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Abstract

In this paper, we propose an efficient numerical method to solve high-dimensional nonlinear

filtering (NLF) problems. Specifically, we use the tensor train decomposition method to solve

the forward Kolmogorov equation (FKE) arising from the NLF problem. Our method consists

of offline and online stages. In the offline stage, we use the finite difference method to discrete

the partial differential operators involved in the FKE and extract low-dimensional structures in

the solution space using the tensor train decomposition method. In addition, we approximate

the evolution of the FKE operator using the tensor train decomposition method. In the online

stage using the pre-computed low-rank approximation tensors, we can quickly solve the FKE

given new observation data. Therefore, we can solve the NLF problem in a real-time manner.

Under some mild assumptions, we provide convergence analysis for the proposed method.

Finally, we present numerical results to show the efficiency and accuracy of the proposed

method in solving high-dimensional NLF problems.
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1. Introduction

Nonlinear filtering (NLF) problem is originated from the problem of tracking and signal pro-

cessing. The fundamental problem in the NLF is to give the instantaneous and accurate

estimation of the states based on the noisy observations [14]. In this paper, we consider the

signal based nonlinear filtering problems as follows,{
dxt = f(xt, t)dt+ g(xt, t)dvt,

dyt = h(xt, t)dt+ dwt,
(1)
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where xt ∈ Rd is the states of the system at time t and yt ∈ Rm is the observations at time t,

and vt and wt are vector Brownian motion processes. Some growth conditions on f, g and h

are required to guarantee the existence and well-posedness of the NLF problems, which will

be discussed later.

Particle filter method is the most popular method to solve (1); see e.g. [1, 11, 2] and

references therein. However, the main drawback of the particle filter method is that it is hard

to be implemented in a real-time manner due to its nature of the Monte Carlo simulation. In

practice, the real-time manner means the running time of the numerical integrator in solving

the state equation for xt is much less than the time between any two observations of yt.

Alternatively, one can solve the Duncan-Mortensen-Zakai (DMZ) equation, also known as

Zakai equation, to study the NLF problems [9, 21, 30]. The DMZ equation computed the

unnormalized conditional density function of the states xt, which provides a powerful tool to

study the NLF problem since one can estimate the statistical quantities of the state xt based

on the DMZ solution. In general, one cannot solve the DMZ equation analytically. Many

efforts have been made to develop efficient numerical methods; see [22, 13, 12, 4, 18] and the

references therein.

The DMZ equation allows one to study the statistical quantities of the states xt. In

practice, however, one can only get one realization of the states xt (instead of thousands of

repeated experiments), which motivates researchers to develop robust methods in solving the

DMZ equation. Namely, the robust method should not be sensitive to the given observation

paths. A novel algorithm was proposed to solve the path-wise robust DMZ equation [28]. In

this approach, for each realization of the observation process denoted by yt, one can make an

invertible exponential transformation and transform the DMZ equation into a deterministic

partial differential equation (PDE) with stochastic coefficient. Several efficient numerical

methods were developed along this direction; see [19, 20, 27], which can be efficient when the

dimension of the NLF problems is small. However, it becomes expensive as the dimension of

the NLF problems increases. Therefore, it is still very challenging to solve high-dimensional

NLF problems in a real-time manner.

In this paper, we propose to use the tensor train decomposition method to solve the high-

dimensional FKEs. Our method consists of offline and online stages. In the offline stage,

we discrete the PDE operators involved in the FKEs and approximate them using the tensor

train method. Moreover, we approximate the evolution of the FKE operator using the tensor

train method. In the online stage, we can quickly solve the FKE given new observation data

using the pre-computed low-rank approximation tensors. By exploring the low-dimensional

structures in the solution space of the FKE, we can solve the NLF problem in a real-time

manner. Under some mild assumptions, we provide convergence analysis for the proposed

method. Finally, we present two numerical experiments to show the efficiency and accuracy

of the proposed method. We find that the tensor train method is scalable in solving the FKE.

Thus, we can solve the NLF problem in a real-time manner.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction

of the NLF problem and DMZ equation. In Section 3, we introduce the basic idea of the

tensor train decomposition method. In Section 4, we propose our fast method to compute

the high-dimensional FKEs. Some convergence analysis of the proposed method will also be
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discussed in Section 5. In Section 6, we present numerical results to demonstrate the accuracy

and efficiency of our method. Concluding remarks are made in Section 7.

2. Some basic results of the NLF problems

In this section, we shall introduce some basic results of the NLF problems. To start with, we

consider the signal based model as follows,{
dxt = f(xt, t)dt+ g(xt, t)dvt,

dyt = h(xt, t)dt+ dwt,
(2)

where xt ∈ Rd is a vector of the states of the system at time t, the initial state x0 satisfying an

initial distribution, yt ∈ Rm is a vector of the observations at time t with y0, and vt and wt

are vector Brownian motion processes with covariance matrices E[dvtdv
T
t ] = Q(t)dt ∈ Rd×d

and E[dwtdw
T
t ] = S(t)dt ∈ Rm×m, respectively. Moreover, x0, dwt and dvt are assumed to

be independent. Some growth conditions on f and h are required to guarantee the existence

and uniqueness of the pathwise-robust DMZ equation [28]. In this paper, f, h, and g are C2

in spatial variable and C1 in the temporal variable

The most popular method so far to solve (2) is the particle filter, see [1, 11, 2] and references

therein. However, the main drawback of the particle filter method is that it is hard to be

implemented in a real-time manner due to its nature of the Monte Carlo simulation.

