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Abstract

In this paper, we propose a dynamically low-dimensional approximation method to solve a class
of time-dependent multiscale stochastic diffusion equations. In [5, 6], a dynamically bi-orthogonal
(DyBO) method was developed to explore low-dimensional structures of stochastic partial differential
equations (SDPEs) and solve them efficiently. However, when the SPDEs have multiscale features in
the physical space, the original DyBO method becomes expensive. To address this issue, we construct
multiscale basis functions within each coarse grid block for dimension reduction in the physical space.
To further improve the accuracy, we also perform online procedure to construct online adaptive basis
functions. In the stochastic space, we use the generalized polynomial choas (gPC) basis functions to
represent the stochastic part of the solutions. Numerical results are presented to demonstrate the
efficiency of the proposed method in solving the time-dependent PDE with multiscale and random
features.

Keywords: Uncertainty quantification; dynamically low-dimensional approximation; online
adaptive method; stochastic partial differential equations (SPDEs); generalized multiscale finite
element method (GMsFEM).

1. Introduction

Uncertainty arises in many complicated real-world problems of physical and scientific applications,
such as wave, heat, and pollution propagation through random media or flow driven by stochastic
forces. These kind of problems usually have multiple scale features involved in the spatial domain.
For example, to simulate flows in heterogeneous porous media, the permeability field is often param-
eterized by random fields with multiple-scale structures.

Stochastic partial differential equations (SPDEs), which contain random variables or stochastic
processes, play important roles in modeling complex problems and quantifying the corresponding
uncertainties. Considerable amounts of efforts have been devoted to study SPDEs, see [17, 27, 2, 29,
20, 36, 31, 39, 30, 34, 26] and references therein. These methods are effective when the dimension
of stochastic input variables is low. However, their performance deteriorates when the dimension of
stochastic input variables is high because of the curse of dimensionality. In addition, when SPDEs
have multiscale features, the SPDE problems become more challenging as it requires tremendous
computational resources to resolve the small scales of the SPDE solutions. This motivates us to
develop efficient numerical methods to solve these challenging problems.
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In this paper, we consider the time-dependent SPDEs with multiscale coefficients as follows

∂uε

∂t
(x, t, ω) = Lεuε(x, t, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω, (1)

where suitable boundary and initial conditions are imposed, D ⊂ Rd is a bounded spatial domain,
Ω is a sample space, and Lε is an elliptic operator that contains multiscale and random coefficient,
where the smallest-scale is parameterized by ε. The major difficulties in solving (1) come from two
parts. In the physical space, we need a mesh fine enough to resolve the small-scale features. In the
random space, we need extra degree of freedom to represent the random features. Moreover, the
problem (1) becomes more difficult if the dimension of the random input is high.

To address these challenges, we shall explore low-dimensional structures hidden in the solution
uε(x, t, ω). Specifically, if the solution uε(x, t, ω) is a second-order stochastic process at each time
t > 0, i.e., uε(x, t, ω) ∈ L2(D × Ω), we can approximate the solution uε(x, t, ω) by its m-term
truncated Karhunen-Loève (KL) expansion

uε(x, t, ω) ≈ ūε(x, t) +

m∑
i=1

uεi (x, t)Yi(ω, t) = ūε(x, t) + U(x, t)YT (ω, t), (2)

where U(x, t) = (uε1(x, t), · · · , uεm(x, t)) and Y(ω, t) = (Y1(ω, t), · · · , Ym(ω, t)). The KL expansion
explores the intrinsic low-dimensional structures of the SPDE solutions and gives the compact rep-
resentation of the solutions. However, the computation of the KL expansion can be quite expensive
since we need to form a covariance kernel and solve a large-scale eigenvalue problem. More details
will be given in Section 2.1.

In [5, 6], a dynamically bi-orthogonal (DyBO) method was developed. This new method derives
an equivalent system that can faithfully track the KL expansion of the SPDE solution. In other
words, the DyBO method gives the evolution equations for ū, U, and Y. The DyBO method can
accurately and efficiently solve many time-dependent SPDEs, such as the stochastic Burger’s equation
and stochastic Navier-Stokes equation, with considerable savings over existing stochastic methods.
However, when the SPDEs have multiscale features in the physical space, the original DyBO method
becomes expensive as one needs enormous degree of freedom to represent the multiscale features
in the physical space. To overcome this difficulty, we shall apply the generalized multiscale finite
element methods (GMsFEM) [10, 15] to construct multiscale basis functions within each coarse grid
block for model reduction in the physical space.

In the GMsFEM, we divide the computation into two stages: the offline computing and the
online computing. In the offline stage, we first construct global snapshot functions within each
coarse neighborhood based on the given coarse and fine meshes and seek multiscale basis functions
to represent the local heterogeneities. When the snapshot functions are computed, one can construct
the multiscale basis functions in each coarse patch by solving some well-designed local spectral
problems and identify the crucial multiscale basis functions to form the offline function space. In
the online stage, we add more online multiscale basis functions that are constructed using the offline
space. These online basis functions are computed adaptively in some selected spatial regions based
on the current local residuals and their construction is motivated by the analysis in [11]. In general,
it can guarantee that additional online multiscale basis functions will reduce the error rapidly if
one chooses a sufficient number of offline basis functions. We should point out that there are many
existing methods in the literature to solve multiscale problems, see [3, 13, 14, 22, 23, 32, 1, 38, 19, 28]
and references therein. However, most of these methods are designed for multiscale problems with
deterministic coefficients.

In our new method, we first derive the DyBO formulation for the multiscale SPDEs (1), which
consists of deterministic PDEs for ū and U respectively and ODE system for the stochastic basis
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Y. For the deterministic PDEs (for ū and U) in the formulation, we shall apply the GMsFEM to
construct multiscale basis functions and use these multiscale basis functions to represent ū and U,
which lead to considerable savings over original DyBO method. For the ODE system, the memory
cost is relatively small and we shall apply a suitable ODE solver to compute the numerical solution.
The GMsFEM enables us to significantly improve the efficiency of the DyBO method in solving
time-dependent multiscale PDEs with random input.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the
KL expansion and the generalized polynomial chaos (gPC) method. In Section 3, we introduce
the framework of DyBO formulation. The GMsFEM with the online adaptive construction will be
introduced in Section 4. The implementation issues of the algorithm and the numerical results will
be given in Section 5. Finally, some concluding remarks are given in Section 6.

2. Some preliminaries

2.1. The Karhunen-Loève expansion

In the theory of stochastic processes, the Karhunen-Loève (KL) expansion [24, 25] is a representation
of a stochastic process as an infinite linear combination of orthogonal functions, analogous to a Fourier
series representation of a function on a bounded interval. The importance of the KL expansion is
that it yields an optimal basis in the sense that it minimizes the total mean square error.

