

parameters, which will bring significant computational savings.

3.3. A backward Euler and POD-based Galerkin method

The POD basis provides an efficient approach to approximate the solution in the physical

space. If we choose the backward Euler scheme to discretize the time space, we obtain

a backward Euler and POD-based Galerkin method to solve Eq.(16). Specifically, let

Ûk ≡
∑r

i=1 ai(tk)ψi denote the numerical solution at t = tk, where ψi’s are the POD basis

functions. We want to find solutions {Ûk}mk=0 ⊂ Sr satisfying{
〈∂̄Ûk, ψ〉+ a(Ûk, ψ) + 〈F (Ûk), ψ〉 = 〈−P ·V, ψ〉, ∀ψ ∈ Sr

Û0(x) = 0,
(21)

where ∂̄Ûk = (Ûk− Ûk−1)/∆t. By choosing the test function ψ to be ψi, i = 1, ..., r in (21)

and letting Ak = (a1(tk), · · · , ar(tk))T denote the coefficient vector, we obtain a nonlinear

equation system for Ak as

M1Ak = M2Ak−1 + C + Fk, (22)

where M1,M2 ∈ Rr×r with (M1)ij = 〈ψi, ψj〉 + ∆t · a(ψi, ψj) and (M2)ij = 〈ψi, ψj〉, and

C,Fk ∈ Rr with Ci = −∆t〈V ·P, ψi〉 and (Fk)i = −∆t〈F (
∑r

i ai(tk)ψi), ψi〉. The matrices

M1, M2 and C can be pre-computed and saved. The Eq.(22) can be efficiently computed
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using the Newton’s method, where the solution at time tk−1 can be chosen as the initial

guess for Ak.

We solve Eq.(22) to get the POD solution Ûk, which is the numerical solution of the

mean-free part û(x, t) of the G-equation (16). As indicated by the Eq.(15), u(x, t) is

recovered by add the mean solution back

u(x, t) = û(x, t)−
∫ t

0

∫
Tn

Sl|P +∇û(x, t)|dxdt.

Therefore, the numerical solution to u(x, t) is

Uk = Ûk −∆t
k∑
i=1

[ ∫
Tn

Sl|P +∇Ûi(x, t)|
]
. (23)

In practice, we apply a second-order trapezoidal rule to compute the numerical integration

in (23). Meanwhile, we use a central difference scheme to compute the spatial derivatives

and use extrapolations at boundaries to approximate spatial derivatives to maintain the

second order accuracy.

4. Convergence analysis

In this section, we shall present some convergence analysis to show that the accuracy of

our numerical solution is guaranteed. Our convergence analysis follows the framework

of the Galerkin finite element methods for parabolic problems [14]. To deal with the

nonlinearity of the viscous G-equation, the following lemmas are useful.

Lemma 4.1. There exists a constant γ > 0 such that for any u, v ∈ H,

||F (u)− F (v)||L2 ≤ γ||u− v||H (24)

Proof. The proof of this lemma is based the definition of F (see Eq.(18)) and the triangle

inequality.

Lemma 4.2. The bilinear form a(·, ·) (defined in (17)) is continuous and coercive, which

means that there exist constants β > 0 and κ > 0 such that for any ψ, φ ∈ H

a(ψ, φ) ≤ β||ψ||H ||φ||H , a(ψ, ψ) ≥ κ||ψ||2H . (25)

Proof. Let ||V||∞ denote the maximum amplitude of the vector field V. One has the

estimate

a(ψ, φ) ≤
∫
Tn

||V||∞|∇ψ| · |φ|+ dSl|∇ψ| · |∇φ|

≤ ||V||∞||ψ||H ||φ||H + dSl||ψ||H ||φ||H .
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The last inequality follows from the Cauchy-Schwarz inequality. Moreover, since V is

divergence-free, V · ∇ is skew-symmetric, which means

a(ψ, ψ) = dSl

∫
Tn

|∇ψ|2.

Since ψ is mean-free, the Poincaré-Wirtinger inequality implies that there exists a constant

κ > 0 such that

a(ψ, ψ) ≥ κ||ψ||2H .

