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Abstract

Exciton diffusion plays a vital role in the function of many organic semiconduct-

ing opto-electronic devices, where an accurate description requires precise control of

heterojunctions. This poses a challenging problem because the parameterization of

heterojunctions in high-dimensional random space is far beyond the capability of clas-

sical simulation tools. Here, we develop a novel method based on deep neural network

to extract a function for exciton diffusion length on surface roughness with high ac-

curacy and unprecedented efficiency, yielding an abundance of information over the

entire parameter space. Our method provides a new strategy to analyze the impact of

interfacial ordering on exciton diffusion and is expected to assist experimental design

with tailored opto-electronic functionalities.
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INTRODUCTION

Over the past decades, much attention has been paid on organic semiconductors for ap-

plications in various opto-electronic devices.1–4 These materials include small molecules,5,6

oligomers,7,8 and polymers.9,10 Exciton diffusion is one of the key processes behind the op-

eration of organic opto-electronic devices.11–13 From a microscopic perspective, exciton, a

bound electron-hole pair, is the elementary excitation in opto-electronic devices such as light

emitting diodes and organic solar cells. The exciton diffusion length (EDL) is the character-

istic distance that excitons are able to travel during their lifetime.6 A short diffusion length

in organic photovoltaics limits the dissociation of excitons into free charge.14,15 Conversely,

a large diffusion length in organic light emitting diodes may limit luminous efficiency if

excitons diffuse to non-radiative quenching sites.16

As quasi-particles with no net charge, excitons are difficult to probe directly by electri-

cal means.17 This is particularly true in organic semiconductors where the exciton binding

energy is ∼1 electronvolt.18 Reported techniques to measure EDL include photolumines-

cence (PL) surface quenching,6,14,19–25 time-resolved PL bulk quenching modeled with a

Monte Carlo simulation,10,26 exciton-exciton annihilation,27–30 modeling of solar cell pho-

tocurrent spectrum,5,9,25,31–39 time-resolved microwave conductance,40–42 spectrally resolved

PL quenching43–45 and Förster resonance energy transfer theory.43,46,47 From a theoretical

perspective, the minimal modeling error is given by the diffusion equation model,48 which is

employed in the current work.

To be precise, the device used in PL surface quenching experiment includes two layers of

organic materials with thickness ranging from dozens of nanometers to hundreds of nanome-

ters. One layer of material is called donor and the other is called acceptor or quencher ac-

cording to the difference of their chemical properties. Under the illumination of solar lights,

excitons are generated in the donor layer and diffuse in the donor. Due to the exciton-

environment interaction, some excitions die out and emit photons which lead to the PL. The

donor-acceptor interface serves as the absorbing boundary while other boundaries serve as
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reflecting boundaries due to the tailored properties. Since the donor-acceptor interface is not

exposed to the air/vacuum and the resolution of the surface morphology is limited by the

resolution of atomic force microscopy, the interface is subject to an uncertainty. It is found

that the fitted EDL is sensitive to the uncertainty in some scenarios. From a numerical

perspective, the random interface requires a parametrization in high-dimensional random

space, which is prohibitively expensive for any simulation tool. For example, Monte Carlo

method overcomes the curse of dimensionality but has very low accuracy.49 Stochastic col-

lection method has high accuracy but is only affordable in low dimensional random space.50

Asymptotics-based method is efficient but its accuracy relies heavily on the magnitude of

randomness.51 In the current work, we propose a novel method based on deep learning with

high accuracy and unprecedented efficiency.

Recently, increasing attentions have been paid to apply machine learning (ML) techniques

to materials-related problems. For example, the classification of crystal structures of transi-

tion metal phosphide via support vector machine52 leads to the discovery of a novel phase.53

Likewise, a hybrid probabilistic model based on high-throughput first-principle computation

and ML was developed to identify stable novel compositions and their crystal structures.54

Physical parameters such as band gap,55,56 elastic constants,55,57 and Debye temperature55

have also been predicted using an array of ML techniques. In another line, deep learning

(DL) in computer science has had great success in text classification,58 computer vision,59

natural language processing,60 and other data-driven applications. One significant advan-

tage of DL is its strong ability to approximate a complex function in high dimensions and

extract features with high precision using composition of simple nonlinear units. Meanwhile,

benefiting from recent advances in parallel graphics processing unit - accelerated computing,

huge volumes of data can be put into the DL architecture for training.