Consider a probability space (Ω,F ,P), whose sample space is Ω and is equipped with σ-algebra
F and probability measure P. Suppose u(x, t, ω), defined on a compact spatial domain D ⊂ Rd,
t ∈ [0, T ], is a second-order stochastic process, i.e., u(·, t, ·) ∈ L2(D × Ω), where we omit ε in the
solution u to simplify notations. Its KL expansion reads as follows

u(x, t, ω) = ū(x, t) +

∞∑
i=1

√
µi(t)ξi(ω, t)φi(x, t),

where ū(x, t) = E [u(x, t, ω)], and {µi(t), φi(x, t)}∞i=1 are the eigenpairs of the covariance kernel
C(x, y, t), i.e., ∫

D
C(x, y, t)φi(y, t) dy = µi(t)φi(x, t), i = 1, 2, · · · . (3)

The covariance kernel C(x, y, t) is defined as

C(x, y, t) = E [(u(x, t, ω)− ū(x, t))(u(y, t, ω)− ū(y, t))] . (4)

The random variables {ξi(ω, t)}∞i=1 are defined as

ξi(ω, t) =
1√
µi(t)

∫
D

(u(x, t, ω)− ū(x, t))φi(x, t) dx, i = 1, 2, · · · , . (5)

Moreover, these random variables {ξi}∞i=1 are of zero-mean and uncorrelated, i.e. E [ξi] = 0, E [ξiξj ] =
δij . Generally, the eigenvalues µi’s are sorted in a descending order. Their decay rates depend on
the regularity of the covariance kernel C(x, y). It has been proven that an algebraic decay rate, i.e.
µk = O(k−γ), is achieved asymptotically if the covariance kernel is of finite Sobolev regularity or an
exponential decay, i.e., µk = O(e−γk) for some γ > 0, if the covariance kernel is piecewise analytic
[35]. In general, the decay rate depends on the correlation length of the stochastic solution. Small
correlation length results in slow decay of the eigenvalues.
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The m-term truncated KL expansion converges in L2(D × Ω) to the original stochastic process
u(x, t, ω) as m tends to infinity. If we denote by εm the truncation error, we have

‖εm‖2L2(D×Ω) =

∥∥∥∥ ∞∑
i=m+1

√
µi(t)ξi(ω, t)φi(x, t)

∥∥∥∥2

L2(D×Ω)

=
∞∑

i=m+1

µi(t)→ 0, m→∞, (6)

where we have used the bi-orthogonality of the KL expansion. In practice, we truncate the KL
expansion into its first m terms and obtain the following truncated KL expansion

u(x, t, ω) ≈ ū(x, t) +
m∑
i=1

√
µi(t)ξi(ω, t)φi(x, t). (7)

The truncation error analysis in (6) reveals the most important property of KL expansion. Specifi-
cally, given any integer m and orthonormal basis {ϕi(x, t)}mi=1, we may approximate the stochastic
process u(x, t, ω) by

um,ψ(x, t, ω) = ū(x, t) +

m∑
i=1

ζi(ω, t)ϕi(x, t), (8)

where ζi(ω, t), i = 1, ...,m are the expansion coefficients. Among all m-term approximations using
basis {ϕi}, the KL expansion given by (7) is the one that minimizes the total mean square error. In
this sense, we say that the KL expansion explores the low-dimensional structures of SDPE solutions.

2.2. The generalized Polynomial Chaos (gPC) basis

One of the conceptual difficulties, from the viewpoint of the classical numerical PDEs, involves repre-
sentations of random variables or functions defined on the abstract probability space Ω. Essentially,
there are different ways to represent the stochastic basis Y(ω, t). In this work, we use the general-
ized polynomial chaos (gPC) basis to represent the stochastic basis, see [17, 40, 20]. Let {Hi(ξ)}∞i=1

denote the one-dimensional, ρ(ξ)-orthonormal polynomials, i.e.,∫
Ω

Hi(ξ)Hj(ξ)ρ(ξ)dξ = δij .

For the Gaussian distribution and the uniform distribution, such orthonormal polynomial sets are
formed by Hermite polynomials and Legendre polynomials, respectively. For general distributions,
such polynomial set can be obtained by numerical methods [37]. Furthermore, by a tensor product
representation, we can use the one-dimensional polynomial Hi(ξ) to construct a complete set of
orthonormal basis functions Hα(ξ)’s of L2(Ω) as follows

Hα(ξ) =

r∏
i=1

Hαi(ξi), α ∈ J∞r , (9)

where α is a multi-index and J∞r is a multi-index set of countable cardinality,

J∞r = {α = (α1, α2, · · · , αr) |αi ≥ 0, αi ∈ N} .

The zero multi-index corresponding to H0(ξ) = 1, which is used to represent the mean of the solution,
will be excluded in this work since we have an independent dynamic equation for the evolution of
the mean. Clearly, the cardinality of J∞r is infinite. For the purpose of numerical computations, we
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prefer a finite set of polynomials. There are many choices of truncations. One possible choice is the
set of polynomials whose total orders are at most p, i.e.,

Jpr =

{
α |α = (α1, α2, · · · , αr) , αi ≥ 0, αi ∈ N, |α| =

r∑
i=1

αi ≤ p

}
. (10)

The number of polynomial basis functions |Jpr | is equal to (p+r)!
p!r! . We may simply write such a trun-

cated set as J when no ambiguity arises. The orthonormal basis Hα(ξ) is the standard generalized
Polynomial Chaos (gPC) basis, see [7, 18, 21, 40] for more details.

3. The DyBO formulation for multiscale time-dependent SPDEs

3.1. Problem setting

To demonstrate the main idea of our method, we consider the following multiscale stochastic diffusion
equation with suitable boundary and initial conditions,

∂uε

∂t
= Lεuε ≡ ∇ · (aε(x, ω)∇uε) + f(x, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω, (11)

where D ⊂ Rd (d = 2, 3) is a bounded spatial domain and Ω is a sample space. The operator Lε is
uniformly elliptic almost surely, namely, there exist amin, amax > 0, such that

P (ω ∈ Ω : aε(x, ω) ∈ [amin, amax], ∀x ∈ D) = 1. (12)

Also, the multiscale information is described by the parameter ε. The force f(x, ω) is assumed to be
in L2(D) for each realization ω ∈ Ω.

In reservoir simulation, aε(x, ω) is used to model the permeability field, which is assumed to be
known at every location of the physical domain. Realistically, however, only a handful of permeability
measurements may be available. Thus the uncertainties in the inputs of the reservoir model could
be quite large. It is important to analyze the uncertainties in the reservoir models and to quantify
their influences on the prediction values. In this paper, aε(x, ω) is assumed to be parameterized by
r independent random variables, i.e., aε(x, ω) ≡ aε(x, ξ1(ω), ..., ξr(ω)). By the Doob-Dynkin lemma
[33], the solution uε(x, t, ω) to (11) is a functional of these random variables, which can be written
as uε = uε(x, t, ξ1(ω), ..., ξr(ω)).

