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Abstract

The Langberg-Médard multiple unicast conjecture claims that for any strongly
reachable k-pair network, there exists a multi-flow with rate (1, 1, . . . , 1). In a previous
work, through combining and concatenating the so-called elementary flows, we have
constructed a multi-flow with rate at least (89 ,

8
9 , . . . ,

8
9) for any k. In this paper,

we examine an optimization problem arising from this construction framework. We
first show that our previous construction yields a sequence of asymptotically optimal
solutions to the aforementioned optimization problem. And furthermore, based on this
solution sequence, we propose a perturbation framework, which not only promises a
better solution for any k mod 4 6= 2 but also solves the optimization problem for the
cases k = 3, 4, . . . , 10, accordingly yielding multi-flows with the largest rate to date.

1 Introduction

We consider a directed k-pair network N = (V,A, S,R), which consists of an underlying
digraphD = (V,A), k senders S = {s1, s2, . . . , sk} ⊆ V and k receivers R = {r1, r2, . . . , rk} ⊆
V . Let N denote the underlying undirected network of N , where the orientation in N is
ignored. Throughout this paper, we assume that each arc in N (and as a result, each edge in
N ) is of unit capacity. The network coding rate Rc(N ) is a real vector (d1, d2, . . . , dk) such
that di is the transmission rate from si to ri when using network coding along the orientation
of N , while the routing rate Rc(N ) is a real vector (d1, d2, . . . , dk) such that there exists a
feasible (s1, s2, . . . , sk)-(r1, r2, . . . , rk) multi-flow (see definition in Section 2.1) over N .

One of the most fundamental problems in the theory of network coding is the multiple
unicast network coding conjecture [8], or simply the multiple unicast conjecture, which states
that for any N , the transmission rate achieved by any fractional network coding can be
achieved by routing as well. Despite enhanced understanding in certain special cases, the
conjecture has been doggedly resisting a series of attacks [1, 2, 3, 5, 6, 7, 9, 11, 12] and turned
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out to be one of the most hardest problems in network coding theory (For a brief exposition
to this theory, see, e.g., [13]).

A weaker version of the conjecture, proposed by Langberg and Médard [7], focuses on a
strongly reachable k-pair network N and claims that (the “≤” below should be interpreted
in the pairwise sense)

Rc(N ) ≤ Rr(N ).

Here, a k-pair network N is said to be strongly reachable if there exists an si-rj directed
path Psi,rj for all feasible i, j, and the paths Ps1,rj , Ps2,rj , · · · , Psk,rj are edge-disjoint for each
feasible j. Apparently, for a strongly reachable k-pair network N , Rc(N ) ≥ (1, 1, . . . , 1).
So, if the multiple unicast conjecture is true, one will deduce that Rr(N ) ≥ (1, 1, . . . , 1).
Langberg and Médard [7] showed that Rr(N ) ≥ (1

3
, 1
3
, . . . , 1

3
), which was further improved

to Rr(N ) ≥ (8
9
, 8
9
, . . . , 8

9
) in [1] by way of combining and concatenating some so-called

elementary flows.
In this paper, we will examine a sequence of optimization problems {PSk}, whose optimal

solutions will naturally give lower bounds on Rr(N ). We first prove that our construction
in [1] yields {C∗k}, a sequence of asymptotically optimal solutions to {PSk}. And furthermore,
based on {C∗k}, we propose a perturbation framework to obtain {C∗∗k }, which promises a
better solution than C∗k for any k mod 4 6= 2 and further solves PSk for k = 3, 4, . . . , 10,
and thereby yielding multi-flows with the largest rate to date (see Section 6.4). Here we
note that a prototypical version of the optimization problem PSk was first proposed in [3].
The progress made in this work is due to a (rather) delicate study of structural and analytic
aspects of PSk , which include symmetries, asymptotics, perturbation behaviors and so on.

The rest of paper is organized as follows. In Section 2, we give some basic notions and facts
in the theory of multi-flows, and we introduce the optimization problem PSk and elaborate
its connections with the theory of multi-flows. In Section 3, we investigate the symmetries
of the optimization problem PSk and give the limit of its optimal value as k tends to infinity.
We introduce the so-called strong homogeneous flow C∗k in Section 4, where we first show
that {C∗k} is a sequence of asymptotically optimal solution for {PSk} and then prove that
it gives the exact optimal solution if and only if k = 1, 2, 6, 10. In Section 5, we propose a
unified framework to perturb C∗k to obtain a better solution C∗∗k for any k mod 4 6= 2. In
Sections 6, we give C∗∗k for k = 3, 4, 5, 7, 8, 9 explicitly, and we further establish the optimality
of these C∗∗k and their uniqueness for achieving optimality. Finally, the paper is concluded
in Section 7.

2 Mathematical Preliminaries

2.1 Multi-Flow Basics

LetD = (V,A) be a directed graph with vertex set V and arc setA. For an arc a = (u, v) ∈ A,
let tail(a), head(a) denote its tail u, head v, respectively. For any s, r ∈ V , an s-r flow is a
function f : A→ R satisfying the following flow conservation law: for any v /∈ {s, r},

excessf (v) = 0, (1)
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where
excessf (v) :=

∑
a∈A: head(a)=v

f(a)−
∑

a∈A: tail(a)=v

f(a). (2)

It is easy to see that |excessf (s)| = |excessf (r)|, which is called the value (or rate) of f .
Note that the above definitions naturally give rise to a flow on the underlying undirected
graph of D, which can negative-valued. This is different from Schrijver [10], where a flow
must be a non-negative function.

There are two kinds of operations on the flows defined as above. Firstly, the set of all
s-r flows naturally forms a linear space over R; particularly, for any two s-r flows f1, f2 and
scalars u, v ∈ R, and the function f = uf1 + vf2 is again an s-r flow. Secondly, let f be an
s-t flow and g be a t-r flow such that

excessf (t) = −excessg(t).

Then by definition, f+g is an s-r flow, which is called the concatenation of f and g. Adopting
the notational convention in defining the concatenation of paths in [10], the concatenation
of f and g will be denoted by fg.

An (s1, s2, . . . , sk)-(r1, r2, . . . , rk) multi-flow refers to a set of k flows F = {fi : i =
1, 2, . . . , k}, where each fi is an si-ri flow. We say F has rate (d1, d2, . . . , dk), where di :=
|excessfi(si)|. For any given a ∈ A, we define |F|(a) as

|F|(a) :=
∑
1≤i≤k

|fi(a)|. (3)

The multi-flow F = {fi : i = 1, 2, . . . , k} is said to be feasible with respect to capacity
function c if |F|(a) ≤ c(a) for all a ∈ A. Note that when k = 1, the multi-flow is just a flow
f , and f is feasible if |f(a)| ≤ c(a) for all a ∈ A (Here recall that we have assumed c(a) ≡ 1
in Section 1).

2.2 Elementary Flows

For a strongly reachable k-pair network N = (V,A, S,R), let P = {Psi,rj}ki,j=1 be a set of si-rj
directed paths, where the paths Ps1,rj , Ps2,rj , · · · , Psk,rj are edge-disjoint for each feasible j.
For each Psi,rj ∈ P, define an si-rj flow as follows:

fi,j(a) =

{
1, a ∈ Psi,rj ,
0, otherwise.

Let F = {fi,j|1 ≤ i, j ≤ k}, a set of elementary flows with respect to P, which will be the
“building blocks” for the multi-flow construction in this paper.

More specifically, let

C =
(

(c
(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )
)

be a k-tuple of k × k real matrices. And for ` = 1, 2, . . . , k, consider F = {f1, f2, · · · , fk},
where

f` =
k∑

i,j=1

c
(`)
i,j fi,j. (4)
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The following theorem says that if C satisfies certain conditions, then the constructed F in
(4) is also a multi-flow.

Theorem 2.1. F = {f1, f2, · · · , fk} be an (s1, s2, . . . , sk)-(r1, r2, . . . , rk) multi-flow with rate

(1, 1, . . . , 1) if and only if all (c
(`)
i,j ) satisfy

1)
k∑
j=1

c
(`)
i,j = 0, for all i 6= `;

2)
k∑
i=1

c
(`)
i,j = 0, for all j 6= `;

3)
k∑
i=1

k∑
j=1

c
(`)
i,j ≡ 1.

(5)

Proof. We only need to prove that f` is an s`-r` flow with rate 1 for any `. To see this,

Note that excessf`(si) =
∑k

j=1 c
(`)
i,j and excessf`(rj) =

∑k
i=1 c

(`)
i,j . Condition 1) implies that

the conservation law is satisfied by all the senders except s`; Condition 2) implies that it is
satisfied by all the receivers except r`; Condition 3) implies that the value of f` is 1.

2.3 The Optimization Problem PSk
The optimization problem PSk to be introduced in this section is intimately connected with
our multi-flow construction and will be the main subject of study in this paper.

Let
Sk :=

{
C =

(
(c

(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )
)
‖ C satisfies (5)

}
.

Clearly, Sk is defined by a total of 2k − 1 linearly independent constraints and is an affine
subspace of Rk3 with dimension k(k − 1)2.

Throughout this paper, we will refer to a non-empty subset of [k]×[k] as a k-sample, where

[k] := {1, 2, . . . , k}. For a given k-sample s and ` ∈ [k], we define a function g
(`)
s : Sk → R

as
g(`)s (C) :=

∑
(i,j)∈s

c
(`)
i,j ,

based on which, we define gs : Sk → R as

gs(C) :=
k∑
`=1

|g(`)s (C)|. (6)

Furthermore, for a non-empty set S of k-samples, we define

gS(C) := max
s∈S
{gs(C)}. (7)

Now, we are ready to introduce the optimization problem PS as follows:

minimize gS(C)
subject to C ∈ Sk.

(PS)
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Note that gS is continuous and lower bounded, and thereby its optimal value is achievable,
i.e., there exists an optimal solution (optimal point) C̄ ∈ Sk such that

gS(C̄) = min
C∈Sk

gS(C).

It is straightforward to verify that Sk is a convex set and gS(·) is a convex function over
Sk, which means PS is a convex optimization problem. Unfortunately the presence of the
absolute value sign in (6) and the possibly exponential number (in k) of s involved in the
maximization in (7) render the optimization problem PS intractable in general.

In this paper, we are only concerned with PSk , where Sk (defined below), is of particular
interest for the consideration of strongly reachable k-pair networks.

Definition 2.2. [Strongly Reachable Sample Set]

Sk := {{(i1, j1), . . . (ir, jr)} ⊆ [k]× [k]‖ j1 < j2 < · · · < jr, 1 ≤ r ≤ k}. (8)

Put it differently, Sk is composed of all the k-samples, each of which consists of elements
whose 2nd-coordinates are distinct. Clearly, there are (k + 1)k − 1 samples in Sk.
Example 2.3. It is easy to see that S1 = {{(1, 1)}}. And S2 is composed of 8 sam-
ples, {(1, 1)}, {(2, 1)}, {(1, 2)}, {(2, 2)}, {(1, 1), (1, 2)}, {(2, 1), (1, 2)}, {(1, 1), (2, 2)}, and
{(2, 1), (2, 2)}. And one can verify that S3 contains 63 samples and S4 contains 624 samples.

Let OSk denote the optimal value of PSk . The following theorem provide a key link
connecting PSk and Rr(N ), where N is an arbitrary strongly reachable k-pair network.

Theorem 2.4. For any strongly reachable k-pair network N ,

Rr(N ) ≥
(

1

OSk
,

1

OSk
, . . . ,

1

OSk

)
.

Proof. Let C̄ =
(

(c̄
(1)
i,j ), (c̄

(2)
i,j ), . . . , (c̄

(k)
i,j )
)

be an optimal point for PSk , that is to say, OSk =

gSk(C̄). And let F = {f1, f2, . . . , fk} be the (s1, s2, . . . , sk)-(r1, r2, . . . , rk) multi-flow con-

structed from F with coefficient matrices 1
OSk
C̄ =

(
1
OSk

(c̄
(1)
i,j ), 1

OSk
(c̄

(2)
i,j ), . . . , 1

OSk
(c̄

(k)
i,j )
)

. Clearly,

F achieves rate
(

1
OSk

, 1
OSk

, . . . , 1
OSk

)
.

To complete the proof, we only need to prove that F is feasible. Towards this goal,
for each arc a, let P(a) = {Psi1 ,rj1 , Psi1 ,rj1 , . . . , Psiα(a),rjα(a)

} ⊆ P be the set of all the paths
passing through a. By the definition of a strongly reachable k-pair network, we have

s(a) := {(i1, j1), (i2, j2), . . . , (iα(a), jα(a))} ∈ Sk.

Hence, we have

|F|(a) = |f1(a)|+ · · ·+ |fk(a)|

=

∣∣∣∣g(1)s(a)

(
1

OSk
(c̄

(1)
i,j )

)∣∣∣∣+ · · ·+
∣∣∣∣g(k)s(a)

(
1

OSk
(c̄

(k)
i,j )

)∣∣∣∣
=

1

OSk
gs(a)

(
C̄
)

≤ 1,

which implies that F is feasible and thus completes the proof.
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3 Symmetries and Asymptotics of PSk
Starting from this section, we will focus on solving the problem PSk . Apparently, the problem
PS1 is trivial. And it has been implicitly shown in [3] that PS2 has optimal value 1, which is
achieved by the unique optimal point((

3
4

1
4

1
4
−1
4

)
,

( −1
4

1
4

1
4

3
4

))
.

However, the problem PSk , k ≥ 3, becomes prohibitively complex and cannot be dealt with
a case analysis as in [3]. Rather than a fixed PSk , this section is devoted to the asymptotics
of {PSk}; more precisely, we will establish limk→∞OSk = 9/8, which can be achieved by
a sequence of explicitly constructed solutions in Section 4. As elaborated below, the key
observation in deriving this result is some symmetric properties possessed by the optimal
solutions of PSk .

