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Abstract—In this paper, we investigate the proper orthog-
onal decomposition (POD) method to numerically solve the
forward Kolmogorov equation (FKE). Our method aims to
explore the low-dimensional structures in the solution space
of the FKE and to develop efficient numerical methods. As
an important application and our primary motivation to
study the POD method to FKE, we solve the nonlinear fil-
tering (NLF) problems with a real-time algorithm proposed
in [34] combined with the POD method. This algorithm is
referred as POD algorithm in this paper. This algorithm
consists of off-line and on-line stages. In the off-line stage,
we construct a small number of POD basis functions
that capture the dynamics of the system and compute
propagation of the POD basis functions under the FKE
operator. In the on-line stage, we solve the NLF problem
in a real-time manner using the POD basis functions.
Its convergence analysis has also been discussed. Some
numerical experiments of the NLF problems are performed
to illustrate the feasibility of our algorithm and to verify
the convergence rate. The POD algorithm in our paper
provides significant computational savings over the particle
filter.
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I. INTRODUCTION

Nonlinear filtering (NLF) problem is originated from
the problem of tracking and signal processing. The fun-
damental problem in the NLF is to give an instantaneous
and accurate estimation of the states based on the noisy
observations [19]. In this paper, we proposed an efficient
numerical method to solve the forward Kolmogorov
equation (FKE) arising from the NLF problem [18] . Our
method is based on the proper orthogonal decomposition
(POD) method [32], [6], [33], which is an effective tool
in exploring the intrinsic low-dimensional structures of
high-dimensional solutions. We start from the following
signal based model:{

dxt = f(xt, t)dt+ g(xt, t)dvt

dyt = h(xt, t)dt+ dwt
, (1)

where xt ∈ Rn is the states of the system at time t,
the initial state x0 satisfying some initial distribution,
yt ∈ Rm is the observations at time t with y0 = 0, and
vt and wt are vector-valued Brownian motion processes
with covariance matrices E[dvtdv

T
t ] = Q(t)dt ∈ Rn×n

and E[dwtdw
T
t ] = S(t)dt ∈ Rm×m, S(t) > 0 respec-

tively. Furthermore, we assume that x0, dwt and dvt are
independent. The most popular method so far to solve
(1) is the particle filter, see [2], [12], [3] and references
therein. However, the main drawback of the particle filter
is that it is hard to be implemented as a real-time solver
due to its nature of the Monte Carlo simulation.

In 1960s, Duncan [10], Mortensen [27], and Za-
kai [36] independently derived the so-called Duncan-
Mortensen-Zakai (DMZ) equation or Zakai equation in
some literature, which asserts that the unnormalized
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conditional density function of the states xt, denoted
by σ(x, t), satisfies the following Ito stochastic partial
differential equation (SPDE):{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1dyt,

σ(x, 0) = σ0(x),

(2)

where σ0(x) is the density of the initial states x0, and

L(·) :=
1

2

n∑
i,j=1

∂2

∂xi∂xj

(
(gQgT )ij ·

)
−

n∑
i=1

∂(fi·)
∂xi

.

(3)

The DMZ equation laid down the solid foundation to
study the NLF problem using SPDE. However, we
cannot solve the DMZ equation analytically in general.
Many efforts have been made to develop efficient numer-
ical methods. One of the commonly used method is the
splitting-up method originated from the Trotter product
formula, which was first introduced in [5] and has been
extensively studied later, see [28], [17], [13]. In [23],
the so-called S3 algorithm was developed based on the
Wiener chaos expansion, by separating the computations
involving the observations from those dealing only with
the system parameters. However, the limitation of these
methods is the boundedness of the drifting term f and
the observation term h in (1).

To overcome this restriction, the third author and his
co-worker [34] developed a novel algorithm to solve the
pathwise robust DMZ equation. Specifically, for each
given realization of the observation process denoted by
yt, they made an invertible exponential transformation

σ(x, t) = exp
(
hT (x, t)S−1(t)yt

)
u(x, t), (4)

and transformed the DMZ equation (2) into a determin-
istic partial differential equation (PDE) with stochastic
coefficient

∂

∂t
u(x, t) +

∂

∂t
(hTS−1)ytu(x, t) =

exp
(
− hT (x, t)S−1(t)yt

)(
L − 1

2
hTS−1h

)
·
(

exp
(
− hT (x, t)S−1(t)yt

)
u(x, t)

)
u(x, 0) =σ0(x)

.

(5)
Equation (5) is the so-called pathwise robust DMZ
equation. The boundedness of the drift term f (contained
in the operator L(·)) and observation term h is replaced
by some mild growth conditions in this case. Neverthe-
less, they still make the assumption that the drift term,

the observation term, and the diffusion term are time
invariant, which means that f , h, and g in (1) cannot
explicitly depend on time. Later on, in [24] the second
and the third author of this paper generalized Yau-Yau’s
algorithm to more general settings of the NLF problems,
namely, the time-dependent ones.

Let us assume that the observation time sequences 0 =

t0 < t1 < · · · < tNt = T are given. In each time interval
tj−1 ≤ t < tj , one freezes the stochastic coefficient yt to
be ytj−1 in (5) and makes the exponential transformation

uj(x, t) = exp
(
hT (x, t)S−1(t)ytj−1

)
u(x, t).

It is easy to deduce that uj satisfies the FKE

∂

∂t
uj(x, t) =

(
L − 1

2
hTS−1h

)
uj(x, t), (6)

where the operator L is defined in (3). In [25], the
second and the third author of this paper investigated
the Hermite spectral method to numerically solve the
1-D FKE (6) and analyzed the convergence rate of the
proposed method. In their algorithm, the main idea is
to shift part of the heavy computations in the off-line
stage, so that only computations requiring observations
are performed in the on-line stage and synchronized with
off-line data.

