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Abstract

In this paper, we develop a class of robust numerical methods for solving dynamical systems

with multiple time scales. We first represent the solution of a multiscale dynamical system as

a transformation of a slowly varying solution. Then, under the scale separation assumption,

we provide a systematic way to construct the transformation map and derive the dynamic

equation for the slowly varying solution. We also provide the convergence analysis of the

proposed method. Finally, we present several numerical examples, including ODE system

with three and four separated time scales to demonstrate the accuracy and efficiency of the

proposed method. Numerical results verify that our method is robust in solving ODE systems

with multiple time scale, where the time step does not depend on the multiscale parameters.

Keyword: Hamiltonian dynamical system; multiple time scales; stiff equations; convergence

analysis; uniform accuracy; composition maps.
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1. Introduction

Dynamical systems with sub-processes evolving on many different time scales are ubiquitous

in applications: chemical reactions, electro-optical and neuro-biological systems, to name just

a few [19, 13]. The multiple time scales in the dynamical systems pose a major problem in

numerical simulations because one needs to choose small time steps for stable integration

of the fast motions in the systems, which leads to large numbers of time steps required for

the observation of the slow degrees of freedom and thus requires tremendous computational

resources. Interested readers are referred to [8, 15] and the references therein for a detailed

review.

The objective of this paper is to develop a new method to solve dynamical systems with

multiple time scales; see Section 2 for the precise definition of the problems. The main idea

of our method is to formally represent the solution of the multiscale dynamical system as

a transformation of a slowly varying solution; see Eq.(14). By dealing with the multiscale
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information in a dimension-by-dimension fashion, we propose a systematic way to construct

a set of cumulative composition maps that capture the complicated dynamics of the problem.

Based on the scale separation assumption, we successfully derive the dynamic equation for

the slowly varying solution (i.e., Eq.(30)) and prove that the dynamic equation for the slowly

varying solution is non-stiff; see Theorem 3.2. Thus, we can use conventional numerical

methods to compute it, where the time step is independent of the multiscale parameters in

the dynamical system. In addition, we analyze the error between the numerical solution

obtained from our method and the exact solution in Theorem 3.4. Finally, we carry out

several numerical experiments to demonstrate the accuracy and efficiency of the proposed

method.

As we will demonstrate in Section 4, the proposed method can offer accurate numerical

solutions to multiscale ODE systems with considerable computational savings over traditional

methods, especially when the multiscale parameters are small. Numerical results (see Fig.10)

show that the dynamic equation for the slowly varying solution based on the cumulative

composition maps indeed capture the averaged behaviors of the solution well. While a simple

averaging treatment of the original multiscale ODE systems leads to wrong results. As an

analogy to this interesting finding, in the homogenization for elliptic PDEs with multiscale

coefficients, a simple average of the coefficient gives a wrong result, where one needs to solve

a cell problem to obtain the correct homogenization coefficient [5].

Our method is inspired by the recent development in designing uniformly accurate nu-

merical schemes for highly oscillatory evolution equations [3, 4], where two-scale problems

were solved. In [3, 4], the authors separate the two time scales into two independent variables

and embed the solution of the two-scale problem into a two-variable function. Then, they

derive formulations of the evolution equations for the two-variable function and prove that

under certain conditions the evolution equations are solvable and non-stiff.

The novelty of our paper is that we provide a systematical way to construct a set of

cumulative composition maps that allow us to correctly upscale the complicated dynamics

of the problem. Notice from Eq.(25) that each map Φk is a perturbation of the identity

operator. However, a cumulative composition of those simple maps (15) can provide an

accurate approximation of the complicated dynamics of the problem. In addition, we provide

a rigorous convergence analysis for the proposed method and verify the statement through

numerical experiments.

Before we end this section, we give a short review of several existing methods for solv-

ing two-scale problems. When slow variables can be identified, effective equations can be

obtained by averaging the instantaneous drift driving those slow variables. Two classes of

numerical methods have been developed based on this observation: the equation-free method

[14] and heterogeneous multiscale method (HMM) [1]. Later on, a new class of integrators

for stiff ODEs as well as SDEs were developed [18], which are based on the averaging of

the instantaneous flow of the hidden slow and fast variables simultaneously. Therefore, the

hidden slow variables do not need to be explicitly identified. In this paper, however, we will

consider problems parameterized by multiple time scales. In addition, we aim to design nu-
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merical schemes that solve the multiscale dynamical problems for a wide range of multiscale

parameter values with uniform accuracy.

The rest of the paper is organized as follows. In Section 2, we will derive our numerical

method for solving multiscale dynamical systems and discuss its detailed implementation.

In Section 3, we provide the convergence analysis for the proposed method. In Section

4, we present numerical results to demonstrate the accuracy and efficiency of our method.

Concluding remarks are made in Section 5.

2. Numerical methods for solving multiscale dynamical systems

In this section, we will develop numerical methods to solve dynamical systems with multiple

time scales. Specifically, we consider the following first-order ordinary differential equation

(ODE) system to illustrate the main idea,

ẋ = f ε(t, x), x(0) = x0, t ∈ [0, T ], (1)

where x(t) ∈ Rd is the solution vector, x0 is the initial value, and f ε(t, x) is a function vector

field. Here ε = (ε1, ..., εn) is a set of parameters, which are used to characterize different time

scales in the ODE system (1). When the parameters satisfy

0 < εn � εn−1 � · · · · · � ε1 � 1, (2)

we say that the multiscale time scales are well-separated. Given the multiscale parameters,

we denote

f ε(t, x) ≡ f(
t

ε1
,
t

ε2
, · · · , t

εn
, x), (3)

where f : Rn+d → Rd is a function vector field. We assume that the first-order derivatives of

f are bounded, which is sufficient to guarantee the existence and uniqueness of solutions of

the ODE system (1) [12, 16]. Let ti = t
εi

, i = 1, ..., n. We denote f ε(t, x) = f(t1, t2, · · · , tn, x).

Moreover, we assume that f is periodic with respect to its first n coordinates, i.e., ti, i =

1, ..., n. Without lost of generalities, all the periods are assumed to be 1.