The DMZ equation or Zakai equation [9, 21, 30] asserts that the unnormalized conditional

density function of the states xt, denoted by σ(x, t), satisfies the following stochastic partial

differential equation (SPDE):{
dσ(x, t) = Lσ(x, t)dt+ σ(x, t)hT (x, t)S−1dyt,

σ(x, 0) = σ0(x),
(3)

where σ0(x) is the density of the initial states x0, and

L(·) :=
1

2

d∑
i,j=1

∂2

∂xi∂xj

(
(gQgT )ij ·

)
−

d∑
i=1

∂(fi·)
∂xi

(4)

The DMZ equation laid down a solid foundation to study the NLF problem. However, one

cannot solve the DMZ equation analytically in general. Many efforts have been made to

develop efficient numerical methods. One of the commonly used method is the splitting-up

method originated from the Trotter product formula, which was first introduced in [4] and

has been extensively studied later, see [22, 13, 12]. In [18], the so-called S3 algorithm was

developed based on the Wiener chaos expansion. By separating the computations involving

the observations from those dealing only with the system parameters, this approach gives rise

to a new numerical scheme for NLF problems. However, the limitation of their method is that

the drifting term f and the observation term h in (2) should be bounded.

To overcome this restriction, Yau and Yau [28] developed a novel algorithm to solve the

path-wise robust DMZ equation. Specifically, for each realization of the observation process

denoted by yt, they make an invertible exponential transformation

σ(x, t) = exp
(
hT (x, t)S−1(t)yt

)
u(x, t), (5)
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and transform the DMZ equation (3) into a deterministic partial differential equation (PDE)

with stochastic coefficient
∂

∂t
u(x, t) +

∂

∂t
(hTS−1)ytu(x, t) =

exp
(
− hT (x, t)S−1(t)yt

)(
L − 1

2
hTS−1h

)(
exp

(
− hT (x, t)S−1(t)yt

)
u(x, t)

)
,

u(x, 0) =σ0(x).

(6)

Equation (6) is called the pathwise robust DMZ equation [18, 28]. Compared with the DMZ

equation (3), the pathwise robust DMZ equation (6) is easier to solve, since the stochastic

term has been transformed into the coefficients.

The existence and uniqueness of (6) has been investigated by many researchers. The well-

posedness is guaranteed when the drift term f ∈ C1 and the observation term h ∈ C2 are

bounded in [26]. Later on, similar results can be obtained under weaker conditions. For

instance, the well-posedness results on the pathwise-robust DMZ equation with a class of

unbounded coefficients were obtained in [3, 10], but the results were for one-dimensional case.

In [28], the third author of this paper and his collaborator established the well-posedness result

under the condition that f and g have at most linear growth. In [19], a well-posedness result

was obtained for time-dependent pathwise-robust DMZ equation under some mild growth

conditions on f and h.

Let us assume that the observation time sequences 0 = t0 < t1 < · · · < tNt = T are given.

In each time interval tj−1 ≤ t < tj, one freezes the stochastic coefficient yt to be ytj−1
in Eq.(6)

and makes the exponential transformation

ũj(x, t) = exp
(
hT (x, t)S−1(t)ytj−1

)
u(x, t). (7)

It is easy to deduce that ũj satisfies the FKE

∂

∂t
ũj(x, t) =

(
L − 1

2
hTS−1h

)
ũj(x, t), (8)

where the operator L is defined in (4). In [20], Luo and Yau investigated the Hermite spectral

method to numerically solve the 1D FKE (8) and analyzed the convergence rate of the proposed

method. In their algorithm, the main idea is to shift part of the heavy computations off-line, so

that only computations involved observations are performed on-line and synchronized with off-

line data. The numerical method based on the Hermite polynomial approximation is efficient

though, it is extremely hard to extend to solve high-dimensional FKEs in the real-time manner,

since the number of the Hermite polynomial basis functions grows fast for high-dimensional

problems. Namely, it suffers from the curse of dimensionality.

In a very recent result [27], we proposed to use the proper orthogonal decomposition (POD)

method to numerically solve the 2D FKE. By extracting the low-dimensional structures in

the solution space of the FKE and building POD basis, our method provides considerable

savings over the Hermite polynomial approximation method that was used in [20]. The POD

method helps us alleviate the curse of dimensionality to a certain extent though, it is still

very challenging to solve high-dimensional NFL problems. The reason is that in the POD
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method one needs solution snapshots to construct POD basis. However, to compute solution

snapshots for high-dimensional NFL problems is extremely expensive. We shall address this

challenge by using the Tensor Train decomposition method in this paper.