The bottle-neck of the algorithm in [24] is to solve
high-dimensional FKE accurately and compute a huge
amount of numerical integrations on-line, if the state
in NLF problems is high-dimensional. The heavy com-
putation makes the real-time performance impossible,
especially in high-dimensional problems. For example,
Yueh et al. [35] proposed a numerical scheme based on
the quasi-implicit Euler method for solving the high-
dimensional FKE, which took more than 131 minutes
to solve a 6-dimensional problem in time interval [0, 20]

with observation time step ∆τ = 0.01 on a desktop
computer, which is far from being real-time. We remark
that many progresses have been made along this direc-
tion though, it is still very challenging to solve high-
dimensional FKE accurately in an effective fashion.

This motivates us to investigate the possible low
structure of the high-dimensional FKE arising from NLF
problems, so that we can design more efficient numerical
methods. In fact, many high-dimensional problems have
certain low-dimensional structures, e.g., in the sense
of approximation using L2 norm, which suggests the
existence of reduced-order models (ROMs) and better
formulations for efficient numerical methods. Inspired
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by the last author’s recent work on developing problem-
dependent basis functions to solve SPDEs [7], [8], [9],
we propose to use the POD method to explore the low-
dimensional structures of the solutions to FKE. This in
turn will help us obtain an efficient numerical method to
solve the NLF problems.

Our POD algorithm consists of off-line and on-line
stages. In the off-line stage, we shall use some refer-
ence numerical solutions, obtained by some numerical
methods, such as finite difference method (FDM) [35]
or spectral method [25], to gather the snapshots. Then
we construct a set of reduced basis functions from
the snapshot solutions, which we refer them as POD
basis functions in the sequel. These POD basis functions
represent the most energetic structures of the FKE, which
provide an efficient way to explore the low-dimensional
structures of the FKE solutions. In the on-line stage, we
seek the numerical solution of the FKE in the linear
space spanned by our POD basis functions and update
with the new observation.

Our POD algorithm has the advantage that with only a
few POD basis functions, we can capture most dynamics
of the system. Thus, it can provide significant savings
over existing numerical methods in solving the FKE. We
should point out the number of the POD basis functions
depends on the decay speed of the eigenvalues of the
correlation matrix (9) and is problem-dependent. Due to
its energy-minimizing property in the sense that the POD
basis functions provide the best approximation to the
solution snapshots, our POD algorithm always provides
computational savings over existing numerical methods.
After the POD basis functions have been constructed, we
only need to solve a much smaller-scaled FKE in the off-
line stage and much fewer numerical integrations in the
on-line stage. We shall demonstrate the performance of
our algorithm through numerical experiments in section
V.

The rest of the paper is organized as follows. In section
II, we give the basic idea of the POD method and the
well-posedness of the pathwise robust DMZ equation. In
section III, we propose the POD method of solving the
FKE. More details about our POD algorithm, including
the off-line and on-line computing, will be discussed.
Convergence and effectiveness analysis of the proposed
method will be discussed in section IV. In section V,
we present numerical results to demonstrate the accuracy
and efficiency of our method. Conclusions are drawn in

section VI.

II. PRELIMINARIES

In this section, we shall introduce the POD first, which
has been used to study the turbulence in fluid mechanics
in the beginning. The method of snapshots are used
in our POD method to construct the basis functions.
Moreover, the existence and uniqueness of the solution
to DMZ equation has been discussed.

A. Proper orthogonal decomposition

The POD, also known as Karhunen-Loève expansion
in stochastic process and signal analysis [20], [22], or the
principal component analysis in statistics [1], or singular
value decomposition in linear algebra, or the method
of empirical orthogonal functions in geophysical fluid
dynamics [29], [14]. The POD method has firstly been
introduced in solving the turbulence in fluid dynamics.
It aims to generate optimally ordered orthonormal basis
functions in the least squares sense for a given set of
theoretical, experimental or computational data. ROMs
or surrogate models are then obtained by truncating
this optimal basis functions, which provide consid-
erable computational savings over the original high-
dimensional problems. We refer the interested readers
to [32], [6], [33], [16], [37] and references therein for
more details.

Let X be a Hilbert space equipped with the inner
product (·, ·)X and u(·, t) ∈ X , t ∈ [0, T ] be the solution
of a dynamic system. In practice, we approximate the
space X with a linear finite dimensional space V with
dimV = d, where d represents the degree of freedom
of the solution space. We should point out that d can
be extremely large for high-dimensional problem. Given
a set of snapshot of solutions, a linear space V can be
spanned, denoted as

V = span{u(·, t1), u(·, t2), ..., u(·, tN )}, (7)

where t1, · · · , tN ∈ [0, T ] are different time in-
stances. The POD method aims to build a set of
low-dimensional basis functions {ϕ1(·), ϕ2(·), ..., ϕr(·)}
with r � min(N, d) that optimally approximates the in-
put solution snapshots. The optimality means that given
any integer r and linear independent basis {ϕk(x)}rk=1,
the POD basis functions minimize the following error

1

N

N∑
i=1

∣∣∣∣u(·, ti)−
r∑

k=1

(u(·, ti), ϕk(·))Xϕk(·)
∣∣∣∣2
X
, (8)
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subject to the constrains that (ϕm(·), ϕn(·))X = δmn,
1 ≤ m,n ≤ r, where δmn = 1 if m = n, otherwise
δmn = 0.

Using the method of snapshot proposed by Sirovich
[32], we know that the optimization problem (8) can be
reduced to an eigenvalue problem

Kv = λv, (9)

where K ∈ RN×N is the correlation matrix with
(i, j)-element Kij = 1

N (u(·, ti), u(·, tj))X). We sort the
eigenvalues in a decreasing order as λ1 ≥ λ2 ≥ ... ≥
λN > 0 and the corresponding eigenvectors are denoted
by vk, k = 1, ..., N . It can be shown that the POD basis
functions are constructed by

ϕk(·) =
1√
λk

N∑
j=1

(vk)ju(·, tj), 1 ≤ k ≤ N, (10)

where (vk)j is the j-th component of the eigenvector vk.
The basis functions {ϕk}rk=1 minimizes the error (8).
This fact as well as the error formula were proved in
[15].