Now we define the Ritz-projection P r : H → Sr, u 7→ P ru such that

a(P ru, ψ) = a(u, ψ), ∀ψ ∈ Sr. (26)

Facts from functional analysis guarantee that P r is well-defined and bounded because

a(·, ·) is continuous and coercive. More specifically,

||P ru||H ≤
β

κ
||u||H , ∀u ∈ H. (27)

Using the same argument in Lemma 3 and Lemma 4 in [6], we can prove that P r has

the following approximation property. More details of the approximation property of the

POD basis can be found in the appendix 7.2.

Lemma 4.3.
1

m

m∑
k=1

||û(tk)− P rû(tk)||2H ≤
3β

κ

m∑
k=r+1

λk, (28)

and
1

m

m∑
k=1

||∂̄û(tk)− P r∂̄û(tk)||2H ≤
3β

κ

m∑
k=r+1

λk, (29)

where λk is the k-th largest eigenvalues of the correlation matrix K associated with the

solution snapshots.

Theorem 4.4. Let Û and {Ûk}mk=0 be the solutions to Eq.(19) and its backward Euler-

POD-based Galerkin approximation, respectively. Then for sufficiently small ∆t, there

exists a constant C > 0 depending on û, d, Sl, V, P and T but independent of r, ∆t, and

m such that
1

m

m∑
k=1

||Ûk − û(tk)||2L2 ≤ C
(
(∆t)2 +

m∑
j=r+1

λj
)
. (30)

Proof. For k = 0, 1, . . . ,m, define ϑk = Ûk − P rû(tk) and %k = P rû(tk)− û(tk). Then

1

m

m∑
k=1

||Ûk − û(tk)||2L2 ≤
2

m

m∑
k=1

||ϑk||2L2 +
2

m

m∑
k=1

||%k||2L2 , (31)
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2

m

m∑
k=1

||%k||2L2 ≤
2

m

m∑
k=1

||%k||2H ≤
6β

κ

m∑
k=r+1

λk. (32)

Define ∂̄ϑk = (ϑk − ϑk−1)/∆t. For all ψ ∈ Sr,

〈∂̄ϑk, ψ〉+ a(ϑk, ψ) = 〈υk, ψ〉+ 〈F (û(tk))− F (Ûk), ψ〉, (33)

where υk = ût(tk) − P r∂̄û(tk) = ût(tk) − ∂̄û(tk) + ∂̄û(tk) − P r∂̄û(tk). Define ωk =

ût(tk) − ∂̄û(tk) and ηk = ∂̄û(tk) − P r∂̄û(tk). Take ψ = ϑk ∈ Sr in the previous equality

and we obtain

1

∆t

(
||ϑk||2L2−〈ϑk, ϑk−1〉

)
+κ||ϑk||2L2 ≤ ||F (û(tk))−F (Ûk)||L2||ϑk||L2 +||ϑk||L2 ||υk||L2 . (34)

By the Lemma 4.1,

||F (û(tk))− F (Ûk)||L2||ϑk||L2 ≤ γ||û(tk)− Ûk||H ||ϑk||L2 ,

≤ γ
(
||%k||H + ||ϑk||H

)
||ϑk||L2 .

Since ϑk ∈ Sr, which is a finite dimensional space, the norms defined on Sr are equivalent.

This means that there exist some constant C1 > 0 such that

||F (û(tk))− F (Ûk)||L2 ||ϑk||L2 ≤ C1

(
||%k||H + ||ϑk||L2

)
||ϑk||L2 ,

≤ C1

2
||%k||2H +

3C1

2
||ϑk||2L2 .

Combining these inequalities, we have

||ϑk||2L2 − 〈ϑk, ϑk−1〉 ≤ ∆t
(
||ϑk||L2||υk||L2 +

C1

2
||%k||2H +

3C1

2
||ϑk||2L2

)
.

By using the inequality of arithmetic and geometric means, we obtain(
1− (1 + C1)∆t

)
||ϑk||2L2 ≤ ||ϑk−1||2L2 + ∆t

(
||υk||2L2 + 3C1||%k||2H

)
.

