
A mesh-free method for interface problems using the deep learning

approach

Zhongjian Wanga, Zhiwen Zhanga,∗

aDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Abstract

In this paper, we propose a mesh-free method to solve interface problems using the deep

learning approach. Two interface problems are considered. The first one is an elliptic

PDE with a discontinuous and high-contrast coefficient. While the second one is a linear

elasticity equation with discontinuous stress tensor. In both cases, we formulate the PDEs

into variational problems, which can be solved using the deep learning approach. To deal with

the inhomogeneous boundary conditions, we use a shallow neuron network to approximate

the boundary conditions. Instead of using an adaptive mesh refinement method or specially

designed basis functions or numerical schemes to compute the PDE solutions, the proposed

method has the advantages that it is easy to implement and mesh-free. We present numerical

experiments to demonstrate the accuracy and efficiency of the proposed method for interface

problems, including a linear elasticity interface problem that is used to model cells evolution

under stress [32].

AMS subject classification: 35J20, 35R05, 65N30, 68T99, 74B05.

Keywords: Deep learning; variational problems; mesh-free method; linear elasticity;

high-contrast; interface problems.

1. Introduction

In recent years, deep learning methods have achieved unprecedented successes in various ap-

plication fields, including computer vision, speech recognition, natural language processing,

audio recognition, social network filtering, and bioinformatics, where they have produced

results comparable to and in some cases superior to human experts [18, 13]. Motivated by

these exciting progress, there are increased new research interests in the literature for the

application of deep learning methods for scientific computation, including approximating

multivariate functions and solving differential equations using the deep neural network; see

[14, 21, 28, 29, 16, 33] and references therein.

In [14], the authors investigate the relationship between deep neural networks with rec-

tified linear unit (ReLU) function as the activation function and continuous piecewise linear
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functions in the finite element method (FEM). A new error bound for the approximation of

multivariate functions using deep ReLU networks is presented in [21], which shows that the

curse of the dimensionality is lessened by establishing a connection between the deep net-

works and sparse grids. In [29] the authors solve Poisson problems and eigenvalue problems

in the context of the Ritz method based on representing the trail functions by deep neural

networks. Meanwhile, in [28] the authors propose deep learning-based numerical methods

for solving high-dimensional parabolic partial differential equations and backward stochastic

differential equations. In [16], a neural network was proposed to learn the physical quan-

tity of interest as a function of random input coefficients; the accuracy and efficiency of the

approach for solving parametric PDE problems was shown. In [33], the authors propose

a Bayesian approach to develop deep convolutional encoder-decoder networks, which give

surrogate models for uncertainty quantification and propagation in problems governed by

stochastic PDEs. In [27], the authors design multi-layer neural network architectures for

multiscale simulations of flows that takes into account the observed data and physical mod-

eling concepts. In [25], the authors estimate the expressive power of a class of deep Neural

Networks on a class of countably-parametric maps. Those maps arise as response surfaces

of parametric PDEs with distributed uncertain inputs.

In this paper, we investigate the deep learning approach to solve interface problems,

which have many application in physical and engineering sciences. For example, to model

the heterogeneous porous medium in the reservoir simulation, the permeability field is often

assumed to be a multiscale function with high-contrast and discontinuous features. Another

example is to study the evolution of the shape and location of fibroblast cells under stress

[32]. The model is based on ideas of a continuum mechanical description of stress-induced

phase transitions, where the cell is modeled as a transformed inclusion in a linear elastic

matrix and the cell surface evolves according to a special kinetic relation. In this model, the

stress tensor has discontinuity across the cell surface due to the transformation in the strain

tensor caused by contraction in the cell.

There has been a lot of effort in developing accurate and efficient finite element meth-

ods (FEMs) for interface problems. In [20, 12], Li et.al. developed the immersed-interface

finite element method to solve elliptic interface problems with non-homogeneous jump con-

ditions. Their method considered uniform triangular grids and approximated the interface

by a straight line segment when it intersects a coarse grid element. By matching the jump

condition, they created a special basis function for elements which were cut through by the

interface and proved a second order convergence rate in the L2 norm and a first order con-

vergence rate in the H1 semi-norm. However, the constants in their error estimate depend

on the contrast of the coefficient. In [6], Hou et.al. developed a new multiscale finite element

method which was able to accurately capture solutions of elliptic interface problems with

high-contrast coefficients by using only coarse quasi-uniform meshes, and without resolving

the interfaces. Moreover, they provided optimal error estimate in the sense that the hidden

constants in the estimates were independent of the contrast of the PDE coefficients. Much

earlier, Babuška [2] studied the convergence of methods based on a minimization problem
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equivalent to elliptic PDEs with discontinuous coefficients, in which the boundary and jump

condition were incorporated in the cost functions. In [5], Chen and Zou approximated the

smooth interface by a polygon and used classical finite element methods to solve both elliptic

and parabolic interface equations, where the mesh must align with the interface.