3. The Tensor Train decomposition method

We shall introduce the tensor train (TT) decomposition method for approximating solutions

of high-dimensional NLF problems. Let us assume the dimension of the NLF problem is d. For

any fixed time t, if we discretize the solution u(x, t), x ∈ Rd of the FKE (8) using conventional

numerical methods, such as finite difference method, we obtain a d-dimensional n1×n2×· · ·×nd
tensor U(i1, i2, · · · , id), which is a multidimensional array. The number of unknowns in this

representation grows fast as d increases and is subject to the curse of dimensionality. To

attack this challenge, one should extract potential low-dimensional structures in the tensor

and approximate the tensor in a certain data-sparse way.

The TT decomposition method is an efficient method for tensor approximation [24]. A

brief introduction of the TT-format is given below. If a d-dimensional n1×n2×· · ·×nd tensor

U(i1, i2, · · · , id) can be written as the element-wise form

U(i1, i2, · · · , id) = G1(i1)G2(i2) · · ·Gd(id), 1 ≤ ik ≤ nk, (9)

where Gk(ik) is a rk−1 × rk matrix for each fixed ik, 1 ≤ k ≤ d and r0 = rd = 1. We

call the tensor U is in the TT-format, if it is represented in the form (9). Furthermore,

each element Gk can be regarded as an 3-dimensional tensor of the size rk−1× nk × rk. In the

representation (9), G1,G2, · · · ,Gd are called the cores of the TT-format tensor U, numbers rk
are called TT-ranks, and numbers n1, n2, · · · , nd are called mode sizes. With these definitions,

the representation (9) can be rewritten as

U(i1, i2, · · · , id) =
∑

α1,··· ,αd−1

G1(α0, i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id, αd) (10)

where α0 = αd = 1, 1 ≤ αk ≤ rk for 1 ≤ k ≤ d − 1. In practice, one only needs to store

all the cores Gk in the TT-format, in order to save a tensor. Thus, if all the TT-ranks rk
are bounded by a constant r and the mode sizes nk are bounded by N , the storage of the

d-dimensional tensor U is O(dNr2) in the TT-format. Recall that the storage of the tensor

U is about O(Nd), if no approximation is used.

To further reduce the storage of the TT-format, a quantized tensor train (QTT) format was

introduced in [15, 8, 23]. The QTT format is derived by introducing virtual dimensions along

each real dimension of a tensor. Specifically, suppose each one-dimensional size of the tensor

U is a power of 2, i.e. n1 = n2 = · · · = nd = 2L. The d-dimensional tensor U can be reshaped

to a D-dimensional tensor with D = dL, while each mode size is equal to 2. The QTT-format

is the TT-format of the reshaped tensor, which has a larger number of dimension but much

smaller mode sizes (here is 2) than the TT-format. The concepts of cores, QTT-ranks and

mode sizes (all are equal to 2) of QTT-format are defined similarly as the TT-format. The

storage of the QTT-format is further reduced to O(d log2(N)r2).

5



One can also simply formulate the TT-format of d-dimensional matrices [15][23]. The

TT-format of a d-dimensional (m1 × · · · ×md)× (n1 × · · · × nd) matrix B can be written as

B(i1, · · · , id, j1, · · · , jd) =

r1∑
α1=1

· · ·
rd−1∑

αd−1=1

G1(1, i1, j1, α1)G2(α1, i2, j2, α2) · · ·Gd(αd−1, id, jd, 1),

(11)

where the index 1 in G1 and Gd is due to the TT-ranks α0 = αd = 1. The definitions of cores,

ranks and mode sizes are similar as tensors. The QTT representation of matrices will be used

in this paper.

Simple calculations show that in the TT-format the computational complexity of addition

(together with TT-rounding after addition) is O(dNr3), matrix-by-vector multiplication is

O(dN2r4), and Hadamard product is O(dNr4). Therefore, the TT/QTT-format allows lower

complexity of algebraic operation than dense matrix or tensor form. In practice, especially

in solving time-dependent problems, one needs to apply the TT-rounding procedure in the

computation. The computational complexity of the TT-rounding is O(dNr3). The purpose

of TT-rounding is to decrease TT/QTT-rank of a matrix or tensor already in the TT/QTT-

format while preserving a given accuracy ε. The QTT-format can further reduce the factor N

of complexity to log2(N).

4. The fast algorithm and its implementation

In this section, we present the fast algorithm to solve the NLF problem. Let us assume that

the observation time sequences 0 = t0 < t1 < · · · < tNt = T are given. But the observation

data {ytj} at each observation time tj, j = 0, ..., Nt are unknown until the on-line experiment

runs. For simplicity, we assume tj − tj−1 = ∆T . We shall study how to solve the FKE (8)

within each time interval [tj−1, tj] and compute the exponential transformation (7) using the

QTT-format. If we use an explicit scheme to discretize the time derivative in the FKE (8),

we get an semi-discrete scheme as follows,

ũnj (x) =
{
τ(L − 1

2
hTS−1h) + I

}
ũn−1
j (x), n = 1, · · · , ∆T

τ
, (12)

where τ is the time step in discretizing the FKE (8) and ∆T is the time interval between two

sequential observations.