Proposition II.1 ([15]). Let λ1 ≥ λ2 ≥ ... ≥ λN >

0 denote the positive eigenvalues of K in (9). Then
{ϕk}rk=1 constructed according to (10) is the set of POD
basis functions of rank r ≤ N , and we have the following
error formula:

1

N

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣u(·, ti)−

r∑
k=1

(u(·, ti), ϕk(·))Xϕk(·)

∣∣∣∣∣
∣∣∣∣∣
2

X

=

d∑
k=r+1

λk. (11)

In practice, we shall make use of the decay property
of eigenvalues in λk and choose the first r dominant
eigenvalues such that the ratio ρ =

∑r
k=1 λk∑N
k=1 λk

is big
enough to achieve an expected accuracy, for instance
ρ = 99%. One would prefer the eigenvalues decays as
fast as possible so that the fewer POD basis functions
can ensure the higher accuracy.

In the sequel, we shall use the method of snapshot to
extract dominant POD basis functions from the solution
snapshots and generate a low-dimensional subspace to
approximate solutions of FKE in our NLF problems.
More details will be provided in the Section III-B.

B. The pathwise robust DMZ equation

As we briefly mentioned in the introduction section
that the solution of the DMZ equation (2) is the key

to solve the NLF problems completely. However, it is
impractical to solve in an efficient way. With a given
observation path, one can derive the pathwise robust
DMZ equation (5) easily with an exponential transform
(4). The existence and uniqueness of (5) has been
investigated by many researchers. The well-posedness
is guaranteed when the drift term f ∈ C1 and the
observation term h ∈ C2 are bounded in [30]. Later on,
similar results were obtained under weaker conditions.
For instance, the well-posedness results on the pathwise-
robust DMZ equation with a class of unbounded coef-
ficients were obtained in [4], [11], but the results were
for one-dimensional case. In [34], the third author of this
paper and his collaborator established the well-posedness
result under the condition that f and g have at most
linear growth. The second and third author of this paper
used more delicate analysis to give a time-dependent
analogous well-posedness result to the pathwise-robust
DMZ equation under some mild growth conditions on f
and h in [24].

Although compared to the DMZ equation (2), the
pathwise robust DMZ equation (5) should be easier to
solve, since the stochastic term has been transformed into
the coefficients, it is still difficult to obtain an analytic
solution in general. So many efforts have been devoted to
develop efficient and robust numerical methods to solve
the FKE equation (6), see [5], [28], [17], [13], [23] and
references therein.

III. OUR POD ALGORITHM TO SOLVE THE NLF
PROBLEMS

Our POD algorithm consists of off-line and on-line
computing stages. The off-line computing means that
it can be performed without any on-line observation or
experimental data, while the on-line computing needs
the observation data that is only available during the
experiment.

The main idea of our algorithm is to pre-construct
a set of POD basis functions in the off-line stage by
the method of snapshots (10). The FKE (6) with initial
conditions to be the POD basis functions are solved by
FDM. These data are stored for on-line synchronization.
We remark that other numerical methods, such as finite
element method and spectral method will also work, but
we will not discuss them further in detail. The choice of
numerical method is not crucial as all these computations
are implemented in the off-line stage. Once we get the
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solution snapshots, we compute the POD basis functions
using the method of snapshot (10).

A. Off-line computing

Let us assume that the observation time sequences 0 =

t0 < t1 < · · · < tNt = T are given. But the observation
data {ytj} at each observation time tj , j = 0, ..., Nt are
unknown until the on-line experiment runs.

Firstly, we generate a set of Monte Carlo realizations
of the random observations {ytj (ωi)} with 0 ≤ j ≤
Nt, 1 ≤ i ≤ Nmc, and use FDM to solve the FKE (6)
along each sample path of the random observation. This
procedure provides us sufficient amount of snapshots
U = {u(tj , ·, ωi)}, with cardinality ](U) = (Nt +

1)Nmc. These solution snapshots are assumed to capture
the information of the solution space (or manifold) of the
FKE (6) well. We remark that Monte Carlo realizations
{ytj (ωi)} are served as training purpose. In practice,
we can use historically collected data to compute the
solution snapshots.

Then, we apply the method of snapshot to construct
the POD basis functions from the solution snapshots U ,
where {u(·, ti)}Ni=1 in (10) are replaced by U here. In
our algorithm, we compute the ratio of the partial sum
of the eigenvalues and total sum of the eigenvalues

ρ =

∑Nm
i=1 λi∑](U)
i=1 λi

, (12)

where λi’s are the eigenvalues (in the descending order)
of the square correlation matrix K in (9) of size (Nt +

1)Nmc. The number of the POD basis functions Nm
is decided according to some prescribed error tolerance.
Namely, we choose the smallest Nm such that the ratio
ρ exceeds the prescribed error threshold, say ρ > 99%.
In our numerical experiments, we observed that in the
asymptotic regime, the accumulated ratio (12) obtained
using our POD basis functions can achieve exponential
decay properly, i.e.,

ρ ∼ 1− e−cNm . (13)

This can significantly reduce the number of the POD
basis and the on-line computational cost. We shall show
some numerical results in section V-B to demonstrate
this exponential decay behavior.

Let us denote by {ϕk(x)}, k = 1, ..., Nm, the POD
basis functions obtained from the solution snapshots. In
off-line computing, we also compute the propagation of

the POD basis functions, see [25]. Specifically, for each
POD basis ϕk(x), we solve the initial value problem{
∂φ
∂t (x, t) = (L − 1

2h
TS−1h)φ(x, t)dt, on [tj−1, tj ],

φ(x, tj−1) = ϕk(x), k = 1, ..., Nm,

(14)

by FDM using finer time step. In the sequel, we shall
use the notation I [tj−1,tj ] to denote the integrator or
propagator defined by solving (14), namely, φ(x, tj) =

I [tj−1,tj ]ϕk(x). Moreover, if (14) is time-invariant and
the observation intervals are uniform, i.e., tj+1 = tj +

∆t, ∀j, we only need to calculate the propagator (14)
once. For the sake of concise notation, we shall use I∆t,
instead of I [tj−1,tj ], ∀j in this case.