3.2. The dynamically bi-orthogonal (DyBO) formulation

To make this paper self-contained, we give a brief review of the basic ideas and the main result of
the DyBO method [5, 6]. We assume the stochastic solution uε(x, t, ω) to (11) is a second-order
stochastic process at each fixed time t > 0, i.e., uε(·, t, ·) ∈ L2(D × Ω). We consider the following
m-term truncated KL expansion

ũε(x, t, ω) = ūε(x, t) +
m∑
i=1

uεi (x, t)Yi(ω, t) = ūε(x, t) + U(x, t)YT (ω, t) ≈ uε(x, t, ω), (13)

where ūε(x, t) is the mean of the solution,

U(x, t) = (uε1(x, t), · · · , uεm(x, t)) and Y(x, t) = (Y1(x, t), · · · , Ym(x, t))
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are the spatial and stochastic modes, respectively. By using the DyBO method, we obtain the
evolution equations for ūε, U, and Y as follows

∂ūε

∂t
= E [Lũε] , (14a)

∂U

∂t
= −UDT + E

[
L̃ũεY

]
, (14b)

dY

dt
= −YCT +

〈
L̃ũε, U

〉
Λ−1

U , (14c)

where 〈·, ·〉 denotes the inner product in the space L2(D), ΛU = diag(
〈
UT , U

〉
) ∈ Rm×m, and

L̃ũε = Lũε − E [Lũε]. We define an anti-symmetrization operator Q : Rk×k → Rk×k and a partial
anti-symmetrization operator Q̃ : Rk×k → Rk×k as follows:

Q(M) =
1

2

(
M−MT

)
, Q̃(M) =

1

2

(
M−MT

)
+ diag(M),

where M ∈ Rk×k is a matrix and diag(M) is a diagonal matrix whose diagonal entries are equal
to those of matrix M. Then, the matrices C,D ∈ Rm×m in (14) can be solved uniquely from the
following linear system

C−Λ−1
U Q̃ (ΛUC) = 0, (15a)

D−Q (D) = 0, (15b)

DT + C = G∗(ū
ε,U,Y), (15c)

where the matrix G∗(ū
ε,U,Y) = Λ−1

U

〈
UT , E

[
L̃ũεY

]〉
∈ Rm×m.

The Eqns.(14a)(14b) in the DyBO formulation (14) are time-dependent deterministic PDEs for
the mean solution ūε and the spatial basis modes U. They are coupled to the third equation,
a system of stochastic ODEs for the stochastic basis functions Y. Various spatial discretization
schemes, such as finite element method, finite difference method, and spectral method, along with
ODE solvers can be used to solve the DyBO system (14). In this paper, however, we need to use fine
mesh to represent ūε and U as they contain multiscale features. To address this issue, we apply the
generalized multiscale finite element method (GMsFEM) [15] in the physical space and the implicit
Euler scheme in the temporal space to discretize the Eqns.(14a)(14b). The framework of GMsFEM
will be presented in Section 4.

The Eq.(14c) in the DyBO formulation (14) is a random or stochastic ODE system (depending
on the setting of the operator L), which can be solved using existing ODE solves, such as Euler
scheme or Runge-Kutta scheme. To represent the stochastic basis functions Yi(ω, t), one can choose
several different approaches, including ensemble representations in sampling methods (e.g., Monte
carlo method, sparse-grid based stochastic collocation method, etc.) and spectral representations,
such as the gPC basis or wavelet basis. In this work, we shall use the gPC basis to represent the
stochastic basis functions Yi(ω, t). The Cameron-Martin theorem [4] implies the stochastic modes
Yi(ω, t)’s in the KL expansion (13) can be approximated by the linear combination of the polynomial
chaos, i.e.,

Yi(ω, t) =
∑
α∈J

Hα(ξ(ω))Aαi(t), i = 1, 2, · · · ,m, (16)

or in a matrix form, if we write H (ξ) = (Hα (ξ))α∈J as a row vector,

Y(ω, t) = H (ξ(ω)) A(t), (17)
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where A ∈ RNp×m and Np is the number of polynomial basis functions. The KL expansion (13) now
reads

ũ = ū+ UATHT .

We can derive equations for ū, U and A, instead of ū, U and Y. In other words, the stochastic
modes Y are identified with a matrix A ∈ RNp×m, which leads to the DyBO-gPC formulation of
SPDE (11),

∂ū

∂t
= E [Lũ] , (18a)

∂U

∂t
= −UDT + E

[
L̃ũH

]
A, (18b)

dA

dt
= −ACT +

〈
E
[
HT L̃ũ

]
, U
〉

Λ−1
U , (18c)

where C(t) and D(t) can be solved from the linear system (15) with

G∗(ū,U,Y) = Λ−1
U

〈
UT , E

[
L̃ũY

]〉
= Λ−1

U

〈
UT , E

[
L̃ũH

]〉
A. (19)

By solving the system (18), we have an approximate solution to SPDE (11)

uDyBO-gPC = ū+ UATHT .

The orthonormal property of Y implies that the columns of A are orthonormal, i.e., ATA = Im×m ∈
Rm×m. We would like to point out that AAT ∈ RNp×Np in general is not an identity matrix as
m� Np if the SPDE solution has a low-dimensional structure.

Remark 3.1. The boundary conditions and initial conditions for each physical component, and the
initial condition for each stochastic component can be obtained by projection of the initial and
boundary conditions of u(x, t, ω) on the corresponding components. In fact, the generalization of the
preceding DyBO formulation for SPDE systems is pretty straightforward.

3.3. The DyBO formulation for multiscale stochastic diffusion equations

In this section, we shall derive the DyBO formulation for the following multiscale stochastic diffusion
equations

ut(x, ω) = Lu(x, t, ω) ≡ ∇ · (a(x, ω)∇u(x, ω)) + f(x), x ∈ D,ω ∈ Ω, (20)

where initial and boundary conditions will be given later. For notation simplicity, we omit the
superscript ε in a(x, ω) and u(x, t, ω). Assume that the m-term KL expansion of the solution of (20)
is given by,

u = ū+ UYT = ū+ UATHT , (21a)

where U = (u1, u2, · · · , um) and matrices A ∈ RNp×m. In addition, we assume that

a(x, ω) = ā(x) + ã(x, ω), (22)

where ā(x) = E [a(x, ω)] is the mean and ã(x, ω) is the fluctuation with zero mean. For notation
simplicity, we will write a = ā + ã in our derivation. By substituting the above expansion into
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(20), we obtain the DyBO-gPC formulation for the multiscale stochastic diffusion equation (20) (see
Appendix A for the details of the derivation)

∂ū

∂t
= ∇ · (ā∇ū) +∇ · (E

[
ã∇UATHT

]
) + f, (23a)

∂U

∂t
= −UDT +∇ · (E [ã∇ūH])A +∇ · (ā∇U) +∇ · (E

[
ã∇UATHTH

]
)A, (23b)

dA

dt
= −ACT +

〈
∇ · (E

[
HT ã∇ū

]
) +∇ · (ā∇AUT ) +∇ · (E

[
ãHTHA∇UT

]
), U

〉
Λ−1

U , (23c)

where matrices C and D can be solved from the linear system (15) with G∗,

G∗ = Λ−1
U

〈
UT , E

[
L̃uH

]〉
A.