3.1 Symmetries of PSk
In this section, we use Sym(k) to denote the symmetric group on [k]. Note that a permutation
in Sym(k) can be written by a product of disjoint cyclic permutations (cycles), e.g., σ =

(15)(342) ∈ Sym(5). For any σ ∈ Sym(k) and C =
(

(c
(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )
)
∈ Sk, we define

σ(C) := C̃,

where C̃ =
(

(c̃
(1)
i,j ), (c̃

(2)
i,j ), . . . , (c̃

(k)
i,j )
)

with c̃
(`)
i,j = c

(σ−1(`))

σ−1(i),σ−1(j) for all feasible i, j, `. Apparently,

σ defines a one-to-one mapping from Sk to Sk.

Example 3.1. Let

C =

 5
9

2
9

2
9

2
9
−1
9

−1
9

2
9
−1
9

−1
9

 ,

 0 0 0
0 1 0
0 0 0

 ,

 −1
9

−1
9

2
9−1

9
−1
9

2
9

2
9

2
9

5
9

 ∈ S3,

and let σ1 = (12) and σ2 = (123) ∈ Sym(3). Then, we have

σ1(C) =

 1 0 0
0 0 0
0 0 0

 ,

 −1
9

2
9
−1
9

2
9

5
9

2
9−1

9
2
9
−1
9

 ,

 −1
9

−1
9

2
9−1

9
−1
9

2
9

2
9

2
9

5
9

 ,

σ2(C) =

 5
9

2
9

2
9

2
9
−1
9

−1
9

2
9
−1
9

−1
9

 ,

 −1
9

2
9
−1
9

2
9

5
9

2
9−1

9
2
9
−1
9

 ,

 0 0 0
0 0 0
0 0 1

 .

Definition 3.2. [Fixed Point and Invariant Space] Let C ∈ Sk. C is called a fixed point
if for all σ ∈ Sym(k), σ(C) = C. The set of all the fixed points is called the invariant space

of Sk, and will be denoted by Sfix
k .

The following theorem shows that Sfix
k is in fact a 2-dimensional affine subspace of Sk.
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Theorem 3.3. Let C =
(

(c
(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )
)
∈ Sk. Then, C ∈ Sfix

k if and only if C
takes the following form:

C =




x a a . . . a
a y b . . . b
a b y . . . b
...

...
. . .

...
a b b . . . y

 ,


y a b . . . b
a x a . . . a
b a y . . . b
...

...
. . .

...
b a b . . . y

 , . . . ,


y b b . . . a
b y b . . . a
b b y . . . a
...

...
. . .

...
a a a . . . x


 , (9)

where x+ (k − 1)a = 1 and y + a+ (k − 2)b = 0.

Proof. Clearly, if C takes the form in (9), then it is a fixed point. So we only need to prove
the reverse direction.

Let J denote the set of all the entries of C, i.e., J := {c(`)i,j : 1 ≤ i, j, ` ≤ k}. Consider

the group action of Sym(k) on J with σ(c
(`)
i,j ) = c

(σ(`))
σ(i),σ(j) for any σ ∈ Sym(k) and any

c
(`)
i,j ∈ J . Clearly, under this group action, J is partitioned into the following orbits: 1)

J1 := {c(`)i,j : i = j = `}; 2) J2 := {c(`)i,j : i = j 6= `}; 3) J3 := {c(`)i,j : i = ` 6= j}; 4)

J4 := {c(`)i,j : j = ` 6= j}; 5) J5 := {c(`)i,j : i 6= j, i 6= `, j 6= `}. It follows from the assumption

that C is a fixed point that c
(`)
i,j = c

(σ(`))
σ(i),σ(j) for any feasible i, j, ` and any σ ∈ Sym(k). In

other words, the elements in a same orbit must have a same value, and therefore we can
assume the existence of x, y, a1, a2, b such that

c
(`)
i,j =



x, if c
(`)
i,j ∈ J1,

y, if c
(`)
i,j ∈ J2,

a1, if c
(`)
i,j ∈ J3,

a2, if c
(`)
i,j ∈ J4,

b, if c
(`)
i,j ∈ J5.

Note that from (5), we can deduce that for any `,
∑k

j=1 c
(`)
`,j =

∑k
i=1 c

(`)
i,` , which implies∑

j:j 6=` c
(`)
`,j =

∑
i:i 6=` c

(`)
i,` , or equivalently, (k − 1)a1 = (k − 1)a2. The proof of the theorem is

then complete after writing a1, a2 as a.

For any σ ∈ Sym(k) and any k-sample s = {(i1, j1), . . . , (ir, jr)}, we define

σ(s) := {(σ(i1), σ(j1)), . . . , (σ(ir), σ(jr))}.

It is easy to see that σ defines a one-to-one mapping from 2[k]×[k] to 2[k]×[k]. For a quick
example, let s = {(2, 1), (1, 2), (3, 3)} ⊆ [3] × [3] and let σ1 = (1, 3), σ2 = (2, 3). Then,
σ1(s) = {(2, 3), (3, 2), (1, 1)}, σ2(s) = {(3, 1), (1, 3), (2, 2)}.

Together with Theorem 3.3, the following theorem drastically reduces the dimension of
the parameter space for the purpose of solving PSk .

Theorem 3.4. PSk has an optimal point within Sfix
k .
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Proof. Suppose that C̄ ∈ Sk achieves the optimal value of PSk . By definition, for any
σ ∈ Sym(k) and any k-sample s, gs(C̄) = gσ(s)(σ(C̄)) and hence σ(C̄) is an optimal point of
PSk . Let

Ĉ =

∑
σ∈Sym(k) σ(C̄)

n!

It is easy to see that for any σ ∈ Sym(k), σ(Ĉ) = Ĉ. Hence, Ĉ ∈ Sfix
k . On the other hand,

it follows from the convexity of gSk(·) that

gSk(Ĉ) ≤
∑

σ∈Sym(k) gSk(σ(C̄))
n!

and hence Ĉ is an optimal point, which completes the proof.

3.2 Asymptotics of PSk
For a k-sample s = {(i1, j1), (i2, j2), . . . , (iα(s), jα(s))}, we define the following multi-set:

Inds := {i1, j1, i2, j2, . . . , iα(s), jα(s)},

where α(s) denotes the size of s. And for any ` = 1, 2, . . . , k, denote by mInds(`) the
multiplicity of ` in Inds (if ` /∈ Inds, then mInds(`) = 0), and define

β(s) := |{` : mInds(`) 6= 0}|.

For a quick example, consider s = {(1, 1), (2, 2), (1, 3), (3, 4), (1, 6)} ⊆ [6]× [6]. Then, Inds =
{1, 1, 2, 2, 1, 3, 3, 4, 1, 6}, mInds(1) = 4, mInds(2) = mInds(3) = 2, mInds(4) = mInds(6) = 1,
mInds(5) = 0 and α(s) = β(s) = 5.

In this section, we characterize the asymptotics of {Ok} and thereby approximately
“solve” PSk for large k. We first recall the following theorem from [3].

Theorem 3.5. OSk ≤ 9
8

for k ≥ 3.

By Theorem 3.4, there exists an optimal point Ck ∈ Sfix
k for PSk . Moreover, by Theorem

3.3, we can assume Ck = ((c
(1)
i,j ), (c

(2)
i,j ), . . . , (c

(k)
i,j )) takes the form as in (9) with a, b, x, y

replaced by ak, bk, xk, yk, respectively, to emphasize its dependence on k, that is,

c
(`)
i,j =


xk, if i = j = `,
yk, if i = j 6= `
ak, if i = `; j 6= ` or j = `; i 6= `,
bk, if otherwise,

(10)

where xk + (k − 1)yk = 1 and yk + (k − 2)bk + ak = 0.

Lemma 3.6. For xk, yk, ak, bk defined in (10), we have

1) yk = O( 1
k2

);

2) xk = O( 1
k
);
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3) ak = 1
k

+O( 1
k2

);

4) bk = −1
k2

+O( 1
k3

).

Proof. By definition, for s = {(1, 1), (2, 2), . . . , (`, `)} ∈ Sk and the optimal point Ck defined
in (10), we have

gs(Ck) = `|xk + (`− 1)yk|+ (k − `)|`yk|. (11)

Taking ` = k/2 in (11) and applying Theorem 3.5, we have

k2

4
|yk| ≤ gs(Ck) ≤ OSk = O(1),

which implies yk = O( 1
k2

). Hence 1) holds.
Taking ` = k in (11) and applying Theorem 3.5, we have

k|xk + (k − 1)yk| ≤ OSk = O(1).

Then, from 1) we deduce that yk = O( 1
k2

), which further implies xk = O( 1
k
) by the above

equation. Hence 2) holds.
Noticing that (k − 1)ak = 1− xk and by 2), we have ak = 1

k
+O( 1

k2
). Hence 3) holds.

Noticing that (k − 2)bk = −ak − yk and by 3) and 1), we have bk = −1
k2

+ O( 1
k3

). Hence
4) holds.

Now, we are ready to give the main result of this section.

Theorem 3.7.

lim
k→∞
OSk =

9

8
.

Proof. Let s = {(i1, 1), (i2, 2), . . . , (i`, `)} ∈ Sk be such that {i1, i2, . . . , i`} = {1, 2, . . . , `}
and ij 6= j for j = 1, 2, . . . , `. It can be easily verified that Inds = {1, 1, 2, 2, . . . , `, `}. Let
Ck be an optimal point of PSk taking the form in (10). Then, by definition, we have

gs(Ck) =
k∑
i=1

|mInds(i)ak + (`−mInds(i))bk|

=
∑
i∈Inds

|mInds(i)ak + (`−mInds(i))bk|+
∑
i/∈Inds

|`bk|

=
∑
i∈Inds

|2ak + (`− 2)bk|+
∑
i/∈Inds

|`bk|

=`|2ak + (`− 2)bk|+ (k − `)|`bk|.

It then follows from Lemma 3.6 that 2ak + (`− 2)bk > 0 and bk < 0, and hence,

gs(Ck) =`(2ak + (2`− k − 2)bk)

=`

(
2

k
+O

(
1

k2

)
− 2`

k2
+

1

k
+O

(
1

k2

))
=
`

k2
(3k − 2`+O(1)).

(12)

9



Now, setting ` = 3k
4

+O(1) in Equation (12), we have

gs(Ck) =
1

k2

(
3k

4
+O(1)

)(
3k

2
+O(1)

)
=

9

8
+O

(
1

k

)
.

Hence, OSk ≥ gs(Ck) = 9
8

+O( 1
k
). On the other hand, by Lemma 3.5, we have that OSk ≤ 9

8
,

which immediately implies that

lim
k→∞
OSk =

9

8
.

4 The Strong Homogeneous Flow C∗k
We introduce in this section a sequence of the so-called strong homogeneous flows {C∗k}. We
will show that it is asymptotically optimal for {PSk}, yet it only yield the exact optimal
solution if and if only k = 1, 2, 6, 10. We note that {C∗k} will also play important roles
in terms of obtaining some exact optimal solutions; more specifically, as will be shown in
Section 6, the optimal solution C∗∗k , k = 3, 4, 5, 7, 8, 9, are obtained using a perturbation from
the corresponding C∗k .

4.1 Asymptotic Optimality

Definition 4.1. [Strong Homogeneous Flow] Let

C∗k := ((c
∗(1)
i,j ), (c

∗(2)
i,j ), . . . , (c

∗(k)
i,j )) (13)

where

c
∗(`)
i,j =


2
k
− 1

k2
, if i = j = `,

1
k
− 1

k2
, if i = `; j 6= ` or j = `; i 6= `,

− 1
k2
, i 6= ` and j 6= `.

(14)

Here we note that C∗ can be alternatively obtained by combining and concatenating elemen-
tary flows as in (IV.1) of [1].

Example 4.2. By definition, we have C∗1 = ((1)) and

C∗2 =

((
3
4

1
4

1
4
−1
4

)
,

( −1
4

1
4

1
4

3
4

))
,

C∗3 =

 5
9

2
9

2
9

2
9
−1
9

−1
9

2
9
−1
9

−1
9

 ,

 −1
9

2
9
−1
9

2
9

5
9

2
9−1

9
2
9
−1
9

 ,

 −1
9

−1
9

2
9−1

9
−1
9

2
9

2
9

2
9

5
9

 .

Note that C∗2 is the unique optimal point for PS2 .

The following observation in [1] will serve as a key lemma in this paper.
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Lemma 4.3 ([1]). Let C∗k be the strong homogeneous flow and Sk be the strongly reachable
sample set. Then, for all s ∈ Sk,

gs(C∗k) =
3kα(s)− 2β(s)α(s)

k2
. (15)

We now define
Sk(a, b) := {s ∈ Sk‖α(s) = a, β(s) = b}.

The following two lemmas follow from Lemma 4.3 via straightforward computations.

Lemma 4.4. For ` = 1, 2, . . . , we have

1) If k = 4`, then gs(C∗k) reaches the maximum 9
8

when s ∈ Sk(3`, 3`);

2) If k = 4`+ 1, then gs(C∗k) reaches the maximum 18`2+9`+1
16`2+8`+1

when s ∈ Sk(3`+ 1, 3`+ 1);

3) If k = 4` + 2, then gs(C∗k) reaches the maximum 9`2+9`+2
8`2+8`+2

when s ∈ Sk(3` + 1, 3` + 1) ∪
Sk(3`+ 2, 3`+ 2);

4) If k = 4`+ 3, then gs(C∗k) reaches the maximum 18`2+27`+10
16`2+24`+9

when s ∈ Sk(3`+ 2, 3`+ 2).

Lemma 4.5. For ` = 1, 2 . . . , we have

1) If k = 4`, then gs(C∗k) reaches the second largest value 9
8
− 2

k2
when s ∈ Sk(3` − 1, 3` −

1) ∪ Sk(3`+ 1, 3`+ 1);

2) If k = 4` + 1, then gs(C∗k) reaches the second largest value 18`2+9`+1
16`2+8`+1

− 1
k2

when s ∈
Sk(3`, 3`);

3) If k = 4` + 2, then gs(C∗k) reaches the second largest value 9`2+9`+2
8`2+8`+2

− 4
k2

when s ∈
Sk(3`, 3`) ∪ Sk(3`+ 3, 3`+ 3);

4) If k = 4` + 3, then gs(C∗k) reaches the second largest value 18`2+27`+10
16`2+24`+9

− 1
k2

when s ∈
Sk(3`+ 3, 3`+ 3).