In this work, we employ DL to extract a complex function of EDL in terms of the random

interface parametrized in a high-dimensional space. The fitted function has rich information,

which explains a few interesting experimental observations. Compared to classical simula-
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tion tools, our approach has the following features: quasi-Monte Carlo sampling61 for data

collection and ResNet62 for training. The size of data in the former step grows only linearly

with respect to the dimension of random space, thus our approach overcomes the curse of

dimensionality. With the usage of ResNet in the latter step, a complex function can be

extracted with high accuracy. Therefore, results provided here are completely out of the

capability of classical simulation tools.

METHODS

Our approach consists of four major components: quasi-Monte Carlo sampling over the high-

dimensional random space; diffusion equation model for data generation; ResNet for training

to approximate a complex function of EDL; Information extraction for analysis (Figure 1).

Surface Roughness

Quasi-Monte Carlo 
Sampling

Diffusion Equation 
Model

Data Generation

Input Parameters
of Roughness

Fully-connected Layer 
+ Activation Function

Fully-connected Layer 
+ Activation Function

ResNet Connection

One Block

Repeat above Block 
Several Times

Output Expected 
Diffusion Length

Deep Learning

𝜎(𝜃(𝜔1), 𝜃 (𝜔2))

Information Extraction

Figure 1: Flow chart of the deep learning method for extracting exciton diffusion length over
the parameter space. Left: data generation; Middle: data training; Right: data prediction.
In the stage of data generation, quasi-Monte Carlo method is used to sample the random
space, and the actual exciton diffusion length is generated by solving the diffusion equation
model. In the stage of data training, a complex function σ(θ(ω1), θ(ω2)) is approximated
over the entire parameter space. In the stage of data prediction, given the full landscape of
σ(θ(ω1), θ(ω2)) , both qualitative and quantitative information can be extracted.
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Model Description

An exciton that diffuses in the donor layer follows a diffusion-type equation over a 3D

random domain D = {(x, y, z) |h(y, z, ω1, ω2) < x < d, 0 < y < Ly, 0 < z < Lz }. Here the

donor-acceptor interface x = h(y, z, ω1, ω2) is parameterized by

h(y, z, ω1, ω2) = ĥ

K1∑
k1=1

K2∑
k2=1

kβ1k
β
2 θk1(ω1)θk2(ω2)φk1(y)φk2(z), (1)

where ĥ is the magnitude of length due to the roughness limited by the resolution of atomic

force microscopy, θk1(ω1), θk2(ω2) are i.i.d. random variables, φk1(y) = sin(2k1π
y
Ly

), φk2(z) =

sin(2k2π
z
Lz

), and β < 0 controls the decay rate of spatial modes φk1(y), φk2(z). The rougher

the interface is, the closer the β approaches 0. Given the surface roughness measured in an

experiment, parameters in (1) can be extracted via discrete Fourier transform.

The 3D diffusion equation reads as



σ24u− u+G(x, y, z) = 0 x ∈ D,

ux(d, y, z) = 0 0 < y < Ly, 0 < z < Lz,

u(h(y, z, ω1, ω2), y, z) = 0 0 < y < Ly, 0 < z < Lz,

u(x, y, z) = u(x, y + Ly, z) = u(x, y, z + Lz) h(y, z, ω1, ω2) < x < d,

(2)

where σ is the EDL to be extracted, u is the exciton density, G is the normalized exci-

ton generation function by the transfer matrix method.63 x = d serves as the reflecting

boundary and Neumann boundary condition is imposed on the boundary exposed in air.

x = h(y, z, ω1, ω2) serves as the absorbing boundary and homogenous Dirichlet boundary

condition is imposed on the donor-acceptor interface. Periodic boundary conditions are im-

posed on in-plane directions y and z. For comparison and completeness, 1D and 2D models

are given in the Supporting Information.
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The PL is computed by

Iθ(ω1),θ(ω2)[σ, d] =
1

Lz

1

Ly

∫ Lz

0

∫ Ly

0

∫ d

h(y,z,ω1,ω2)

u(x, , y, z)dxdydz. (3)

For comparison with the 1D model, we divide the PL in the usual sense by lengths in x and

y directions. In the experiment, PL data {Îi}Ni=1 are measured by a series of bilayer devices

with different thicknesses {di}Ni=1, where di is the thickness of the i-th donor layer.