Remark 3.2. In this paper, we assume that the fluctuation part ã is parameterized r random vari-
ables, i.e., ã

(
x, ξ1(ω), · · · , ξr(ω)

)
=
∑r

i=1 ai(x)ξi(ω), where ai are spatial functions and {ξi}ri=1 are
independent and identically distributed (i.i.d.) random variables with zero mean. The mean function
ā is chosen such that a = ā+ ã is positive.

4. Model reduction for DyBO using GMsFEM

4.1. Motivations

The DyBO formulation (23) enables us to explore low-dimensional structures of the solution u(x, t, ω),
which provides an efficient numerical method for solving (20). However, when the problem (20) has
multiscale features in physical space, the DyBO method becomes expensive as one needs to use fine
mesh to represent the multiscale features in the physical space.

To further reduce the computational cost in solving (23a)-(23c), we shall apply the GMsFEM
to discretize ū and U. Note that, Eq.(23a) and each component of Eq. (23b) have the following
deterministic time-dependent PDE form

∂w

∂t
= ∇ · (ā∇w) + G, (24)

w|t=0 = w0. (25)

for some functions G. For example, in (23a) we have w = ū and G = ∇ · (E
[
ã∇UATHT

]
) + f .

In order to discretize the equation (24) in time, we apply the implicit Euler scheme with time
step ∆t and obtain the difference equation for each time tn = n∆t, n = 1, 2, · · · , N (T = N∆t),

wn − wn−1

∆t
= ∇ · (ā∇wn) + G

where wn = w(tn) and the above equation is equivalent to the following

−∇ · (ā∇wn) + cwn = G̃, (26)

where c = 1/∆t and G̃ = cwn−1 + G. Hence, for each fixed tn > 0, we can use the GMsFEM to solve
the second order elliptic PDE (26) with multiscale coefficient ā.
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4.2. The general framework of the GMsFEM

In this subsection, we present the general framework of the GMsFEM for solving the multiscale
PDE (26). First, we introduce the following notations. Let T H denote a conforming partition of
the spatial domain D with mesh size H � ε. The interior nodes of T H are xi, i = 1, 2, · · · , Nin,
where Nin is the number of interior nodes and the coarse elements of T H are Kj , j = 1, 2., · · · , Ne,
where Ne is the number of the coarse elements. To build multiscale basis functions on the coarse
elements, we denote Di as the neighborhood corresponding to the coarse node xi, which is defined
as Di =

⋃
{Kj ∈ T H : xi ∈ Kj}. Moreover, we define a finer partition T h with mesh size h � ε,

which will be used to compute local cell problems and represent the multiscale basis functions.
We define χi as the standard multiscale basis functions [22]. To obtain χi, we need to solve the

following cell problem for each coarse note xi,

−∇ · (ā∇χi) = 0 in K ⊂ Di, (27)

χi = gi on ∂K, (28)

where gi is a continuous function on ∂K and is linear on each edge of ∂K. The bilinear form A(·, ·)
associated with (28) is defined as follows

A(u, v) :=

∫
D

(
ā∇u · ∇v + cuv

)
. (29)

The concept of the offline basis functions is important in the framework of GMsFEM. To obtain
these offline basis functions, one needs to perform a space reduction by solving a local spectral
problem over a suitable function space V . To define such function space V , we recall the definition
of the snapshot space V Di

snap based on the harmonic extensions. Let Jh(Di) be the set of all nodes

of the fine mesh T h lying on ∂Di. For each fine-grid node xj ∈ Jh(Di), we define a discrete delta
function δhj (x) in Jh(Di) as follows

δhj (xk) =

{
1, k = j,
0, k 6= j,

where xk ∈ Jh(Di). Next, we define the snapshot function ψsnapj in a coarse neighborhood Di as
follows: find ψsnapj such that

−∇ · (ā∇ψDi,snap
j ) = 0 in Di, (30)

ψDi,snap
j = δhj on ∂Di. (31)

We denote Ji := |Jh(Di)| and for each coarse node of coarse xi, i = 1, · · · , Nin, define the local

snapshot space V
(i)
snap as follows:

V (i)
snap := snap{ψDi,snap

j : j = 1, · · · , Ji}.

Next, we define the snapshot space Vspan to be the direct sum of all local snapshot spaces V
(i)
snap:

Vsnap :=

Nin⊕
i=1

V (i)
snap.

Since the snapshot space defined above is usually of large dimension, a reduction technique will
be performed on the snapshot space Vsnap to get a smaller space Voff. This reduction is achieved by
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solving a local spectral problem on each coarse neighborhood Di. The analysis in [16] motivates the

following construction. This spectral problem is defined as follows: find (ψ, λ) ∈ V (i)
snap×R such that∫

Di

ā∇ψ · ∇v = λ

∫
Di

âψv, ∀v ∈ V (i)
snap, (32)

where â := ā
∑Nin

i=1 H
2|∇χi|2. After solving the spectral problem (32) in a coarse neighborhood Di,

we arrange these eigenvalues λDi
k , k = 1, 2, · · · , Ji in ascending order λDi

1 ≤ λDi
2 ≤ · · · ≤ λDi

Ji
, and

denote the corresponding eigenfunctions by ΨDi
k , k = 1, 2, · · · , Ji. After that, we take the first li

eigenfunctions in each coarse neighborhood. Using these eigenfunctions we can define

φDi,off
k =

li∑
j=1

(ΨDi
k )jψ

Di,snap
j , k = 1, 2, · · · , li,

where (ΨDi
k )j denotes the j-th component of ΨDi

k . Eventually, the offline basis functions ψDi,off
k for

the coarse neighborhood Di is defined by

ψDi,off
k = χiφ

Di,off
k , k = 1, · · · , li,

where χi is the standard multiscale basis function for the coarse neighborhood Di. We also define the

local offline space V
(i)

off , i = 1, · · · , Nin and the global multiscale basis function space Voff as follows:

V
(i)

off := span{ψDi,off
k : k = 1, · · · , li}, i = 1, · · · , Nin,

Voff :=

Nin⊕
i=1

V
(i)

off .

These ψDi,off
k will be used as the local offline basis functions. Once the global multiscale basis function

space Voff is constructed, we can find the GMsFEM solution unoff ∈ Voff at time t = tn by solving the
following equation,

A(unoff, v) =
〈
cun−1

off + G, v
〉
, ∀v ∈ Voff. (33)

4.3. Online Process of GMsFEM

In order to achieve a rapid convergence in the GMsFEM, we need to build some online basis functions
to enrich the global multiscale basis function space Voff. In this subsection, we shall provide a brief
introduction of the online computation of the GMsFEM, which will be used in the DyBO method.