2.1. Decomposition of the multiscale function f

We iteratively define the averaged functions to resolve finer scale fluctuations on coarser scales

in a dimension-by-dimension fashion. We first start from the coordinate tn corresponding to

the smallest-scale and define the mean function

f̄n(t1, t2, · · · , tn−1, x) =

∫ 1

0

f(t1, t2, · · · , tn−1, s, x)ds, (4)

and the fluctuation function

fn(t1, t2, · · · , tn, x) = f(t1, t2, · · · , tn, x)− f̄n(t1, t2, · · · , tn−1, x), (5)

where the integration and subtraction are done in a component-wise fashion. Thus, f̄n and

fn are d-dimensional vector functions.
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Then, based on the function f̄n(t1, t2, · · · , tn−1, x), we define the mean function and fluc-

tuation function corresponding to the second smallest-scale as follows

f̄n−1(t1, t2, · · · , tn−2, x) =

∫ 1

0

f̄n(t1, t2, · · · , tn−2, s, x)ds, (6)

fn−1(t1, t2, · · · , tn−1, x) = f̄n(t1, t2, · · · , tn−1, x)− f̄n−1(t1, t2, · · · , tn−2, x). (7)

We continue this strategy and define mean functions and fluctuation functions corresponding

to different time scales recursively. For instance, given the mean function f̄n−k+1, we define

the mean function and fluctuation function corresponding to a coarser-scale as follows

f̄n−k(t1, t2, · · · , tn−k−1, x) =

∫ 1

0

f̄n−k+1(t1, t2, · · · , tn−k−1, s, x)ds, (8)

fn−k(t1, t2, · · · , tn−k, x) = f̄n−k+1(t1, t2, · · · , tn−k, x)− f̄n−k(t1, t2, · · · , tn−k−1, x). (9)

Finally, we define the mean function and fluctuation function corresponding to the largest-

scale as follows

f̄ 1(x) =

∫ 1

0

f̄ 2(s, x)ds, (10)

f 1(t1, x) = f̄ 2(t1, x)− f̄ 1(x). (11)

The above recursive formulations (4)-(11) naturally lead to a decomposition of the multiscale

function f(t1, t2, · · · , tn, x) into

f =
n∑
k=1

fk + f̄ 1. (12)

According to the definition, for each k we have that∫ 1

0

fk(t1, · · · , tk−1, s, x)ds = 0, ∀ ti ∈ [0, 1], i = 1, ..., k − 1, and x. (13)

2.2. Derivation of the dynamic equation for the slowly varying solution

We will construct a family of maps Φk = Φk
t1,t2,··· ,tk : Rd → Rd, k = 1, ..., n, that allow us to

represent the solution x(t) of the ODE system (1) as a transformation of a slowly varying

solution y(t), i.e.,

x(t) = Φn ◦ Φn−1 ◦ · · · ◦ Φ1(y(t)). (14)

We assume that each map Φk is periodic with respect to tk and becomes the identical map

Id when tk = 0. To simplify the notation, we define a family of cumulative composition maps

as follows

Φ̄k = Φk ◦ Φk−1 ◦ · · · ◦ Φ1, k = 1, ..., n. (15)

The rationale behind the representation (14) is that the complicated dynamics of the

ODE system (1) (e.g., highly oscillatory solutions) is captured by the map Φ̄n, and thus the

evolution of the solution y(t) is smooth. Therefore, we can compute the solution x(t) (through
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solving y(t)) by using numerical methods with relatively large time steps (independent of the

multiscale parameters). To achieve this goal, we need to find a constructive way to obtain

the map Φ̄n and to identify the dynamical equation for the solution y(t).

Substituting the representation (14) into the original problem (1), we know that the

solution y(t) formally satisfies the following equation

∂tΦ̄
n(y) + ∂xΦ̄

n(y)ẏ = f ε, (16)

where ∂xΦ̄
n(y) is the Jacobian matrix.

It will be complicated if we directly compute ∂xΦ̄
n(y) using the chain rule. We shall

adopt some approximate method to address this difficulty. Notice that the scale separation

assumption on f ε (see Eq.(3)) indicates that the local fluctuation of f ε at O(εn) scale can be

resolved by the same scale part of ∂tΦ̄
n. More precisely, by the chain rule, we get

∂tΦ̄
n =

1

εn
∂tnΦn(Φ̄n−1) +

n−1∑
i=1

1

εi
∂tiΦ

n(Φ̄n−1) + ∂xΦ
n∂tΦ̄

n−1, (17)

where the last two terms are independent of tn. Compared with the decomposition of the

multiscale function f in (12), we can set,

1

εn
∂tnΦn(Φ̄n−1) = fn. (18)

Since Φn is an identical map when tn = 0, we can explicitly get,

Φn
t1,t2,··· ,tn(x) = x+ εng

n(t1, t2, · · · , tn, x), ∀x, (19)

where

gn(t1, t2, · · · , tn, x) =

∫ tn

0

fn(t1, t2, · · · , tn−1, s, x)ds. (20)

From (19), we can see that Φn = Id + O(εn), which is an O(εn) order perturbation of the

identity operator. When the time scales are well-separated, we can dismiss the second term

in Eq.(17) since
n−1∑
i=1

1

εi
∂tiΦ

n(Φ̄n−1) =
n−1∑
i=1

εn
εi
∂tig

n(Φ̄n−1) = O(
εn
εn−1

). (21)

Let us continue our derivation inductively with k = n−1, · · · , 1. We consider the fluctuation

within period O(εk), and have the following observation,

∂x(Φ
n ◦ Φn−1 ◦ · · · ◦ Φk+1)(

1

εk
∂tkΦk) = fk. (22)

Due to the scale separation structure of Φn ◦ Φn−1 ◦ · · · ◦ Φk+1, we obtain

∂x(Φ
n ◦ Φn−1 ◦ · · · ◦ Φk+1) = Id +O(εk+1), (23)
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which is an O(εk+1) order perturbation of the identity operator. Now we arrive at,

1

εk
∂tkΦk(Φ̄k−1) = fk. (24)

Again, using the condition that Φk is an identical map when tk = 0, we get

Φk
t1,t2,··· ,tk(x) = x+ εkg

k(t1, · · · , tk−1, tk, x), (25)

where

gk(t1, · · · , tk−1, tk, x) =

∫ tk

0

fk(t1, · · · , tk−1, s, x)ds, k = 1, ..., n. (26)

In the above derivation, we have used the condition that
∑k−1

i=1
1
εi
∂tiΦ

k(Φ̄k−1) = O( εk
εk−1

).