Alternatively, some efficient finite difference methods (FDMs) were proposed to solve

interface problems. In [22], Peskin developed the immersed boundary method (IBM) to

study the motion of one or more massless, elastic surfaces immersed in an incompressible,

viscous fluid, particularly in bio-fluid dynamics problems where complex geometries and

immersed elastic membranes are present. The IBM method employs a uniform Eulerian grid

over the entire domain to describe the velocity field of the fluid and a Lagrangian description

for the immersed elastic structure. We refer to [23] for an extensive review of this method

and its various applications. Another related work is the immersed interface method (IIM)

for elliptic interface problems developed by LeVeque and Li [19]. By incorporating the

jump condition across the interface to modify the finite difference approximation near the

interface, a second order accuracy was maintained. An important development of interface

capturing methods is the ghost fluid method (GFM) developed by Osher et.al.[11], which

incorporated the interface jump condition into the finite difference discretization by tracking

the interface with a level set function. The GFM has been applied to capture discontinuities

in multi-medium compressible multiphase flows.

In this paper, we are interested in developing numerical methods to solve interface prob-

lems in a mesh-free manner. Our work is inspired by the deep Ritz method proposed in [29],

where the Poisson problems and eigenvalue problems were studied. We intend to investi-

gate the expressive power of the deep neural networks in representing solutions of interface

problems. Two typical interface problems are considered. The first one is an elliptic PDE

with a discontinuous and high-contrast coefficient, which is a challenging problem and has

been intensively studied; see [3, 20, 6, 9]. The second one is a linear elasticity equation with

discontinuous stress tensor [32].

In both problems, we formulate the PDEs into variational problems, which can be solved

using the deep learning approach. Then, we use the stochastic gradient descent (SGD)

method to solve the variational problem. To impose inhomogeneous boundary conditions,

we propose to use a shallow neuron network to approximate the boundary conditions. We

find that the proposed method is easy to implement and mesh-free since we do not need

to choose an adaptive mesh to discretize the PDEs. Our numerical results show that the

proposed method can efficiently solve the interface problems. Moreover, we observe that the

convergence time of the SGD method is random, which may be due to the fact that the

iteration process of the SGD method can be get stuck into some local minimums. Especially,

we find that it takes a longer time to get out of local minimums in a ‘harder’ case of the

high-contrast problem; see Section 5.1 for more details.

The rest of the paper is organized as follows. In Section 2, we shall review the basic

ideas of deep neural network and the idea of the deep Ritz method. In Section 3, we

propose the formulation of the deep learning method in solving interface problems. We also
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discuss the issues regarding the implementation of the proposed method, including how to

impose inhomogeneous boundary conditions. In Section 4, we present numerical results to

demonstrate the accuracy of our method. Concluding remarks will be made in Section 5.

2. Some preliminaries

In this section, we briefly discuss the definition and properties of the deep neural network

(DNN), including its approximation property and then the formulation of the deep Ritz

method [29].

2.1. The DNN and its approximation property

There are two ingredients in defining a DNN. The first one is a (vector) linear function of the

form T : Rn → Rm, defined as T (x) = Ax+ b, where A = (aij) ∈ Rm×n, x ∈ Rn and b ∈ Rm.

The second one is a nonlinear activation function σ : R → R. A frequently used activation

fucntion, known as the rectified linear unit (ReLU), is defined as σ(x) = max(0, x) [18]. In the

artificial neural network literature, the Sigmoid function is another frequently used activation

function, which is defined as σ(x) = (1 + e−x)−1. By applying the activation function in a

component-wise manner, one can define (vector) activation fucntion σ : Rn → Rn.