The merit of our method is to pre-compute the
solutions of (14) at each time interval and obtain
{I4tϕk(x)}, k = 1, · · · , Nm. These data should be
stored in preparation for the on-line synchronization. In
the general time-dependent case, which means the oper-
ator (L− 1

2h
TS−1h) depends on time t, I [tj−1,tj ]ϕk(x)

are different in each time interval [tj−1, tj ] and all of
them should be pre-computed and stored. Though we
need more storage costs, it is feasible in engineering ap-
plication and most importantly it will provide significant
savings in the on-line computation.

B. On-line computing

In this subsection, we shall demonstrate that using the
POD basis functions and their pre-computed time inte-
gration I [tj−1,tj ]ϕk(x), we can achieve fast computing
in the on-line stage.

Let u(x, 0) denote the distribution of the initial state
x0. In each time interval [tj−1, tj ], j = 1, ..., Nt, at
time tj−1, we project the initial condition u(x, tj−1) ∈
L2(D) onto the POD basis functions {ϕk(x)} and obtain
u(x, tj−1) ≈

∑Nm
k=1 ûk(tj−1)ϕk(x), where ûk(tj−1) =

(u(·, tj−1), ϕk)L2(D) are the projection coefficients, and
D ⊂ Rn is the physical domain of the states. Then,
using our pre-computed propagator, we get the solution
at time tj , i.e.,

u−(x, tj) ≈
Nm∑
k=1

ûk(tj−1)I [tj−1,tj ]ϕk(x), (15)

where u−(x, tj) denotes the a priori solution before
updating with the observation ytj . When the observation
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ytj is available, we update u−(x, tj) by

u(x, tj) = exp
[
hT (x, tj)S

−1(tj)(ytj − ytj−1)
]
u−(x, tj).

(16)

After we get the solution u(x, tj) at time tj , we again
project the solution u(x, tj) onto the POD basis func-
tions {ϕk(x)} and repeat the procedure in (15) and (16)
to continue our algorithm.

C. The POD algorithm

In this subsection, we summarize the off-line and on-
line stages in our algorithm in Algorithm 1 and 2,
respectively. The performance of our numerical method,
especially the real-time manner, will be demonstrated in
section V.

Algorithm 1 Off-line computing

1: for i = 1→ Nmc do
2: Generate particle paths {xtj (ωi)} and observa-

tions {ytj (ωi)}.
3: Compute the solution of the pathwise robust

DMZ equation (5), denoted as u(t, x, ωi).
4: Store the snapshots of u as U = {u(tj , ·, ωi)}i,j ,
j = 1, · · · , Nt.

5: end for
6: Run the method of snapshots: compute the SVD of

the correlation matrix K, where the eigen-pairs are
denoted as (λk, vk), k = 1, · · · , (Nt + 1)Nmc.

7: Set a tolerance tolρ, and ρ = 0.
8: while ρ < tolρ do
9: Increase Nm and calculate ρ =

∑Nm
k=1 λk∑](U)
k=1 λk

.
10: end while
11: Store the first Nm eigen-pairs {λk, vk}Nmk=1.
12: for k = 1→ Nm do
13: Construct the POD basis functions {ϕk}Nmk=1.
14: Solve the initial value problem (14) by FDM,

and get I [tj−1,tj ]ϕk(x), j = 1, · · · , Nt.
15: Store I [tj−1,tj ]ϕk.
16: end for

IV. CONVERGENCE ANALYSIS

A. The connection with splitting-up method in [5]

Our POD algorithm can be viewed as an improved
version of the on- and off-line algorithm developed in
[24]. The difference is that the basis functions here
are constructed after training by the snapshot solutions.

Algorithm 2 On-line computing

1: Set up the initial distribution from x0.
2: for i = 1→ Nt do
3: Project u(·, ti−1) onto the POD basis functions,

and obtain the a priori solution at ti:

u−(x, ti) =

Nm∑
j=1

(u(·, ti−1), ϕj)L2(D)I
[ti−1,ti]ϕj(x).

4: Assimilate the new observation data yti into the
a priori solution u−(x, ti):

u(x, ti) = exp[hT (x, ti)S
−1(ti)(yti−yti−1

)]u−(x, ti).

5: Calculate related statistics by using u(x, ti) as
the unnormalized density function at time ti.

6: end for

The convergence analysis in [24] is based on a given
realization of observation. In this subsection, we shall
point out the connection between the on- and off-line
algorithm in [24] and the splitting-up method in [5], so
that the convergence in L2

F (0, T ;H1(Rd)) is applicable
in our POD method.

Let us assume that the observation time sequences are
uniform, namely tj+1 − tj = ∆t, j = 0, ..., Nt − 1. The
observation data at time tj is denoted by ytj and ∆yj =

ytj − ytj−1
. Let us recall the splitting-up method briefly.

To be consistent with the settings in [5], we assume in
this subsection that S = I , the identity matrix. The DMZ
equation (2) has been decomposed into two processes U
and U− in the time intervals [ti−1, ti), i = 1, · · · , Nt,
which satisfy

dU(t) =
(
LU − µ

2
U
)
dt (17)

U(ti−1) =

{
U−(ti−1), if i = 2, 3, · · · , Nt

π0, if i = 1

dU−(t) +
µ

2
U−dt =U−hT dwt

=U−hT dyt − U−hThdt (18)

U−(ti−1) =U(ti−1),

where L is the operator in (3) and π0 is the unnormalized
conditional density function of the initial state x0. Notice
the following two important facts:

1) U satisfies FKE (6) with µ = hTh in (17).
2) U− can be solved explicitly, i.e.