After we obtain the explicit formulations for Φk, k = 1, ..., n and their derivatives, we are

in the position to derive the dynamic equation for the solution y(t). According to (16), we

obtain a nested equation

∂tΦ
n + ∂xΦ

n

(
∂tΦ

n−1 + ∂xΦ
n−1
(
∂tΦ

n−2 + · · · (∂tΦ1 + ∂xΦ
1ẏ(t)) · · ·

))
= f ε. (27)

From the definition of Φk (see Eq.(25)), we compute the derivative of Φk with respect to time

t and get,

∂tΦ
k = εk

k∑
r=1

1

εr
∂trg

k, k = 1, ..., n. (28)

The scale separation assumption on the multiscale parameters implies that ∂tΦ
k u ∂tkg

k =
1
εk
∂tkΦk, which allows us to simplify Eq.(27) into the following form

1

εn
∂tnΦn+∂xΦ

n

(
1

εn−1
∂tn−1Φ

n−1 + ∂xΦ
n−1·( 1

εn−2
∂tn−2Φ

n−2 + · · · ( 1

ε1
∂t1Φ

1 + ∂xΦ
1 ˙̃y(t)) · · ·

))
= f ε. (29)

Here ỹ(t) is an approximation of y(t) since Eq.(29) is an approximation of the original Eq.(27)

based on the scale separation assumption on the multiscale parameters. Finally, from Eq.(29)

we can get the dynamic equation for ỹ(t), i.e.,

˙̃y =(∂xΦ
1)−1

(
· · · (∂xΦn−1)−1(

(∂xΦ
n)−1(f ε − 1

εn
∂tnΦn)− 1

εn−1
∂tn−1Φ

n−1
)
− · · · − 1

ε1
∂t1Φ

1

)
=: F (t, x). (30)

From the above derivation, one can see that the existence of the matrices (∂xΦ
k)−1, k =

1, ..., n in (30) is essential in establishing the consistency of our method. In Section 3, we will

prove that the invertibility is guaranteed in the case when εk are sufficient small; see (39).
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In addition, we will prove that the ODE system (30) is non-stiff, which will be useful for the

design of uniformly accurate numerical schemes, i.e., the time step in the numerical schemes

does not depend on the multiscale parameters. When we obtain the solution ỹ(t) of the ODE

system (30), we can recover the solution of the ODE system (1) through the transform Φ̄n

defined in (14)(15). The error estimate of our method will be presented later.

Remark 2.1. From the explicit formulations for Φk, k = 1, ..., n, we know the solution of the

original ODE system can be rewritten as the following form

x(t) =
(
Id +O(εn)

)
◦
(
Id +O(εn−1)

)
◦ · · · ◦

(
Id +O(ε1)

)
(y(t)). (31)

Eq.(31) clearly reveals the structure of the transformation map in our method. One can

see that the transformation map is a composition of simple maps, where each of them is a

perturbation of identity. Interestingly, similar ideas appear in deep neural network research;

see e.g. [2, 17], where approximations of functions via compositions of near-identity functions

have been used intensively and are the key to the amazing expressibility power of a deep

neuron network.

Remark 2.2. Our method can be extended to solve an ODE system (1), where f ε is a quasi-

periodic function. Assume that f ε(t, x) in (3) has the form

f ε(t, x) = f(
a1(t)

ε1
,
a2(t)

ε2
, ...,

an(t)

εn
, x), (32)

where ak(t), k = 1, ..., n are some invertible functions in C2 such that 0 < c0 ≤ ‖ ddtak(t)‖∞ ≤
c1 <∞. Then the main results stated in this section for periodic functions still hold by using

the same definition of the mean function defined in (4) without any prior knowledge of ak(t),

k = 1, ..., n. The reason is that for any smooth function h(x, y) that is periodic in y with

period 1, one can easily show that (see [6] for an elementary proof)∣∣∣ ∫ b

a

h
(ak−1(t)
εk−1

,
ak(t)

εk

)
dt−

∫ b

a

( ∫ 1

0

h(
ak−1(t)

εk−1
, y)dy

)
dt
∣∣∣ ≤ C

εk
εk−1

, (33)

by using a change of variable from t to s = ak(t) and the fact that the Jacobian J(s) =

( d
dt
ak)
−1 is a smooth function of s.

Remark 2.3. For a general ODE system ẋ = f(t, x), where f(t, x) does not have an ex-

plicit form of multiscale separation parametrization, we may reparameterize and approximate

f(t, x) by a formal multiscale velocity field f ε(t, x). For instance, we may reparameterize

f(t, x) into a formal two-scale structure through Fourier transform; see [11]. The limitation

is that we have to compute Fourier transform of f(t, x) with respect to t, for each fixed x,

which involves a certain amount of computation. To develop a fast solver to address this

issue will be our future work.

2.3. Construction of the numerical schemes

In this section, we construct efficient numerical schemes to solve Eq.(30) that are uniformly

accurate with respect to ε = (ε1, ..., εn). We first discuss how to accurately and efficiently
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compute the maps Φk, k = 1, ..., n defined in Eqns.(19) and (25). We observe that the maps

Φk, k = 1, ..., n are explicitly defined. Therefore we can use an explicit numerical scheme to

approximate them. However, such an explicit implementation is not desirable because it may

destroy the structures (e.g., Hamiltonian structure) of the original problem (1).