For sufficiently small ∆t, there exists a constant C2 > 0 such that

||ϑk||2L2 ≤ (1 + C2∆t)

(
||ϑk−1||2L2 + ∆t

(
||υk||2L2 + 3C1||%k||2H

))
. (35)

By iteratively using the inequality (35), we have

||ϑk||2L2 ≤ eC2T

(
||ϑ0||2L2 + ∆t

k∑
j=1

(
||υj||2L2 + 3C1||%j||2H

))
. (36)
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Note that ϑ0 = 0 in our case. Therefore, we sum the inequality (36) from k = 1 to m and

arrive at

m∑
k=1

||ϑk||2L2 ≤ eC2T∆t
m∑
k=1

k∑
j=1

(
||υj||2L2 + 3C1||%j||2H

)
,

≤ eC2TT
m∑
j=1

(
||υj||2L2 + 3C1||%j||2H

)
,

≤ eC2TT
m∑
j=1

(
2||ωj||2L2 + 2||ηj||2L2 + 3C1||%j||2H

)
.

Therefore,

1

m

m∑
k=1

||Ûk − û(tk)||2L2 ≤
2

m

m∑
k=1

||ϑk||2L2 +
6β

κ

m∑
k=r+1

λk,

≤ 2eC2TT

m

m∑
j=1

(
2||ωj||2L2 + 2||ηj||2L2 + 3C1||%j||2H

)
+

6β

κ

m∑
k=r+1

λk.

As proved in the Theorem 7 of [6],

m∑
j=1

||ωj||2L2 ≤
∆t

3

∫ T

0

||ûtt(t)||2L2 . (37)

Together with Lemma 4.3, we obtain

1

m

m∑
k=1

||Ûk − û(tk)||2L2 ≤
(

4eC2T

3

∫ T

0

||ûtt(t)||2H
)

(∆t)2 + C3

m∑
k=r+1

λk,

where C3 = 3β
κ

(
2eC2TT (2 + 3C1) + 2

)
. This completes the proof for Theorem 4.4.

Theorem 4.4 provides an error estimate for the mean-free part. Recall that the mean

part depends on the mean-free part and the original solution can be recovered afterward.

Thus, we can obtain the error estimate for the original solution.

Theorem 4.5. Let u and {Uk}mk=0 be the solutions to Eq.(8) and its numerical approx-

imation Eq.(23) based on backward Euler-Galerkin-POD scheme, respectively. Then for

sufficiently small ∆t, there exists a constant C ′ ≥ 0 depending on û, d, Sl, V, P and T

but independent of r, ∆t, and m such that

1

m

m∑
k=1

||Uk − u(tk)||2L2 ≤ C ′
(
(∆t)2 +

m∑
j=r+1

λj
)
. (38)

11



Proof. Let C be the constant appearing in Theorem 4.4, i.e., the Eq.(30). Recall that

Uk = Ūk + Ûk = −∆t
k∑
i=1

[ ∫
Tn

Sl|P +∇Ûi(x, t)|
]

+ Ûk,

and

u(tk) = ū(tk) + û(tk) = −
∫ t

0

∫
Tn

Sl|P +∇û(x, t)|dxdt + û(tk).

We also denote

(Ūk)t = −
∫
Tn

Sl|P +∇Ûi(x, t)|.

Then we obtain

1

m

m∑
k=1

||Uk − u(tk)||2L2 ≤
2

m

m∑
k=1

||Ûk − û(tk)||2L2 +
2

m

m∑
k=1

||ū(tk)− Ūk||2L2 . (39)

From Theorem 4.4, we get an estimate for the first summation on the RHS of the inequality

(39). So in order to prove the estimate (38), we only need to show that there exist a

constant C ′′ > 0 independent of r, ∆t and m such that

1

m

m∑
k=1

||ū(tk)− Ūk||2L2 ≤ C ′′
(
(∆t)2 +

m∑
j=r+1

λj
)
.

As such, we consider the following decomposition

m∑
k=1

||ū(tk)− Ūk||2L2 ≤ 2
m∑
k=1

∥∥∥∥ū(tk)−
k∑
j=1

∆t
(
ūt(tj)

)∥∥∥∥2

L2

+ 2
m∑
k=1

∥∥∥∥ k∑
j=1

∆t
(
ūt(tj)− (Ūj)t

)∥∥∥∥2

L2

.