U−(t) = U−(ti−1)e
∫ t
ti−1

hT dys+
1
2

∫ t
ti−1

(hTh−µ)ds
.
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If µ = hTh, then

U−(t) =U−(ti−1)e
∫ t
ti−1

hT (s)dys

≈U−(ti−1)eh
T (ti−1)∆yi .

U and U− are used to denote the solutions before
numerical discretization, while u and u− are those after
numerical discretization.

B. Convergence analysis

Let (Ω,A,P) be a probability space. Let us make the
following generic assumptions on the drift and observa-
tion terms as those in [5].

[As-1 ] The drift term and the diffusion term are
bounded, i.e.

f ∈L∞(Rn × (0,∞),Rn),

g ∈L∞(Rn × (0,∞);L(Rn,Rn)),

with f and g be Lipschitz in x, uniformly in t.
[As-2 ] The observation term is also bounded, i.e. h ∈

L∞(Rn × (0,∞);Rm).
[As-3 ] The operator gQgT is uniformly elliptic, i.e. for

all ξ ∈ Rn, there exists a constant α > 0 such that

ξT (gQgT )ξ ≥ α|ξ|2.

Remark IV.1. Although [As-1] and [As-2] seem to be
very restrictive, as [5] claimed in the end, “this limita-
tion is purely technical”. For further discussions on the
growth of f and h, we refer the interested readers to
[24] and references therein.

Theorem IV.1 (Theorem 3.1, [5]). Assume [As-1]-[As-
3] hold, then we have

1) U,U− → σ as ∆t → 0 in L2
F (0, T ;H1(Rn)) and

L2
F (0, T ;L2(Rn)), respectively;

2) U(t), U−(t) → σ(t) as ∆t → 0 in
L2(Ω,A,P;L2(Rn)), ∀t ∈ [0, T );

3) U(T ), U−(T ) → σ(T ) as ∆t → 0 in
L2(Ω,A,P;L2(Rn));

where σ is the solution to the DMZ equation (2), the
norms of L2

F (0, T ;V ) and L2(Ω,A,P;V ) are defined
as

||σ||2L2
F (0,T ;V ) =E

[∫ T

0

||σ||2V dt

]
, (19)

||σ||2L2(Ω,A,P;V )(t) =E||σ||2V (t),

where V is some function space in concern. Here, V =

L2(Rn) or V = H1(Rn).

Compared with the splitting-up algorithm, further
approximation in our POD method has been made in
solving for U , where Nm POD basis functions {ϕk}Nmk=1

have been constructed and used to present U . Let us
denote the approximate solution by UNm .

We expect that for fixed ∆t, UNm → U in H1(Rn),
as Nm → ∞. In the following analysis, we restrict
ourselves with unbounded physical domain D = Rn,
yet the similar argument can be applied to a bounded
domain D ⊂ Rn, see Remark IV.3. Suppose instead
of the Nm POD basis functions, we prescribe a set
of Nm orthonormal basis in H1(Rn), for example the
generalized Hermite functions [26]:

Hα,βk (x) =

(
α

2kk!
√
π

) 1
2

Hk(α(x− β))e−
1
2α

2(x−β)2 ,

where Hn(x) are the univariate physical Hermite poly-
nomials, α, β are two parameters. We define the n-
dimensional generalized Hermite functions as

Hα,βk (x) :=

n∏
j=1

Hαj ,βjkj
(xj),

where x ∈ Rn. It is clear to see that {Hα,βk }k∈Nn0
forms the orthonormal basis of L2(Rn) and also those
of Hr(Rn), for any r ∈ N, where N0 is the natural
numbers including zero. Suppose the prescribed or-
thonormal basis are

{
Hα,βk (x)

}
k∈ΩNm

, where ΩNm :={
k : |k|∞ ≤ N

1
n
m

}
with |k|∞ = max

i∈{1,··· ,n}
ki.

Theorem IV.2 (Theorem 2.1, [26]). Given U ∈
Wm
α,β(Rn), we have for any 0 ≤ l ≤ r,∣∣∣∣∣∣Pα,βNm

U − U
∣∣∣∣∣∣
W l
α,β(Rn)

. N
l−r
2n
m |U |W r

α,β(Rn), (20)

where the projection operator

Pα,βNm
: W l

α,β(Rn)→ span
{
Hα,βk ,k ∈ ΩNm

}
and the norm and seminorm of W r

α,β(Rn) are defined
as

||U ||2W r
α,β(Rn) :=

∑
0≤|k|1≤r

||Dr
xU ||

2
,

|U |2W r
α,β(Rn) :=

n∑
j=1

||DrxjU ||
2,

with Dr
x :=

∏n
i=1Drixi , D

ri
xi = ∂xi + α2

i (xi − βi).

Remark IV.2. The space W 0
α,β(Rn) = L2(Rn) and

W r
α,β(Rn) ⊂ Hr(Rn) by Corollary 3.2, [26].
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It is clear to see that if the function itself is extremely
smooth, then the projection error decreases faster than
any degree of polynomials of Nm. That is, it may
present exponential convergence with respect to Nm.
Remember that the basis functions here are prescribed
without any information of the solution U . One would
expect intuitively the elaborately constructed Nm POD
basis functions (after training) should carry sufficient
information of the solution and yield smaller projection
error in arbitrary norm, i.e.∣∣∣∣∣∣Pα,βΦ U − U

∣∣∣∣∣∣
W l
α,β(Rn)

.
∣∣∣∣∣∣Pα,βNm

U − U
∣∣∣∣∣∣
W l
α,β(Rn)

(20)
.N

l−r
2n
m |U |W r

α,β(Rn),

where

Pα,βΦ : W l
α,β(Rn)→ span{ϕk(x), k = 1, · · · , Nm}

with {ϕk(x)} be the POD basis functions. Therefore, if
for all w ∈ Ω, for any t ∈ [0, T ], U ∈ W r