Alternatively, we adopt an implicit midpoint scheme to approximate Φk, i.e.,

Φk
t1,t2,··· ,tk(x) = x+ εkg

k(t1, t2, · · · , tk,
x+ Φk

t1,t2,··· ,tk(x)

2
), k = 1, ..., n. (34)

The scheme (34) still provides an O(εk) approximation of Eq.(25). In practice, Φk in (34)

can be computed by the fixed point iteration. In addition, the derivatives of Φk with respect

to tk or x involved in Eq.(30) can be computed by the fixed point iteration based on the

following identities,

∂tkΦk(x) = εkf
k
(x+ Φk(x)

2

)
+
εk
2
∂xg

k
(x+ Φk(x)

2

)
∂tkΦk(x), (35)(

∂xΦ
k(x)

)−1
K = K − εk

2
∂xg

k
(x+ Φk(x)

2

)(
K + (∂xΦ

k(x))−1K
)
, (36)

where K is a d-dimensional column vector. The formulae in (34)-(36) suggests an iterative

scheme to calculate all the quantities that are needed to compute (30) and Φ̄n. Finally, we

obtain an efficient numerical scheme to solve Eq.(30) at any time t and value x.

The detailed implementation of the proposed numerical scheme is listed in Algorithm

1, in which we introduce several variables to simply the notations. Specifically, we have

Pk = Φk ◦ Φk−1 ◦ · · · ◦ Φ1(y), Tk = 1
εk
∂tkΦk ◦ Φk−1 ◦ · · · ◦ Φ1(y), k = 1, ..., n, and D1 = ẏ.

3. Convergence analysis

In this section, we present the convergence analysis of the proposed method. Since our goal

is to develop numerical methods to solve ODE systems with a large range of ε-values, the

following assumption appears as a natural prerequisite.

Assumption 3.1. Notice that our method developed in Section 2 is a first-order method

(w.r.t. ε). We require f ε and its fluctuation components fk, k = 1, ..., n are second-order

differentiable and are bounded on some closed set Tn × K, where K ⊂ Rd. In addition, we

assume that the path of the solution x(t) is in K.

Remark 3.1. In many cases, f ε and fk, k = 1, ..., n are globally defined, which requires

K = Rd.

First, we prove that the transformed equation (30) is non-stiff with respect to ε, and thus

it can be solved by using conventional numerical methods with relatively large time steps.

Theorem 3.2. Suppose that Assumption 3.1 is satisfied and 0 < εk < 1, k = 1, ..., n are

sufficiently small. Let F (t, x) denote the right hand side of the ODE system (30). Then, we

have the following estimate, ∣∣∂tF (t, x)
∣∣ ≤ C0, (37)

where
∣∣ · ∣∣ is a vector norm and C0 does not depend on εk, k = 1, ..., n.
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Algorithm 1 A fixed point iteration method to compute the ODE with n time-scales.

1: Set i = 0, P
[0]
1 = P

[0]
2 = · · · = P

[0]
n = y

2: repeat

3: P
[i]
0 = y

4: for k = 1 to n do

5: R
[i]
k =

P
[i]
k−1+P

[i]
k

2

6: P
[i+1]
k = P

[i]
k−1 + εkg

k(R
[i]
k )

7: end for

8: i→ i+ 1

9: until P
[i]
n converges.

10: Set j = 0,T
[0]
1 = T

[0]
2 = · · · = T

[0]
n = D

[0]
1 = D

[0]
2 = · · · = D

[0]
n = 0

11: repeat

12: D
[j]
n+1 = f ε(P

[i]
n )

13: for k = n to 1 do

14: T
[j+1]
k = fk(R

[i]
k ) + εk

2
∂xg

k(R
[i]
k )T

[j]
k

15: B
[j]
k = D

[j]
k+1 − T

[j+1]
k

16: D
[j+1]
k = B

[j]
k −

εk
2
∂xg

k(R
[i]
k )(B

[j]
k +D

[j]
k )

17: end for

18: j → j + 1

19: until D
[j]
1 converges.

Proof. According to the definitions (25), we have the results,

∂xΦ
k = Id + εk∂xg

k, k = 1, ..., n. (38)

When εk are sufficiently small, the inverse of ∂xΦ
k exists and can be computed through the

Neumann series expansion,

(∂xΦ
k)−1 = Id +

∞∑
m=1

(−εk∂xgk)m. (39)

Taking the derivative of Eq.(39) on both sides with respect to t, we obtain

∂t(∂xΦ
k)−1 =

∞∑
m=1

∂t(−εk∂xgk)m. (40)

Moreover, we have the estimates,∣∣∣∣(∂xΦk)−1 − Id
∣∣∣∣ ≤ Cεk, (41)∣∣∣∣∂t(∂xΦk)−1
∣∣∣∣ =

∣∣∣∣ ∞∑
m=1

∂t(−εk∂xgk)m
∣∣∣∣ ≤ C, (42)
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where
∣∣∣∣ · ∣∣∣∣ is a matrix norm. At the same time, we have the condition

1

εk
∂tkΦk = ∂tkg

k = fk. (43)

Therefore, the right hand side of the ODE system (30) can be re-written as,

F (t, x) =
n∏
i=1

(∂xΦ
k)−1f ε −

n∑
k=1

k∏
i=1

(∂xΦ
i)−1

1

εk
∂tkΦk,

=
n∏
i=1

(∂xΦ
k)−1f̄ 1 +

n−1∑
k=1

k∏
i=1

(∂xΦ
i)−1

( n∏
i=k+1

(∂xΦ
i)−1 − Id

)
fk,

≡ J0 +
n−1∑
k=1

Jk. (44)

Taking derivative of F (t, x) with respect to t and using the product rule, we can easily verify

that the terms ∂tJ0 and ∂tJk, k = 1, ..., n − 1 are all O(1). Thus, the assertion in 37 is

proved.

Theorem 3.2 shows that the transformed ODE system (30) is non-stiff, which is then

amenable to a standard numerical treatment. As such, we divide the time interval [0, 1] by

the nodes tm = m∆t, m = 0, ...,M , where ∆t = 1/M is the time step and M is a positive

integer. For each m, m = 1, ...,M , we seek a numerical solution ŷ(tm) to approximate ỹ(tm),

which is the value of the exact solution of the ODE system (30) at time tm.