Let unoff ∈ Voff be the numerical solution obtained in (33) at time t = tn. Consider a given
coarse neighborhood Di, we define a space Vi = H1

0 (Di) ∩ Vsnap equipped with the norm ‖v‖2Vi :=∫
Di
â(x)|∇v|2, where the weighted function â(x) =

(
H2
∑Nin

i=1 |∇χi|2
)
ā(x). We also define the follow-

ing residual operator on Vi by

Rni (v;unoff) :=

∫
Di

(
cun−1

f + G
)
v −

∫
Di

(
â∇unoff · ∇v + cunoffv

)
, ∀v ∈ Vi, (34)

where un−1
f is the fine-scale solution at time t = tn−1. This is called the H−1-residual on the coarse

neighborhood Di. The operator norm of Rni , denoted by ‖Rni ‖V ∗
i

gives a measure of the quantity
of the residual. In this work, the online basis functions mean the basis functions that are computed
during the iterative process for a given fixed time t = tn, contrary to offline basis functions [12] that

10



are computed before the iterative process. The online basis functions are obtained based on the local
residuals Rni for the multiscale solution unoff.

Suppose that one needs to add a basis function φ ∈ Vi on the coarse neighborhood Di. We use
the index τ ≥ 1 to represent the enrichment level and denote the current multiscale basis function
space to be V n,τ

off at time t = tn. Let V n,τ+1
off = V n,τ

off + span{φ} be the new approximation space at

time t = tn and un,τ+1
off be the corresponding new GMsFEM solution. The analysis in [11] suggests

that the required online basis function φ ∈ Vi is the solution to the following equation:

A(φ, v) = Rni (v;un,τoff ) ∀v ∈ Vi. (35)

Hence, the new online basis function φ ∈ Vi is obtained by solving (35). To summarize, let I ⊂
{1, 2, · · · , Nin} be the index set of the coarse neighborhoods where the online enhancements are
required. For each i ∈ I, we obtain some basis functions φi ∈ Vi by solving (35). Then, we define
V n,τ+1

off = V n,τ
off + span{φi : i ∈ I}. Consequently, following the arguments in [11], we have at time

t = tn,

‖unf − u
n,τ+1
off ‖2V ≤

(
1−

Λ
(I)
min

Cerr

∑
i∈I ‖Rni ‖V ∗

i
(λDi
li+1)−1∑N

i=1 ‖Rni ‖V ∗
i

(λDi
li+1)−1

)
‖unf − u

n,τ
off ‖

2
V , (36)

where Cerr is a uniform constant and Λ
(I)
min = mini∈I λ

Di
li+1. Inequality (36) shows that it is able to

obtain a better convergence of the online adaptive GMsFEM by adding more online basis functions

at each time t = tn and the rate of convergence depends on the constant Cerr and Λ
(I)
min. The details

of implementation for the online adaptive GMsFEM will be presented in Section 4.4.

4.4. The complete algorithm and implementation

We shall summarize the overall computational scheme for our problem in this section. Recall that
the multiscale coefficient is a(x, ω) = ā(x) + ã(x, ω) and the fluctuation part ã(x, ω) is represented
as ã(x, ω) = ã(x, ξ1, ξ2, · · · , ξr) =

∑r
i=1 aiξi = aiξi, where the Einstein notation is used. Therefore,

we rewrite the DyBO formulation for the multiscale stochastic diffusion equations (20) as follows

∂ū

∂t
= ∇ · (ā∇ū) +∇ · (E

[
aiξi∇UATHT

]
) + f, (37)

∂U

∂t
= −UDT +∇ · (E [aiξi∇ūH])A +∇ · (ā∇U) +∇ · (E

[
aiξi∇UATHTH

]
)A, (38)

dA

dt
= −ACT +

〈
∇ · (E

[
HTaiξi∇ū

]
) +∇ · (ā∇AUT ) +∇ · (E

[
aiξiH

THA∇UT
]
), U

〉
Λ−1

U , (39)

where the computational domain is D × [0, T ] with D = [0, 1]2 ⊂ R2. We assume that homogeneous
boundary condition is imposed on the Eq.(20) so the solutions ū and U = (u1, · · · , um) will vanish
on ∂D. The initial conditions for ū, U and A depend on the initial condition of u, which will be
discussed in Section 5.

We denote the set of the offline basis functions as {ηi}Nd
i=1, where Nd = dim(Voff). We write

Voff = span{ηi : i = 1, · · · , Nd} and the row vector B = B(x) =
(
η1(x), · · · , ηNd

(x)
)
. In the setting

of GMsFEM, for each time t > 0, we seek the approximations for both the functions ū and U using
the multiscale basis functions and we assume that the following representations hold

ū(x, t) = B(x)û0(t), û0(t) ∈ RNd ,

U(x, t) = B(x)Ûm(t), Ûm(t) := (û1(t), · · · , ûm(t)) ∈ RNd×m.

Then, the variational form of (37) becomes

Mdû0

dt
= −S0û0 − SiÛmATE

[
ξiH

T
]

+ f̂ , (40)

11



where
M = (〈ηj , ηk〉) ∈ RNd×Nd , S0 = (〈āηj , ηk〉) ∈ RNd×Nd ,

Si = (〈aiηj , ηk〉) ∈ RNd×Nd , f̂ = (〈f, η1〉 · · · 〈f, ηNd
〉)T ∈ RNd .

Similarly, the variational form of (38) becomes

MdÛm
dt

= −MÛmDT − Siû0E [ξiH] A− S0Ûm − SiÛmATE
[
ξiH

TH
]
A. (41)

To obtain the fully discretized scheme, we apply the implicit Euler method to approximate the time
derivatives in (40) and (41). Combining with the variational forms, we obtain the following difference
equations for each fixed time t = tn = n∆t, n = 1, · · · , N

S0û
n
0 + cMûn0 = Gn−1

1 , (42)

S0Û
n
i + cMÛni = Gn−1

2 , i = 1, ...,m, (43)

where c = 1/∆t and the right hand sides G1 and G2 are defined as follows

Gn−1
1 = cMûn−1

0 − SiÛn−1
m AT

n−1E
[
ξiH

T
]

+ f̂ ,

Gn−1
2 = cMÛn−1

m −MÛn−1
m DT

n−1 − Siûn−1
0 E [ξiH] An−1 − SiÛn−1

m AT
n−1E

[
ξiH

TH
]
An−1,

where An−1 = A(tn−1), Ûnm = Ûm(tn), ûn0 = û0(tn), and Dn = D(tn). Then, we apply integration
by part and representation of ū and U in (39) to obtain the following ODE for A

dA

dt
= −ACT −

(
E
[
ξiH

T
]
ûT0 SiÛm + AÛTmS0Ûm + E

[
ξiH

TH
]
AÛTmSiÛm

)
Λ−1

U . (44)

In this work, we use implicit Euler scheme to approximate the time derivative and get

An = An−1 −∆t
(
An−1C

T
n−1 + Gn−1

3

)
, (45)

where Cn−1 = C(tn−1) and

Gn−1
3 =

(
E
[
ξiH

T
]

(ûn−1
0 )TSiÛn−1

m + An−1(Ûn−1
m )TS0Û

n−1
m +E

[
ξiH

TH
]
An−1(Ûn−1

m )TSiÛn−1
m

)
Λ−1

U .