Our algorithm consists of an offline procedure and an online procedure. In the offline

procedure, we compute the matrices of spatial discretization of operators in (12) and convert

them into the QTT-format in advance, which will reduce the computational time in the online

procedure. In the online procedure, we solving the FKE and update the solution with new

observation data. We shall show that the online procedure can be finished in a real time

manner since all the computations are done in the QTT-format.

4.1. Spatial discretization and low-rank approximation

We shall discuss how to discretize the FKE (8) and represent the spatial discretization in

the QTT-format. To simplify the notations and illustrate the main idea of our algorithm,
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we choose a squared domain and uniform grid. Specifically, we take a large a > 0 and let

Ω = [−a, a]d denote the physical domain of the FKE. A uniform grid is set on each dimension

with N = 2L points and mesh size h = 2a
(N−1)

. We use xk(ik), ik = 1, · · · , N to record the

coordinates of grid points on k-th dimension.

First, the Laplace operator in (8) is discretized by using a finite difference (FD) scheme.

The resulting matrix is of the form

∆d = ∆1 ⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗∆1, (13)

where

∆1 =
1

h2
tridiag(1,−2, 1),

and I is an N × N identity matrix. In particular, when d = 3 the Laplace operator has the

form

∆3 = ∆1 ⊗ I⊗ I + I⊗∆1 ⊗ I + I⊗ I⊗∆1. (14)

The QTT-format of matrix ∆d has a low-rank representation that is bounded by 4 (see Corol-

lary 5.3 of [15]).

Second, the convection operator
∑d

i=1
∂(fi·)
∂xi

in (8) (see also Eq.(4)) is discretized by using

a central difference scheme. Thus, the corresponding d-dimensional matrix has the form

Cd = (C⊗ I⊗ · · · ⊗ I)F1 + (I⊗C⊗ · · · ⊗ I)F2 + · · ·+ (I⊗ I⊗ · · · ⊗C)Fd, (15)

where Fk’s are diagonal matrices associated with the diagonalization of tensor discretization

of the drift functions fk, i.e.,

Fk(i1, i2, · · · , id, i1, i2, · · · , id) = fk(x1(i1), x2(i2), · · · , xd(id)),

for all 1 ≤ k ≤ d, and C is an one-dimensional central difference operator,

C =
1

h
tridiag(−1

2
, 0,

1

2
).

Under certain conditions for the drift terms fk, the QTT-format of matrix Cd has a bounded

low-rank representation. We summary the result into the following lemma and the proof can

be found in [8].

Proposition 4.1. Suppose that the QTT-ranks of the functions fk on a tensor grid are bounded

by r. Then, the QTT-rank of the matrix Cd in (15) is bounded by 5dr.

Although an exact TT-decomposition of any tensor is feasible [24], it rarely has a low-

rank structure. Therefore, one should apply TT-rounding procedures in order to decrease the

TT/QTT-ranks while preserving a given accuracy ε. Let us consider the drift terms fk as an

example. In order to construct the QTT-format of functions fk with low ranks, one can use

the TT-SVD algorithm [24]. QTT-ranks of these QTT-format tensors are guaranteed to be

smaller than a prescribed approximation error ε in the sense of Frobenius norm [24].
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Proposition 4.2 (Theorem 2.2 of [25]). For any tensor A with size n1 × nk × · · · × nd, there

exists a tensor B in the TT-format with TT-ranks rk such that

||A−B||F ≤

√√√√d−1∑
k=1

ε2k,

where εk is the distance from Ak to its best rank-rk approximation in the Frobenius norm,

εk = min
rankC6rk

||Ak −C||F ,

where Ak is the k-th unfolding matrix of tensor A

Ak = reshape

(
A,

k∏
s=1

ns,

d∏
s=k+1

ns

)
.

Remark 4.1. The Lemma 4.2 allows us to control the accuracy and TT/QTT-ranks, when we

compute the approximation of any tensor in the TT/QTT-format.

Finally, the approximation of the function hTS−1h in the FKE (8) in the QTT-format

can be obtained using the same approach as fk in the convection operator. Specifically, we

discretize the function hTS−1h on the spatial tensor grid and diagonalize it to a matrix denoted

by Qd, i.e.,

Qd(i1, i2, · · · , id, i1, i2, · · · , id) = (hTS−1h)(x1(i1), x2(i2), · · · , xd(id)).

Then, we approximate it by a low-rank QTT-format using the TT-SVD algorithm.

4.2. The offline procedure

In the offline procedure, we first assemble the operators involved in the FKE, including the

Laplace operator (13), the convection operator (15) and the multiplication operator Qd asso-

ciated with the function hTS−1h, into a tensor A, i.e.