Here, we use the implicit integral midpoint scheme (Im2nd) to solve the ODE system

(30). Between two consecutive computational times tm and tm+1, we integrate the differential

equation (30) and obtain,

ỹ(tm+1) = ỹ(tm) +

∫ tm+1

tm

F (s, ỹ(s))ds. (45)

Then, we approximate ỹ(s) by an average value and arrive at,

ŷ(tm+1) = ŷ(tm) +

∫ tm+1

tm

F (s,
ŷ(tm+1) + ŷ(tm)

2
)ds. (46)

We remark that the numerical solution ŷ(tm+1) can be computed by some iteration methods,

such as the Newton-Raphson method or fixed point iteration method. In this paper, we choose

the scheme (46) since it preserves certain intrinsic structures in the solution of the original

problem; see Section 4 for more discussions.

The uniform boundedness of the first-order derivative of F (t, x) (proved in Theorem

3.2) guarantees that our implicit integral midpoint scheme (46) has second-order accuracy.

Furthermore, we do not need to decrease the time step ∆t when εk, k = 1, ..., n are small.

We summarize the property of the numerical solution ŷ(tm) into the following lemma.
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Lemma 3.3. Let ỹ(t) be the exact solution of the transformed ODE system (30). And let

ŷ(tm), m = 1, ...,M be the numerical solutions obtained by the scheme (46). Then, we have∣∣ŷ(tm)− ỹ(tm)
∣∣ = C1(∆t)

2, m = 1, ...,M, (47)

where C1 does not depend on εk, k = 1, ..., n.

Finally, we analyze the error between the approximated solution Φ̄n(ŷ) and the exact

solution x(t) of the original ODE system (1).

Theorem 3.4. Let T denote the final computational time. Suppose Assumption 3.1 is satis-

fied and 0 < εk < 1, k = 1, ..., n are sufficiently small. For all t ≤ T , we have the following

error estimate ∣∣x(t)− Φ̄n
t (ŷ(t))

∣∣ ≤ C2

(
max
i=2,··· ,n

εi
εi−1

)
+ C3(∆t)

2, (48)

where C2 and C3 are generic constants that do not depend on εk, k = 1, ..., n and ∆t.

Proof. For any given computational time t, we have∣∣x(t)− Φ̄n
t (ŷ(t))

∣∣ ≤ ∣∣Φ̄n
t (y(t))− Φ̄n

t (ỹ(t))
∣∣+
∣∣Φ̄n

t (ỹ(t))− Φ̄n
t (ŷ(t))

∣∣, (49)

where y(t) and ỹ(t) are the exact solutions of the ODE systems (27) and (30), respectively,

and ŷ(t) is the numerical approximation of ỹ(t). We shall estimate the two terms in (49)

separately. First we can see that,

ẏ − ˙̃y =
( n∏
i=1

(∂xΦ
k)−1f ε −

n∑
k=1

k∏
i=1

(∂xΦ
i)−1

k∑
j=1

εk
εj
∂tjg

k
)

−
( n∏
i=1

(∂xΦ
k)−1f ε −

n∑
k=1

k∏
i=1

(∂xΦ
i)−1∂tkg

kΦk
)
,

=−
n∑
k=1

k∏
i=1

(∂xΦ
i)−1

k−1∑
j=1

εk
εj
∂tjg

k. (50)

Using the conditions that ∂tkg
k are bounded functions (see Eq.(43)) and

∣∣∣∣(∂xΦk)−1 − Id
∣∣∣∣ ≤

Cεk (see Eq.(41)), we have

|ẏ − ˙̃y| ≤ C( max
i=2,··· ,n

εi
εi−1

). (51)

Hence for any time t ≤ T , we have,

|y(t)− ỹ(t)| ≤ CT ( max
i=2,··· ,n

εi
εi−1

), (52)

where the constant CT = O(T ). Applying the chain rule for Φ̄n, we obtain

∂xΦ̄
n = ∂x

(
Φn ◦ Φn−1 ◦ · · · ◦ Φ1

)
=

n∏
i=1

(Id + εi∂xg
i). (53)
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So at any time t, Φ̄n is Lipschitz in the variable x and the Lipschitz constant is uniformly

bounded when εi are small enough. Finally, combining the estimates (47), (52) and (53), we

prove the statement in Theorem 3.4.

When the multiscale parameters are well-separated; see (2), the first term in the error

estimate (48) is negligible, thus our scheme has a second-order accuracy with respect to

∆t. Although the above convergence analysis relies on the scale separation assumption, we

can relax this assumption in some special cases. For example, when two scales collapse, i.e.

εn = cεn−1, we can treat these two scales as a single scale and we can modify the mean function

defined in (4) accordingly. More specifically, if c = m1

m2
is a rational number, and h(y1, y2) is

a doubly periodic function in y1 and y2 with period [1, 1], then h( t
εn−1

, t
εn

) = h( t
εn−1

, m2t
m1εn−1

)

is a periodic function of t with a period m1εn−1. Thus, the mean function defined in (4) can

be modified accordingly as follows

1

m1

∫ m1

0

f(t1, t2, ..., tn−2, s,
m2

m1

s, x)ds. (54)

When c is an irrational number, it is easy to show that the time average of h( t
εn−1

, t
εn

) will

converge to the area in (y1, y2) ∈ T2 and we can modify the definition of the mean function

as follows ∫
[0,1]2

f(t1, t2, ..., tn−2, s1, s2, x)ds1ds2. (55)

With the above modification of the mean function, we can still prove the main results stated

in this section. Our numerical results to be presented later also confirm that our method

works equally well in the case when two scales collapse.

More general case can be considered as well if we have m number of collapsed scales, i.e.

εk = c1εk+1 = c2εk+2 = ... = cm−1εk+m−1. In this case, we should consider these m-scales

simultaneously and modify the definition of the mean function by using the time averaging

technique for multiple scales discussed in [10]. We will not present the more general case in

this paper and will leave it to our future work.

4. Numerical results

In this section, we present several numerical experiments to illustrate the efficiency of our

method and confirm the convergence analysis. The Im2nd solution, or direct Im2nd solution,

refers to the numerical solution obtained by solving the original problem (1) using the scheme

(46). Moreover, we use the UA solution to denote the numerical solution obtained by our

method. In our method, we use the scheme (46) to solve Eq.(30) and the Algorithm 1 to

compute necessary quantities in the Eq.(30).