Equipped with those definitions, we are able to define a continuous function F (x) by a

composition of linear transforms and activation functions, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (1)

where T i(x) = Aix + bi with Ai be undetermined matrices and bi be undetermined vectors,

and σ(·) is the component-wise defined activation function. Dimensions of Ai and bi are

chosen to make (1) meaningful. Such a DNN is called a (k + 1)-layer DNN, which has k

hidden layers. Denoting all the undetermined coefficients (e.g., Ai and bi) in (1) as θ ∈ Θ,

where θ is a high dimensional vector and Θ is a high-dimensional parameter space, the DNN

representation of a continuous function can be viewed as

F = F (x; θ). (2)

Let F = {F (·, θ)|θ ∈ Θ} denote the set of all expressible functions by the DNN parametrized

by θ ∈ Θ. Then F provides an efficient way to represent unknown continuous functions,

comparing with a linear solution space used in classic numerical methods, e.g., a trial space

spaced by linear nodal basis functions in the FEM. In the sequel, we shall discuss the

approximation property of the DNN, which is relevant to the study of the expressive power

of a DNN model [7, 25].

Early studies of approximation properties of neural network can be found in [8, 15], where

the authors studied approximation properties for the function classes given by a feed-forward

neural network with a single hidden layer. Later, many authors studied the error estimates

for such neural networks in terms of number of neurons, layers of the network, and activation

functions; see [10, 24] for a good review of relevant works.
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In recent years, the DNN has shown successful applications in a broad range of problems,

including classification for complex systems and construction of response surfaces for high-

dimensional models. Significant efforts have been devoted to study the benefits on the

expressive power of NNs afforded by NN depth. For example, in [7], the authors proved that

convolutional DNNs were able to express multivariate functions given in so-called Hierarchic

Tensor (HT) formats. In [31], the author studied the expressive power of shallow and deep

neural networks with piece-wise linear activation functions and established new rigorous

upper and lower bounds for the network complexity in approximating Sobolev spaces.

In [14], the authors studied the relationship between DNNs with ReLU function as the

activation function and continuous piecewise linear functions from the linear FEM. They

proved the following statement.

Proposition 2.1. Given a locally convex finite element grid Th, any linear finite element

function with N degrees of freedom, can be written as a ReLU-DNN with at most k =

dlog2 khe + 1 hidden layers and at most O(khN) number of the neurons, where kh denotes

the maximum number of neighboring elements of one node.

The Prop.2.1 provides upper bounds in setting the number of hidden layers and number

of neurons within each layer, when one uses the DNN to approximate the solution space

spanned by the FEM basis. In our numerical results, we find that choosing a relatively small

number of hidden layers and neurons has already provided accurate approximation results.

2.2. Formulation of the deep Ritz method

The deep Ritz method is a deep learning based numerical method for solving variational

problems [29]. Therefore, it naturally can be used to solve PDEs. For example, we consider

a Poisson equation defined on a compact domain D ( Rd,{
−∆u(x) = f(x), x ∈ D,
u(x) = 0, x ∈ ∂D.

(3)

Given the Poisson equation (3), we can derive the corresponding variational problem as

J(v) =
1

2

∫
D

∇v(x) · ∇v(x)dx−
∫
D

v(x)f(x)dx, v ∈ H1
0(D). (4)

Then, the solution of (3) can be obtained by,

u = arg min
v∈H1

0(D)

J(v). (5)

From the perspective of scientific computing, the Poisson equation (3) can be solved using

numerical methods, such as FDMs and FEMs. From the perspective of machine learning

however, the numerical solution of u(x) is interpreted as a function with x ∈ Rn as its input

and R1 as its output, where n denotes the degree of freedom (DOF) in the discretization of

the physical domain D. Thus, it can be approximated by F (x) in (1).
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Let ũ denote the DNN representation of the solution of the Poisson equation. Substituting

ũ into the variational problem (4), we get the optimization problem

ũ = arg min
F∈F̃

J(F ), (6)

where F̃ is a subspace of F that satisfies the boundary condition on ∂D and it may have

some limitations on imposing boundary conditions. The justification of this assumption will

be discussed later.

After parameterizing the expressible function space by θ ∈ Θ, we equivalently define the

variational problem (4) as

min
θ∈Θ

J(θ) =
1

2

∫
D

|∇F (x, θ)|2dx−
∫
D

F (x, θ)f(x)dx. (7)

The variational problems (7) is not convex in general even when the original variational prob-

lem (4) is. In other word, the variational problem (4) is convex with respect to the solution

u(x), however, the variational problem (7) is non-convex with respect to the parameters in

the DNN. Obviously, the issue of local minima and saddle points is nontrivial, which brings

essential challenges to many existing optimization methods.