The optimal EDL σ is expected to reproduce the experimental date {di, Îi}Ni=1 in the

sense of minimized mean square error (MSE)

min
σ
Jθ(ω1),θ(ω2)(σ) =

1

N

N∑
i=1

(
Iθ(ω1),θ(ω2)(σ, di)− Îi

)2
. (4)

Newton’s method is used to solve (4) for σ (see the Supporting Information). The calculated

σ is defined as σθ(ω1),θ(ω2). Therefore, for different parameters θ(ω1), θ(ω2), we get a data set{(
θ(ω1)[j], θ(ω2)[j], σθ(ω1)[j],θ(ω2)[j]

)M
j=1

}
with M the size of data set.

ResNet

ResNet62 is used to approximate σθ(ω1),θ(ω2). A ResNet consists of a series of blocks. One

block is given in Figure 1 with two linear transformations, two activation functions, and one

short cut. Detailed description of ResNet is included in the Supporting Information. Pa-

rameters of the surface roughness (θ(ω1),θ(ω2)) are fed as input, and the EDL σ is extracted

as the output function over the entire parameter space. Sigmoid function is chosen as the

activation function here.

The loss function we use is the MSE between the actual EDL σθ(ω1),θ(ω2) given by the

diffusion equation model and the predicted EDL σ(θ(ω1)[j], θ(ω2)[j]) given by the ResNet

MSE =
1

M

M∑
j=1

(
σθ(ω1)[j],θ(ω2)[j] − σ(θ(ω1)[j], θ(ω2)[j])

)2
, (5)
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where θ represents the parameter set in the ResNet, j is the j-th sample, and M is the size

of training data set.

Define the relative L∞ error of EDL as

Error = max
1≤j≤M

∣∣σθ(ω1)[j],θ(ω2)[j] − σ(θ(ω1)[j], θ(ω2)[j])
∣∣

σθ(ω1)[j],θ(ω2)[j]

, (6)

which will be used to quantify the approximation accuracy of DL.

Quasi-Monte Carlo Sampling

Compared to uniform sampling and Monte-Carlo sampling, quasi-Monte Carlo sampling

provides the best compromise between accuracy and efficiency. It overcomes the curse of

dimensionality and has high accuracy.61 For the simulations in our work, at least three

orders of magnitude reduction in the size of data set is found for quasi-Monte Carlo sampling

without loss of accuracy (see the Supporting Information).

Results and Discussion

Accuracy check and training data set

For the accuracy check in the 3D case, the reference PL data are generated using 5 real-

izations with out-of-plane thicknesses di = 10, 15, 20, 25 nm and σ = 5 nm in the absence

of randomness. Afterwards, randomness is added with K1 = K2 = 5, i.e., θ(ω1) and θ(ω2)

are arrays with 5 variables. Quasi-Monte Carlo sampling is used to generate 20000 points

with the corresponding EDL obtained by solving (1) - (4). The first 15000 data are used as

the training set, while the remaining data are used to check the predictability of the trained

neural network; see Figure 2. Relative L∞ errors of EDL are 0.270%, 0.368% and 0.532% for

β = −2,−1, 0, respectively. It is known that the random field is closer to the white noise

when β = 0 and thus is more difficult to be trained. However, uniform generalization errors
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(c) β = 0

Figure 2: Uniform generalization error of the trained neural network for exciton diffusion
length when β = −2,−1, 0. Relative L∞ errors of exciton diffusion length are 0.270%, 0.368%
and 0.532%, respectively.

for three different scenarios are observed, implying the robustness of trained neural network.

Moreover, the size of training data set is small in the sense that only linear growth with

respect to the dimension of random variables is observed, in contrast to other sampling tech-

niques which either have the curse of dimensionality or low accuracy. Similar performance

is observed for the 2D model (see the Supporting Information).

Information extraction

The trained neural network fits a high-dimensional function for EDL in terms of surface

roughness. Rich information can be extracted based on the fitted function. We demonstrate

this using three examples.

Modeling error Expectations of EDL in 3D are recorded in Table 1 for β = −2,−1, 0.

PL data are generated using the 1D model with the reference EDL 5 nm. When β = −2,

the EDL is close to 5 nm, which implies the equivalence between the 3D model and the

1D model. However, when β = 0, the EDL is clearly away from 5 nm. We attribute this

difference to the modeling error between the 1D model and the 3D model with a surface

roughness characterized by (1) with β = 0. So far, the 1D model is largely used in the

literature to extract the EDL.6,9,48,64 The main assumption underlying the modeling is the
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high crystalline order of the organic material. When β = −2, long-range ordering exists in

the random interface, which implicitly connects with the crystalline ordering of the material.