Definition 4.6. [Asymptotically Optimal Solution] A sequence {Ck‖Ck ∈ Sk} is said
to be asymptotically optimal for {PSk} if

lim
k→∞

gSk(Ck) = lim
k→∞
OSk .

The following theorem then immediately follows from Lemma 4.4:

Theorem 4.7. {C∗k} is asymptotically optimal for {PSk}.
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4.2 Optimality of C∗6 and C∗10

In this section, we prove that C∗k is an optimal solution to PSk if and only if k = 1, 2, 6, 10.
We first state some needed notations and lemmas.

For any C ∈ Sk, let S†k(C) denote the set of all k-sample s ∈ Sk such that{
g
(`)
s (C) > 0, if ` ∈ Inds,
g
(`)
s (C) < 0, if ` /∈ Inds.

(16)

We then have the following lemma.

Lemma 4.8. For any d < k, we have

Sk(d, d) ⊂ S†k(C
∗
k).

Proof. Notice that for each s ∈ Sk(d, d), α(s) = d < k and hence g
(`)
s (C∗k) is the sum of at

most k − 1 entries of (c
∗(`)
i,j ). By the definition of C∗k , we infer that if ` ∈ Inds, then there

exists at least one entry with value (k−1)/k2 or (2k−1)/k2 and the sum of the other entries

are greater than or equal to −(k − 2)/k2 and hence g
(`)
s (C∗k) > 0; and if ` /∈ Inds, then

obviously g
(`)
s (C∗k) = −d/k2 < 0.

An element in a k-sample s is said to be diagonal if its two coordinates are the same,
otherwise non-diagonal. Let γ(s) denote the number of diagonal elements in s. For exam-
ple, let s = {(1, 1), (3, 3), (1, 2)(1, 4), (2, 5)} be a 5-sample. Then, (1, 1), (3, 3) are diagonal
elements, whereas (1, 2), (1, 4), (2, 5) are non-diagonal elements, and furthermore γ(s) = 2.

Lemma 4.9. For any s ∈ Sk(d, d) with d < k, there exists a neighborhood N(C∗k , ε) ⊂ Sfix
k

of C∗k such that for all C ∈ N(C∗k , ε),

gs(C)− gs(C∗k) = γ(s)(x+ (2d− k − 1)y) + (d− γ(s))((2a+ (2d− k − 2)b)), (17)

where a, b, x, y are defined by

C − C∗k =




x a a . . . a
a y b . . . b
a b y . . . b
...

...
. . .

...
a b b . . . y

 ,


y a b . . . b
a x a . . . a
b a y . . . b
...

...
. . .

...
b a b . . . y

 , . . . ,


y b b . . . a
b y b . . . a
b b y . . . a
...

...
. . .

...
a a a . . . x



 .

Proof. Recall from Lemma 4.8 that g
(`)
s (C∗k) > 0 if ` ∈ Inds and g

(`)
s (C∗k) < 0 if ` /∈ Inds.

Since each function g
(`)
s (·) is continuous, there exists a sufficiently small ε such that for all

C ∈ N(C∗k , ε) and all s ∈ Sk(d, d), g
(`)
s (C) > 0 if ` ∈ Inds and g

(`)
s (C) < 0 if ` /∈ Inds. For any

C ∈ N(C∗k , ε), we have

gs(C)− gs(C∗k) =
k∑
`=1

g(`)s (C)−
k∑
`=1

g(`)s (C∗k)

=
∑
`∈Inds

(g(`)s (C)− g(`)s (C∗k)) +
∑
`/∈Inds

(g(`)s (C∗k)− g(`)s (C)).
(18)
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Noticing that α(s) = β(s) = d, it is easy to check that∑
`∈Inds

(g(`)s (C)− g(`)s (C∗k)) = γ(s)x+ (d− 1)γ(s)y + 2(d− γ(s))a+ (d− 2)(d− γ(s))b (19)

and ∑
`/∈Inds

(g(`)s (C∗k)− g(`)s (C)) = (d− k)(γ(s)y + (d− γ(s))b). (20)

Combining Equations (19) and (20) and plugging the results into (18), we have

gs(C)− gs(C∗k) = γ(s)(x+ (2d− k − 1)y) + (d− γ(s))(2a+ (2d− k − 2)b),

which completes the proof.

Lemma 4.10. For any fixed d < k, there exists C ∈ Sfix
k such that gs(C) − gs(C∗k) < 0 for

all s ∈ Sk(d, d).

Proof. Let N(C∗k , ε) be the neighborhood of C∗k as in Lemma 4.9. We will prove that there
exists C ∈ N(C∗k , ε) such that gs(C) − gs(C∗k) < 0 for all s ∈ Sk(d, d). Note that, by Lemma
4.9, we only need to prove that there exist sufficiently small a, b, x, y satisfying the following
system: i(x+ (2d− k − 1)y) + (d− i)(2a+ (2d− k − 2)b) < 0, i = 0, 1, . . . , d,

x+ (k − 1)a = 0,
y + (k − 2)b+ a = 0.

Since the first and the (d + 1)-th inequalities imply the second to the d-th inequalities, we
only need to prove there exist sufficiently small a, b, x, y satisfying the following system:

2a+ (2d− k − 2)b < 0,
x+ (2d− k − 1)y < 0,
x+ (k − 1)a = 0,
y + (k − 2)b+ a = 0,

(21)

or equivalently, {
2a+ (2d− k − 2)b < 0,

2a+ (2d−k−1)(k−2)
d−1 b > 0.

(22)

Since d < k, we have 2d−k−2
2d−k−1 6=

k−2
d−1 and hence 2d− k − 2 6= (2d−k−1)(k−2)

d−1 , which implies that

there exist sufficiently small a and b such that (22) holds. By the last two equations of (21),
x, y can also be chosen sufficiently small, which implies there exists C ∈ N(C∗k , ε) such that
gs(C)− gs(C∗k) < 0 for all s ∈ Sk(d, d), which completes the proof.

In what follows, a k-sample s ∈ Sk is said to be maximizing at C if gs(C) = gSk(C), and
we will use Smaxk (C) denote the set of all maximizing k-samples at C. For a quick example,
by 1) of Lemma 4.4, when k = 4`, any s ∈ Sk(3`, 3`) is a maximizing sample at C∗k , i.e.,
Smaxk (C∗k) = Sk(3`, 3`). Now, we are ready to give the main result of this section.
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Theorem 4.11. C∗k is an optimal solution to PSk if and only if k = 1, 2, 6, 10.

Proof. The case k = 1 is trivial and it is known [3] that C∗2 is an optimal point for PS2 . So
we only need to prove C∗6 and C∗10 are respectively optimal points for PS6 and PS10 , and C∗k is
not an optimal point for PSk when k 6= 1, 2, 6, 10.

In the remainder of the proof, we consider the following cases:
Case 1: k > 1 and k mod 4 6= 2. In this case, by Lemma 4.4, there exists a d such

that Smaxk (C∗k) = Sk(d, d). Then, by Lemma 4.10, for some sufficiently small ε, we can
choose C ∈ N(C∗k , ε) such that for any maximizing s at C∗k , the following two conditions
hold: (1) gs(C) < gs(C∗k); (2) s is also a maximizing sample at C (Here (2) is true because
|Sk| is finite, and the function gs(·) is continuous over Sk for each s). It then follows that
maxs∈Sk{gs(C)} < maxs∈Sk{gs(C∗k)}, which means C∗k is not an optimal point for PSk .

Case 2: k = 4` + 2 for some integer ` ≥ 3. In this case, C∗k is not an optimal point for
PSk . To prove this, we first show that for some sufficiently small ε, there exists C ∈ N(C∗k , ε)
such that gs(C)− gs(C∗k) < 0 for all s ∈ Sk(3`+ 1, 3`+ 1)∪Sk(3`+ 2, 3`+ 2) with ` ≥ 3. By
Lemma 4.9, we only need to prove that there exist sufficiently small a, b, x, y satisfying the
following system:
i(x+ (2(3`+ 1)− k − 1)y + (3`+ 1− i)(2a+ (2(3`+ 1)− k − 2)b)) < 0, i = 0, 1, . . . , 3`+ 1,
i(x+ (2(3`+ 2)− k − 1)y + (3`+ 2− i)(2a+ (2(3`+ 2)− k − 2)b)) < 0, i = 0, 1, . . . , 3`+ 2,
x+ (k − 1)a = 0,
y + (k − 2)b+ a = 0.

(23)
Applying a similar argument as in the proof of Lemma 4.10 and noticing that k = 4` + 2,
we simplify the above system to 

2a+ 2(`− 1)b < 0,
2a+ 2`b < 0,

2a+ 4(2`−1)
3

b > 0,

2a+ 4`(2`+1)
3`+1

b > 0.

(24)

One then verifies that for all δ > 0, {
a = −11

10
`δ,

b = δ,

is a solution to (24). Choosing δ > 0 small enough, we deduce that for some sufficiently
small ε there exists C ∈ N(C∗k , ε) such that gs(C)− gs(C∗k) < 0 for all s ∈ Sk(3`+ 1, 3`+ 1)∪
Sk(3`+ 2, 3`+ 2) with ` ≥ 3. By the same reasoning as in Case 1, for some sufficiently small
ε, we can choose C ∈ N(C∗k , ε) such that for any s ∈ Smaxk (C∗k), the following two hold: (1)
gs(C) < gs(C∗k); (2) s is a maximizing sample of C. Hence maxs∈Sk{gs(C)} < maxs∈Sk{gs(C∗k)},
which means C∗k is not an optimal point for PSk .

Case 3: k = 4` + 2 with ` = 1, i.e., k = 6. In this case, consider Equation (24), which
can be rewritten as 

a < 0,
a+ b < 0,
3a+ 2b > 0,
2a+ 3b > 0.

(25)
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Note that this system has no solution because by the last two inequalities, we have a+b > 0,
which contradicts the second inequality. Hence, within N(C∗k , ε) (defined in Lemma 4.9),
there is no point C such that gs(C) − gs(C∗k) < 0 for all maximizing s at C∗6 (Note that by
Lemma 4.4, the set of all such s is Smax6 (C∗6) = S6(4, 4) ∪ S6(5, 5)). Hence, C∗6 is a local
optimal point for PS6 , and furthermore, by the convexity of gS6(·), C∗6 is a global optimal
point for PS6 .

Case 4: k = 4`+ 2 with ` = 2, i.e., k = 10. In this case, consider Equation (24), which
can be rewritten as 

a+ b < 0,
a+ 2b < 0,
a+ 2b > 0,
7a+ 20b > 0.

(26)

Note that this system has no solution because the third inequality contradicts the second
inequality. Hence, within N(C∗k , ε) (defined in Lemma 4.9), there is no point C such that
gs(C)− gs(C∗k) < 0 for all maximizing s at C∗10 (Note that by Lemma 4.4, the set of all such s
is Smax10 (C∗10) = S10(7, 7) ∪ S10(8, 8)). Hence, C∗10 is a local optimal point for PS10 , and again
by the convexity of gS10(·), a global optimal point for PS10 ,

The following corollary says that the upper bound 9
8

(derived in [3]) on OSk , k ≥ 3,
cannot be achieved.

Corollary 4.12. OSk < 9
8

for all k ≥ 3.

5 A Perturbation Framework

In this section, we propose a perturbation framework for the case k mod 4 6= 2 that not
only promises a better solution to PSk than C∗k but also yields exact optimal solutions at
least for some small k (see Section 6 for exact solutions for the cases k = 3, 4, 5, 7, 8, 9).

5.1 Valid Perturbation Direction

First of all, we define
L(Sfix

k ) := {∆ = C − C ′‖C, C ′ ∈ Sfix
k }.

Note that any ∆ = (∆(1),∆(2), . . . ,∆(k)) ∈ L(Sfix
k ) can be written as

∆ =




x a a . . . a
a y b . . . b
a b y . . . b
...

...
. . .

...
a b b . . . y

 ,


y a b . . . b
a x a . . . a
b a y . . . b
...

...
. . .

...
b a b . . . y

 , . . . ,


y b b . . . a
b y b . . . a
b b y . . . a
...

...
. . .

...
a a a . . . x



 ,

where x(∆) + (k− 1)a(∆) = 0 and y(∆) + a(∆) + (k− 2)b(∆) = 0. Here, to emphasize the
dependence, we have written x, y, a, b as x(∆), y(∆), a(∆), b(∆), respectively.
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Lemma 5.1. For any fixed d < k, there exist ∆ ∈ L(Sfix
k ) and ε0 > 0 such that for all

s1, s2 ∈ Sk(d, d) and all 0 < ε < ε0,

gs1(C∗k + ε∆)− gs1(C∗k) = gs2(C∗k + ε∆)− gs2(C∗k) < 0,

where ε∆ = (ε∆(1), ε∆(2), . . . , ε∆(k)).

Proof. To prove this lemma, we only need to slightly modify the proof of Lemma 4.10. More
precisely, we assume a = (k

2

2d
− k+ 1)b, which implies 2a+ (2d− k− 2)b = x+ (2d− k− 1)y,

which is an extra constraint added to (21) ensuring (with the help of (17)) a uniform change
from gs(C∗k) to gs(C∗k + ε∆) over all s ∈ Sk(d, d), i.e., for all s1, s2 ∈ Sk(d, d),

gs1(C∗k + ε∆)− gs1(C∗k) = gs2(C∗k + ε∆)− gs2(C∗k),

if ε is small enough. Moreover, it can be readily verified that the new system is still solvable
with the extra constraint. Finally, properly choosing a solution and then a (or equivalently,
b) as in the proof of Lemma 4.10 yields the desired ∆.

Definition 5.2. [Valid Perturbation Direction] For any k mod 4 6= 2, let d be such that
the set of all maximizing k-samples at C∗k is Sk(d, d) (see Lemma 4.4). There is a unique valid

perturbation direction ∆∗k ∈ L(Sfix
k ) such that 1) |a(∆∗k)| = 1; 2) a(∆∗k) = (k

2

2d
−k+1)b(∆∗k);

3) 2a(∆∗k) + (2d− k − 2)b(∆∗k) < 0.