To summarize, we solve the following dicrete system to obtain ûn0 , Ûnm, and An at each time
t = tn, n = 1, · · · , N ,

S0û
n
0 + cMûn0 = Gn−1

1 , (46)

S0Û
n
m + cMÛnm = Gn−1

2 , (47)

An = An−1 −∆t
(
An−1C

T
n−1 + Gn−1

3

)
, (48)

where the matrices Cn−1 and Dn−1 in (46)-(48) can be computed using the system (15) and the
corresponding G∗(ū,U,Y) = −Λ−1

U

(
ÛTmSTi û0E [ξiH] + ÛTmSÛmAT + ÛTmSTi ÛmATE

[
ξiH

TH
] )

A.
To further improve the accuracy of our DyBO method, we use the online adaptive GMsFEM [11].

Assume that for every coarse neighborhood Di, we pick li offline basis functions to form the global
space Voff and denote V n,0

ms = Voff. We use τ to represent the enrichment level of online adaptive
GMsFEM and V n,τ

ms to denote the enriched space at level τ for time t = tn. For each fixed time
t = tn, the online enrichment is performed for the coarse regions having residuals that are θ fraction
of the total residual.

The online adaptive GMsFEM is stated as follows: fix the parameter θ ∈ (0, 1). Given a fixed
time t = tn and start with enrichment level τ = 0. Then go to the step 1 below.

12



Step 1. Solve the desired variational equation to obtain the multiscale solution ūn,τoff or Un,τ
m .

Step 2. Compute the residual rni = ‖Rni ‖V ∗
i

for each coarse neighborhood Di. Rearrange the resid-
uals in descending order rn1 ≥ rn2 ≥ · · · .

Step 3. Select the coarse neighborhoods that need to be enriched. Take the smallest integer k such
that

θ

Nin∑
i=1

(rni )2 ≤
k∑
i=1

(rni )2.

Step 4. Add online basis functions φ1, · · · , φk for the selected coarse neighborhoods D1, · · · , Dk.
The online basis function φi can be obtained by solving (35) over Di.

After step 4, repeat from step 1 until the global residual
∑Nin

i=1 (rni )2 is smaller than a certain tolerance.
If the online procedure is terminated, one can move to another time level tn+1.

Remark 4.1. In our numerical experiments, we set the tolerance for residuals in the online process
as 10−4. Under this circumstance, only 2-3 times of online iterations are required at each time level.
Meanwhile, the L2-error between the multiscale solution and the fine-scale solution is nearly less
than 2% when the online procedure is terminated.

5. Numerical experiments

In this section, we shall present numerical experiments to demonstrate the efficiency of our proposed
method. We consider the following multiscale stochastic diffusion equation

∂uε

∂t
(x, ω) = ∇ · (aε(x, ω)∇uε(x, ω)) + f(x, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω, (49)

where D = [0, 1]2 ⊂ R2 is the unit square and T = 1. In the first three examples, the coarse mesh
size is H = 1

10 and the fine mesh size is h = 1
100 . The time step is ∆t = 10−3. In the fourth

example, we take H = 1
20 and h = 1

200 . For the step size in time, we use ∆t = 1
3 × 10−3. Due to the

efficiency of the DyBO formulation [8, 9], we use the fine mesh of the spatial domain D to solve the
DyBO systems for ū and U, obtaining the fine-scale solution as a reference solution. Throughout the
numerical simulations, we will use li = 5 offline basis functions to form the global multiscale space
Voff initially.

Recall that the multiscale coefficient aε(x, ω) is given by aε(x, ω) = aε(x, ξ1, · · · , ξr) = āε(x) +∑r
i=1 a

ε
i (x)ξi(ω), where {ξi(ω)}ri=1 is a set of i.i.d. random variables with the uniform distribution

over the interval [−1, 1]. The initial condition of the solution is assumed to have the truncated KL
expansion of the following form

ũ(x, t, ω) = ū(x, t) +
m∑
i=1

ui(x, t)Yi(t, ω), (50)

where m is the number of mode in the KL expansion.
The stochastic basis Yi(t, ω) can be expanded as Yi(t, ω) =

∑Np

j=1Hj(ω)Aji(t), i = 1, · · · ,m,

where {Hj(ω)}Np

j=1 is a set of tensor products of Legendre polynomials in the interval [−1, 1], Np =
(p+r)!
p!r! −1 is the total number of basis, p is the maximum degree of polynomial, and r is the number of

the random variables. Let A(t) = (Aji(t))Np×m denote the expansion coefficients of all the stochastic
basis. Then, the initial condition of the matrix A(t)|t=0 =

(
Aji(0)

)
Np×m should satisfy E [HA] = 0

and AT (t)A(t)|t=0 = Im×m.
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For each function to be approximated (e.g. ū, ui or the variance function var(u) :=
∑m

i=1 u
2
i ), we

define the following error quantity at t = tn to estimate the accuracy of the proposed method

en2 =
‖unf − unapprox‖L2(D)

‖unf ‖L2(D)

where unf refers to the reference solution and unapprox is the approximation obtained by the proposed
method. For simplicity, we call this quantity en2 to be L2-error.

5.1. First example

In our first example, the coefficient aε(x, ω) is parameterized by one random variable (r = 1) and the
degree of polynomial is chosen to be p = 9. The number of terms in the KL expansion is m = 3. The
mean ā of the multiscale coefficient aε is of high-contrast (see Figure 1) and a1 = 0.4. In this case,
the source function f is considered to be zero. Also, the initial conditions for ū and ui (i = 1, 2, 3)
are given as follows

ū(x1, x2, t)|t=0 = 2
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u1(x1, x2, t)|t=0 = 16
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u2(x1, x2, t)|t=0 = 12
(
1− cos(4πx1)

)(
1− cos(4πx2)

)
,

u3(x1, x2, t)|t=0 = 8
(
1− cos(6πx1)

)(
1− cos(6πx2)

)
.
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Figure 1: The coefficient ā. (Max: 80, Min: 1)

function online status t = 0.1 t = 0.2 t = 0.4 t = 0.8 t = 1.0

ū
S 10.4954% 10.4864% 10.4834% 10.4822% 10.4821%
E 0.8865% 0.8240% 0.8234% 0.8399% 0.8398%

u1
S 10.4822% 10.4809% 10.4815% 10.4819% 10.4820%
E 0.8228% 0.8396% 0.8397% 0.8398% 0.8398%

u2
S 11.7272% 11.1802% 11.0746% 11.0688% 11.0670%
E 1.1176% 1.2291% 1.0196% 1.0178% 1.0721%

u3
S 11.4743% 11.1082% 11.0248% 11.2790% 11.2725%
E 1.0134% 1.0018% 1.1297% 0.9622% 0.9629%

var(u)
S 18.3969% 18.4012% 18.4021% 18.4024% 18.4025%
E 1.2463% 1.2451% 1.2453% 1.2454% 1.2454%

Table 1: First case: L2-error for each functions. (S: start, E: end)
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The L2-error at several moments in the time interval [0, T ] are recorded and presented in Table 1.
As shown in the table, the L2-error of the functions (ū, ui or var(u)) decay rapidly after performing
the online procedure at each time level. For instance, in Table 1 the relative L2-error of the variance
function is nearly 18% before applying the online construction at each time level. On the other hand,
at the end of the online procedure at each time level the relative error is very small, nearly 1.24%. It
shows that the online adaptive construction is necessary for significantly reducing the computational
error.