Therefore, in this case, the 3D model and the 1D model are equivalent. However, when

β = 0, only short-range ordering exists. As a consequence, the 3D model and the 1D model

are not equivalent any more. Given a surface roughness from the experimental measurement,

we can fit a function of form (1) using discrete Fourier transform, from which we can get

the decay rate β and thus decide whether the 1D model is adequate or not. It is worth

mentioning that similar results are observed in 2D using the asymptotics-based approach.51

Table 1: Expectations of exciton diffusion length in 3D for different surface roughness. The
reference value is 5 nm.

β = −2 β = −1 β = 0
4.986 nm 4.842 nm 4.566 nm

Landscape exploration Contour plots of the fitted EDL on random variables are given

in Figures 3 and 4 when β = −2, β = 0 and in Figure 17 when β = −1 (see the Supporting

Information). In each subfigure, EDL σ is plotted as a function of θk1(ω1) and θk2(ω2), where

k1, k2 = 1, 2, 3, 4, 5 and all the remaining random variables are set to be 0. A direct com-

parison between Figure 3 and Figure 4 illustrates the directional (anisotropic) dependence

of EDL on random variables, due to different decay rates of random variables in the surface

roughness.

Mode dependence Figure 5 provides a detailed demonstration of the dependence of

EDL on random variables for β = −2,−1, 0. For illustration, we keep θ(ω2) = [1; 0; 0; 0; 0]

fixed in the left column and θ(ω1) = [1; 0; 0; 0; 0] fixed in the right column. One distinct

difference between 3D and 2D is that the maximum EDL is approached in the absence of

randomness in 3D, in contrast to the minimum EDL in 2D (see the Supporting Information).

The 3D result is reasonable since experimentally larger EDL is observed if the effect of

surface roughness is minimized, while the 2D result is also of interest due to the unique

9



Figure 3: Contour plot of exciton diffusion length on random variables in 3D when β = −2.
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Figure 4: Contour plot of exciton diffusion length on random variables in 3D when β = 0.
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dimensional dependence. When β = −2, the EDL is more sensitive to the lower-order

modes (smaller k) and is less sensitive to the high-order modes (larger k). When β = 0,

the trend is completely opposite. This observation provides a detailed connection between

surface roughness and EDL, which also sheds light on the experimental design. Given a

surface roughness characterized by (1), we have the value of β, from which we know which

mode is of the most importance. Consequently, targeted experimental techniques can be

applied to improve the opto-electronic performance.

Conclusion

In summary, we have developed a novel method based on quasi-Monte Carlo sampling

and ResNet to approximate the exciton diffusion length in terms of surface roughness

parametrized by a high-dimensional random field. This method extracts a function for ex-

citon diffusion length over the entire parameter space. Rich information, such as landscape

profile and mode dependence, can be extracted with unprecedented details. Useful informa-

tion regarding the modeling error and the experimental design can be provided, which sheds

lights on how to reduce the modeling error and how to design better experiments to improve

opto-electronic properties of organics materials.
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Figure 5: Detailed dependence of exciton diffusion length on random variables. Top row:
β = −2; Middle row: β = −1; Bottom row: β = 0. Left column: θ(ω2) = [1; 0; 0; 0; 0]
is fixed and σ is plotted as a function of θk1(ω1) ∈ [−1, 1], where k1 = 1, 2, 3, 4, 5; Right
column: θ(ω1) = [1; 0; 0; 0; 0] is fixed and σ is plotted as a function of θk1(ω1) ∈ [−1, 1],
where k1 = 1, 2, 3, 4, 5.
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Supporting Methods

1D and 2D models

The 1D model is defined over the domain

D1 = {x : x ∈ [θ(ω), d]}, (7)

where the interface is reduced to a random point x = θ(ω).

The corresponding diffusion equation is


σ2uxx − u+G(x) = 0, θ(ω) < x < d,

ux(d) = 0,

u(θ(ω)) = 0,

(8)

and the photoluminescence (PL) is

Iθ(ω)[σ, d] =

∫ d

θ(ω)

u(x)dx. (9)

The 1D model is commonly used to extract the exciton diffusion length (EDL) due to its

simplicity and model accuracy.6,48

The 2D model is defined over a random domain

D2 = {(x, y) |h(y, ω) < x < d, 0 < y < Ly }, (10)

where the interface is a random line parametrized by h(y, ω) = ĥ
∑K

k=1 k
βθk(ω)φk(y) with

15



φk(y) = sin(2πky
Ly

).