Since the parameter space Θ is typically very large, one usually uses the stochastic

gradient descent (SGD) method [4] to solve (7). There are plenty of optimization methods

to search among the large parameter space. To accelerate the training of the neural network,

we use the Adam optimizer version of the SGD [17].

To impose boundary conditions is an important issue in the DNN representation. In

the homogeneous Dirichlet problem (3), a relaxation approach was proposed to address this

issue. Specifically, one adds a soft constraint (a boundary integral term) to the functional

J(·) defined in (7) and obtains

ũε = arg min
F∈F

(
J(F ) +

1

ε

∫
∂D

F (x, θ)2dx
)
. (8)

Notice that the soft constraint term 1
ε

∫
∂D
F (x, θ)2dx will approach zero when we decrease the

parameter ε in the calculation. Therefore, the homogeneous boundary condition is satisfied

in a certain weak scene.

3. Inhomogeneous boundary condition

As an extension to the deep Ritz method, we consider to solve the inhomogeneous Dirichlet

problem as follows {
Lu(x) = f(x), x ∈ D,
u(x) = g(x), x ∈ ∂D,

(9)

where L is a linear PDE operator, f(x) is a source function, and g(x) is a boundary condition.

Let J(v; f) denote the Lagrangian form associated with the homogeneous Dirichlet problem

of (9), i.e., g(x) = 0; see (4) for instance.
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To deal with the inhomogeneous boundary condition in (9), we first choose a shallow neu-

ron network to approximate the boundary condition g(x). Let g̃(x) denote the approximation

of g(x) using the neuron network, which is obtained by solving the following optimization

problem

g̃(x) = arg min
G∈G

(∫
∂D

(
G− g(x)

)2
dx
)
, (10)

where G denotes the set of all expressible functions by a shallow neuron network. The

optimization problem (10) can be approximated by,

vol(∂D)

N1

N1∑
i=1

(
G(yi)− g(yi)

)2
, (11)

where yi
i.i.d.∼ Unif(∂D) and N1 is the number of sample points. In real application, uniform

sampler of ∂D is not necessary. One can change the integrand of (10) by multiplying the

Radon-Nikodym derivative of the sampler’s distribution. Once we obtain the corresponding

sampler, we can still minimizing (11) to obtain g̃(x).

In our proposed approach, reasons of choosing a shallow network to approximate g(x)

are twofold. First g̃(x) plays as the role of an initial guess to the inhomogeneous boundary

condition. Only the values on ∂D will be used, so limited parameters of g̃ will be good

enough. This helps shorten the training of g̃. On the other hand, due to the simple structure

of g̃, the term Lg̃ · v in J(v; f − Lg̃) will not oscillate in D (especially in the weak form),

which leads to a faster convergence in solving optimization problems.

Fig.1 and Fig.2 show the network layouts for approximating g̃ and u′, respectively, where

w denotes the width of each hidden layer. For example, Layer 2 in Fig.1 is in R10. To be

more precise, denote Layer 1 to be l1, Layer 2 to be l2, then,

l2 = σ(A[l1;x] + b), (12)

where A is a 10× 12 matrix and b is a R10 vector to be determined.

Since the neuron network that is used to represent g̃ is shallow, i.e., g̃ is represented by

a composition of smooth functions, Lg̃ is expressible. Then, we solve an auxiliary PDE as

follows, {
Lu′(x) = f(x)− Lg̃(x), x ∈ D,
u′(x) = 0, x ∈ ∂D.

(13)

Now the problem (13) becomes a homogeneous Dirichlet problem, which can be solved using

the deep Ritz approach; see Section 2.2. Finally, the solution of the inhomogeneous Dirichlet

problem (9) can be represented as u(x) = u′(x) + g̃(x).
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Figure 1: Network Layout for g̃.

Input

x

Layer 1,

w = 15

Layer 2,

w = 15

Layer 3,

w = 15

Layer 4,

w = 15

Output

u′(x)

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Linear

Figure 2: Network Layout for u′.