α,β(Rn), then
we have ∣∣∣∣∣∣Pα,βΦ U − U

∣∣∣∣∣∣2
W l
α,β(Rn)

(ω, t)

. N
l−r
2n
m |U(ω)|W r

α,β(Rn)(ω, t),

where Ω denotes the event space of the random-
ness from the observation. Notice that U satisfies the
parabolic PDE which exactly in the form in section
3 [26]. Let us denote the numerical solution obtained
in span

{
Hα,βk : k ∈ ΩNm

}
as UNm . With the similar

argument as in [26], we assert that for all w ∈ Ω,
t ∈ [0, T ], we have∣∣∣∣UNm − U ∣∣∣∣2

H1(Rn)
(ω, t)

≤
∣∣∣∣UNm − U ∣∣∣∣2

W 1
α,β(Rn)

(ω, t)

.
∣∣∣∣∣∣Pα,βΦ U − U

∣∣∣∣∣∣2
W 1
α,β(Rn)

(ω, t)

+
∣∣∣∣∣∣Pα,βΦ U − UNm

∣∣∣∣∣∣2
W 1
α,β(Rn)

(ω, t)

. N
1−r
n

m

{
|U |2W r

α,β(Rn)(ω, t)

+

∫ t

0

|U |2W r
α,β(Rn)(ω, s)ds

}
, (21)

where the first inequality follows by Remark IV.2.

Proposition IV.3. If for all w ∈ Ω, t ∈ [0, T ], U ∈

L2
F (0, T ;W r

α,β(Rn)), then we get∣∣∣∣UNm − U ∣∣∣∣2
L2
F (0,T ;H1(Rn))

. N
1−r
n

m (1 + T ) ||U ||2L2
F (0,T ;W r

α,β(Rn)) . (22)

Proof. Integrating with respect to time from t = 0 to
T and taking the expectation on both sides of (21), the
inequality (22) follows immediately.

Combining Proposition IV.3 with Theorem IV.1, we
get

Theorem IV.4. Assume [As-1]-[As-3] hold, then we
have

1) UNm → σ in L2
F (0, T ;H1(Rn)), as Nm →∞ and

∆t→ 0 subsequently;
2) UNm(t) → U(t) in L2(Ω,A,P;H1(Rn)), for all

t ∈ [0, T ].

Remark IV.3. The similar result in Proposition IV.3 can
be obtained for bounded domain D ⊂ Rn. We refer the
interested readers to [31].

V. NUMERICAL RESULTS

In this section, we are interested in investigating the
approximation properties of our POD method and the
computational savings over existing methods. The exper-
iments are performed in two-dimensional NLF problems.
We shall clarify the settings of these two problems first.

Example 1: Almost linear problem
This problem is modeled by a SDE in the Ito form

below:
dx1 = dv1,

dx2 = dv2,

dy1 = x1(1 + 0.2 cos(x2))dt+ dw1,

dy2 = x2(1 + 0.2 cos(x1))dt+ dw2,

(23)

where E[dwtdw
T
t ] = I2dt, E[dvtdv

T
t ] = 0.1I2dt,

with w = [w1, w2]T , v = [v1, v2]T , I2 be the identity
matrix of size 2 × 2. The states are two indepen-
dent standard Brownian motions. The initial state is
x(0) = [x1(0), x2(0)]T = [1, 1.2]T . We shall denote the
state in vector form x(t) = [x1(t), x2(t)]T . The total
experimental time is T = 20.

Example 2: Cubic sensor problem
The observations in cubic sensor problem have higher

nonlinearity than those in (23), which may cause prob-
lem when using the conventional extended Kalman filter
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(EKF). It is modeled in the form below:
dx1 = (−0.4x1 + 0.1x2)dt+ dv1,

dx2 = −0.6x2dt+ dv2,

dy1 = (x3
1 + x2)dt+ dw1,

dy2 = (x3
2 + x1)dt+ dw2,

(24)

where E[dwtdw
T
t ] = I2dt and E[dvtdv

T
t ] = 0.1I2dt.

The initial state is x(0) = [x1(0), x2(0)]T =

[0.1, 0.05]T . The total experimental time is T = 10.

A. Comparison with existing methods

In this subsection, we shall mainly compare the esti-
mation performance and real-time manner of our POD
algorithm with the reference solutions in two examples
(23) and (24) respectively.

In both examples, the real state is generated by solv-
ing the SDE (23) or (24) for x in the time interval
[0, T ] (T=20 or 10) with time step dt = 0.01 using
the Euler-Maruyama method [21]. This provides us the
values of the real state at discrete times tj = jdt,
j = 1, ..., 2000 (or 1000).

Example 1: Almost linear problem
We use FDM to solve the FKE (6) online to obtain

the reference solution. The spacial domain is [−5, 5] ×
[−5, 5] and is partitioned with 1-D mesh size ∆x =

10/128. The unnormalized conditional density function
of the initial state is σ0(x) = exp(−2|x|2). The Courant-
Friedrichs-Lewy (CFL) stability condition of FDM is
satisfied by choosing the time step as dt

10 .
To obtain sufficient amount of snapshots, as described

in Algorithm 1, we partition the time interval [0, 20] with
observation time step ∆t = 0.2, generate Nmc = 500

random observations {ytj (ωi)} with 1 ≤ j ≤ 100, 1 ≤
i ≤ 500, and use FDM to solve FKE (6) along each
sample path ωi of the random observation. The POD
basis functions are constructed as in (10). In Figure 1,
we plot the estimations of both two states obtained by
our POD algorithm with the number of the POD basis
functions Nm = 70 and the reference solution in one
realization. It seems that both methods give acceptable
experimental results. Yet our algorithm gives significant
computational savings over the reference method, that is,
the CPU time of the reference method is 48.38s, while
that of our algorithm is only 4.23s, which is almost
1
12 of the former one. This is because the POD basis
functions enable us to use the on- and off-line algorithm

[24] and solve the NLF problems in a real-time manner.
On the contrary, the reference solution by the algorithm
in [24] using FDM can only be performed online. No
off-line computation is available, like the one in [25].
Thus, the time saving is obvious. It is expected that the
computational savings of our POD method can be more
significant in solving higher dimensional NLF problems,
which is our ongoing research.