5.2. Second example

In this example, the mean of the multiscale coefficient aε(x, ω) is oscillatory, which is given by

ā(x1, x2) = 10×
2 + P sin(2π(x1−x2)

ε )

2− P cos(2π(x1−x2)
ε )

,

where P = 1.7 and ε = 1/8. The fluctuation part of the multiscale coefficient aε(x, ω) is parameter-
ized by two independent random variables (r = 2) with a1 and a2 defined as

a1(x1, x2) = 0.02×
2 + P1 sin(2π(x1−x2)

ε1
)

2− P1 sin(2π(x1−x2)
ε1

)
and a2(x1, x2) = 0.04×

2 + P2 sin(2πx1
ε2

)

2− P2 sin(2πx2
ε2

)
,

where P1 = 1.6, P2 = 1.5, ε1 = 1/8 and, ε2 = 1/7. The degree of polynomial is set to be p = 9 and
let m = 3 in this case. The source function f is zero over the whole computational domain D× [0, T ].
The initial conditions for the mean of the solution and the physical modes are presented below

ū(x1, x2, t)|t=0 = 16
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u1(x1, x2, t)|t=0 = 12
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u2(x1, x2, t)|t=0 = 8
(
1− cos(4πx1)

)(
1− cos(4πx2)

)
,

u3(x1, x2, t)|t=0 = 4
(
1− cos(6πx1)

)(
1− cos(6πx2)

)
.

function online status t = 0.1 t = 0.2 t = 0.4 t = 0.8 t = 1.0

ū
S 1.8428% 1.8438% 1.8456% 1.8486% 1.9224%
E 0.4621% 0.4619% 0.4161% 0.4152% 0.4545%

u1
S 1.8418% 1.8423% 1.8433% 1.8444% 1.8447%
E 0.4773% 0.4616% 0.4191% 0.4165% 0.4163%

u2
S 10.4590% 16.8297% 7.8207% 8.6577% 14.4298%
E 0.5357% 0.6788% 0.5248% 0.4908% 0.5827%

u3
S 5.6898% 8.9971% 9.0853% 4.1592% 14.2342%
E 0.3386% 0.3974% 0.4520% 0.4057% 0.5167%

var(u)
S 2.8478% 2.8481% 2.8487% 2.8494% 2.5672%
E 0.4050% 0.4065% 0.3772% 0.3805% 0.1245%

Table 2: Second case: L2-error for each functions. (S: start, E: end)

In this example, the multiscale features are driven by both the mean part and the fluctuation
part of the coefficient a(x, ω). In Table 2, the numerical results of L2-error are reported. One can
observe that the errors for both the functions are very small (nearly 0.4%) at each time tn after the
execution of the online procedure.
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We remark that the choice of the number of pre-selected basis functions li will also affect the
performance of the algorithm. One need to include at least li eigenfunctions that corresponding
to small eigenvalues to form the finite element space at each time level. In practical, the number
of small eigenvalues obtained in (32) depends on the multiscale features of the problem. One may
take a larger li(≥ 5) in the first example to obtain a better accuracy before performing the online
procedure. In this case, li = 5 may be a reasonable choice.

5.3. Third example

We consider a numerical example where the coefficient is parameterized by three independent random
variables (r = 3) and the number of terms in the KL expansion is m = 4. These random variables
have uniform distribution in the interval [−1, 1]. Next, we set the coefficients a1, a2 and a3 to be
some functions with multiscale features spatially

a1(x1, x2) = 0.02×
2 + P1 sin(2π(x1−x2)

ε1
)

2− P1 sin(2π(x1−x2)
ε1

)
, P1 = 1.6 and ε1 = 1/8,

a2(x1, x2) = 0.04×
2 + P2 sin(2πx1

ε2
)

2− P2 sin(2πx2
ε2

)
, P2 = 1.5 and ε2 = 1/7,

a3(x1, x2) = 0.08×
2 + P3 sin(2π(x1−0.5)

ε3
)

2− P3 sin(2π(x2−0.5)
ε3

)
, P3 = 1.4 and ε3 = 1/6.

The mean ā of the multiscale coefficient is of high-contrast and it is plotted in Figure 2. The source
function is chosen to be f ≡ 1 in the computational domain and the initial conditions for the mean
of the solution and the physical modes are presented as follows

ū(x1, x2, t)|t=0 = 32
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u1(x1, x2, t)|t=0 = 24
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u2(x1, x2, t)|t=0 = 16
(
1− cos(4πx1)

)(
1− cos(4πx2)

)
,

u3(x1, x2, t)|t=0 = 8
(
1− cos(6πx1)

)(
1− cos(6πx2)

)
,

u4(x1, x2, t)|t=0 = 4
(
1− cos(8πx1)

)(
1− cos(8πx2)

)
.
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Figure 2: The coefficient ā. (Max: 50, Min: 4)

The convergence history is recorded in Table 3. In this example, we add one more mode function
u4 and the error of the variance function var(u) is less than 0.8% at each time level when the online
procedure is terminated. Due to the linearity of the PDE and the DyBO formulation, one may easily
extend this algorithm to the version with more modes in the KL expansion.
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function online status t = 0.1 t = 0.2 t = 0.4 t = 0.8 t = 1.0

ū
S 2.9209% 2.9206% 2.9208% 2.9206% 2.9206%
E 0.4733% 0.4730% 0.4723% 0.4730% 0.4729%

u1
S 2.7086% 3.7209% 2.8470% 3.7136% 3.2688%
E 0.4189% 0.4851% 0.4724% 0.4834% 0.4464%

u2
S 3.9159% 9.2374% 4.8202% 15.6289% 6.4858%
E 0.4884% 0.4440% 0.3512% 0.4461% 0.3756%

u3
S 5.1971% 14.1185% 10.6377% 22.7078% 7.1893%
E 0.6254% 0.4379% 0.4065% 0.6773% 0.4676%

u4
S 8.5717% 13.7116% 13.0090% 10.2476% 19.6901%
E 0.4121% 0.6560% 0.4602% 0.4305% 0.6090%

var(u)
S 4.8924% 5.5994% 4.8215% 5.5589% 5.1409%
E 0.5711% 0.7005% 0.7088% 0.7058% 0.6608%