4. Derivation of the methodology

4.1. Elliptic PDEs with discontinuous and high-contrast coefficients

We first consider elliptic PDEs with discontinue coefficients defined as follows,

L(x)u(x) ≡ −∇ · (a(x)∇u(x)) = f(x), x ∈ D, , (14)

u(x) = 0, x ∈ ∂D, (15)

where D ⊆ Rd is a bounded spatial domain and the boundary of D is a convex polygon. For

notation simplification, we first study a homogeneous Dirichlet problem. The elliptic PDEs

with inhomogeneous boundary conditions can be solved by using the approach studied in

Section 3.

The coefficient a(x) is assumed to be a scalar and has jumps across a number of smooth

interior interfaces. Denoting the inclusions by D1,...,Dm and setting D0 = D \
⋃m
i=1 Di,

we assume that the coefficient a(x) is piecewise constant with respect to the decomposition

{Di, i = 0, ...,m}. Setting amin = min a(x)|Di
: i = 0, ...,m and dividing (14) by amin, we

rescale the problem. Specifically, let α(x) = a(x)
amin

denote the re-scaled coefficient, which is

piecewise constant with respect to the partition {Di, i = 0, ...,m} and α(x) ≥ 1 for all x ∈ D.

Letting αi denote the restriction of α(x) to Di, we are interested in studying two types of
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high-contrast cases,

Case 1 : min
i=1,...,m

αi � 1, α0 = 1, (16)

Case 2 : α0 � 1, max
i=1,...,m

αi ≤ K, (17)

for some positive constant K. In Case 1, the inclusions are high permeability compared to

the background, while the Case 2 contains the converse configuration.

Now, we are in the position to derive the formulation of deep learning approach to

solve the elliptic PDEs (14)(15) with high-contrast coefficients (16) (17). We define the

corresponding variational problem as

J(v) =
1

2

∫
D

a(x)|∇v(x)|2dx−
∫
D

v(x)f(x)dx, v ∈ H1
0(D). (18)

Then, the solution of (14)(15) can be obtained by u(x) = arg minv∈H1
0(D) J(v), where J(·) is

defined in (18). Again, we denote the set of all expressible function by F = {F (·, θ)|θ ∈ Θ}
and set F0 = {F ∈ F

∣∣F |∂D = 0}. Moreover, let Θ0 denote the parameter set satisfies the

homogeneous boundary condition, i.e., F (·, θ)|∂D = 0, θ ∈ Θ0. The approximation property

of the DNN implies that F0 ( C∞0 (D) ( H1
0(D). Therefore, we represent the solution u(x)

to Eq.(14) using the DNN method.

Let ũ = F (x; θ) denote the DNN representation; see Eq.(1). Then, ũ satisfies the following

variational problem

ũ = arg min
F=F (·,θ)|θ∈Θ0

1

2

∫
D

a(x)|∇F (x, θ)|2dx−
∫
D

F (x, θ)f(x)dx. (19)

Since the degree of freedom in the variational problem (19) is quite large, we apply the SGD

method on the parameter space Θ0 to solve it. As such, we approximate gradient of one

parameter θk by,

∂J(F (·, θ))
∂θk

=
1

2

∫
D

∂(a(x)|∇F (x, θ)|2)

∂θk
dx−

∫
D

∂(Ff)

∂θk
dx

≈ vol(D)

N

N∑
i=i

(1

2

∂(a(xi)|∇F (xi, θ)|2)

∂θk
− ∂(F (xi, θ)f(xi))

∂θk

)
, (20)

where xi
i.i.d.∼ Unif(D) are randomly sampled from the physical domain D and vol(D) is the

volume of the domain. Notice that θ is a high-dimensional vector and θk is any component

of θ. Once we get the approximation of the gradient with respect to θk, we can update each

component of θ as

θn+1
k = θnk − η

∂J(F (·, θ))
∂θk

|θk=θnk
, (21)

where η is the learning rate. To accelerate the training of the neural network, we use the

Adam optimizer version of the SGD method [17].

Remark 4.1. From the derivation of the DNN formulation, one can see that the proposed

method automatically deals with the interface condition (or discontinuous coefficients) with-

out knowing locations of the interfaces a-priori.
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4.2. Linear elasticity with discontinuous stress tensors

In this subsection, we consider the DNN approach to solve linear elasticity interface prob-

lems. One application of the linear elasticity problem is to model the shape and location of

fibroblast cells under stress [32]. The model is based on the idea of a continuum mechanical

description of stress-induced phase transitions. To demonstrate the main idea, we consider

a two-dimensional linear elasticity problem.