(40)

The first term on the RHS of the inequality (40) is bounded by

2
m∑
k=1

∥∥∥∥ū(tk)−
k∑
j=1

∆t
(
ūt(tj)

)∥∥∥∥2

L2

≤ 2(∆t)2

m∑
k=1

∥∥∥∥ k∑
j=1

( ū(tj)− ū(tj−1)

∆t
− ūt(tj)

)∥∥∥∥2

L2

,

≤ 2(∆t)2

m∑
k=1

k
k∑
j=1

∥∥∥∥ ū(tj)− ū(tj−1)

∆t
− ūt(tj)

∥∥∥∥2

L2

. (41)

Note that the term
ū(tj)−ū(tj−1)

∆t
− ūt(tj) in (41) is basically equal to −ωj, which was defined

in the proof of the Theorem 4.4. The only difference is that we replace û in the definition

12



of the ωj by ū. Therefore, we can replace û in Eq.(37) by ū and obtain

2
m∑
k=1

∥∥∥∥ū(tk)−
k∑
j=1

∆t
(
ūt(tj)

)∥∥∥∥2

L2

≤ 2(∆t)2

m∑
k=1

k
k∑
j=1

∥∥∥∥ ū(tj)− ū(tj−1)

∆t
− ūt(tj)

∥∥∥∥2

L2

,

≤ 2(∆t)2

m∑
k=1

k
∆t

3

∫ T

0

||ūtt(t)||2L2

≤ 2(∆t)3

3

m∑
k=1

k

∫ T

0

|ūtt(t)|2 ≤
2T 2

3
∆t

∫ T

0

|ūtt(t)|2.

The second term on the RHS of Eq.(40) is bounded by

2
m∑
k=1

∥∥∥∥ k∑
j=1

∆t
(
ūt(tj)− (Ūk)t

)∥∥∥∥2

L2

≤ 2(∆t)2

m∑
k=1

k
k∑
j=1

||ūt(tj)− (Ūj)t||2L2 ,

≤ 2(∆t)2

m∑
k=1

k
k∑
j=1

(∫
Tn

|∇(û(tj)− Ûj)|
)2

,

≤ 2(∆t)2m2

m∑
j=1

(∫
Tn

|∇(û(tj)− Ûj)|
)2

,

≤ 2T 2

m∑
j=1

||û(tj)− Ûj||2H ≤ 2T 2C4

m∑
j=1

||û(tj)− Ûj||2L2 ,

where the last inequality follows from the fact that û(tj) − Ûj ∈ Sr and that norms are

equivalent in a finite dimensional space. Therefore,

1

m

m∑
k=1

||ū(tk)− Ūk||2L2 ≤ (∆t)2 2T

3

∫ T

0

|ūtt(t)|+ 2T 2C4
3β

κ

m∑
j=r+1

λj.

This completes the proof.

5. Numerical Results

We shall perform numerical experiments to test the performance and accuracy of the

proposed method. We consider the following viscous G-equation on [0, 1]2 with planar

initial condition{
Gt + V · ∇G+ Sl|∇G| = dSl∆G in [0, 1]2 × (0, T ),

G(x, 0) = P · x on [0, 1]2 × {t = 0},
(42)

where x = (x, y), P is the flame front propagation direction, and the assumption G(x +

z, t) = G(x, t) + P · z is used. The setting of the fluid velocity V(x) is an important issue

13



in the turbulent combustion modeling. We first consider a typical velocity filed, which is

a steady incompressible cellular flow,

V(x) = (V1, V2) = ∇⊥H = (−Hy,Hx), H =
A

2π
sin(2πx) sin(2πy), (43)

where A is the amplitude of the velocity filed. In our numerical experiments, we choose

A = 4.0, Sl = 1, and P = (1, 0). In our comparison, the finite difference solution refers

to the solution obtained by the reference numerical scheme to solve (42); see Section 7.1

in the appendix for more details. While the POD solution refers to the one obtained by

our method, i.e., the solution is represented by the POD basis. We choose the method of

snapshot to construct the POD basis; see Section 3.2 for the details.

5.1. Test of the POD basis within the same computational time

In the first numerical experiment, we solve the viscous G-equation (42) from time t = 0

to T using the reference numerical scheme and obtain solution snapshots. Then, we

construct POD basis function the solution snapshots. Finally, we recompute the viscous

G-equation (42) on the same time period [0, T ] using the POD basis.