The corresponding diffusion equation is


σ24u− u+G(x, y) = 0, x ∈ D2,

ux(d) = 0, u(h(y, ω), y) = 0, 0 < y < Ly,

u(x, y) = u(x, y + Ly), h(y, ω) < x < d,

(11)

and the PL is

Iθ(ω)[σ, d] =
1

Ly

∫ Ly

0

∫ d

h(y,ω)

u(x, y)dxdy. (12)

At the formal level, when Lz → 0, the PL of 3D model defined by (3) reduces to the PL of

2D model defined by (12), and further they reduce to the PL of 1D model defined by (9) as

Ly → 0.

Newton’s method

Given σ(0), for n = 1, 2, · · · , until convergence, Newton’s method for (4) solves

σ(n) = σ(n−1) − αn
∂
∂σ
J(σ(n−1))

∂2

∂2σ
J(σ(n−1))

with αn ∈ (0, 1] given by line search.65

Given one realization of the random interface (1), by solving the 3D diffusion equation

model (2) - (3), we get one datum (θ(ω1), θ(ω2), σθ(ω1),θ(ω2)), where θ(ω1) and θ(ω2) are

inputs and σθ(ω1),θ(ω2) is the output. A set of data
{

(θ(ω1)[j], θ(ω2)[j], σθ(ω1)[j],θ(ω2)[j])
M
j=1

}
will

be generated for training and testing.

Quasi-Monte Carlo sampling

In the sampling stage of data preparation, a large M is needed to ensure that the extracted

function of EDL has the desired accuracy. There are two classical choices: uniform sampling
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and random sampling. For uniform sampling, M grows exponentially fast with respect to K1

and K2. For example, in the 3D case, if K1 = K2 = 5 and points are uniformly distributed

for each random variable, the size of training data set is shown in Table 2. Figure 6 plots

Table 2: Size of training data set for uniform sampling.

Number of points in each dimension 2 3 5 9
Size of training data set 1024 59049 9765625 3486784401

the points by uniform sampling when K1 = K2 = 1 (two random variables). Clearly such a

sampling strategy has the curse of dimensionality.

On the other hand, if random sampling is used, then we do not have this issue. However,

Monte-Carlo method has poor accuracy ∼ O( 1√
M

). At least millions of data are needed

for training. Meanwhile, for each datum, an inverse problem with the diffusion equation

model over a curved domain in 3D has to be solved. These together make the network

training prohibitively expensive. Fortunately, the quasi-Monte Carlo sampling has accuracy

∼ O( 1
M

),61 which reduces the size of training data set by orders of magnitudes in comparison

with Monte-Carlo method. Specifically, we use Sobol sequence to generate points over the

(high-dimensional) random space. Figure 7 plots the points generated by Sobol sequence,

which is a deterministic way to generate points with better approximation accuracy. The

size of data in the quasi-Monte Carlo method grows merely linearly fast with respect to

the number of random variables. For the simulations in our work, at least three orders

of magnitude reduction in the size of data set is found for quasi-Monte Carlo sampling

strategy. Figures 8 and 9 show the huge advantage of quasi-Monte-Carlo sampling over

uniform sampling. For the same size of training data set, the relative L∞ error is 30.561%

and 0.237%, implying more than two orders of magnitude improvement in the prediction

accuracy.
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Softwares

The following softwares and libraries are used: Julia, Flux and CuArrays. Julia is a high-level

programming language designed for high-performance numerical analysis and computational

science.66 Flux is a library for machine learning. It comes ”batteries-included” with many

useful tools built in, but also allows taking the full power of the Julia language. CuArrays

provides a fully-functional GPU array, which can give significant speedups over normal arrays

without code changes.

Detailed description of ResNet

The ResNet network we use is stacked by several blocks with each block containing two linear

transformations, two activation functions, and one shortcut connection. The i-th block can

be expressed as

t = fi(s) = g(Wi,2 · g(Wi,1 · s+ bi,1) + bi,2) + s. (13)

Here s, t ∈ Rm are input and output of the i-th block, and weights Wi,j ∈ Rm×m, bi,1, bi,2 ∈

Rm. Sigmoid function

g(x) =
1

1 + exp(−x)

is chosen as the activation function to balance training complexity and accuracy.