Remark 5.3. The ideas behind the above definition can be roughly explained as follows:
As in the proof of Lemma 5.1, Conditions 2) and 3) will guarantee that the value of gs(C)
uniformly decreases (over all s ∈ Sk(d, d)) when perturbing C from C∗k along the direction of
∆∗k, and Condition 1) serves to “normalize” ∆∗k to yield the uniqueness.

Remark 5.4. For any k mod 4 = 2, there are two distinct d1, d2 such that the set of all
maximizing k-samples at C∗k is Sk(d1, d1) ∪ Sk(d2, d2) (see Lemma 4.4), and a perturbation
direction that is valid with respect to Sk(d1, d1) may not be valid with respect to Sk(d2, d2).
This is the key reason that our perturbation framework may not work for the case k mod 4 =
2, since it requires a uniform (over all s ∈ Smaxk (C∗k)) decrease of the maximum in the course
of perturbation.

Example 5.5. Let k = 3 and d = 2. It then follows from Condition (2) of Definition 5.2 that
b(∆∗3) = 4a(∆∗3). And by Condition (3), we infer that a(∆∗3) > 0. Moreover, by Condition
(1), we have a(∆∗3) = 1, b(∆∗3) = 4, x(∆∗3) = −2 and y(∆∗3) = −5, or equivalently,

∆∗3 =

 −2 1 1
1 −5 4
1 4 −5

 ,

 −5 1 4
1 −2 1
4 1 −5

 ,

 −5 4 1
4 −5 1
1 1 −2

 .

Similarly, set k = 4 and d = 3. Going through similar arguments as above, we have
a(∆∗4) = −1, b(∆∗4) = 3, x(∆∗4) = 3 and y(∆∗4) = −5.
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5.2 Valid Perturbation Size

In this section, assuming k mod 4 6= 2, we discuss the valid perturbation size for ∆∗k. For
notational convenience, we will henceforth write

h(`)s (ε∆∗k) := g(`)s (C∗k + ε∆∗k)− g(`)s (C∗k), hs(ε∆
∗
k) := gs(C∗k + ε∆∗k)− gs(C∗k).

First of all, we need the following definition.

Definition 5.6. [Valid Perturbation Size] For a given k-sample s, ε > 0 is called g
(`)
s -

valid, ` = 1, 2, . . . , k, if
g(`)s (C∗k + ε∆∗k) · g(`)s (C∗k) ≥ 0;

and ε is called gs-valid if for all 1 ≤ ` ≤ k, ε is g
(`)
s -valid; ε is called gSk-valid if for all s ∈ Sk,

ε is gs-valid.

Remark 5.7. Since the function g
(`)
s is continuous, there always exists ε > 0 such that it is

g
(`)
s -valid, and furthermore, there always exists ε such that it is gs-valid and gSk-valid.

We will also need the following two lemmas, whose proofs have been postponed to Ap-
pendices A and B, respectively.

Lemma 5.8. ε > 0 is gS3-valid if and only ε ≤ 1
36

.

Lemma 5.9. ε > 0 is gS4-valid if and only ε ≤ 1
176

.

5.3 Formula of hs(ε∆
∗
k)

In this section, assuming k mod 4 6= 2, we will deduce a formula to compute hs(ε∆
∗
k) for

gs-valid perturbations.
We start with the following definition.

Definition 5.10. [Type of a Sample] Let sdiag and sndiag denote the subsets of diagonal
and non-diagonal elements of s, respectively. We say{[

mIndsdiag
(1)

mIndsndiag
(1)

]
,

[
mIndsdiag

(2)

mIndsndiag
(2)

]
, . . . ,

[
mIndsdiag

(k)

mIndsndiag
(k)

]}
(27)

is the type of s, which will be denoted by T (s). And slightly abusing the notation, we may
also use (27) to denote the set of all the samples of the type.

Example 5.11. For example, let s = {(1, 1), (3, 3), (1, 2)(1, 4), (2, 5)} be a 5-sample. Then,
sdiag = {(1, 1), (3, 3)}, sndiag = {(1, 2), (1, 4), (2, 5)}, and T (s) =

{[
2
2

]
,
[
0
2

]
,
[
2
0

]
,
[
0
1

]
,
[
0
1

]}
.

Note that if two k-samples s1, s2 are in the same orbit of Sym(k), namely, there exists
σ ∈ Sym(k) such that s1 = σ(s2), then T (s1) = T (s2), but the reverse direction does
not hold in general. For example, one can check that s1 = {(1, 1), (4, 3), (3, 4), (1, 5)} and
s2 = {(1, 1), (1, 3), (3, 4), (4, 5)} are not in the same orbit despite the fact they have the same
type.

We have the following lemma, which says that for any C ∈ Sfix
k , gs(C) is determined by

T (s). Note that the same statement may not hold true for C /∈ Sfix
k .
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Lemma 5.12. Let C ∈ Sfix
k . Then, for any k-samples s1, s2 with T (s1) = T (s2), we have

gs1(C) = gs2(C).

Proof. Since T (s1) = T (s2), we can find a σ ∈ Sym(k) such that for all i = 1, 2 . . . , k,[
mInd(s1)diag

(i)

mInd(s1)ndiag
(i)

]
=

[
mInd(s2)diag

(σ(i))

mInd(s2)ndiag
(σ(i))

]
.

Since C ∈ Sfix
k , we have g

(i)
s1 (C) = g

(σ(i))
s2 (C). Hence,

gs1(C) =
k∑
i=1

|g(i)s1 (C)| =
k∑
i=1

|g(σ(i))s2
(C)| = gs2(C),

as desired.

We also need the following definition, which can be used to give an alternative classifica-
tion of samples.

Definition 5.13. [Discriminant] For any k with k mod 4 6= 2, the discriminant of a
k-sample s is defined by

Dk(s) := a(∆∗k) + γ(s)y(∆∗k) + (α(s)− γ(s)− 1)b(∆∗k).

We next give an example for the above definition, for which we need to introduce more
notation as follows: Let

Sk(a, b, c) := {s ∈ Sk‖α(s) = a, β(s) = b, γ(s) = c},

and
Sk(a, b, c, d) := {s ∈ Sk‖α(s) = a, β(s) = b, γ(s) = c, δ(s) = d},

where
δ(s) := |{i‖mInds(i) = 1}|.

For instance, one verifies that for

s = {(1, 1), (1, 2), (2, 3), (3, 4), (6, 5)},

we have Inds = {1, 1, 1, 2, 2, 3, 3, 4, 5, 6}, and moreover, mInds(4) = mInds(5) = mInds(6) = 1
and δ(s) = 3, which imply that s ∈ S6(5, 6, 1, 3).

Example 5.14. For the first case in Example 5.5, x(∆∗3) = −2, y(∆∗3) = −5, a(∆∗3) = 1
and b(∆∗3) = 4. Then, for any s ∈ S3,

D3(s) = 1− 5γ(s) + 4(α(s)− γ(s)− 1).

More specifically,

• if s ∈ S3(3, 3, 0), then D3(s) = 9;
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• if s ∈ S3(3, 3, 1), then D3(s) = 0;

• if s ∈ S3(3, 3, 2), then D3(s) = −9.

Similarly, for the second case in Example 5.5, x(∆∗4) = 3, y(∆∗4) = −5, a(∆∗4) = −1 and
b(∆∗4) = 3. Hence, for any s ∈ S4,

D4(s) = −1− 5γ(s) + 3(α(s)− γ(s)− 1).

More specifically,

• if s ∈ S4(4, 4, 0), then D4(s) = 8;

• if s ∈ S4(4, 4, 1), then D4(s) = 0;

• if s ∈ S4(4, 4, 2), then D4(s) = −8;

• if s ∈ S4(4, 4, 3), then D4(s) = −16.

Definition 5.15. [Class] A sample s ∈ Sk is said to be in class II if s ∈ Sk(k, k), δ(s) 6= 0
and Dk(s) < 0. Otherwise, it is said to be in class I.

Example 5.16. Using the fact S3(3, 3, 2) = S3(3, 3, 2, 1) and recalling Example 5.14, we
have that s ∈ S3 is in class II if and only s ∈ S3(3, 3, 2). Similarly, we have that s ∈ S4 is in
class II if and only if s ∈ S4(4, 4, 2) ∪ S4(4, 4, 3) and δ(s) 6= 0. It is easy to verify that

S4(4, 4, 2) =

{[
2

2

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}⋃{[
2

1

]
,

[
2

1

]
,

[
0

1

]
,

[
0

1

]}
⋃{[

2

1

]
,

[
2

0

]
,

[
0

2

]
,

[
0

1

]}⋃{[
2

0

]
,

[
2

0

]
,

[
0

2

]
,

[
0

2

]}
,

where δ(s) = 0 if and only if s ∈
{[

2
0

]
,
[
2
0

]
,
[
0
2

]
,
[
0
2

]}
. This, together with the fact that

S4(4, 4, 3) = S4(4, 4, 3, 1), implies that all the class II samples of S4 are{[
2

2

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}⋃{[
2

1

]
,

[
2

1

]
,

[
0

1

]
,

[
0

1

]}⋃{[
2

1

]
,

[
2

0

]
,

[
0

2

]
,

[
0

1

]}⋃
S4(4, 4, 3).

The following lemma, which is the main result of this section, measures how much gs(·)
changes from C∗k under a valid perturbation along the direction of ∆∗k.

Lemma 5.17. Let s ∈ Sk and ε > 0 be gs-valid. Then,

hs(ε∆
∗
k) = As · x(ε∆∗k) +Bs · y(ε∆∗k) + Cs · a(ε∆∗k) +Ds · b(ε∆∗k), (28)

where, if s is in class I, then

As = γ(s),

Bs = γ(s)(2β(s)− k − 1),

Cs = 2(α(s)− γ(s)),

Ds = (α(s)− γ(s))(2β(s)− k − 2);

(29)
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and if s is in class II, then

As = γ(s),

Bs = γ(s)(k − 2δ(s)− 1),

Cs = 2(k − γ(s)− δ(s)),
Ds = k2 − (2δ(s) + γ(s) + 2)k + 2γ(s)δ(s) + 2γ(s) + 2δ(s).

(30)

Proof. For any s ∈ Sk and any 1 ≤ ` ≤ k, by the definition of C∗k , it is easy to see that

g(`)s (C∗k) =
mInds(`)

k
− α(s)

k2
, (31)

which immediately implies that

• g(`)s (C∗k) = 0 if α(s) = k and mInds(`) = 1;

• g(`)s (C∗k) < 0 if mInds(`) = 0, i.e., ` /∈ Inds;

• g(`)s (C∗k) > 0 otherwise.

We first consider the samples in class I. By definition, there are the following three cases:
(1) s /∈ Sk(k, k); (2) s ∈ Sk(k, k) and δ(s) = 0; (3) s ∈ Sk(k, k), δ(s) 6= 0 and Dk(s) ≥ 0.

By the above discussions, for Cases (1) and (2), we have g
(`)
s (C∗k) 6= 0 for all 1 ≤ ` ≤ k.

Then, by the definition of a valid perturbation, the following hold for the gs-valid ε:

if g(`)s (C∗k) > 0, then g(`)s (C∗k + ε∆∗k) ≥ 0;

if g(`)s (C∗k) < 0, then g(`)s (C∗k + ε∆∗k) ≤ 0.
(32)

For Case (3), since ε is gs-valid, (32) still holds. In this case, since δ(s) 6= 0, there exists

some ` such that g
(`)
s (C∗k) = 0; and for such an `, it can be verified that

g(`)s (C∗k + ε∆∗k) = a(ε∆∗k) + γ(s)y(ε∆∗k) + (α(s)− γ(s)− 1)b(ε∆∗k) = Dk(s) ≥ 0. (33)

Now, combining (32) and (33), we deduce that

if ` ∈ Inds, then g(`)s (C∗k) ≥ 0 and g(`)s (C∗k + ε∆∗k) ≥ 0;

if ` /∈ Inds, then g(`)s (C∗k) < 0 and g(`)s (C∗k + ε∆∗k) ≤ 0.
(34)

Hence, for any sample s in class I, we have

hs(ε∆
∗
k) =

k∑
`=1

|g(`)s (C∗k + ε∆∗k)| −
k∑
`=1

|g(`)s (C∗k)|

=
∑
`∈Inds

(g(`)s (C∗k + ε∆∗k)− g(`)s (C∗k))−
∑
`/∈Inds

(g(`)s (C∗k + ε∆∗k)− g(`)s (C∗k))

=
∑
`∈Inds

h(`)s (ε∆∗k)−
∑
`/∈Inds

h(`)s (ε∆∗k).

(35)
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Note that∑
`∈Inds

h(`)s (ε∆∗k) = γ(s)x(ε∆∗k) + (β(s)− 1)γ(s)y(ε∆∗k)

+ 2(α(s)− γ(s))a(ε∆∗k) + (α(s)− γ(s))(β(s)− 2)γ(s)b(ε∆∗k)

and ∑
`/∈Inds

h(`)s (ε∆∗k) = (k − β(s))(γ(s)y(ε∆∗k) + (α(s)− γ(s))b(ε∆∗k)).

Substituting the above equalities into (35) then yields the result for class I.
Now, we consider the samples in class II. By definition, there exists some ` such that

g
(`)
s (C∗k) = 0; and for such an `,

g(`)s (C∗k + ε∆∗k) = a(∆∗k) + γ(s)y(∆∗k) + (α(s)− γ(s)− 1)b(∆∗k) = Dk(s) < 0.

Hence, similarly as above, we have

hs(ε∆
∗
k) =

k∑
`=1

|g(`)s (C∗k + ε∆∗k)| −
k∑
`=1

|h(`)s (C∗k)|

=
∑
`∈Inds

h(`)s (ε∆∗k)−
∑
`/∈Inds

h(`)s (ε∆∗k)− 2δ(s)Dk(s).
(36)

Noting that α(s) = β(s) = k for any class II sample s and substituting for the values of∑
`∈Inds h

(`)
s (ε∆∗k),

∑
`/∈Inds h

(`)
s (ε∆∗k) as in the proof for class I, the result for class II then

follows, which completes the proof.