A =
1

2
∆d −Cd −

1

2
Qd (16)

In this paper, we assume the drift and observation functions are time-independent. Thus, the

semi-discrete scheme (12) becomes

Ûn
l,j = ̂(τA + I

)
Ûn−1
l,j , n = 1, · · · , ∆T

τ
, (17)

where Ûn
l,j is the QTT-format solution of ũ(xl, tj−1 + nτ), l ∈ {1, 2, · · · , N}d, and ̂(τA + I

)
is

the QTT-format of the tensor
(
τA + I

)
.

Recall that the discretizations of the Laplace operator, the convection operator and the

multiplication operator associated with the function hTS−1h all have low-rank approximations.

Moreover, addition of matrices or tensors in the QTT-format only causes addition of QTT-

ranks. Therefore, the tensor A has a low rank QTT-format approximation with a given

maximal QTT-rank r or with a certain given precision ε in the sense of Frobenius norm.
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Notice that in the NLF problem, there will be no observation available during the time

period with length ∆T . Thus, we directly compute the tensor (τA + I)
∆T
τ and approximate

it in the QTT-format. Then, we rewrite the scheme (17) as

Û
∆T
τ

l,j =
̂(

τA + I
)∆T

τ Û0
l,j. (18)

where
̂(

τA + I
)∆T

τ is the QTT-format of the tensor
(
τA + I

)∆T
τ . Exact addition of τA and I

in the QTT format only increases the rank by one. However, exact multiplication of matrices

in the QTT-format will lead to a significant growth of QTT-ranks. In our algorithm, we apply

TT-rounding to control the growth of the QTT-rank caused by matrix-matrix multiplication,

which can be easily achieved and maintain accuracy [24, 8].

4.3. Online procedure

In this section, we shall demonstrate that using the tensor train decomposition method and

the precomputed time integration results we can achieve fast computing in the online stage.

At first, we set an initial probability density function according to initial state x0, and solve

the FKE (8) with such initial condition. At each observing time tj, when a new observation ytj
arrives, we do the exponential transformation (7) to get the initial condition of the FKE (8).

We then solve the FKE (8) by our algorithm (18). All of these operations are done in QTT-

format, thus we need to do TT-rounding operation after both exponential transformation and

solving the FKE (8).

Proposition 4.3. Suppose the QTT-ranks of all functions required in online procedure on a

tensor grid, including u(x, tj) and exp[hT (x, tj)S
−1(tj)(ytj − ytj−1

)], are bounded by r. The

accuracy ε of TT-rounding is properly specified to ensure QTT-ranks of u(x, t) are also bounded

by r after any TT-rounding procedure. Then, the complexity of the online procedure within

each time interval [tj−1, tj] is O(Ndr2 + d log2(N)r6), where N is the grid number on each

dimension.

Proof. The complexity of constructing the QTT-format of exp[hT (x, tj)S
−1(tj)(ytj − ytj−1

)]

from a full multidimensional array is O(Ndr2) by Theorem 2.1 in [23]. The exponential

transformation is essentially a Hadamard product in the QTT-format whose complexity is

O(d log2(N)r4) [24]. Solving the FKE (8) is practically a matrix-vector multiplication (18)

in the QTT-format whose complexity is O(d log2(N)r4) [24]. Requirement of TT-rounding

through standard TT-SVD algorithm is O(d log2(N)r6) [24].

Notice that the total degree of freedom is Nd in the spatial discretization. Prop.4.3 shows

that the QTT method is very efficient in the online procedure in solve the NLF problem. More

details will be represented in Section 6. We observe that the maximal QTT-rank r has very

slow growth with respect to N (see Table 1–Table 4), which allows us to solve high-dimensional

NLF problems in a real time manner.

4.4. The complete algorithm of the NLF problem

In this subsection, we give the complete algorithm of the NLF problem. The off- and on-

line computing stages in our algorithm are summarized in the Algorithm 1 and Algorithm 2,

respectively. The performance of our method will be demonstrated in Section 6.

9



Algorithm 1 Offline computing

1: Compute matrices of spatial discretization of operators mentioned in the Section 4.1,

including the Laplace operator, i.e., Eq.(13), the convection operator, i.e., Eq.(15), and

the multiplication operator Qd associated with the function hTS−1h.

2: Convert these matrices into the QTT-format.

3: Compute the addition of operator matrices in the QTT-format by taking into account the

time stepping τ , i.e. compute τA + I in Eq.(17).

4: Compute the power of the tensor τA + I in the QTT-format, i.e. compute
̂

(τA + I)
∆T
τ in

Eq.(18).

Algorithm 2 Online computing

1: Set up the initial data u(x, 0) = σ0(x) of the FKE according to the distribution of the

initial state x0, convert u(x, 0) into a QTT-format, and apply the propagator operator

(18) to get the predicted solution at time t1, denoted by Û
∆T
τ

l,1 .

2: for j = 1→ Nt − 1 do

3: Convert the term exp[hT (x, tj)S
−1(tj)(ytj − ytj−1

)] into the QTT-format.