We repeat the experiments for Npath = 300 times and
record the mean square errors (MSEs) averaged over 300

sample paths. The MSE between x1 and x2 is defined
as

MSE(x1,x2) :=
1

300

300∑
i=1

1

Nt

Nt∑
j=1

|xi1(tj)− xi2(tj)|,

where | · | is the Euclidean distance, for i-th sample
path, xij , j = 1, 2 are the true state or the numerical
estimation obtained by different methods, such as our
algorithm and reference method. We find that the MSE
between our POD algorithm and the reference method is
0.0126, while that between the reference method and the
real state is 0.5991. On the contrary, the MSE between
EKF and the real state is 0.9932. It shows that the
further compression by POD method has comparable
accuracy with the reference solution, which is only with
the difference less than 2%.

Example 2: Cubic sensor problem
In this example, the reference solution is also ob-

tained by using FDM to solve FKE (6). The spacial
domain is [−3, 3] × [−3, 3] and is partitioned with 1-
dimensional mesh size ∆x = 6/128. The unnormal-
ized conditional density function of the initial state is
σ0(x) = exp(−|x|4/4). The time step is chosen to be dt

40

so that the CFL stability condition is satisfied. Nm = 100

POD basis functions are constructed according to (10)
after the similar training in Example 1.

In Figure 2, we display the similar results as those
in Figure 1. The widely used EKF has been included
in this comparison. It is clear to see that EKF yields
worse estimation than the other two at least for this
realization. In fact, the high nonlinearity in observations
will normally lead to bad performance in EKF. As to the
real-time manner, the CPU time of the reference method
is 99.83s, while that of our algorithm is only 2.21s.

Remark V.1. The CPU time of the reference solution in
Example 2 is significantly longer than that in Example 1,
since all the computations are carried online and the time
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Fig. 1: The estimations of the almost linear problem (23)
obtained by our POD method (in red dashed line) and the
reference solution (in orange dot line) versus time have
been plotted. The blue line is the true state generated by
one realization.

discretization in this example is 4 times finer than that in
Example 1. We believe that the finer time discretization
is due to the higher nonlinearity.

In Figure 1 and 2, the difference between our POD
algorithm and the reference solution is too small to be
distinguished by eyes. We shall quantify this in cubic
sensor problem for one realization in Figure 3. To be
more precise, let uref and uPOD be the numerical solutions
of (6) using FDM and POD method respectively. We
define the relative L2 error as

err(t) :=
||uref − uPOD||L2(t)

||uref||L2(t)
. (25)

Let Xref and XPOD be the expectation of the states with
respect to different probability measures, i.e. Eref(x) and
EPOD(x), respectively. It is well known that Xref and
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ExKF(linearized)
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Fig. 2: The estimations of the cubic sensor problem
(24) obtained by our POD method (in red dashed line),
the reference solution (in orange dot line), and the
EKF (in purple dashed-dot line) versus time have been
plotted. The blue line is the true state generated by one
realization.

XPOD are minimal MSE estimations of the true state. One
can find in Figure 3 that actually the relative L2 error
(25) of the unnormalized density functions is indeed
small, which is roughly of order O(10−4) ∼ O(10−3)

in average, while the error between the minimal MSE
estimations is of order O(10−6) averagely in time for
both states x1 and x2.

B. More discussions on our POD algorithm

In our POD algorithm, there are still some parameters
to be tuned in, for example, the number of the POD
basis functions, the choice of the training solutions, etc.
In this subsection, we shall do the numerical experiments
mainly on Example 2, since both examples show similar
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(a) Absolute value of the difference between two minimal MSE
estimations based on two methods versus time is plotted. The
blue line is for the state x1, while the red dashed line is for
x2.

0 2 4 6 8 10

time

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lo
g(

L
2
 r

el
at

iv
e 

er
r)

(b) Relative L2 error err(t) versus time is plotted.

Fig. 3: The comparisons between POD method and
the reference solution in cubic sensor problem (24) are
displayed for one realization.

behaviors and Example 2’s low dimensional structure
seems to be more difficult to be captured.

1) The decay property of the relative errors versus the
number of the POD basis functions: It has been shown in
Proposition II.1 that the relative L2 error of the training
solutions can be presented by the quantity 1− ρ, where
ρ is defined in (12):

1
N

∑N
i=1

∣∣∣∣u(·, ti)−
∑Nm
j=1(u(·, ti), ϕj(·))L2ϕj(·)

∣∣∣∣2
L2

1
N

∑N
i=1 ||u(·, ti)||2L2

=

∑d
j=Nm+1 λj∑N
j=1 λj

= 1− ρ.

where N and Nm are the total number of snapshots and
that of the POD basis. In Figure 4, we plot the quantity
1−ρ versus the number of POD basis. We use regression
to fit the data and find the decay speed of the quantity 1−
ρ is proportional to exp(−C1Nm), with C1 = 0.0422.
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Fig. 4: The decay property of eigenvalues in the POD
method.

In section IV, we show theoretically in Proposition
IV.3 that the relative error∣∣∣∣UNm − U ∣∣∣∣2

L2
F (0,T ;H1(Rn))

||U ||2L2
F (0,T ;W r

α,β(Rn))

(26)

is controlled by N
1−r
n

m (1 + T ). In other words, if the
reference solution is smooth enough, the relative error
(26) can present exponential decay as Nm → ∞.
Here, we generate Npath = 300 sample paths xt and
observation paths yt. We record the relative L2 error
defined in (25) of the numerical solution obtained using
fixed number of POD basis functions ranging from 1 to
200 and for each sample paths. For fixed number of POD
basis functions, one averages the relative errors over all
these 300 sample paths.