To compute the reference solution, we partition the physical domain [0, 1]2 into (Nh +

1) × (Nh + 1) grids with mesh size h = 1
Nh

. Similarly, we choose time step ∆t = 1
Nt

in

discretizing the time domain. As such, T × Nt + 1 snapshots will be generated. In our

numerical test, we set Nh = 80, T = 1.0, and Nt = 1000. By applying the algorithm we

have discussed in the Section 3.2, we are able to construct a set of POD basis, denoted by

S = {ψ1, · · · , ψr}, r ≤ min{(Nh+1)×(Nh+1), T ×Nt+1}. In practice, we determine the

number of the POD basis r to be the smallest integer such that
∑Nsnap

j=r+1 λj∑Nsnap
j=1 λj

≤ ePOD, where

λj’s are the eigenvalues of the covariance matrix of the solution snapshots and Nsnap is

the number of solution snapshots, and the constant ePOD is chosen to be 0.001 in our

numerical experiments. Usually, Nsnap is assumed to be much smaller than the degree of

freedom in the physical space discretization. We choose the inner product in H1 norm in

computing the POD basis.

With the POD basis, we apply the backward Euler and POD-based Galerkin method

to compute Eq.(42) with d = 0.1. We compare the mean-free POD solution with the

mean-free finite difference solution at T = 1.0s. Fig.2 shows that the POD solution

agrees well with the reference solution. Moreover, based on the mean-free POD solution,

we are able to get the numerical solution of the G-equation according to Eq.(23). In Fig.3,

we show the recovered solution using our POD method and the reference solution. We

can see the good performance of the POD method.

We continue our experiment by computing Eq.(42) with distinct choices of d from

0.01 to 0.1. We compare the error between the POD method and the reference method

in computing both the mean-free component of the solution and the recovered solution.

Table 1 shows the relative error between these results with different choices of d. We can

see the good performance of the POD method and the relative error is much smaller if

we add the means back.
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In Fig.4 and Fig.5, we show the comparison between the recovered solutions obtained

using the POD method and the reference solutions for d = 0.05 and d = 0.01, respectively.

Again, we find that the POD method performs well for all the numerical experiments. In

addition, we find that some sharp layers appear in the solution as d decreases. However,

our POD basis can capture those layered structures and give accurate numerical results.

We also find that the mean-free POD solution agrees well with the mean-free part of the

reference solution for different diffusive number d (not shown here).

These results show that POD method can capture the low-dimensional structures in

the viscous G-equations and provide an efficient model reduction method to approximate

the solutions.
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(b) POD solution.

Figure 2: Mean-free component of the solution at T = 1 with d = 0.1.
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(b) POD solution.

Figure 3: Solution of the viscous G-equation at T = 1 with d = 0.1.
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d 0.01 0.02 0.03 0.04 0.05

Mean-free component 0.038844 0.069712 0.025673 0.021257 0.017649

Full solution 0.020316 0.026285 0.005110 0.003020 0.003349

d 0.06 0.07 0.08 0.09 0.1

Mean-free component 0.016216 0.014977 0.014998 0.013786 0.013793

Full solution 0.004840 0.004997 0.005115 0.007431 0.007085

Table 1: The relative errors between POD solution and reference solution.
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(b) POD solution.

Figure 4: Solution of the viscous G-equation at T = 1 with d = 0.05.
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(b) POD solution.

Figure 5: Solution of the viscous G-equation at T = 1 with d = 0.01.

5.2. Test of the POD basis for longer time computations

In this numerical experiment, we shall first solve the viscous G-equation (42) from time

t = 0 to t = 1 using the reference numerical scheme to construct POD basis. Then, we

recompute the viscous G-equation (42) on a longer time period using the POD basis.

We first compute the viscous G-equation with the diffusive number d = 0.1. Fig.6

shows that the mean-free component of the POD solution agrees well with the mean-free

component of the reference solution. In addition, Fig.7 shows that the recovered POD

solution to the G-equation approximates well with the reference solution. We find that

the profiles in Fig.2 and Fig.6, i.e., the mean-free components of the solution are almost

the same. Moreover, the profile in Fig.7 is a downward shift of the profile in Fig.3 by

1.4 units. These interesting results show that POD method allows us to compute the

stationary solution to the G-equation. In this numerical experiment, the POD method

has six basis functions.