4: Assimilate the new observation data ytj into the predicted solution Û
∆T
τ

l,j using a QTT-

format Hadamard product:

Û0
l,j+1 = ̂exp[hT (x, tj)S

−1(tj)(ytj − ytj−1
)]Û

∆T
τ

l,j .

5: Compute the predicted solution at time tj+1 using a matrix-vector multiplication in

the QTT-format:

Û
∆T
τ

l,j+1 =
̂

(τA + I)
∆T
τ Û0

l,j+1.

6: Calculate related statistics of prediction by using Û
∆T
τ

l,j+1 as the unnormalized density

function at time tj+1.

7: end for

5. Convergence analysis

In this section, we shall study the convergence of the numerical solution obtained by our

method to the exact solution. For simplicity of notations in the analysis, we assume S = Id.

Note that the proof is straightforward if S is a general covariance matrix.

5.1. Some assumptions and propositions

Before proceeding to the main analysis, let us first introduce some assumptions as follows.

[Asm.1 ] The following term is bounded in Rd × [0, T ], i.e.,

−1

2
hTh− 1

2
∆K − f · ∇K +

1

2
|∇K|2 + |f−∇K| ≤ c1, ∀(x, t) ∈ Rd × [0, T ], (19)

where K = hTyt, c1 is a constant possibly depending on T .
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[Asm.2 ] The drift function f is bounded in a bounded domain Ω, i.e. sup |fi(x)| ≤ Cf <

∞,∀x ∈ Ω, i = 1, 2, · · · , d and Lipschitz continuous, i.e. |fi(x1) − fi(x2)| ≤ Lf |x1 −
x2|,∀x1,x2 ∈ Ω, i = 1, 2, · · · , d, where Lf is the Lipschitz constant.

[Asm.3 ] The observation function h is bounded in a bounded domain Ω, i.e. sup |hi(x)| ≤
Ch <∞,∀x ∈ Ω, i = 1, 2, · · · ,m.

[Asm.4 ] The observation series K = hTyt is bounded in a bounded domain Ω on the obser-

vation time sequence 0 = t0 < t1 < · · · < tNt = T , i.e.

|2K| ≤ c2, ∀(x, t) ∈ Ω× {t0, t1, · · · , tNt}. (20)

After introducing necessary assumptions, we are in the position to proceed the convergence

analysis. When the condition (19) in Asm.1 is satisfied, one can choose a bounded domain Ω

large enough to capture almost all the density of the DMZ equation (3), since (3) is essentially

a parabolic-type PDE. Thus, we can restrict the DMZ equation (3) on the bounded domain

Ω.

Let u(x, t) be the solution of the DMZ equation (3) restricted on Ω× [0, T ] satisfying
∂u

∂t
(x, t) =

1

2
∆u(x, t) + F(x, t) · ∇u(x, t) + J(x, t)u(x, t),

u(x, 0) = σ0(x),

u(x, t)|∂Ω = 0,

(21)

where F = −f +∇K, K = hTyt, and J = −divf− 1
2
hTh + 1

2
∆K − f · ∇K + 1

2
|∇K|2.

Let PNt = {0 = t0 < t1 < · · · < tNt = T} be a partition of [0, T ], where tj = jT
Nt

,

j = 0, ..., Nt. Let uj(x, t) be the solution of the following equation defined on Ω× [tj−1, tj],
∂uj
∂t

(x, t) =
1

2
∆uj(x, t) + F(x, tj−1) · ∇uj(x, t) + J(x, tj−1)uj(x, t),

uj(x, tj−1) = uj−1(x, tj−1),

uj(x, t)|∂Ω = 0,

(22)

where we use the convection u0(x, t) = σ(x). Then, the restriction of the solution u(x, t)

of (21) on each domain Ω × [tj−1, tj] can be approximated by the solution uj(x, t) of (22).

Specifically, we have the following error estimate.

Proposition 5.1 (Theorem C of [28]). Let Ω be a bounded domain in Rd. Let F : Ω× [0, T ]→
Rd be a family of vector fields that are C∞ in x and Holder continuous in t with exponent α

and J : Ω × [0, T ] → R be a C∞ function in x and Holder continuous in t with exponent α

such that following properties are satisfied

| divF(x, t)|+ 2|J(x, t)|+ |F(x, t)| ≤ c3 for (x, t) ∈ Ω× [0, T ], (23)

|F(x, t)− F(x, t̄)|+ | divF(x, t)− divF(x, t̄)|+ |J(x, t)− J(x, t̄)| ≤ c4|t− t̄|α,
for (x, t), (x, t̄) ∈ Ω× [0, T ]. (24)
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Then, we have the following estimate holds∫
Ω

∣∣u− uNt∣∣(x, t)dx ≤ 2c5

α + 1

Tα+1ec3T

Nt
α , (25)

where c5 = c4e
c3T + c4

√
V ol(Ω)ec

2
3T
√

2c2
3T
∫

Ω
u2(x, 0) +

∫
Ω
|∇u(x, 0)|2. Specifically, u(x, t) =

limNt→∞ uNt(x, t) in the L1 sense on Ω. The convergence rate α depends on the regularity of

F and J in the time variable t.