4.1. An ODE system with three separated time scales

The Hénon-Heiles system [9] is undoubtedly one of the most paradigmatic model potentials

for time-independent Hamiltonian systems with two degrees of freedom, which is frequently

used to describe the motion of stars around a galactic center. We consider a generalization
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of the original Hénon-Heiles system in three degrees of freedom. The relative equilibria and

bifurcations of this model were studied in [7].

Here, we assume the Hamiltonian of the three dimensional Hénon-Heiles system is pa-

rameterized by ε1 and ε2 and has the following form

H(p,q) =
p21
2ε2

+
q21
2ε2

+
p22
2ε1

+
q22
2ε1

+
p23
2

+
q23
2

+ q21q2 −
1

3
q32 + q22q3 −

1

3
q33. (56)

where p = (p1, p2, p3)
T and q = (q1, q2, q3)

T . One can obtain the evolution equation for the

Hamiltonian in (56) as follows,

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
. (57)

When 0 < ε2 � ε1 � 1, the ODE system (57) becomes a three-scale problem and the

solutions (e.g., p1 and q1) are highly oscillatory. Let us carry out a change of variables,

w1 = cos( t
ε2

)q1 − sin( t
ε2

)p1,

w2 = sin( t
ε2

)q1 + cos( t
ε2

)p1,

w3 = cos( t
ε1

)q2 − sin( t
ε1

)p2,

w4 = sin( t
ε1

)q2 + cos( t
ε1

)p2,

w5 = q3,

w6 = p3.

(58)

Then, (w1, ..., w6)
T satisfies the following ODE system

ẇ1 = 2 sin t2(w1 cos t2 + w2 sin t2)(w3 cos t1 + w4 sin t1),

ẇ2 = −2 cos t2(w1 cos t2 + w2 sin t2)(w3 cos t1 + w4 sin t1),

ẇ3 = sin t1
(
2(w3 cos t1 + w4 sin t1)w5 + (w1 cos t2 + w2 sin t2)

2 − (w3 cos t1 + w4 sin t1)
2
)
,

ẇ4 = − cos t1
(
2(w3 cos t1 + w4 sin t1)w5 + (w1 cos t2 + w2 sin t2)

2 − (w3 cos t1 + w4 sin t1)
2
)
,

ẇ5 = w6,

ẇ6 = w2
5 − w5 − (w3 cos t1 + w4 sin t1)

2,

(59)

where t2 = t
ε2

and t1 = t
ε1

. Notice that the right-hand side of the ODE system (59) involves

trigonometric functions and simple polynomials. Thus, all the integrals in our numerical

schemes can be pre-computed analytically. We have implemented these computations with

the software Mathematica.

Verification of the convergence analysis. We compare the error between the nu-

merical solution obtained by our method and the reference solution. The initial value is

(w1(0), ..., w6(0))T = (0.12, 0.12, 0.12, 0.12, 0.12, 0.12)T . The reference solution is obtained by

Matlab ode45 function applied to the ODE system (59), where the time step is ∆t = 0.0001.

To implement our method, we choose the second-order implicit integral midpoint scheme to
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integrate the non-stiff problem (30). We find that the iteration loops needed in Algorithm 1

is about 3− 10 times, where the convergence threshold is set to be 10−14.

In Fig.1(a) and Fig.1(b), we show the error as a function of ∆t for different values of ε1
with ε2 = ε21 and ε2 = 0.8ε1, respectively. The magnitude of the Hamiltonian (56) is about
0.0144
ε21

. We observe a second-order convergence rate with respect to ∆t in our method. Most

importantly, the error is independent of ε1 and ε2 as shown in Fig.1(a) and Fig.1(b), where

the curves for different values of ε1 and ε2 are nearly identical. This confirms that our scheme

is uniform accurate, which does not depend on ε1 and ε2. Notice that the numerical solution

obtained by ∆t = 0.1 is accurate enough to maintain an error of the order 10−4 and error

of the Hamiltonian at the order of 10−3, uniformly in ε1 and ε2. For the Euler method, it is

impossible since the ODE system associated with the Hamiltonian (56) becomes severely stiff

when ε1 and ε2 become small. The numerical results for the Euler method were not shown

here.
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Figure 1: Error as a function of ∆t for ε1 = 10−k, k = 1, ..., 8. Left: ε2 = ε21. Right: ε2 = 0.8ε1.

In the derivation of the numerical method and the convergence analysis, we assume the

time-scales are well-separated, i.e., 0 < εn � εn−1 � · · · · · � ε1 � 1. In Fig.1(b), we show

the error as a function of ∆t for difference values of ε1 and ε2 = 0.8ε1 at T = 1. It is shown

that our scheme still has a uniform accuracy, which does not depend on separation between

ε1 and ε2.

Let us now verify that our method preserves the Hamiltonian of the system. In Fig.2, we

plot the evolution of the error of the Hamiltonian (56) for different ε1 and ε2, where ε2 = ε21.

We find that when ε1 is relatively large, e.g., ε1 = 0.1, the implicit integral midpoint scheme

(46) with a large time step ∆t = 0.1 and our method give similar and accurate results in

computing the Hamiltonian; see Fig.2(a). However, when ε1 is small, e.g., ε1 = 0.001, the

ODE system associated with the Hamiltonian (56) becomes very stiff. Directly using the

scheme (46) will lose accuracy if the time step is not small enough. While our method with a

large time step still maintains the same accuracy; see Fig.2(b). This result again confirms that
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our scheme has a uniform accuracy in computing an ODE system with multiple time-scales,

especially when the systems are stiff.
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Figure 2: Evolution of the error of the Hamiltonian in the three-scale ODE system with ε2 = ε21. Left:

ε1 = 0.1. Right: ε1 = 0.001. ∆t = 0.1.