We repeat the numerical experiment for different choices of the diffusive number d from

0.1 to 0.01 and compare the error between the POD method and the reference method.

Table 2 shows the relative error between these results with different choices of d. We can

see the good performance of the POD method and the relative error is much smaller if

we add the means back.

In Fig.8 and Fig.9, we show the comparison between the recovered solutions obtained

using the POD method and the reference solutions for d = 0.05 and d = 0.01, respectively.

Again, we find that the POD method performs well for these numerical experiments.

Moreover, the profiles in Figs.8 and 9 are downward shifts of the profiles in Figs.4 and 5,

respectively. The smaller the d is, the bigger shift will be observed.

5.3. Test of the POD basis for different parameters

We shall investigate the robustness of the POD basis. Specifically, we build the POD

basis from the solution snapshots of the viscous G-equation with the diffusivity d0. Then,
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(b) POD solution.

Figure 6: Mean-free component of the solution at T = 2 with d = 0.1.
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Figure 7: Solution of the viscous G-equation at T = 2 with d = 0.1.
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Figure 8: Solution of the viscous G-equation at T = 2 with d = 0.05.
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Figure 9: Solution of the viscous G-equation at T = 2 with d = 0.01.

d 0.01 0.02 0.03 0.04 0.05

Rela. error, Mean-free 0.082762 0.042995 0.029778 0.047371 0.042206

Rela. error, Recovered 0.028087 0.020967 0.019781 0.033270 0.026356

d 0.06 0.07 0.08 0.09 0.1

Rela. error, Mean-free 0.038563 0.03471 0.031951 0.029692 0.027939

Rela. error, Recovered 0.020541 0.016758 0.013963 0.012019 0.010648

Table 2: The relative errors between POD solution and reference solution at T = 2.

we use the pre-computed POD basis to compute solutions of the viscous G-equation with

different d.

In our numerical experiment, we solve the viscous G-equation from t = 0 to t = 1

with d0 = 0.05 from to build the POD basis. In Table 3, we show the relative errors

between the POD solutions and the reference solutions to the viscous G-equation with

different d. One can find that POD basis provides good approximations to the solution

of the viscous G-equation when d is chosen from d = 0.01 to d = 0.1. The closer d is close

to d0, the smaller the error will be. We also observe that POD solutions agree well with

the reference solutions to the viscous G-equation with different d (not shown here). We

emphasize that the pre-computed POD basis can be used to compute different solutions

is of great importance for practical computations.

diffusive number d 0.01 0.02 0.02 0.04 0.05

Rela. error, Recovered 0.056233 0.030934 0.014142 0.008826 0.014398

diffusive number d 0.06 0.07 0.08 0.09 0.1

Rela. error, Recovered 0.018682 0.022199 0.024353 0.025569 0.025963

Table 3: The relative errors between POD solutions and reference solutions.
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5.4. Compute the turbulent flame speed

Since the POD basis is very efficient to approximate the solution of the viscous G-equation,

we shall apply the newly developed method to compute the turbulent flame speed ST ,

which is defined in the Eq.(10). In this experiment, we shall compare the numerical results

of the turbulent flame speed obtained using our POD method and the reference method.

First of all, for each parameter d we compute the solution snapshots from t = 0 to t = 1

to construct the POD basis. Then, with the POD basis we solve the viscous G-equation

to obtain the solution and the burned area A(t). Finally, we show the ratio of the A(t)

over time t in Fig.10. These results indicate that the POD basis can be used for long

time computation of the viscous G-equation, which allows us to efficiently compute the

turbulent flame speed.
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Figure 10: Numerical results of the turbulent flame speed obtained using different methods.