The last term in (13) is called the shortcut connection or the residual connection. Ad-

vantages of using it are

1) It can solve the notorious problem of vanishing/exploding gradients automatically;

2) Without adding any parameters or computational complexity, the shortcut connection

performing as an Identity mapping can resolve the degradation issue (with the network

depth increasing, accuracy gets saturated and then degrades rapidly).
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The fully n-layer network can be expressed as

fw(x) = fn ◦ fn−1 · · · ◦ f1(x),

where w denotes the set of parameters in the whole network. Note that the input x in the

first layer is in Rdim and the output of the whole structure σ(θ(ω1), θ(ω2)) is in R1. To

deal with the problem, we apply two linear transformations on both x before putting it into

the ResNet structure and on the output of the ResNet structure. For example, we choose

m = 30, n = 6 in the 3D model. Both θ(ω1) and θ(ω2) have 5 random variables, and thus

dim = 10. Therefore, we apply two linear transforms: one from a 10 dimensional vector to

a 30 dimensional vector and the other from a 30 dimensional vector to 1 dimensional vector

before and after the ResNet structure. Parameters in these linear transforms also need to

be trained.

2D results

First, we focus on the 2D problem with only one realization, i.e., only one d = 10 and

N = 1. PL data are generated when σ = 10 without any randomness. Accuracy of the

trained neural network in terms of size of the training set is recorded in Table 3. From the

Table 3: Generalization error of the trained neural network model for a random field with
different decay rates in 2D.

Size of training data set 9 25 81
Error (β = −2) 1.638% 0.04466% 0.00209%
Error (β = −1) 0.101% 0.00795% 0.00234%
Error (β = 0) 0.765% 0.105% 0.0180%

results, we can find that a random field with the slower decay rate (β = 0) is more difficult

to be trained when uniform sampling is used. Figure 2 shows that this issue can be resolved

by quasi-Monte Carlo sampling with moderate size of training set.

In the literature, asymptotics-based method has been proposed51 which only works well
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for random interfaces with small magnitudes. The proposed method works for random in-

terfaces with large magnitudes. For example, consider θ(ω) with 2 random variables ranging

over [−5, 5] and β = 2, the relative L∞ error is 1.071%; see Figure 10.

For a random field with 10 random variables and 5 realizations d = [10, 15, 20, 30, 40, 50],

generalization errors of the trained neural network are plotted in Figures 11, 12, 13 for

β = −2,−1, 0, respectively. A detailed dependence of EDL σ on random variables is given

in Figures 14, 15, 16 for β = −2,−1, 0, respectively.

Contour plot of EDL on random variables in 3D when β = −1 is given in Figure 17 for

comparison.

Supporting Figures
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Figure 6: Uniform sampling for two random variables with 100 points.
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Figure 7: Quasi-Monte Carlo sampling (Sobol sequence) for two random variables with 100
points.
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Figure 8: Generalization error of the trained neural network in 2D when the number of
random variables is 10 and 1024 uniformly distributed points are used. The relative L∞

error is 30.561%.
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Figure 9: Generalization error of the trained neural network in 2D when the number of
random variables is 10 and 1024 points generated by Sobol sequence are used. The relative
L∞ error is 0.237%.
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Figure 10: Generalization error of the trained neural network for random variables ranging
over [−5, 5] with 1 photoluminescence datum in 2D. The relative L∞ error is 1.071%.
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Figure 11: Generalization error of the trained neural network for random variables ranging
over [−5, 5] with 6 photoluminescence data and β = −2 in 2D. The relative L∞ error is
5.784%.

10 14 18 22 26
Actual σ (nm)

10

14

18

22

26

 P
re
di
ct
ed

 σ
 (n

m
)

Figure 12: Generalization error of the trained neural network for random variables ranging
over [−5, 5] with 6 photoluminescence data and β = −1 in 2D. The relative L∞ error is
3.327%.

23



10 13 16 19 22 25 28
Actual σ (nm)

10

13

16

19

22

25

28

 P
re
di
ct
ed

 σ
 (n

m
)

Figure 13: Generalization error of the trained neural network for random variables ranging
over [−5, 5] with 6 photoluminescence data and β = 0 in 2D. The relative L∞ error is 9.184%.
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Figure 14: Dependence of exciton diffusion length on random variables in 2D when β = −2.
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Figure 15: Dependence of exciton diffusion length on random variables in 2D when β = −1.
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Figure 16: Dependence of exciton diffusion length on random variables in 2D when β = 0.
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Figure 17: Contour plot of exciton diffusion length on random variables in 3D when β = −1.
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(36) Wagner, J.; Fritz, T.; Böttcher, H. Computer Modelling of Organic Thin Film Solar

30



Cells. I. Exciton Model of Photocurrent Generation. Physica Status Solidi (a) 1993,

136, 423–432.
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