Verification of the non-stiffness of the transformed equation (30). In Theorem

3.2, we proved that under certain assumptions the transformed ODE system (30) is non-

stiff. Here, we shall verify this statement numerically by solving the three-scale ODE system

(59) with an initial value (w1(0), ..., w6(0))T = (0.12, 0.12, 0.12, 0.12, 0.12, 0.12)T . We com-

pute the maps Φ1 and Φ2 in our method with different t1 and t2 for (y1(0), ..., y6(0))T =

(0.20, 0.20, 0.20, 0.20, 0.20, 0.20)T . In addition, we record the quantities P2 = Φ2
t2

(Φ1
t1

(y)),

T1 = 1
ε1
∂t1Φ

1
t1

(y), T2 = 1
ε2
∂t2Φ

2
t2

(Φ1
t1

(y)), and D1 = ẏ. Recall that these quantities were

defined in Section 2.3, especially in the Algorithm 1.

In Fig.3, we show the six components of the quantities f(y) −D1 as functions of t1 and

t2 (i.e., the six components of right hand side of the ODE system (59) minus their numerical

counterparts), where ε1 = 0.0001 and ε2 = ε21. In this example, max |f(y)| is O(1). We also

compute the cases when ε1 = 0.01 and ε1 = 0.001 with ε2 = ε21 and find the patterns of the

six components of the quantities ẏ −D1 remain almost the same as the Fig.3. Thus, we do

not show them here.

In Fig.4, we show the magnitude of the quantity Φ2
t2

(Φ1
t1

(y))− y as functions of t1 and t2
when ε1 = 0.01 and ε2 = ε21. The results for Φ2

t2
(Φ1

t1
(y)) − y when ε1 = 0.01 and ε2 = ε1

2
are

shown in Fig.5. One can see that when there is no scale separation Φ2
t2

(Φ1
t1

(y)) are fluctuating

along t2 direction. This result provides numerical confirmation of our derivation. We can

write Φ2
t2

(Φ1
t1

(y)) explicitly out as,

Φ2
t2

(Φ1
t1

(y)) = Φ1
t1

(y) + ε2g
2(t2, t1,Φ

1
t1

(y)) = y + ε1g
1(t1, y) + ε2g

2(t2, t1, y + ε1g
1(t1, y)).

(60)

Then given y, when ε1 and ε2 are close, ε2g
2(t2, t1, y+ ε1g

1(t1, y)) is comparable to ε1g
1(t1, y).
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Figure 3: Six components of f(t1, t2, y)−D1. Here ε1 = 0.0001 and ε2 = ε21.
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t2(Φ1

t1(y))− y when ε1 = 0.01 and ε2 = ε21.
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t1(y))− y when ε1 = 0.01 and ε2 = ε1
2 .

In Fig.6 and Fig.7, we show the magnitude of the quantities T1 and T2 as functions of t1
and t2, when ε1 = 0.0001 and ε2 = ε21, respectively. We also compute the quantities T1 and T2
when ε1 changes (e.g. ε1 = 0.01 and ε1 = 0.001) with ε2 = ε21 and find the time derivatives of

T1 and T2 remain almost the same magnitude as that shown in Fig.6 and Fig.7. This implies

the implicit iterative scheme Eq.(35) for Eq.(34) keeps the magnitude of the non-midpoint

setting, ∂tΦ
k =

∑k
i=1

εk
εi
∂tig

k. Notice that component 5 and 6 do not depend on t2. This is

due to the fact that f5 and f6 are independent of t2. T1 is independent of t2 for difference

choice of ε1 and ε2, this is due to the definition of T1; see Fig.6.

4.2. An ODE system with four separated time scales

To further study the performance of our method, we mimic the formulation of the three

dimensional Hénon-Heiles system and generate a Hamiltonian system with four time scales.

The Hamiltonian is given by,

H(q,p) =
p21
2ε3

+
q21
2ε3

+
p22
2ε2

+
q22
2ε2

+
p23
2ε1

+
q23
2ε1

+
p24
2

+
q24
2

+ q21q2 + q22q3 + q23q4 −
1

3
q32 −

1

3
q33 −

1

3
q34, (61)

where p = (p1, p2, p3, p4)
T and q = (q1, q2, q3, q4)

T . The Hamiltonian in (61) is parameterized

by ε1, ε2, and ε3. One can obtain the evolution equation for the Hamiltonian in (61) by

using the relation dp
dt

= −∂H
∂q

and dq
dt

= ∂H
∂p

. When 0 < ε3 � ε2 � ε1 � 1, the associated

evolution equation of the Hamiltonian in (61) becomes a four-scale ODE system. Since the

formulation of the change of variables and derivation of the transformed ODE system are

standard (similar as we did in Eqns.(58) and (59)), we do not show them here.
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Figure 6: T1 when ε1 = 0.0001 and ε2 = ε21.
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Verification of the convergence analysis. Let us now check that our method preserves

the Hamiltonian of the system. In Fig.8, we present the error of the Hamiltonian (61)

as a function of time for different εi, i = 1, 2, 3. In Fig.8(a), we set the multiscale time-

scale parameters to be (ε1, ε2, ε3) = (10−3, 11 × 10−5, 3 × 10−6) and the initial values are

wi(0) = 0.44 for i = 1, · · · , 8. In Fig.8(b), we set (ε1, ε2, ε3) = (0.5, 11 × 10−6, 3 × 10−6) and

the initial values are the same. Notice that the smallest period of the ODE system is about

2π × ε3 ≈ 1.885 × 10−5. To resolve the oscillation in the solution, we choose the time step

for the fine-scale ODE solver to be ∆t = 5× 10−6. To implement our method, we choose the

time step to be ∆t = 10−1.

Numerical results in Fig.8 show that: (1) directly using the implicit integral midpoint

scheme (46) with a coarse time step ∆t = 10−1 gives wrong results; (2) our method with the

same coarse time step ∆t = 10−1 gives an accurate result that is comparable to that using

the scheme (46) with a very fine time step ∆t = 10−6. This comparison again confirms that

our scheme has a uniform accuracy in computing ODE system with multiple time-scales. In

addition, from the results in Fig.8(b), where (ε1, ε2, ε3) = (0.5, 11 × 10−6, 3 × 10−6), we can

see that when the time scales are not well separated ( i.e., ε3 is close to ε2 and ε1 is close to

1), our numerical method still gives an excellent performance.