It is shown in [28] (see Proposition 2.1) that the pathwise robust DMZ equations can be

computed by solving the FKE (8).

Proposition 5.2 (Proposition 2.1 of [28]). ũj(x, t) satisfies the forward Kolmogorov equation

∂ũj
∂t

(x, t) =
1

2
∆ũj(x, t)− f(x) · ∇ũj(x, t)−

(
div f(x) +

1

2
h(x)Th(x)

)
ũj(x, t) (26)

for tj−1 ≤ t ≤ tj if and only if

uj(x, t) = exp(−h(x)Tytj−1
)ũj(x, t) (27)

satisfies the robust DMZ equation with observation being frozen at ytj−1
:

∂uj
∂t

(x, t) =
1

2
∆uj(x, t) + F(x, tj−1) · ∇uj(x, t) + J(x, tj−1)uj(x, t), (28)

where F = −f +∇K, K = hTyt, and J = −divf− 1
2
hTh + 1

2
∆K − f · ∇K + 1

2
|∇K|2.

In fact, the FKE (26) is obtained from the general form of the FKE (8) by letting S = Id.

5.2. Convergence analysis for the FD scheme

From time t = tj−1 to time t = tj, one can solve the FKE (26) by using the finite difference

method. Specifically for time discretization, we partition the time interval [tj−1, tj] into an

equispaced grid, i.e. tj−1 +nτ , n = 0, 1, · · · , ∆T
τ

, where τ is the time stepping. We will analyze

the error of FD scheme here. The spatial discretization has been discussed in Section 4.1. We

use the same notations here, i.e., h is the spatial mesh size. Notice that h is the observation

function. Let Un
l,j denote the approximations of the solution at these grid points and time

steps, i.e.,

Un
l,j ≈ ũj

(
xl, tj−1 + nτ

)
= ũj

(
x1(l1), x2(l2), · · · , xd(ld), tj−1 + nτ

)
. (29)

Then, the FD scheme for the FKE (26) reads

Un+1
l,j − Un

l,j

τ
=

1

2

∑d
i=1(Un

l+ei,j
+ Un

l−ei,j)− (2d)Un
l,j

h2
−
∑d

i=1(fi)l
(
Un
l+ei,j

− Un
l−ei,j

)
2h

−
∑d

i=1

(
(fi)l+ei − (fi)l−ei

)
Un
l,j

2h
− 1

2
(hTh)lU

n
l,j. (30)

for all l ∈ {1, 2, · · · , N}d which is a d-dimensional index vector and ei is a unit vector with a

1 in the ith coordinate and 0’s elsewhere. The convergence result for the FD scheme (30) can

be summarized into the following two lemmas.
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Lemma 5.3. The truncation error of the FD scheme (30) for the FKE (26) is O(τ + h2).

Hence the FD scheme (30) is consistent.

Proof. For xl, l ∈ {1, 2, · · · , N}d and tnj = tj−1 + nτ , n = 0, 1, · · · , ∆T
τ
− 1, the second-order

Taylor expansion of ũj(xl, t
n
j + τ) at the point (xl, t

n
j ) gives

ũj(xl, t
n
j + τ)− ũj(xl, t

n
j )

τ
=
∂ũj
∂t

(xl, t
n
j ) +

τ

2

∂2ũj
∂t2

(xl, t
n
j ) + o(τ). (31)

The fourth-order Taylor expansion of ũj(xl + hei, t
n
j ) and ũj(xl− hei, tnj ) at the point (xl, t

n
j ),

gives

ũj(xl + hei, t
n
j )− 2ũj(xl, t

n
j ) + ũj(xl − hei, tnj )

2h2
=

1

2

∂2ũj
∂x2

i

(xl, t
n
j ) +

h2

24

∂4ũj
∂x4

i

(xl, t
n
j ) + o(h2)

(32)

The third-order Taylor expansion of (fiũj)(xl + hei, t
n
j ) and (fiũj)(xl − hei, tnj ) at the point

(xl, t
n
j ) gives

(fiũj)(xl + hei, t
n
j )− (fiũj)(xl − hei, tnj )

2h
=
∂(fiũj)

∂xi
(xl, t

n
j ) +

h2

6

∂3(fiũj)

∂x3
i

(xl, t
n
j ) + o(h2),

(33)

for i = 1, 2, · · · , d. Combining (31), (32) and (33), we get the truncation error of the FD

scheme (30) as

T nl,j =
τ

2

∂2ũj
∂t2

(xl, t
n
j ) + o(τ)−

d∑
i=1

h2

24

∂4ũj
∂x4

i

(xl, t
n
j )−

d∑
i=1

h2

6

∂3(fiũj)

∂x3
i

(xl, t
n
j ) + o(h2) = O(τ + h2).

(34)

The consistency of the FD scheme is proved.