5.4 A perturbation framework

Note that by Theorem 4.11, for any k 6= 1, 2, 6, 10, one can perturb C∗k to obtain a better
solution to PSk , which however may not be optimal. In the following, we propose a framework
of perturbing C∗k to obtain C∗∗k for any k mod 4 6= 2, which are optimal at least for the cases
k = 3, 4, 5, 7, 9 (see Section 6).

The framework consists of the following three steps.
Step 1: Compute ∆∗k. This step can be done by solving 1), 2) and 3) in Definition 5.2.
Step 2: Compute C∗∗k . For this step, we first use Lemmas 4.4 and 4.5 to obtain the

subsets of samples which achieves the maximum and the second largest values of {gs(C∗k)‖s ∈
Sk}. And we then use Lemma 5.17 to compute hs(ε∆

∗
k) for all s ∈ Sk. In the end, we increase

the value of ε from 0 so that the maximum will decrease (uniformly over all s ∈ Smaxk (C∗k))
until it meets the increasing second largest value at ε = ε∗, and then set C∗∗k = C∗k + ε∗∆∗k.

Step 3: Compute Smaxk (C∗∗k ). We first check by Definition 5.6 the validity of ε∗ obtained
in Step 2. It turns out that for each k, there might exist a small number of samples s for
which ε∗ is not gs-valid. For such s, we can simply compute the value of gs(C∗∗k ) using the
definition of gs, and then we compute, by using Lemma 4.3 and Lemma 5.17, the value of
gs(C∗∗k ) = gs(C∗k) + hs(ε

∗∆∗k) for all s where ε∗ is gs-valid. Finally, with the values of all
gs(C∗∗k ), we derive Smaxk (C∗∗k ).
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6 Optimal Solutions for k = 3, 4, 5, 7, 8, 9

In this section, through perturbing the corresponding C∗k , we obtain the optimal solutions
C∗∗k to PSk for k = 3, 4, 5, 7, 8, 9, and we further establish the uniqueness of these optimal
solutions.

6.1 From C∗k to C∗∗k for k = 3, 4, 5, 7, 9

The perturbation from C∗k to C∗∗k follows from the framework in Section 5.4 with however
some possible simplifications and adaptations to varying degrees for different k.
� We first deal with the case k = 3 through the following steps.
Step 1: Compute ∆∗3. This has already been done in Example 5.5.
Step 2: Compute C∗∗3 . For this step, we need to compute hs(ε∆

∗
3) for all s ∈ S3. To

this end, we compute using Lemma 5.17,

hs(ε∆
∗
3) = (−2As − 5Bs + Cs + 4Ds)ε.

By Example 5.16, s is in class II if and only if s ∈ S3(3, 3, 2, 1) = S3(3, 3, 2). Then, by (30),
we have As = 2, Bs = Cs = 0, Ds = 1 and hence hs(ε∆

∗
3) = 0 for s ∈ S3(3, 3, 2). For any

sample s in class I, we use (29) to compute the coefficients and then compute hs(ε∆
∗
3). The

computations as above yield Table 1, where the values of all gs(C∗3) and hs(ε∆
∗
3) are listed.

Table 1: The values of gs(C∗3) and hs(ε∆
∗
3)

Class of s class I
Subclass of s S3(1, 1, 1) S3(1, 2, 0) S3(2, 2) S3(2, 3, 0)
gs(C∗3) 7

9
5
9

10
9

6
9

hs(ε∆
∗
3) 8ε −2ε −4ε 12ε

Class of s class I class II
Subclass of s S3(2, 3, 1) S3(3, 3, 0) S3(3, 3, 1) S3(3, 3, 3) S3(3, 3, 2)
gs(C∗3) 6

9
1

hs(ε∆
∗
3) −6ε 18ε 0 −36ε 0

By Table 1, gs(C∗3) achieves the maximum 10
9

at S3(2, 2) (or, more precisely, at any sample
from S3(2, 2)) and the second largest value 1 at S3(3, 3). Now, we will perturb C∗k along the
direction of ∆∗k to obtain C∗∗k so that, roughly speaking, the maximum will decrease until
it meets the increasing second largest value. To this end, we note that in the course of
perturbation, the second largest value increases fastest when s ∈ S3(3, 3, 0), and we thereby
solve 1 + 18ε = 10

9
− 4ε, which yields ε∗ = 1

22×9 = 1
198

and furthermore,

C∗∗3 := C∗3 + ∆∗3 ×
1

198
=

 12
22

5
22

5
22

5
22

−3
22

−2
22

5
22

−2
22

−3
22

 ,

 −3
22

5
22

−2
22

5
22

12
22

5
22−2

22
5
22

−3
22

 ,

 −3
22

−2
22

5
22−2

22
−3
22

5
22

5
22

5
22

12
22

 .

By Lemma 5.8, ∆∗3 × 1
198

is a valid perturbation.
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Step 3: Compute Smax3 (C∗∗3 ). From Table 1, it is easy to verify that {gs(C∗∗3 )‖s ∈ S3}
achieves the maximum 12

11
at S3(2, 2) ∪ S3(3, 3, 0). In other words, Smaxk (C∗∗3 ) = S3(2, 2) ∪

S3(3, 3, 0).
� Now, we deal with the case k = 4 through the following steps.
Step 1: Compute ∆∗4. This has already been done in Example 5.5.
Step 2: Compute C∗∗4 . For this step, we need to compute hs(ε∆

∗
4) for all s ∈ S4. To

this end, we compute using Lemma 5.17,

hs(ε∆
∗
4) = (3As − 5Bs − Cs + 3Ds)ε.

By Example 5.16, s ∈ S4 is in class II if and only if

s ∈
{[

2

2

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}
∪
{[

2

1

]
,

[
2

1

]
,

[
0

1

]
,

[
0

1

]}
∪
{[

2

1

]
,

[
2

0

]
,

[
0

2

]
,

[
0

1

]}
∪ S4(4, 4, 3).

For the class II samples, if s ∈
{[

2
2

]
,
[
2
0

]
,
[
0
1

]
,
[
0
1

]}
∪
{[

2
1

]
,
[
2
1

]
,
[
0
1

]
,
[
0
1

]}
, we have γ(s) =

δ(s) = 2 and by (30) As = 2, Bs = −2, Cs = Ds = 0 and hence hs(ε∆
∗
4) = 16ε; if

s ∈
{[

2
1

]
,
[
2
0

]
,
[
0
2

]
,
[
0
1

]}
, we have γ(s) = 2, δ(s) = 1 and by (30) As = Bs = Cs = Ds = 2 and

hence hs(ε∆
∗
4) = 0; if s ∈ S4(4, 4, 3), we have γ(s) = 3, δ(s) = 1 and by (30) As = Bs = 3,

Cs = 0 and Ds = 2 and hence hs(ε∆
∗
4) = 0. For the samples in class I, we use (29) to

compute the coefficients and then obtain hs(ε∆
∗
4). The computations as above yield Table

2, where the values of all gs(C∗4) and hs(ε∆
∗
4) are listed.

Table 2: The values of gs(C∗4) and hs(ε∆
∗
4). Note that S4(2, 3) = S4(2, 3, 0) ∪ S4(2, 3, 1).

Class of s class I
Subclass of s S4(1, 1, 1) S4(1, 2, 0) S4(2, 2, 0) S4(2, 2, 1) S4(2, 2, 2)
gs(C∗4) 5

8
1
2

1
hs(ε∆

∗
4) 18ε −8ε −16ε 0 16ε

Class of s class I
Subclass of s S4(2, 3) S4(2, 4, 0) S4(3, 3) S4(3, 4, 0) S4(3, 4, 1) S4(3, 4, 2)
gs(C∗4) 3

4
1
2

9
8

3
4

hs(ε∆
∗
4) −4ε 8ε −6ε 12ε −4ε −20ε

Class of s class I class II

Subclass of s S4(4, 4, 0) S4(4, 4, 1)
{[

2
0

]
,
[
2
0

]
,
[
0
2

]
,
[
0
2

]} {[
2
1

]
,
[
2
0

]
,
[
0
1

]
,
[
0
2

]}
gs(C∗4) 1
hs(ε∆

∗
4) 16ε 0 −16ε 0

Class of s class I class II

Subclass of s S4(4, 4, 4)
{[

2
1

]
,
[
2
1

]
,
[
0
1

]
,
[
0
1

]} {[
2
2

]
,
[
2
0

]
,
[
0
1

]
,
[
0
1

]}
S4(4, 4, 3)

gs(C∗4) 1
hs(ε∆

∗
4) −48ε 16ε 0

Note that by Table 2, {gs(C∗4)‖s ∈ Sk} achieves the maximum 9
8

at S4(3, 3) and the
second largest value 1 at S4(2, 2) ∪ S4(4, 4). Now, similarly as in the case k = 3, we will

23



perturb C∗4 along the direction of ∆∗4 to obtain C∗∗4 . To this end, we again note that in
the course of perturbation, the second largest value increases fastest when s ∈ S4(4, 4, 0) ∪{[

2
1

]
,
[
2
1

]
,
[
0
1

]
,
[
0
1

]}
∪
{[

2
2

]
,
[
2
0

]
,
[
0
1

]
,
[
0
1

]}
, and we thereby solve 1 + 16ε = 9

8
− 6ε, which yields

ε∗ = 1
22×8 = 1

176
, and furthermore,

C∗∗4 = C∗4 + ∆∗4 ×
1

176

=




5
11

2
11

2
11

2
11

2
11

−1
11

−1
22

−1
22

2
11

−1
22

−1
11

−1
22

2
11

−1
22

−1
22

−1
11

 ,


−1
11

2
11

−1
22

−1
22

2
11

5
11

2
11

2
11−1

22
2
11

−1
11

−1
22−1

22
2
11

−1
22

−1
11

 ,


−1
11

−1
22

2
11

−1
22−1

22
−1
11

2
11

−1
22

2
11

2
11

5
11

2
11−1

22
−1
22

2
11

−1
11

 ,


−1
11

−1
22

−1
22

2
11−1

22
−1
11

−1
22

2
11−1

22
−1
22

−1
11

2
11

2
11

2
11

2
11

5
11


 .

By Lemma 5.9, ∆∗4 × 1
176

is a valid perturbation.
Step 3: Compute Smax4 (C∗∗4 ). From Table 2, it is easy to verify that {gs(C∗∗4 )‖s ∈ S4}

achieves the maximum 12
11

at

Smax4 (C∗∗4 ) = S4(2, 2, 2)∪S4(3, 3)∪S4(4, 4, 0)∪
{[

2

1

]
,

[
2

1

]
,

[
0

1

]
,

[
0

1

]}
∪
{[

2

2

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}
.

� For the cases k = 5, 7, 8, 9, we only outline the major steps to derive C∗∗k without giving
all the computation details.

Step 1: Compute ∆∗k.

• For k = 5, x(∆∗5) = 4, a(∆∗5) = −1, b(∆∗5) = 8
7
, y(∆∗5) = −17

7
.

• For k = 7, x(∆∗7) = 6, a(∆∗7) = −1, b(∆∗7) = 10
11

, y(∆∗7) = −39
11

.

• For k = 8, x(∆∗8) = 7, a(∆∗8) = −1, b(∆∗8) = 3
5
, y(∆∗8) = −13

5
.

• For k = 9, x(∆∗9) = 8, a(∆∗9) = −1, b(∆∗9) = 14
31

, y(∆∗9) = −67
31

.

Step 2: Compute C∗∗k .

• For k = 5, gs(C∗k) achieves the maximum 28
25

at S5(4, 4) and the second largest value 27
25

at S5(3, 3). By Definition 5.15, all these samples are of class I. Then, an application of
Lemma 5.17 yields that

hs(ε∆
∗
5) =

{
−24

7
ε, s ∈ S5(4, 4),

50γ(s)−66
7

ε, s ∈ S5(3, 3),

based on which, we infer that the second largest value increases fastest (with speed
hs(ε∆

∗
5) = 84ε

7
) when γ(s) = 3. Solving the equation 28

25
− 24

7
ε = 27

25
+ 84

7
ε, we have

ε∗ = 7
108×25 and obtain C∗∗5 = C∗5 + 7

108×25∆
∗
5 with

x(C∗∗5 ) = 40
108
,

a(C∗∗5 ) = 17
108
,

b(C∗∗5 ) = −4
108
,

y(C∗∗5 ) = −5
108
.

Note that, in the above, C∗∗5 is represented by form (9) such that x, a, b, y have been
written as x(C∗∗5 ), a(C∗∗5 ), b(C∗∗5 ), y(C∗∗5 ) to emphasize their dependence on C∗∗5 .
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• For k = 7, gs(C∗k) achieves the maximum 55
49

at S7(5, 5) and the second largest value 54
49

at S7(6, 6). By Definition 5.15, all these samples are of class I. Then, an application of
Lemma 5.17 yields that

hs(ε∆
∗
7) =

{
−60

11
ε, s ∈ S7(5, 5),

−98γ(s)+48
11

ε, s ∈ S7(6, 6),

based on which we infer that the second largest value increases fastest (with speed
hs(ε∆

∗
7) = 48ε

11
) when γ(s) = 0. Solving the equation 55

49
− 60

11
ε = 54

49
+ 48

11
ε, we have

ε∗ = 11
108×49 and obtain C∗∗7 = C∗7 + 11

108×49∆
∗
7 with

x(C∗∗7 ) = 30
108
,

a(C∗∗7 ) = 13
108
,

b(C∗∗7 ) = −2
108
,

y(C∗∗7 ) = −3
108
.