5.5. Comparison of the computational time

In Table 4 we compare the CPU time of two methods when solving the viscous G-equation

from time t = 0 to t = 1 with different d. We find that the CPU time of the POD method

slightly increases when d decreases. This is due to the fact that we are using more POD

basis for small d in order to achieve the same POD truncation error rate ePOD = 0.1%. In

general, the computational cost of the POD method is far less than the finite difference

method. The unit of the computational time is second.

d 0.01 0.02 0.03 0.04 0.05

POD method 1.438894 1.296282 0.910010 0.945209 0.9290220

Reference method 480.6434 474.2021 483.5336 482.6826 480.4273

d 0.06 0.07 0.08 0.09 0.1

POD method 0.873965 0.940874 0.906758 0.657222 0.786591

Reference method 488.6499 476.8122 487.3498 483.3396 476.7582

Table 4: CPU time of two methods in solving the viscous G-equation from t = 0 to 1 with different d.
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5.6. Test of the POD basis for a time-periodic fluid velocity

Finally, we consider one parameter family of time-dependent periodic cellular flows

V(x, t) =
(
V1, V2

)
=
(

cos(2πy) + θ cos(t) sin(2πy), cos(2πx) + θ cos(t) sin(2πx)
)
. (44)

The first term of the velocity field
(

cos(2πy), cos(2πx)
)

is a steady cellular flow, but

the second term of the velocity field θ cos(t)
(

sin(2πy), sin(2πx)
)

is a time-periodic per-

turbation that introduces an increasing amount of disorder in the flow trajectories as θ

increases. Again, we compare the numerical results of the turbulent flame speed obtained

using our POD method and the reference method.

In Fig.11, we show the ratio of A(t) over time t with θ = 0.05 and different d. The

relative errors for the burning speed are basically negligible. These results show that the

POD basis can be used to compute the viscous G-equation with time-periodic cellular

flows. Compared with the results in Fig.10, we find that the turbulent flame speed in

Fig.11 has different patterns, which is caused by the mixing and chaotic features of the

fluid velocity (44).
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(a) d = 0.1.
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(b) d = 0.05.
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(c) d = 0.01.

Figure 11: Numerical results of the turbulent flame speed obtained using different methods.

As θ increases, the flow trajectories are more and more mixing and chaotic, which

gradually deteriorates the accuracy of the POD method. In Fig.11, we show the ratio

of A(t) over time t with θ = 1.0 and d = 0.1. The relative errors for the burning

speed are about 2%, which is good enough in the engineering applications. We should

point out that when the diffusion parameter d becomes small and θ becomes large, the

effective dimension of the G-equation increases fast, which brings difficulty to the POD

method. The POD basis obtained by minimizing the projection error, e.g. (20) may not

be able to capture the dynamics of the viscous G-equation with time-periodic chaotic

flows. One needs other techniques to construct a set of reduced order basis, which will be

our subsequent research.

6. Conclusion

We have proposed an efficient model reduction method for solving viscous G-equations,

which have been very popular field models in combustion and physics literature for study-

ing turbulent flame propagation. We constructed the POD basis based on learning the
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Figure 12: Illustration of local interface velocities in the G-equation and a flame front

solution information from the snapshots. Then, we applied the Galerkin project method

to solve the viscous G-equations by using the POD basis. We provided rigorous error anal-

ysis for our numerical methods based on a decomposition strategy, where we decomposed

the solution into a mean part and a mean-free part. We shown through numerical experi-

ments that our methods can accurately compute the various G-equations with significant

computational savings. In addition, we found that the POD basis allows us to compute

long-time solution of the various G-equations. Thus, we can evaluated the corresponding

turbulent flame speeds in cellular flows. In our future work, we plan to study turbulent

flame speeds of G-equations in three dimensional spatially or spatiotemporally periodic

vortical flows.

7. Appendix

7.1. A reference method to solve G equation

We first apply the finite difference scheme proposed in [7] to solve the viscous G-equation

from time 0 to T seconds on the domain D = [0, 1]× [0, 1] to get the snapshots. Generally

speaking, we employ the Hamilton-Jacobi weighted essentially nonoscillatory (HJ WENO)

scheme and the total variation diminishing Runge-Kutta (TVD RK) scheme in higher

order spatial and time discretization respectively; see [11, 4, 5, 10] for more details of

these schemes.