In terms of the computational time, our method takes 0.163 and 0.367 seconds to compute

the result shown in Fig.8(a) and Fig.8(b), respectively. While the direct Im2nd method with

∆t = 5 × 10−6 takes about 10.48 seconds for both. Thus, our method achieves a 20 ∼ 60X

speedup over the conventional ODE solver in this example. Moreover, our method provides

uniform accurate results for different values of εi, i = 1, 2, 3. The conventional ODE solvers,

such as the direct Im2nd method, require to choose finer time steps when we decrease εi,

i = 1, 2, 3. Therefore, it is expected that a higher speedup will be achieved when we need to

solve a multiscale ODE system with much smaller εi, i = 1, 2, 3.
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Figure 8: Evolution of the error of the Hamiltonian in the four-scale ODE system. Left: (ε1, ε2, ε3) =

(10−3, 11× 10−5, 3× 10−6). Right: (ε1, ε2, ε3) = (0.5, 11× 10−6, 3× 10−6).
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We also investigate the convergence rate of our method with respect to the time step. In

Fig.9, we show the error as a function of ∆t for two sets of values of ε1, ε2, and ε3 at time

T = 3, respectively. The intial values xi(0), i = 1, ..., 8 and values of (ε1, ε2, ε3) are the same

as before. The reference solution is obtained by Matlab ode45 function applied to the ODE

system, where the time step is ∆t = 5× 10−7. We observe a second-order convergence rate

with respect to ∆t in our method, which verifies the error estimate in Theorem 3.4. Most

importantly, the error is independent of ε1, ε2, and ε3 as shown in Fig.9.
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Figure 9: Error as a function of ∆t for two sets of multiscale parameters at time T = 3.

Difference between F and f̄ 1. Simple calculations show that the right hand side of

Eq.(30), i.e. F (t, x) is approximately equal to f̄ 1. One may expect that replacing the ODE

system (30) by ˙̃y = f̄ 1 will generate a solution that is close to the original one. We aim to

investigate this issue in Fig.8(a). Here, we calculate f̄ 1 and directly solve ˙̃y = f̄ 1, which will

be referred as the averaged method. In Fig.10(a) and Fig.10(b), we plot the first and fifth

component of ỹ, i.e., w1(t) and w5(t) obtained by several different methods.

Fig.10(a) shows that w1(t) is nearly a constant. Thus, the averaged method still performs

well. Fig.10(b) shows that w5(t) has oscillations. In this case, the averaged method cannot

capture the right behavior of the solution, while our method can. We find that (1) the direct

Im2nd method with a coarse time step gives wrong results; (2) the solutions for component

w1(t) obtained by the averaged method and our method agree with the reference solution; (3)

the solution for component w5(t) obtained by the averaged method has large errors, while the

solution for component w5(t) obtained by our method still approximates the reference solution

well. This experiment shows that F (t, x) in (30) indeed captures the correct dynamics of the

original multiscale problem, while the direct average term f̄ 1 cannot.
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Figure 10: w1 and w5 obtained by using different methods.

4.3. An ODE with a complicated right-hand side

In the previous numerical experiments, all the integrals in our numerical schemes can be

pre-computed analytically. Here, we consider a three-scale ODE, which is defined by

ẋ = (1.5− exp(sin
2πt

ε1
+ sin

2πt

ε2
))x. (62)

In this example, the right-hand side of the ODE (62) does not have analytic expressions.

Thus, we use numerical quadrature rules to compute the integrals in our numerical schemes.

Since the integrands of fk, k = 1, 2 are smooth along x direction, we use 8 points in the

quadrature rules to compute the integration for f̄k, e.g. Eqns.(4), (6), (8), and (10). To

compute derivatives of g, we directly use a central difference scheme with ∆x = 10−3. We

choose the initial value x0 = 0.48 and (ε1, ε2) = [7× 10−2, 11× 10−5] in the ODE (62).

In Fig.11(a), we show the numerical results obtained by different methods with different

time steps. We find that: (1) the direct Im2nd method with the coarse time step ∆t = 0.1

gives totally wrong results; (2) our method with very coarse time steps, ∆t = 0.1 and

∆t = 0.5, gives an accurate result that is comparable to that using the direct Im2nd method

with a very fine time step ∆t = 10−5. This comparison again confirms that our method has

a uniform accuracy in computing ODE system with multiple time-scales. In this experiment,

our method with ∆t = 0.5 costs 1.39s, while the direct Im2nd method with ∆t = 10−5

costs 5.97s. More savings can be achieved if the ODE (62) is described by smaller multiscale

parameters ε1 and ε2.

As a byproduct of our robust numerical method (namely we can solve the complicated

ODE with very large time step), we can use the representation in Eq.(14) to recover the

solution of the ODE (62) in a neighborhood of the numerical solution points. In Fig.11(b),

we show the recovered solution in the time domain [0.5, 0.501] based on the solution of our

method at t = 0.5. We can see that the recovered solution agrees with the reference solution

and the recovered solution captures the high oscillate structure in this neighborhood.
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Figure 11: An ODE with a complicated right-hand side

5. Conclusions

In this paper, we have successfully developed a class of robust numerical methods to solve

dynamical systems with multiple time scales. These problems are difficult to solve when the

multiscale parameters are small. The essential idea of our method is to represent the solution

of the dynamical systems as a transformation of a slowly varying solution. Based on the scale

separation assumption, we provide an efficient way to construct the transformation map and

derive the dynamic equation for the slowly varying solution. Under some mild assumptions,

we obtain the convergence of the proposed method. Finally, we present several numerical

examples, including ODE system with three and four separated time scales to demonstrate

the accuracy and efficiency of the proposed method. Numerical results show that: (1) our

method is robust and accurate in solving ODE systems with multiple time scale, where the

time step does not depend on the multiscale parameters; and (2) the construction of the

cumulative composition maps (which deals with the multiscale information in a dimension-

by-dimension fashion) is necessary while a simple average treatment leads to wrong results.

There are two lines of work that deserve further explorations in the near future. Firstly,

we shall consider to extend our proposed method to solve dynamical systems without scale

separation. The idea mentioned in Remark 2.3 is a good starting point. However, we need

to design fast solvers. Secondly, we are interested in extending our proposed method to solve

elliptic PDEs with multiscale parameters.
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