• For k = 8, gs(C∗k) achieves the maximum 9
8

at S8(6, 6) and the second largest value
35
32

at S8(5, 5) ∪ S8(7, 7). By Definition 5.15, all these samples are of class I. Then, an
application of Lemma 5.17 yields that

hs(ε∆
∗
8) =


−24

5
ε, s ∈ S8(6, 6),

32γ(s)−50
5

ε, s ∈ S8(5, 5),
−32γ(s)+14

11
ε, s ∈ S8(7, 7),

based on which we infer that the second largest value increases fastest (with speed
hs(ε∆

∗
8) = 110ε

5
) when s ∈ S8(5, 5, 5). Solving the equation 9

8
− 24

5
ε = 35

32
+ 110

5
ε, we

have ε∗ = 5
134×32 and obtain C∗∗8 = C∗8 + 5

134×32∆
∗
8 with

x(C∗∗8 ) = 65
268
,

a(C∗∗8 ) = 29
268
,

b(C∗∗8 ) = −4
268
,

y(C∗∗8 ) = −5
268
.

• For k = 9, gs(C∗k) achieves the maximum 91
81

at S9(7, 7) and the second largest value
90
81

at S9(5, 5) ∪ S9(6, 6). By Definition 5.15, all these samples are of class I. Then, an
application of Lemma 5.17 yields that

hs(ε∆
∗
8) =

{
−140

31
ε, s ∈ S9(7, 7),

168γ(s)−288
31

ε, s ∈ S9(6, 6),

based on which, we infer that the second largest value increases fastest (with speed
hs(ε∆

∗
9) = 684ε

31
) when s ∈ S9(6, 6, 6). Solving the equation 91

81
− 140

31
ε = 90

81
+ 684

31
ε, we

have ε∗ = 31
824×81 and obtain C∗∗9 = C∗9 + 31

824×81∆
∗
9 with

x(C∗∗9 ) = 176
824
,

a(C∗∗9 ) = 81
824
,

b(C∗∗9 ) = −10
824
,

y(C∗∗9 ) = −11
824
.
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Step 3: Compute Smaxk (C∗∗k ).

• For k = 5, it can be easily verified that ε∗ = 7
108×25 is gS5-valid. Hence, we compute

gs(C∗∗5 ) = gs(C∗5) + hs(ε
∗∆∗5) for all s ∈ S5 using Lemma 4.3 and Lemma 5.17. It turns

out gS5(C∗∗7 ) = 28
25
− 24

2700
= 10

9
is achieved at Smax5 (C∗∗5 ) = S5(3, 3, 3) ∪ S5(4, 4).

• For k = 7, it can be easily verified that ε∗ = 11
108×49 is not gs-valid if and only if

s ∈
{[

2

1

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

0

]}⋃{[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}
⋃{[

2

1

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]
,

[
0

1

]}⋃{[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]
,

[
0

2

]}
⋃{[

2

1

]
,

[
2

1

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]
,

[
0

0

]}⋃{[
2

2

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]
,

[
0

0

]}
⋃{[

2

1

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

2

]
,

[
0

0

]}
.

It turns out gs(C∗∗7 ) ≤ 29
27

for all the samples s of the types as above. We com-
pute gs(C∗∗7 ) = gs(C∗7) + hs(ε

∗∆∗7) for all the other samples s using Lemma 4.3 and
Lemma 5.17. It turns out gS7(C∗∗7 ) = 55

49
− 60

108×49 = 10
9

is achieved at Smax7 (C∗∗7 ) =
S7(4, 4, 4) ∪ S7(5, 5) ∪ S7(6, 6, 0).

• For k = 8, it can be easily verified that ε∗ = 11
108×49 is not gs-valid if and only if

s ∈
{[

2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

1

]}⋃{[
2

1

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
2

0

]
,

[
0

1

]
,

[
0

0

]}
.

It turns out gs(C∗∗8 ) ≤ 71
67

for all the samples s of the types as above. We compute
gs(C∗∗8 ) = gs(C∗8)+hs(ε

∗∆∗8) for all the other s ∈ S8 using Lemma 4.3 and Lemma 5.17.
It turns out gS8(C∗∗8 ) = 9

8
− 24

134×32 = 75
67

is achieved at Smax8 (C∗∗8 ) = S8(5, 5, 5)∪S8(6, 6).

• For k = 9, it can be easily verified that ε∗ = 31
824×81 is gS9-valid. We compute gs(C∗∗8 ) =

gs(C∗8) + hs(ε
∗∆∗8) for all s ∈ S8 using Lemma 4.3 and Lemma 5.17. It turns out

gS9(C∗∗9 ) = 91
81
− 140

824×81 = 231
206

is achieved at Smax9 (C∗∗9 ) = S9(6, 6, 6) ∪ S9(7, 7).

6.2 Optimality of C∗∗k for k = 3, 4, 5, 7, 8, 9

In this section, we prove that C∗∗k obtained in the last section are optimal solutions to PSk
for k = 3, 4, 5, 7, 8, 9. We first introduce more notations and state some needed lemmas.

Recall that for any sample s ∈ S†k(C), we have g
(`)
s (C) > 0 for any ` ∈ Inds, and

g
(`)
s (C) < 0 for any ` /∈ Inds. Since any function g

(`)
s , s ∈ S†k(C), is continuous, there exists a

neighborhood, denoted by N †(C, ε) ⊂ Sk, of C such that for all C ′ ∈ N †(C, ε), all s ∈ S†k(C)
and all 1 ≤ ` ≤ k,

g(`)s (C ′) · g(`)s (C) > 0.

In the following, we let C ′ ∈ N †(C, ε) and write

∆ := C ′ − C =
(
∆(1),∆(2), . . . ,∆(k)

)
, (37)
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where each ∆(`) =
(
δ
(`)
i,j

)
is a k × k matrix such that for all ` = 1, 2, . . . , k,

k∑
i=1

δ
(`)
i,j =

k∑
j=1

δ
(`)
i,j = 0. (38)

And moreover, we write
hs(∆) := gs(C ′)− gs(C). (39)

We need the following three lemmas.

Lemma 6.1. Let k ≥ 3 and d ≥ 2. If Sk(d, d, d) ⊆ S†k(C), then∑
s∈Sk(d,d,d)

hs(∆) =
[∑k

i=1 δ
(i)
i,i

∑
i,j:i 6=j δ

(i)
j,j

] [
A
B

]
, (40)

where A =
(
k−1
d−1

)
, B =

(
k−2
d−2

)
−
(
k−2
d−1

)
.

Proof. Let ∑
s∈Sk(d,d,d)

hs(∆) =
k∑
`=1

k∑
i=1

k∑
j=1

h
(`)
i,j δ

(`)
i,j .

We compute the coefficients h
(`)
i,j as follows: Firstly, note that for any s ∈ Sk(d, d, d) and

any (i, j) ∈ [k] × [k] with i 6= j, we have (i, j) /∈ s, and hence h
(`)
i,j = 0. Secondly, for each

(i, i) ∈ [k]× [k], there are
(
k−1
d−1

)
samples of Sk(d, d, d) containing (i, i) and hence h

(i)
i,i =

(
k−1
d−1

)
for all 1 ≤ i ≤ k. Thirdly, noticing that for any j 6= i, there are

(
k−2
d−2

)
samples containing

both (i, i) and (j, j), and there are
(
k−2
d−1

)
samples containing (i, i) but not (j, j), we have

h
(j)
i,i =

(
k−2
d−2

)
−
(
k−2
d−1

)
, which completes the proof.

Lemma 6.2. Let k ≥ 3 and d ≥ 3. If Sk(d, d, 0) ⊆ S†k(C), then∑
s∈Sk(d,d,0)

hs(∆) =
[∑k

i=1 δ
(i)
i,i

∑
i,j:i 6=j δ

(i)
j,j

] [
A′

B′

]
, (41)

where A′ = (d− 1)(d−1) ·
((
k−3
d−3

)
−
(
k−3
d−2

)
− 2
(
k−2
d−2

))
, B′ = (d− 1)(d−1) ·

((
k−3
d−2

)
−
(
k−3
d−3

))
.

Proof. Let ∑
s∈Sk(d,d,0)

hs(∆) =
k∑
`=1

k∑
i=1

k∑
j=1

h
(`)
i,j δ

(`)
i,j .

We compute the coefficients h
(`)
i,j as follows: Firstly, note that for any s ∈ Sk(d, d, 0), we have

(i, i) /∈ s, and hence h
(`)
i,i = 0 for all 1 ≤ i, ` ≤ k. Secondly, for each i 6= j, there are (d −

1)(d−1) ·
(
k−2
d−2

)
samples of Sk(d, d, 0) containing (i, j) and hence h

(i)
i,j = h

(j)
i,j = (d−1)(d−1) ·

(
k−2
d−2

)
.

Thirdly, noticing that for any distinct i, j, `, there are (d− 1)(d−1) ·
(
k−3
d−3

)
samples s such that

` ∈ Inds and (i, j) ∈ s, and there are (d − 1)(d−1) ·
(
k−3
d−2

)
samples s such that ` /∈ Inds and

(i, j) ∈ s, we have h
(`)
i,j = (d − 1)(d−1) ·

((
k−3
d−3

)
−
(
k−3
d−2

))
. The desired result then follows by

applying (38).
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Lemma 6.3. If S3(2, 2, 0) ⊆ S†3(C), then∑
s∈S3(2,2,0)

hs(∆) =
[∑3

i=1 δ
(i)
i,i

∑
i,j:i 6=j δ

(i)
j,j

] [−3
1

]
. (42)

Proof. For the 3 samples in S3(2, 2, 0), we have

h{(2,1),(1,2)}(∆) =(δ
(1)
2,1 + δ

(1)
1,2) + (δ

(2)
2,1 + δ

(2)
1,2)− (δ

(3)
2,1 + δ

(3)
1,2),

h{(3,2),(2,3)}(∆) =(δ
(2)
3,2 + δ

(2)
2,3) + (δ

(3)
3,2 + δ

(3)
2,3)− (δ

(1)
3,2 + δ

(1)
2,3),

h{(3,1),(1,3)}(∆) =(δ
(1)
3,1 + δ

(1)
1,3) + (δ

(3)
3,1 + δ

(3)
1,3)− (δ

(2)
3,1 + δ

(2)
1,3).

Hence, by (38), we have

∑
s∈S3(2,2,0)

hs(∆) =
3∑
`=1

∑
i,j:i 6=j

δ
(`)
i,j − 2

∑
distinct i,j,`

δ
(`)
i,j

=
3∑
i=1

−3δ
(i)
i,i +

∑
i,j:i 6=j

δ
(i)
j,j ,

(43)

which complete the proof.

The following lemma gives a sufficient condition for the local optimality of an arbitrary
C ∈ Sk.

Lemma 6.4. Let C ∈ Sk. If there exists a subset S◦k(C) ⊆ Sk(C) (i.e., the maximizing k-
samples at C) and a neighborhood N(C, ε) ⊂ Sk of C and a set of positive reals {ks‖s ∈ S◦k(C)}
such that for all C ′ ∈ N(C, ε), ∑

s∈S◦k(C)

ks · (gs(C ′)− gs(C)) = 0. (44)

Then, C is a local optimal point for PSk .

Proof. Suppose, by way of contradiction, that C is not a local optimal point. Then, there
exists C ′ ∈ N(C, ε) such that gSk(C ′) < gSk(C). Then, for all s ∈ S◦k(C),

gs(C ′) ≤ gSk(C ′) < gSk(C) = gs(C).

Hence,
∑

s∈S◦k(C)
ks · (gs(C ′)− gs(C)) < 0, which contradicts (44).

From now on, we denote the vector

[
A
B

]
in (40) byHk(d, d, d), 1

(d−1)(d−1)

[
A′

B′

]
byHk(d, d, 0)

where

[
A′

B′

]
is obtained in (41) and H3(2, 2, 0) =

[
−3
1

]
by (43). We are then ready to give

the main result of this section.

Theorem 6.5. C∗∗k is an optimal point for PSk for k = 3, 4, 5, 7, 8, 9.
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Proof. By the convexity of gSk(·), it suffices to prove that C∗∗k is a local optimal point. To
this end, by Lemma 6.4, we only need to find a neighborhood of C∗∗k , a subset S◦k(C∗∗k ) of
Sk(C∗∗k ) and a set of positives reals satisfying (44). In the following, we take N †(C∗∗k , ε) as
the neighborhood of C∗∗k for each k = 3, 4, 5, 7, 8, 9.

• For the case k = 3, let S◦3 (C∗∗3 ) = S3(2, 2, 0) ∪ S3(2, 2, 2) ∪ S3(3, 3, 0) ⊆ S3(C∗∗3 ). It can

be verified that S◦3 (C∗∗3 ) ⊆ S†3(C∗∗3 ). Then, by Lemmas 6.3, 6.1 and 6.2, we infer that

(42), (40) and (41) hold with H3(2, 2, 0) =

[
−3
1

]
, H3(2, 2, 2) =

[
2
0

]
and H3(3, 3, 0) =[

−1
−1

]
, respectively. Since H3(2, 2, 0) + 2H3(2, 2, 2) +H3(3, 3, 0) = 0, an application of

Lemma 6.4 yields that C∗∗3 is an optimal point for PS3 .

• For the case k = 4, let S◦4 (C∗∗4 ) = S4(2, 2, 2) ∪ S4(3, 3, 0) ∪ S4(3, 3, 3) ⊆ S4(C∗∗4 ), which

can be verified to be a subset of S†4(C∗∗4 ). Then, as in previous case, the desired
optimality of C∗∗4 then follows from Lemmas 6.1, 6.2 and 6.4 and the easily verifiable

fact that 2H4(2, 2, 2) + 3H4(3, 3, 0) + 2H4(3, 3, 3) = 0, where H4(2, 2, 2) =

[
3
−1

]
,

H4(3, 3, 0) =

[
−4
0

]
and H4(3, 3, 3) =

[
3
1

]
.

• For the case k = 5, let S◦5 (C∗∗5 ) = S5(3, 3, 3)∪S5(4, 4, 0)∪S5(4, 4, 4) ⊆ S5(C∗∗5 ) ⊆ S†5(C∗∗5 ).
Then, the desired optimality of C∗∗4 then follows from Lemmas 6.1, 6.2 and 6.4 and
the easily verifiable fact that H5(3, 3, 3) + 2H5(4, 4, 0) +H5(4, 4, 4) = 0.