Table 3: Third case: L2-error for each functions. (S: start, E: end)

5.4. Fourth example

In the last example, we assume that the coefficient is parameterized by three independent random
variables in the fluctuation and let m = 3. We set the mean of the multiscale coefficient to be ā = 5
and the coefficients ai (i = 1, · · · , r) to be more high-oscillated and given as follows

a1(x1, x2) = 0.02×
2 + P1 sin(2π(x1−x2)

ε1
)

2− P1 sin(2π(x1−x2)
ε1

)
, P1 = 1.6 and ε1 = 1/16,

a2(x1, x2) = 0.04×
2 + P2 sin(2πx1

ε2
)

2− P2 sin(2πx2
ε2

)
, P2 = 1.5 and ε2 = 1/15,

a3(x1, x2) = 0.08×
2 + P3 sin(2π(x1−0.5)

ε3
)

2− P3 sin(2π(x2−0.5)
ε3

)
, P3 = 1.4 and ε3 = 1/14.

Moreover, the source function and the initial conditions in this case are given as follows

f(x1, x2) = 1 + 0.3
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

ū(x1, x2, t)|t=0 = 12
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u1(x1, x2, t)|t=0 = 12
(
1− cos(2πx1)

)(
1− cos(2πx2)

)
,

u2(x1, x2, t)|t=0 = 8
(

sin(4πx1)
)(

1− cos(4πx2)
)
,

u3(x1, x2, t)|t=0 = 4
(
1− cos(6πx1)

)(
sin(6πx2)

)
.

In this example, the randomness is driven by the fluctuation of the coefficient a(x, ω) with small
magnitude perturbation from the random variables ξi. There is an observable efficiency for this
type of highly-oscillated multiscale problem with random input in the sense that the numerical error
between the multiscale solution and the fine-scale solution is small (less than 2%) at each time
tn ∈ [0, T ] when the online procedure is terminated.

We point out that one can obtain a better accuracy if one set the tolerance in the online procedure
to be smaller (say 10−5). However, it is more time-consuming as it requires more number of online
refinement at each time level tn. In general, the setting of the tolerance in the algorithm depends by
the demands of the accuracy to the application.
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function online status t = 0.1 t = 0.2 t = 0.4 t = 0.8 t = 1.0

ū
S 2.2021% 2.2030% 2.2057% 2.2057% 2.2057%
E 1.1144% 1.1125% 1.0764% 1.0765% 1.0766%

u1
S 2.2019% 2.2022% 2.3130% 2.3178% 2.3253%
E 1.1132% 1.1134% 1.1200% 1.1307% 1.1818%

u2
S 4.5920% 4.7298% 7.8030% 3.5810% 4.9615%
E 0.9437% 0.8238% 0.9198% 0.9085% 0.7774%

u3
S 10.5251% 10.0601% 12.6847% 3.5763% 5.4680%
E 0.9547% 1.1308% 1.1413% 0.8894% 0.8114%

var(u)
S 4.2831% 4.2831% 4.3376% 4.3376% 4.3429%
E 1.5765% 1.5765% 1.4760% 1.4704% 1.5502%

Table 4: Third case: L2-error for each functions. (S: start, E: end)

6. Conclusion

In this paper, we proposed a new framework, which combines the DyBO formulation and the online
adaptive GMsFEM, to solve a time-dependent PDE with multiscale and random features. For a
given multiscale PDE with random input, one can derive its corresponding DyBO formulation with
the assumption that the solution has a low-dimensional structure in the sense of Karhunen-Loève
expansion. The DyBO method enables us to faithfully track the KL expansion of the SPDE solution.
However, the DyBO method becomes expensive when the problem contains multiscale features in
the physical space.

We propose to apply the GMsFEM with online basis enrichment to improve the performance of
the DyBO method. For the mean of the solution and physical modes of the solution in the truncated
KL expansion, they are deterministic and dependent on time. We applied GMsFEM with implicit
Euler scheme to solve the deterministic PDEs. At each time level, the online construction was applied
in order to reduce the error rapidly. For the stochastic modes of the solution in the truncated KL
expansion, we project them onto a set of polynomial chaos basis and obtain a ODE system, which
can be solved using existing ODE solvers. Thanks to the approximation property of the multiscale
basis functions obtained using the GMsFEM, the degree of freedom of our new method is relatively
small compared with the original DyBO method. Therefore, our new method provides considerable
computational savings over the original DyBO method.

The numerical results indicate that our new method is efficient for the time-dependent PDE
problem when the multiscale coefficient consist of some independent random variables with small
magnitude of perturbation. The numerical error remains to be less than 2% during the propagation
in the time interval when the online construction for basis functions is executed.
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Appendix A. Derivations of the DyBO Formulation for the multiscale SPDE

In this appendix, we provide the details of the derivations of the DyBO-gPC formulation of multiscale
SPDE (20). Substituting the KL expansion of u into Eq. (20), we get

Lu = ∇ · ((ā+ ã)(∇ū+∇UATHT )) + f

= ∇ · (ā∇ū) +∇ · (ã∇ū) +∇ · (ā∇UATHT ) +∇ · (ã∇UATHT ) + f.

Taking expectations on both sides yields

E [Lu] = ∇ · (ā∇ū) +∇ · (E
[
ã∇UATHT

]
) + f,

where we have used the fact that E [ã] = 0 and E [H] = 0. Then, we obtain

L̃u = Lu− E [Lu]

= ∇ · (ã∇ū) +∇ · (ā∇UATHT ) +∇ · (ã∇UATHT )−∇ · (E
[
ã∇UATHT

]
)

In addition, we compute some related terms as follows

E
[
L̃uH

]
= ∇ · (E [ã∇ūH]) +∇ · (ā∇UAT ) +∇ · (E

[
ã∇UATHTH

]
)

and 〈
UT , E

[
L̃uH

]〉
m×Np

=
〈
UT , ∇ · (E [ã∇ūH]) +∇ · (ā∇UAT ) +∇ · (E

[
ã∇UATHTH

]
)
〉

From Eq. (18), we have the DyBO-gPC formulation for the multiscale SPDE (20),

∂ū

∂t
= ∇ · (ā∇ū) +∇ · (E

[
ã∇UATHT

]
) + f,

∂U

∂t
= −UDT +∇ · (E [ã∇ūH])A +∇ · (ā∇U) +∇ · (E

[
ã∇UATHTH

]
)A,

dA

dt
= −ACT +

〈
∇ · (E

[
HT ã∇ū

]
) +∇ · (ā∇AUT ) +∇ · (E

[
ãHTHA∇UT

]
), U

〉
Λ−1

U ,

where matrices C and D can be solved from the linear system (15) with G∗,

G∗ = Λ−1
U

〈
UT , E

[
L̃uH

]〉
A.

and we have used that ATA = Im×m
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