Suppose the matrix (meaning the material or tissue in cells) plus the cell together oc-

cupy a bounded domain D ⊆ Rd, d = 2 and D is composed of linear elastic homogeneous

isotropic material. We assume the cell has small deformations, so that the linearized theory

of elasticity is used. Let u = (u1, u2)T denote the displacement field. Then, the strain tensor

is

E =
1

2
(∇u +∇uT ),with Eij =

1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (22)

In the matrix except the cell, the stress tensor is related to the strain tensor (gradient of the

displacement) by S = CE = C∇u, where the elasticity tensor C is a linear transformation

on the tensors. In the isotropic case, we have

CA = λTr(A)1 + µ(A + AT ) (23)

for any two dimensional matrix A. In Eq.(23), λ and µ are lamé constants, Tr(·) is the trace

operator, and 1 is the identity matrix. In components, the action of the elasticity tensor C
reads

CijklAkl = λAkkδij + µ(Aij + Aji), (24)

where the Einstein summation convention is used.

The cell is modeled by a compact region Ω with smooth boundary; see Fig.8a. Let E0

denote a transformation strain, which is a constant symmetric tensor. We assume the stress

tensor has a jump across the cell, i.e.,

S =

{
CE, in D \ Ω,

CE− E0, in Ω.
(25)

In our cell model, we set the transformation strain to be a contraction, which is represented

by an isotropic compression E0 = −α1 with α > 0. We suppose the cell model is in a

quasi-static state. Therefore, the displacement field u satisfies the following linear elasticity

PDE with a discontinuous stress tensor,

−∇ ·
(
C∇u + χΩS0

)
= 0, x ∈ D, (26)

where χΩ is the characteristic function of the cell domain Ω and S0 = −CE0 is a constant

symmetric matrix, which measures the effect on the cell boundary due to the contraction.
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We impose Dirichlet boundary conditions on ∂D. On the cell boundary ∂Ω, the solution u

satisfies the following jump conditions

[u] = 0, [S]n = 0, (27)

where n is the outward unit normal vector on ∂Ω.

Note that in the isotropic case, one has Cijkl∂kul = λ∂kukδij + µ(∂kul + ∂luk) and

CijklE0,kl = −αδij(λδkk + 2µ), where the Einstein summation convention is used. Then,

the linear elasticity interface problem (26)(27) can be computed by numerical methods, such

as the immersed interface method [30] or matched interface and boundary method [26]. How-

ever, the implementation of the numerical scheme is not simple due to the jump conditions

on the interface.

In the sequel, we shall develop the formulation of solving the linear elasticity interface

problem (26)(27) using the DNN method. In the isotropic case, denoting e(v) ≡ (eij(v))

with eij(v) = 1
2
(∂jvi + ∂ivj), where v = (v1, v2)T , (26) is equivalent to,

−∇ · (λ(Tr(e(u))I2 + 2µe(u) + χΩS0) = 0. (28)

Then, we define the variational problem associated with (28) as,

J(v) =

∫
D

1

2

(
λ(Tr(e(v)))2 + 2µe(v) : e(v)

)
+ 2χΩ(λ+ µ) Tr(e(v))dx, (29)

where : denotes the inner product between matrices, i.e., A : B = Tr(ATB) =
∑

i,j aijbij.

Then, the solution of (28) can be obtained by u(x) = arg minv∈(H1
0(D))2 J(v), where J(·) is

defined in (29). The remaining implementation of the DNN method for (29) is exactly the

same as we discussed in Section 4.1, so we skip the details here.

5. Numerical Example

In this section, we shall carry out numerical experiments to demonstrate the performance

of the DNN method in solving interface problems. In addition, we are interested in under-

standing the SGD method in solving the non-convex optimization problem. The TensorFlow

[1] provides an efficient tool to calculate the partial derivatives in (20), which will be used

in our implementation.