• For the case k = 7, let S◦7 (C∗∗7 ) = S7(4, 4, 4)∪S7(5, 5, 0)∪S7(5, 5, 5) ⊆ S7(C∗∗7 ) ⊆ S†7(C∗∗7 ).
Then, the desired optimality of C∗∗4 then follows from the fact that 3H7(4, 4, 4) +
5H7(5, 5, 0) + 2H7(5, 5, 5) = 0.

• For the case k = 8, let S◦8 (C∗∗8 ) = S8(5, 5, 5) ∪ S8(6, 6, 0) ∪ S8(6, 6, 6) ⊆ S8(C∗∗8 ) ⊆
S†8(C∗∗8 ). Then, the desired optimality then follows from the fact that 12H8(5, 5, 5) +
21H8(6, 6, 0) + 5H8(6, 6, 6) = 0.

• For the case k = 9, let S◦9 (C∗∗9 ) = S9(6, 6, 6) ∪ S9(7, 7, 0) ∪ S9(7, 7, 7) ⊆ S9(C∗∗9 ) ⊆
S†9(C∗∗9 ). Then, the desired optimality then follows from the fact that 15H9(6, 6, 6) +
28H9(7, 7, 0) + 3H9(7, 7, 7) = 0.

6.3 The Uniqueness of Optimal Solutions for k = 3, 4, . . . , 9

We are concerned with the uniqueness of the optimal solutions to PSk . Note that the case
of k = 1 is trivial, and it is known from the proof of Theorem 3 of [3] that C∗2 is the unique
optimal point for PS2 . In this section, we will show that the optimal solutions to PSk are
unique for k = 3, 4, . . . , 9, which however ceases to hold true for k = 10.

We first need the following lemma, which strengthens Lemma 6.4.

29



Lemma 6.6. Let C ∈ Sk. If there exists a subset S?k(C) ⊆ Sk(C) and a neighborhood
N(C, ε) ⊂ Sk of C and a set of positive reals {ks‖s ∈ S?k(C)} such that (1) For all C ′ ∈
N(C, ε),

∑
s∈S?k(C)

ks · hs(∆) = 0; (2) If for all s ∈ S?k(C), hs(∆) = 0 then ∆ = 0, where, as

before, ∆ = C ′ − C and hs(∆) = gs(C ′) − gs(C). Then, C is the unique local optimal point
for PSk .

Proof. Suppose, by way of contradiction, that there exists another optimal point C ′ ∈ N(C, ε)
such that C ′−C = ∆ 6= 0. By Condition (1), we know that for all s ∈ S?k(C), gs(C ′) = gs(C),
i.e., hs(∆) = 0 (Since otherwise there exist s0, s1 ∈ S?k(C) such that gs0(C ′)− gs0(C) > 0 and
gs1(C ′)−gs1(C) < 0, which contradicts the optimality of C). Hence, by Condition (2), we have
∆ = 0, which contradicts the assumption that ∆ 6= 0 and thereby the result follows.

In the following, we set

S?3 (C∗∗3 ) := S3(2, 2) ∪ S3(3, 3, 0) = S3(C∗∗3 ).

And it can be easily verified that S?3 (C∗∗3 ) ⊆ S†3(C∗∗3 ). The following lemma can be used to
establish the uniqueness of C∗∗3 for PS3 .

Lemma 6.7. There exist a set of positive reals {ks‖s ∈ S?3 (C∗∗3 )} such that for all C ′ ∈
N †(C∗∗3 , ε) ∑

s∈S?3 (C∗∗3 )

ks · (gs(C ′)− gs(C∗∗3 )) = 0. (45)

Proof. From the proof of Theorem 6.5, we have that for all C ′ ∈ N †(C∗∗3 , ε),∑
s∈S3(2,2,0)

hs(∆) + 2
∑

s∈S3(2,2,2)

hs(∆) +
∑

s∈S3(3,3,0)

hs(∆) = 0,

where, as before, ∆ = C ′ − C∗∗3 . Since

h{(1,1),(1,2)}(∆) + h{(2,1),(2,2)}(∆) =h{(1,1),(2,2)}(∆) + h{(2,1),(1,2)}(∆),

h{(1,1),(1,3)}(∆) + h{(3,1),(3,3)}(∆) =h{(1,1),(3,3)}(∆) + h{(3,1),(1,3)}(∆),

h{(2,2),(2,3)}(∆) + h{(3,2),(3,3)}(∆) =h{(2,2),(3,3)}(∆) + h{(3,2),(2,3)}(∆),

we have ∑
s∈S3(2,2,1)

hs(∆) =
∑

s∈S3(2,2,0)

hs(∆) +
∑

s∈S3(2,2,2)

hs(∆). (46)

Hence, we have

1

2

∑
s∈S3(2,2,0)

hs(∆) +
1

2

∑
s∈S3(2,2,1)

hs(∆) +
3

2

∑
s∈S3(2,2,2)

hs(∆) +
∑

s∈S3(3,3,0)

hs(∆) = 0.

The proof is then complete.

In the following, we set

S?4 (C∗∗4 ) := S4(3, 3, 0) ∪ S4(3, 3, 1) ∪ S4(4, 4, 0) ⊆ S4(C∗∗4 ).

It can be easily verified that S?4 (C∗∗4 ) ⊆ S†4(C∗∗4 ). The following lemma, whose proof has been
postponed to Appendix C, can be used to establish the uniqueness of C∗∗4 for PS4 .
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Lemma 6.8. There exists a set of positive reals {ks‖s ∈ S?4 (C∗∗4 )} such that for all C ′ ∈
N †(C∗∗4 , ε), ∑

s∈S?4 (C∗∗4 )

ks · (gs(C ′)− gs(C∗∗4 )) = 0. (47)

We are now ready to give the main result of this section.

Theorem 6.9. C∗∗k is the unique optimal point for PSk for k = 3, 4, . . . , 9.

Proof. � We first deal with the case k = 3. By Lemma 6.6 and then Lemma 6.7, we only
need to prove that the equation

hs(∆) = 0 for all s ∈ S3(C∗∗3 ) (48)

has the unique solution ∆ = 0.

Suppose ∆ =
(

(δ
(1)
i,j ), (δ

(2)
i,j ), (δ

(3)
i,j )
)

is a solution of (48). We first prove that for all

1 ≤ i, j ≤ 3,

πi,j :=
3∑
`=1

δ
(`)
i,j = 0. (49)

By (38), we have π1,1+π1,2+π1,3 = 0 and then by h{(2,1),(1,2),(1,3)}(∆) = π2,1+π1,2+π1,3 = 0,
we have π1,1 = π2,1. Similarly, we have π1,1 = π2,1 = π3,1. By (38), we have π1,1+π2,1+π3,1 =
0, and hence, π1,1 = π2,1 = π3,1 = 0. Further, in the same way, we have π1,2 = π2,2 = π3,2 = 0
and finally we obtain (49).

By h{(1,1),(1,2)}(∆) = 0 and (38), we have δ
(3)
1,3 = δ

(1)
1,3 + δ

(2)
1,3. Hence, 0 = π1,3 = 2δ

(3)
1,3.

Similarly, we can have δ
(3)
1,3 = δ

(3)
2,3 = 0. Hence, by (38), we further have δ

(3)
3,3 = 0. In a similar

fashion, we finally have

δ
(j)
i,j = 0, 1 ≤ i, j ≤ 3. (50)

Letting δ
(1)
1,2 = a, δ

(1)
2,2 = b, δ

(1)
3,2 = c and using Equations (38), (49) and (50), we have

∆ =

 0 a −a
0 b −b
0 c −c

 ,

 −a 0 a
−b 0 b
−c 0 c

 ,

 a −a 0
b −b 0
c −c 0

 .

By h{(1,1),(2,2)}(∆) = 0, we have b − a = a − b, i.e., a = b. By h{(1,1),(3,3)}(∆) = 0, we have
c−a = a−c, i.e., a = c. Hence a = b = c and then by Equation (38), we have a = b = c = 0,
which means ∆ = 0. The proof is then complete.
� We now deal with the case k = 4. By Lemma 6.6 and then Lemma 6.8, we only need

to prove that the equation

hs(∆) = 0 for all s ∈ S?4 (C∗∗4 ) (51)

has the unique solution ∆ = 0.

Suppose ∆ =
(

(δ
(1)
i,j ), (δ

(2)
i,j ), (δ

(3)
i,j ), (δ

(4)
i,j )
)

is a solution of (51). We first prove that for all

i, j = 1, 2, 3, 4,

πi,j :=
4∑
`=1

δ
(`)
i,j = 0. (52)
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By (38), we have π1,1 + π1,2 + π1,3 + π1,4 = 0 and then by h{(2,1),(1,2),(1,3),(1,4)}(∆) = π2,1 +
π1,2 + π1,3 + π1,4 = 0, we have π1,1 = π2,1. Similarly, we have π1,1 = π2,1 = π3,1 = π4,1. By
(38), we have π1,1 + π2,1 + π3,1 + π4,1 = 0, and hence, π1,1 = π2,1 = π3,1 = π4,1 = 0. Further,
in the same way, we have π1,2 = π2,2 = π3,2 = π4,2 = 0 and finally, we obtain (52).

By h{(1,1),(1,2),(1,3)}(∆) = 0 and (38), we have δ
(4)
1,4 = δ

(1)
1,4 + δ

(2)
1,4 + δ

(3)
1,4. Hence, 0 = π1,4 =

2δ
(4)
1,4. Similarly, we can have δ

(4)
2,4 = δ

(4)
3,4 = 0. Hence, by (38), we further have δ

(4)
4,4 = 0.

Similarly, we have

δ
(j)
i,j = 0, 1 ≤ i, j ≤ 4. (53)

Since h{(1,1),(1,2),(1,3)}(∆) = h{(2,1),(1,2),(1,3)}(∆) = 0, we have δ
(1)
1,1 +δ

(2)
1,1 +δ

(3)
1,1−δ

(4)
1,1 = δ

(1)
2,1 +

δ
(2)
2,1+δ

(3)
2,1−δ

(4)
2,1, and furthermore, by (52), −2δ

(4)
1,1 = −2δ

(4)
2,1. Similarly, by h{(1,1),(1,2),(1,3)}(∆) =

h{(3,1),(1,2),(1,3)}(∆) = 0, we have

δ
(4)
1,1 = δ

(4)
2,1 = δ

(4)
3,1.

Since h{(1,1),(1,2),(1,4)}(∆) = h{(2,1),(1,2),(1,4)}(∆) = 0, we have δ
(1)
1,1 + δ

(2)
1,1 + δ

(4)
1,1 − δ

(3)
1,1 = δ

(1)
2,1 +

δ
(2)
2,1+δ

(4)
2,1−δ

(3)
2,1, and furthermore, by (52), −2δ

(3)
1,1 = −2δ

(3)
2,1. Similarly, by h{(1,1),(1,2),(1,4)}(∆) =

h{(4,1),(1,2),(1,4)}(∆) = 0, we have

δ
(3)
1,1 = δ

(3)
2,1 = δ

(3)
4,1.

Since h{(1,1),(1,3),(1,4)}(∆) = h{(3,1),(1,3),(1,4)}(∆) = 0, we have δ
(1)
1,1 + δ

(3)
1,1 + δ

(4)
1,1 − δ

(2)
1,1 =

δ
(1)
3,1 + δ

(3)
3,1 + δ

(4)
3,1 − δ

(2)
3,1, i.e., −2δ

(2)
1,1 = −2δ

(2)
3,1 by (52). Similarly, by h{(1,1),(1,3),(1,4)}(∆) =

h{(4,1),(1,3),(1,4)}(∆) = 0, we have

δ
(2)
1,1 = δ

(2)
3,1 = δ

(2)
4,1.

Now, note that π1,1 = δ
(1)
1,1 + δ

(2)
1,1 + δ

(3)
1,1 + δ

(4)
1,1 = δ

(1)
2,1 + δ

(2)
2,1 + δ

(3)
2,1 + δ

(4)
2,1 = π2,1, by (53) and

the above discussions, we have δ
(2)
2,1 = δ

(2)
1,1. Similarly, by π1,1 = π3,1, we have δ

(3)
3,1 = δ

(3)
1,1 and

by π1,1 = π4,1, we have δ
(4)
4,1 = δ

(4)
1,1. Hence, by (38), we deduce that for i = 1, 2, 3, 4,

δ
(i)
1,1 = δ

(i)
2,1 = δ

(i)
3,1 = δ

(i)
4,1 = 0.

Similarly, one can have that for i = 1, 2, 3, 4, j = 2, 3, 4,

δ
(i)
1,j = δ

(i)
2,j = δ

(i)
3,j = δ

(i)
4,j = 0.

Collecting all the results above, we conclude that ∆ = 0, as desired.
� The uniqueness of the optimal solutions for k = 5, 6, . . . , 9 follows from a more complex

yet completely parallel argument as for k = 3, 4, and therefore we omit the details.

Theorem 6.10. There are at least two optimal points for PS10.

Proof. It suffices to find an optimal point for PS10 that is different from C∗∗10 . To this end,
consider the system (26) and replace “<” and “>” by “≤” and “≥”, respectively. Then, we
have 

a+ b ≤ 0,
a+ 2b ≤ 0,
a+ 2b ≥ 0,
7a+ 20b ≥ 0.

(54)
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Note that the above system has solution{
b ≥ 0,
a+ 2b = 0.

(55)

Now choosing δ > 0 small enough and setting b = δ, we obtain an optimal point C = C∗10 +∆
different from C∗∗10 with a(∆) = −2δ, b(∆) = δ, y(∆) = −6δ, x(∆) = 1 + 18δ.

6.4 Routing Rate

By Theorem 2.4, the optimal solution C∗∗k , k = 3, 4, . . . , 10, gives an explicit construction of
multi-flows for the corresponding k-pair strongly reachable network. More precisely, trans-
lating the results in this section, we have constructed multi-flows of rate (11

12
, . . . , 11

12
) for

k = 3, 4, rate ( 9
10
, . . . , 9

10
) for k = 5, 6, 7, rate (67

75
, . . . , 67

75
) for k = 8, rate (206

231
, . . . , 206

231
) for

k = 9, rate (25
28
, . . . , 25

28
) for k = 10, each of which further gives a lower bound on the corre-

sponding Rr(N ). To the best of our knowledge, the aforementioned rates are the largest to
date.