In Figure 5, we illustrate in both examples how the
number of POD basis functions affects the averaged
relative L2 errors over Npath = 300 sample paths be-
tween two methods. We use regression to fit the data and
find the decay rate of the relative error is proportional
to exp(−C2Nm) with C2 = 0.0293 and 0.0195 for
Example 1 and 2 respectively, where Nm is the number
of POD basis. The relatively slow decay in the cubic
sensor problem may imply that it has more complicated
structure than the almost linear problem. It is interesting
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(b) Cubic sensor problem

Fig. 5: The relative L2 errors averaged over Npath = 300

sample paths versus the number of POD basis function
is plotted.

to notice that C1 in Figure 4 is almost twice of C2 for the
cubic sensor problem. This implies that on the average
sense the POD basis constructed from random paths can
capture most energy of the solution from other random
paths. This also explains why in section V-A different
Nm are chosen to guarantee O(10−2) relative error in
two examples.

In Figure 6, we plot the relative L2 error evolution
of one realization in the cubic sensor problem versus
different number of POD basis functions. One find that at
each time discretization the error decays monotonically
as the number of the POD basis functions increases.
More significant observation is that just increasing the
number of POD basis cannot improve resolutions, if
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Fig. 6: The relative L2 errors of one realization versus
time are plotted with the number of POD basis functions
being Nm = 80, 110, 140, 170 and 200.
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Fig. 7: The absolute value of the expansion coefficients
of the solution to the POD basis functions in cubic
sensor problem (24) versus the number of the POD basis
functions are plotted for one realization. Orange line: that
at time t = 5; blue dashed line: that averaged over tj ,
j = 1, · · · , 10000 in [0, 10].



13

the POD basis functions have not contained enough
information after the training process. This phenomena
can be seen from Figure 6 at time instance around
t = 3.7 and 9.8, where the peaking of the errors are not
relieved even after doubling the number of POD basis
functions.

As one knows, for one particular realization of the
state, the most key ingredient of our POD algorithm
to present the solution well is to see whether the first
few POD basis functions can capture the most energy
of that solution. To investigate this property, we study
the expansion coefficients of the solution on the POD
basis functions. In Figure 7, we plot the absolute value
of the expansion coefficients of the solution at time t = 5

and the average of those over time discretization tj ,
j = 1, 2, · · · , 10000. It is clear to see that the absolute
values of the expansion coefficients decay exceptionally
fast, which implies that the POD basis functions approx-
imates the solution well, and with only a small number
of POD basis functions it can efficiently capture the
dynamics of the system. Notice that the absolute values
of the coefficients do not decay monotonically, since
with the same set of POD basis functions the ability of
approximating solutions at each time discretization and
realizations is of great difference. Yet the same trend
can be observed in the average of the absolute values of
expansion coefficients with less oscillations.

2) The selection of the training solutions: The con-
struction of the POD basis functions depends highly on
the training set. How the training set affects the POD
basis functions? Recall that we generate Nmc = 500

sample paths of the states and the observations, and
the snapshots are U = {u(tj , ·, ωi)}, here ωi ∈ Ω,
i = 1, · · · , Nmc, tj = j∆t, j = 1, · · · , Nt(= T

∆t ) with
∆t = 0.2. We also try to generate less sample paths such
as Nmc = 125 or Nmc = 250, and find that the first
few dominant POD basis functions are indistinguishable
from various Nmc.

In Figure 9, we show the first six dominant POD basis
functions obtained with Nmc = 500. The higher order
of POD basis function is, the more local structures of
the solutions have been captured. It would be interesting
and challenging to generate the snapshots capable of
capturing most of the variations of the solution space.
This issue will be investigated in our future work,
especially in higher-dimensional NLF problems.

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x 2

0.1

0.2

0.3

0.4

0.5

0.6

(a) First POD basis

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x 2

-0.4

-0.2

0

0.2

0.4

(b) Second POD basis

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x 2

-0.4

-0.2

0

0.2

(c) Third POD basis

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x 2

-0.4

-0.2

0

0.2

0.4

(d) Fourth POD basis



14

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3
x 2

-0.8

-0.6

-0.4

-0.2

0

0.2

(e) Fifth POD basis

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x 2

0

0.5

1

(f) Sixth POD basis

Fig. 9: The profiles of the first six POD basis functions
in the cubic sensor problem (24).

VI. CONCLUSIONS

In this paper, we investigate the proper orthogonal
decomposition (POD) method to numerically solve the
forward Kolmogorov equation (FKE), which has im-
portant application in solving nonlinear filtering (NLF)
problems. The POD method can be viewed as further
compression in using on- and off-line algorithm [24].
The beforehand numerical experiments or history data
is necessary as a training set. The low-dimensional
structures in the solution space of the FKE has been
trained and used to build the POD basis functions in
advance. Combined with the on- and off-line algorithm,
in the off-line stage, besides the construction of POD
basis, we still need to compute the propagation of the
POD basis functions according to the FKE equation.
In the on-line stage, we only need to do numerical
integrations, that is the expansion coefficients of the POD

basis, and update with the new-coming observations.
This algorithm enables us to solve the NLF problem in
a real-time manner.

Under some generic assumptions as in [5], we pro-
vide the convergence analysis of our POD method
theoretically. Two 2-dimensional NLF problems: almost
linear problem and cubic sensor problem have been
investigated in details. The theoretical convergence rate
has been verified numerically. It is shown numerically
that our POD algorithm yields as good approximations
as the reference solution obtained by FDM. But our
algorithm can be much more efficient, that is, more than
10 times faster in both examples. We expect even better
performance of efficiency in higher-dimensional NLF
problems, which is one of our future topics. Some further
discussions on the POD algorithm, such as the choice of
number of POD basis, the number of snapshots, etc, have
been included. It seems that it is unnecessary to provide
a huge amount of snapshots for training in our numerical
experiments, but “how many and which” is an interesting
question of practical importance.
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