For small d, the viscous G-equation is convection dominated and it should be treated

like a hyperbolic equation. The forward Euler time discretization is given by

Gn+1 −Gn

∆t
+Hn(G−x , G

+
x , G

−
y , G

+
y )− dSl∆Gn = 0 (45)

where G−i and G+
i denote the left and right discretization of Gi in the WENO5 scheme

[5]. H is a consistent and monotone numerical Hamiltonian. Here we treat the velocity
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term and the normal velocity term separately:

H(G−x , G
+
x , G

−
y , G

+
y ) = V1G

vel
x + V2G

vel
y + Sl

√
(Gnor

x )2 + (Gnor
y )2 (46)

where the upwinding scheme and the Godunov scheme are applied for the velocity term

and the normal velocity term respectively [10].

Gvel
x =

{
G−x if V1 > 0

G+
x if V1 < 0

(47)

Gvel
y =

{
G−y if V2 > 0

G+
y if V2 < 0

(48)

(Gnor
x )2 =


(G−x )2 if V1 > Sl

max(max(G−x , 0)2,min(G+
x , 0)2) if |V1| ≤ Sl

(G+
x )2 if V1 < −Sl

(49)

(Gnor
y )2 =


(G−y )2 if V2 > Sl

max(max(G−y , 0)2,min(G+
y , 0)2) if |V2| ≤ Sl

(G+
y )2 if V2 < −Sl

(50)

For the diffusion term, we apply the central difference. For the time discretization, we

apply the RK3 scheme [4]. The CFL condition in this case is

∆t

(
Sl + |V1|

∆x
+
Sl + |V2|

∆y

)
< 1 (51)

When d is large, the time step size for the forward Euler scheme is very small (∆t =

O((∆x)2) + (∆y)2)). To alleviate the stringent time step restriction, we introduce the

following semi-implicit scheme:

Gn+1 −Gn

dt
+ V · ∇Gn+1 + Sl|∇Gn| = dSl∆G

n+1 (52)

where the convection and diffusion terms are discretized by the central difference, and the

normal direction term is discretized by the Godunov and WENO5 scheme. In this case,

the CFL condition is

∆t

(
Sl
∆x

+
Sl
∆y

)
< 1 (53)

7.2. Model reduction using the POD method

Let X be a Hilbert space equipped with the inner product 〈·, ·〉X and u(·, t) ∈ X, t ∈ [0, T ]

be the solution of a dynamic system. In practice, we approximate the space X with a

linear finite dimensional space V with dim(V ) = Ndof , where Ndof represents the degree

of freedom of the solution space and Ndof can be extremely large for high-dimensional
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problem (consider the finite element method and finite difference method as examples).

Given a set of snapshot of solutions, a linear space S can be spanned, denoted as S =

span{u(·, t1), u(·, t2), · · · , u(·, tm)}, where t1, · · · , tm ∈ [0, T ] are different time instances

and m is the number of the solution snapshots.

The POD method aims to build a set of low-dimensional basis {ψ1(·), ψ2(·), · · · , ψr(·)}
with r ≤ min(m,Ndof ) that optimally approximates the input solution snapshots. More

specifically, the POD seeks a solution for the following optimization problem:

min
ψ1,··· ,ψr∈X

1

m

m∑
i=1

‖u(·, ti)−
r∑
j=1

〈u(·, ti), ψj(·)〉Xψj(·)‖2
X , s.t. 〈ψi, ψj〉X = δij (54)

In order to solve Eq.(54), we consider the eigenvalue problem

Kv = λv

where K ∈ Rm×m and Kij = 1
m
〈u(·, ti), u(·, tj)〉X is the snapshot correlation matrix.

Let vk, k = 1, · · · , n be the eigenvectors and λ1 ≥ λ2 ≥ · · · ≥ λm > 0 be the positive

eigenvalues. It has been shown in [15] that the solution of 54 is given by

ψk(·) =
1√
λk

m∑
j=1

(vk)ju(·, tj), 1 ≤ k ≤ r (55)

It can also be shown that the following error formula holds

1

m

m∑
i=1

‖u(·, ti)−
r∑
j=1

〈u(·, ti), ψj(·)〉Xψj(·)‖2
X =

m∑
j=r+1

λj (56)

We use the notation Sr to denote the span of {ψ1(·), ψ2(·), · · · , ψr(·)}.
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