5.1. 2D high-contrast elliptic problems

We consider 2D elliptic PDEs with high-contrast coefficients defined as follows,

−∇ · (a(x)∇u(x)) = f(x), x ∈ D, (30)

u(x) = g(x), x ∈ ∂D, (31)

where x = (x1, x2), the domain is D = [−1, 1]× [−1, 1], and the coefficient a(x) is a piecewise

constant defined by

α =

{
α1, r < r0,

α0, r ≥ r0,
(32)
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where r = (x2 + y2)1/2 and r0 = π/6.28. Moreover, the source term f(x) = −9r and the

boundary condition g(x) = r3

α0
+ ( 1

α1
− 1

α0
)r3

0. We choose the source term and boundary

condition in such a way that the exact solution (in the polar coordinate) is

u(r, θ) =

{
r3

α1
, r < r0,

r3

α0
+ ( 1

α1
− 1

α0
)r3

0, r ≥ r0.
(33)

In our first experiment, we choose α0 = 103 and α1 = 1 in (32); see Fig.3 for the profile

of the coefficient. Notice that problem (30)(31) is an inhomogeneous Dirichlet problem. We

use the immersed-interface FEM with fine mesh h = 1
128

to compute the reference solution

and the DNN method to compute the numerical solution. The implementation of the DNN

method has been intensively discussion in Section 3 and Section 4.1. The network that we

used has four intermediate layers and the width of each layer is ten, where the network

is densely connected. The network is not specially designed for the target problem. It is

simply the one that we used in the DNN method. In the learning process, i.e., the running

of the SGD method, we choose the batch number (number of samples per gradient update)

to be 4096 (that contains both the points in the interior domain and on the boundary)

and generate a new batch every 10 steps of updating. And the learning rate η is 5 × 10−4.

Once we have a uniform sampler, the network automatically deals with the interface without

knowing locations of the interface a-priori.

In Fig.4, we show the corresponding numerical results. In Fig.4a and Fig.4b, we plot the

profiles of a shallow network approximation of the boundary condition g(x) and the deep

network approximation of solution u′(x) to the auxiliary PDE (13), respectively. In Fig.4d

and Fig.4e, we show the comparison between the DNN solution and the reference solution.

One can see that the DNN method provides an accurate result for this interface problem.

In Fig.4c and Fig.4f, we plot the decay of the Lagrangian and the L2 relative error

between the DNN solution and reference solution during the training process. Interestingly

we observe that optimization process gets stuck at a local minimum at the beginning, i.e.,

the first four thousand steps, where the Lagrangian functional does not have decay and the

error between the DNN solution and reference solution keeps as a constant. Beyond that the

optimization process jumps out the local minimum, which make the Lagrangian functional

and the error continue to decay. Finally the error oscillates around 5%.

In our second experiment, we choose α0 = 1 and α1 = 103 in (32). The profile of the new

coefficient looks like an upside down of the profile shown in Fig.3. We do not show it here.

Again, we use the immersed-interface FEM with fine mesh h = 1
128

to compute the reference

solution and the DNN method to compute the numerical solution. The setting of the DNN

method is the same as the first experiment.

In Fig.5, we show the corresponding numerical results. In Fig.5a and Fig.5b, we plot the

profiles of a shallow network approximation of the boundary condition g(x) and the deep

network approximation of solution u′(x) to the auxiliary PDE (13), respectively. In Fig.5d

and Fig.5e, we show the comparison between the DNN solution and the reference solution.

The DNN method also provides an accurate result for this interface problem.

12



Figure 3: Profile of the high-contrast coefficient on D.
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Figure 4: High contrast problem, α0 = 1000, α1 = 1 case: (a) profile of g; (b) profile of u′; (c) decay of the

Lagrangian during the training process; (d) profile of the DNN solution u at the final step; (e) profile of the

reference solution; (f) decay of the L2 relative error during the training process.
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Figure 5: High contrast problem, α0 = 1, α1 = 1000 case: (a) profile of g; (b) profile of u′; (c) decay of the

Lagrangian during the training process; (d) profile of the DNN solution u at the final step; (e) profile of the

reference solution; (f) decay of the L2 relative error during the training process.

In Fig.5c and Fig.5f, we plot the decay of the Lagrangian and the L2 relative error between

the DNN solution and reference solution during the training process. We find that the decay

pattern of the second experiment is different from the first one. The Lagrangian functional

has instant fluctuations during the optimization process. However, it does not get stuck at

a local minimum. The error function is a monotonic decreasing function. Finally the error

is reduced to about 2%.