7 Concluding Remarks

We attack the Langberg-Médard multiple unicast conjecture via an optimization approach.
For a closely related optimization problem PSk with optimal value OSk , we analyze the
asymptotics of {OSk} and explicit solve PSk for k = 1, 2, . . . , 10. More precisely, we prove that
limk→∞OSk = 9/8, and establish the first 10 terms of {OSk} as 1, 1, 12

11
, 12
11
, 10

9
, 10

9
, 10

9
, 75
67
, 231
206
, 28
25

,
which respectively give the largest feasible routing rate to date for the corresponding strongly
reachable networks.

For any k 6= 1, 2, 6, 10, there exists a perturbation promising to give better solutions
than C∗k , a sequence of asymptotically optimal solutions to PSk , and moreover, a delicate
perturbation analysis in Sections 5 and 6 gives the exact optimal solutions for k ≤ 10.
Nevertheless, it remains to be seen whether the perturbation approach can be used to solve
PSk for all k. The major hurdle for the case of larger k is the drastically increasing complexity
needed for the analysis, which is already prohibitive for k = 11. Here we remark that the
optimization problem appears to be “trickier” than previously thought. For a quick example,
one would be tempted to think that the sequence {OSk} should be monotonically increasingly.
This, however, is not true, since our results actually indicate that OS9 > OS10 .

Appendices

A Proof of Lemma 5.8

By the definition of C∗k , it can be readily verified that for any 3-sample s and any 1 ≤ ` ≤ 3,

g(`)s (C∗3) =
3

9
mInds(`)−

1

9
α(s). (56)
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Note that for all s ∈ S3, we have 1 ≤ α(s) ≤ 3 and 0 ≤ mInds(`) ≤ 4 and hence

{g(`)s (C∗3)‖s ∈ S3, 1 ≤ ` ≤ 3} ⊆
{
−2

9
,
−1

9
, 0,

1

9
, . . . ,

8

9
, 1

}
.

We now deal with the following cases:

• If g
(`)
s (C∗3) = −2

9
, which implies mInds(`) = 0 and α(s) = 2 by Equation (56), then by

considering all the possible such samples and the corresponding ` (e.g., s = {(2, 2)(3, 3)}
and ` = 1), it is not hard to see that ε is g

(`)
s -valid if and only if

2y(∆∗3)ε ≤ 2
9
,

2b(∆∗3)ε ≤ 2
9
,

(y(∆∗3) + b(∆∗3))ε ≤ 2
9
.

Recalling from Example 5.5 that x(∆∗3) = −2, y(∆∗3) = −5, a(∆∗3) = 1 and b(∆∗3) = 4,

we deduce that for this case ε > 0 is g
(`)
s -valid if and only if ε ≤ 1

36
.

• If g
(`)
s (C∗3) = −1

9
, which implies mInds(`) = 0 and α(s) = 1, then ε is g

(`)
s -valid if and

only if {
y(∆∗3)ε ≤ 1

9
,

b(∆∗3)ε ≤ 1
9
.

Similarly, we deduce that for this case ε > 0 is g
(`)
s -valid if and only if ε ≤ 1

36
.

• If g
(`)
s (C∗3) = 0, then, by definition, any ε > 0 is g

(`)
s -valid.

• If g
(`)
s (C∗3) = 1

9
, which implies mInds(`) = 1 and α(s) = 2, then ε is g

(`)
s -valid if and only

if {
−(a(∆∗3) + y(∆∗3))ε ≤ 1

9
,

−(a(∆∗3) + b(∆∗3))ε ≤ 1
9
.

Straightforward computations yield that that, for this case, ε > 0 is g
(`)
s -valid if and

only if ε ≤ 1
36

.

• If g
(`)
s (C∗3) = 2

9
, which implies mInds(`) = 1 and α(s) = 1, then ε is g

(`)
s -valid if and only

if −a(∆∗3)ε ≤ 2
9
, i.e., any ε > 0 is g

(`)
s -valid.

• If g
(`)
s (C∗3) = 3

9
, which implies mInds(`) = 2 and α(s) = 3, then ε is g

(`)
s -valid if and only

if 
−(2a(∆∗3) + y(∆∗3))ε ≤ 3

9
,

−(2a(∆∗3) + b(∆∗3))ε ≤ 3
9
,

−(x(∆∗3) + 2y(∆∗3))ε ≤ 3
9
,

−(x(∆∗3) + 2b(∆∗3))ε ≤ 3
9
,

−(x(∆∗3) + b(∆∗3) + y(∆∗3))ε ≤ 3
9
.

It then follows that, for this case, ε > 0 is g
(`)
s -valid if and only if ε ≤ 3

9max{3,12} = 1
36

.
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• If g
(`)
s (C∗3) = i

9
, where i ≥ 4, then, similarly as above, ε is g

(`)
s -valid if and only if ε > 0

satisfies the following systems of inequalities:
d1ε ≤ i

9
,

d2ε ≤ i
9
,

· · ·
drε ≤ i

9
,

for some integer r. It is easy to see that dj ≤ −(x(∆∗3) + 2y(∆∗3)) = 12 for all feasible

j. So, for this case, we deduce that ε ≤ 1
36

is g
(`)
s -valid.

Combining all the discussions as above, we conclude that ε > 0 is gS3-valid if and only if
ε ≤ 1

36
, which completes the proof.

B Proof of Lemma 5.9

Firstly, note that for any 4-sample s and any 1 ≤ ` ≤ 4,

g(`)s (C∗4) =
4

16
mInds(`)−

1

16
α(s), (57)

whence we have

{g(`)s (C∗4)‖s ∈ S4, 1 ≤ ` ≤ 4} ⊆
{
−3

16
,
−2

16
, . . . ,

15

16
, 1

}
.

We now consider the following cases:

• If g
(`)
s (C∗4) = −3

16
, which implies mInds(`) = 0 and α(s) = 3 (see Equation (57)), then

one can deduce that ε is g
(`)
s -valid if and only if

3y(∆∗4)ε ≤ 3
16
,

3b(∆∗4)ε ≤ 3
16
,

(2y(∆∗4) + b(∆∗4))ε ≤ 3
16
,

(y(∆∗4) + 2b(∆∗4))ε ≤ 3
16
.

Noting from Example 5.5 that x(∆3) = 3, y(∆∗4) = −5, a(∆∗4) = −1 and b(∆∗4) = 3,

we have that, for this case, ε > 0 is g
(`)
s -valid if and only if 3b(∆∗4)ε ≤ 3

16
, i.e., ε ≤ 1

48
.

• If g
(`)
s (C∗4) = −2

16
, which implies mInds(`) = 0 and α(s) = 2, then ε is g

(`)
s -valid if and

only if 
2y(∆∗4)ε ≤ 2

16
,

2b(∆∗4)ε ≤ 2
16
,

y(∆∗4)ε+ b(∆∗4)ε ≤ 2
16
.

Similarly as above, we deduce that, for this case, ε > 0 is g
(`)
s -valid if and only

2b(∆∗4)ε ≤ 2
16

, i.e., ε ≤ 1
48

.
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• If g
(`)
s (C∗4) = −1

16
, which implies mInds(`) = 0 and α(s) = 1, then ε is g

(`)
s -valid if and

only if b(∆∗4)ε ≤ 1
16

, i.e., ε ≤ 1
48

.

• If g
(`)
s (C∗4) = 0, then by definition, any ε > 0 is g

(`)
s -valid.

• If g
(`)
s (C∗4) = 1

16
, which implies mInds(`) = 1 and α(s) = 3, then ε is g

(`)
s -valid if and

only if 
−(a(∆∗4) + 2y(∆∗4))ε ≤ 1

16
,

−(a(∆∗4) + 2b(∆∗4))ε ≤ 1
16
,

−(a(∆∗4) + b(∆∗4) + y(∆∗4))ε ≤ 1
16
.

We then deduce that, for this case, ε > 0 is g
(`)
s -valid if and only if −(a(∆∗4) +

2y(∆∗4))ε ≤ 1
16

, i.e., ε ≤ 1
176

.

• If g
(`)
s (C∗4) = 2

16
, which implies mInds(`) = 1 and α(s) = 2, then ε is g

(`)
s -valid if and

only if {
−(a(∆∗4) + y(∆∗4))ε ≤ 2

16
,

−(a(∆∗4) + b(∆∗4))ε ≤ 2
16
.

We then infer than ε > 0 is g
(`)
s -valid if and only if −(a(∆∗4) + y(∆∗4))ε ≤ 2

16
, i.e.,

ε ≤ 1
48

.

• If g
(`)
s (C∗4) = 3

16
, which implies mInds(`) = 1 and α(s) = 1, then ε is g

(`)
s -valid if and

only if −a(∆∗4)ε ≤ 3
16

, i.e., any ε > 0 is valid.

• If g
(`)
s (C∗4) = i

16
, where i = 4, 5, . . . , 16, then similarly as above, ε is g

(`)
s -valid if and

only if ε > 0 satisfies the following system of inequalities,
d1ε ≤ i

16
,

d2ε ≤ i
16
,

· · ·
drε ≤ i

16
,

for some integer r. It is easy to see that dj ≤ −(a(∆∗4) + 3y(∆∗4)) = 16 for all feasible

j. It then follows that, for this case, ε ≤ 1
64

is g
(`)
s -valid.

Combining all the discussions above, we conclude that ε > 0 is gS4-valid if and only if ε ≤ 1
176

,
which completes the proof.

C Proof of Lemma 6.8

For any C ∈ N †(C∗∗4 , ε), we write

∆ = C − C∗∗4 =
((
δ
(1)
i,j

)
,
(
δ
(2)
i,j

)
,
(
δ
(3)
i,j

)
,
(
δ
(4)
i,j

))
, hs(∆) = gs(C)− gs(C∗∗4 ).
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By Lemmas 6.1 and 6.2, we have

∑
s∈S4(3,3,0)

hs(∆) = −16
4∑
i=1

δ
(i)
i,i ,

∑
s∈S4(3,3,3)

hs(∆) = 3
4∑
i=1

δ
(i)
i,i +

∑
i 6=j

δ
(j)
i,i .

We then have the following cases:
I For the samples in S4(3, 3, 1), we write

∑
s∈S4(3,3,1)

hs(∆) =
4∑
`=1

4∑
i=1

4∑
j=1

k
(`)
i,j δ

(`)
i,j , (58)

where the coefficients k
(`)
i,j can be determined as follows. First, we consider (i, i) ∈ [4] × [4];

and for simplicity only, assume i = 1. There are 12 samples from S4(3, 3, 1) containing (1, 1),
more precisely, those samples from

{{(1, 1), (i, 2), (j, 3)}‖i = 1, 3; j = 1, 2} ∪ {{(1, 1), (i, 2), (j, 4)}‖i = 1, 4; j = 1, 2}

∪{{(1, 1), (i, 3), (j, 4)}‖i = 1, 4; j = 1, 3}.

By (16), it is easy to see that k
(1)
1,1 = 12 and k

(2)
1,1 = k

(3)
1,1 = k

(4)
1,1 = 4. The other coefficients of

δ
(`)
i,i can be obtained similarly as

• k(i)i,i = 12, 1 ≤ i ≤ 4;

• k(j)i,i = 4, i 6= j.

We now consider (i, j) ∈ [4] × [4] for i 6= j; and for simplicity only, assume (i, j) = (2, 1).
There are 8 samples of S4(3, 3, 1) containing (2, 1), more precisely, those samples from

{{(2, 1), (2, 2), (i, 3)}‖i = 1, 2} ∪ {{(2, 1), (i, 2), (3, 3)}‖i = 1, 3}

∪{{(2, 1), (2, 2), (i, 4)}‖i = 1, 2} ∪ {{(2, 1), (i, 2), (4, 4)}‖i = 1, 4}.

By (16), it is easy to see that k
(1)
2,1 = k

(2)
2,1 = 8 and k

(3)
2,1 = k

(4)
2,1 = 0. The other coefficients of

δ
(`)
i,j can be obtained similarly as

• k(i)i,j = k
(i)
j,i = 8, 1 ≤ i, j ≤ 4;

• k(`)i,j = 0, if i, j, ` are distinct.

Finally, by (38), we have

∑
s∈S4(3,3,1)

hs(∆) = −4
4∑
i=1

δ
(i)
i,i + 4

∑
i 6=j

δ
(j)
i,i .

I For the 81 samples in S4(4, 4, 0), as in the previous case, we write

∑
s∈S4(4,4,0)

hs(∆) =
4∑
`=1

4∑
i=1

4∑
j=1

k
(`)
i,j δ

(`)
i,j . (59)
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Note that for (i, i) ∈ [4] × [4], since there is no sample containing (i, i), k
(`)
i,i = 0. We then

consider (i, j) ∈ [4]× [4] for i 6= j; and for simplicity only, assume (i, j) = (2, 1). There are
27 samples of S4(4, 4, 0) containing (2, 1), more precisely, those samples from

{{(2, 1), (i, 2), (j, 3), (`, 4)}‖i 6= 2, j 6= 3, ` 6= 4; 1 ≤ i, j, ` ≤ 4}.

It is easy to verify that k
(1)
2,1 = k

(2)
2,1 = k

(3)
2,1 = k

(4)
2,1 = 27, and the other coefficients of δ

(`)
i,j can

be obtained similarly. All in all, we have k
(`)
i,j = 27, for i 6= j. Hence, we have

∑
s∈S4(4,4,0)

hs(∆) = −27
4∑
i=1

4∑
j=1

δ
(i)
j,j .

Combining the above results, we have

1

8

∑
s∈S3(3,3,0)

hs(∆) +
1

4

∑
s∈S4(3,3,1)

hs(∆) + 2
∑

s∈S4(3,3,3)

hs(∆) +
1

9

∑
s∈S4(4,4,0)

hs(∆) = 0, (60)

which completes the proof.
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