The DNN method is a probabilistic method since the initial value of parameters in the

network, i.e. θ ∈ Θ and the Adams SGD optimizer are random. We are interested in

investigating the convergence speed when α1 = 1 and α0 � 1, which is a ‘harder’ case of

the high-contrast problem since the optimization process of the DNN method gets stuck at

a local minimum. In Fig.6, we show results of the convergence speed study when α0 = 1000

and α0 = 10000, respectively. Specifically, we plot the histogram of the number of steps to

converge. The total number of iteration is 5×105 when α0 = 1000 and 106 whenα0 = 10000.

We find that a higher contrast in the coefficient will lead to a slower convergence in the DNN

method. We also find that about 7% of trials failed to converge within the designed steps.

5.2. 2D Linear elasticity interface problem

We consider a linear elasticity PDE with a discontinuous stress tensor as follows,

−∇ ·
(
C∇u + χΩS0

)
= 0, x ∈ D, (34)
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(a) α0 = 1000, α1 = 1. (b) α0 = 10000, α1 = 1.

Figure 6: Histogram of the number of steps to obtain a convergence result.

where x = (x1, x2), the domain D = [−8, 8] × [−8, 8], u = (u1, u2)T , the elasticity tensor C
is defined by (23) or (24) with λ = 1 and µ = 1.

In the cell model [32], keratocytes typically have a roughly circular shape with an annular

lamellipodium surrounding the nucleus, when they are in stationary state. Contact and force

transmission with the substrate occurs only at the lamellipodium and not the nucleus and

organelles. Accordingly, we choose the initial lamellipodium region Ω to be an annulus in

the center of the square domain D, with the nucleus excluded; see Fig.7.

We set u1 = u2 = 0 on the boundary of D, which gives a null displacement or traction-free

boundary condition. On the boundary of the cell Ω, we impose the jump conditions (27).

We use the immersed-interface FEM with a fine mesh h = 1/32 to compute the reference

solution and the DNN method to compute the numerical solution. The network that we

used has four intermediate layers and the width of each layer is twenty, where the network

is densely connected. In the running of the SGD method, we choose the batch number to

be 2048 and generate a new batch every 10 steps of updating. And the learning rate η is

5× 10−4.

In Fig.8, we show the corresponding numerical results. In Fig.8a and Fig.8b, we plot the

profiles of DNN solutions u1 and u2, which are the displacements in x1 and x2 coordinates,

respectively. The corresponding reference solutions are shown in Fig.8d and Fig.8e. We

find that the DNN solutions agree well with the reference solutions. In Fig.8c and Fig.8f,

we plot the decay of the Lagrangian and the L2 relative error between the DNN solution

and reference solution during the training process. We find that the decay pattern of the

third experiment is same as the second one. Finally the error is reduced to about 4%. Our

numerical results imply that the DNN method is efficient in solving the 2D Linear elasticity

interface problem (34). Most importantly, its implementation is very simple.
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Figure 8: 2D Linear elasticity interface problem: (a) profile of DNN solution u1; (b) profile of DNN solution

u2; (c) decay of the Lagrangian during the training process; (d) profile of reference solution u1; (e) profile of

reference solution u2; (f) decay of the L2 relative error during the training process.
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6. Conclusions

In this paper, we studied the deep-learning based method to solve interface problems. By

formulating the PDEs into variational problems, we convert the interface problems into

optimization problems. Since the DNN can be used to approximate the linear space spanned

by FEM nodal basis functions. Thus, we parameterize the PDE solutions using the DNN

and solve the interface problems by searching the minimizer of the associated optimization

problems. Since the parameter space of the DNN is huge, we apply the SGD method to

solve the optimization problems efficiently. In this framework, once we have a sampler of

grids on the domain including the boundary, we do not need any special treatment to deal

with the interface inside the domain. Therefore, the proposed method is easy to implement

and mesh-free. Finally, we present numerical experiments to demonstrate the performance

of the proposed method. Specifically, we use the DNN method to solve elliptic PDEs with

discontinuous and high-contrast coefficients and linear elasticity with discontinuous stress

tensors. We find the the DNN method gives accurate results for both experiments. There

are several issues remain open. For instance, we do not get the convergence rate for the

DNN method and we have little understanding about the parameter space of the DNN. In

addition, the issue of local minima and saddle points in the optimization problem is highly

nontrivial. We are interested in studying these issues in our future research.
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