Lemma 5.4. Let Un
l,j, n = 0, 1, · · · , ∆T

τ
denote the numerical solution obtained by the FD

scheme (30) and ũj(xl, tj−1 + nτ) denote the corresponding exact solution to the FKE (26)

on [tj−1, tj], respectively, where tj = tj−1 + ∆T . Suppose the assumptions Asm.1 to Asm.4

and the stability condition h < 1
Cf

, τ < ( d
h2 + dLf + d

2
C2
h)−1 are satisfied. Then, we have the

following error estimate for the FD scheme (30),

||U
∆T
τ

l,j − ũj(xl, tj)||∞ ≤ e∆TdLf ||U0
l,j − ũj(xl, tj−1)||∞ +

C

dLf
(τ + h2), ∀l ∈ {1, 2, · · · , N}d.

(35)

where C is a generic constant that does not depend on τ and h. Finally, we have the estimate

||U
∆T
τ

l,Nt
− ũNt(xl, T )||∞ ≤

Cec2Nt+TdLf

dLf (ec2+∆TdLf − 1)
(τ + h2), ∀l ∈ {1, 2, · · · , N}d. (36)

where c2 is a constant defined in (20) of Asm.4.
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Proof. Let enl,j = Un
l,j − ũj(xl, , tj−1 + nτ) denote the error between FD solution and exact

solution of the FKE (26) on [tj−1, tj]. By the definition of the truncation error, we have

en+1
l,j − enl,j

τ
=

1

2

∑d
i=1(enl+ei,j

+ enl−ei,j)− (2d)enl,j
h2

−
∑d

i=1(fi)l
(
enl+ei,j

− enl−ei,j
)

2h

−
∑d

i=1

(
(fi)l+ei − (fi)l−ei

)
enl,j

2h
− 1

2
(hTh)le

n
l,j + T nl,j,

i.e.

en+1
l,j =

(
1− dτ

h2
− τ

d∑
i=1

(
(fi)l+ei − (fi)l−ei

)
2h

− τ

2
(hTh)l

)
enl,j

+
d∑
i=1

( τ

2h2
− τ

2h
(fi)l

)
enl+ei,j

+
d∑
i=1

( τ

2h2
+

τ

2h
(fi)l

)
enl−ei,j + τT nl,j, (37)

where T nl,j is the truncation error; see (34). Let the maximum error at a time step tj−1 + nτ

denoted by

En
j := max{|enl,j|, l ∈ {1, 2, · · · , N}d}. (38)

We introduce the stability conditions

τ

2h2
>
∣∣ τ
2h

(fi)l
∣∣, 1 >

dτ

h2
+ τ

d∑
i=1

(
(fi)l+ei − (fi)l−ei

)
2h

+
τ

2
(hTh)l. (39)

According to Asm.3 and Asm.4, the stability conditions (39) require h < 1
Cf

and τ < ( d
h2 +

dLf + d
2
C2
h)−1, where Ch, Cf , Lf are defined in Asm.3 and Asm.4, and C is a generic constant

in the truncation error. Under the stability conditions (39), (37) implies that

En+1
j ≤

(
1− dτ

h2
− τ

d∑
i=1

(
(fi)l+ei − (fi)l−ei

)
2h

− τ

2
(hTh)l

)
En
j

+
d∑
i=1

( τ

2h2
− τ

2h
(fi)l

)
En
j +

d∑
i=1

( τ

2h2
+

τ

2h
(fi)l

)
En
j + τC(τ + h2)

≤
(

1− τ
d∑
i=1

(
(fi)l+ei − (fi)l−ei

)
2h

− τ

2
(hTh)l

)
En
j + τC(τ + h2),

≤
(

1 + τdLf

)
En
j + τC(τ + h2). (40)

Hence, by using (40) recursively, we have the error estimate for the FKE between two obser-

vations from tj−1 to tj,

E
∆T
τ
j ≤ e∆TdLfE0

j +
C

dLf
(τ + h2), (41)

14



which gives the estimate (35), i.e. the error estimate in [tj−1, tj]. Notice that the initial data

for the FD scheme (30) is obtained by an exponential transform, which assimilates the new

observation data into the predicted solution. Thus, the term E0
j satisfies

E0
j ≤ exp(hT

(
ytj−1

− ytj−2
)
)
E

∆T
τ
j−1 ≤ ec2E

∆T
τ
j−1. (42)

Combining (41) and (42), we obtain

E
∆T
τ
j ≤ ec2+∆TdLfE

∆T
τ
j−1 +

C

dLf
(τ + h2). (43)

Recursively using the above estimate and the condition E0
1 = 0, we have

E
∆T
τ
Nt
≤ e(c2+∆TdLf )(Nt−1)

(
E

∆T
τ

1 +
C(τ + h2)

dLf (ec2+∆TdLf − 1)

)
,

≤ e(c2+∆TdLf )(Nt−1)
(
e∆TdLfE0

1 +
C(τ + h2)

dLf
+

C(τ + h2)

dLf (ec2+∆TdLf − 1)

)
,

≤ Cec2Nt+TdLf

dLf (ec2+∆TdLf − 1)
(τ + h2), (44)

which gives the estimate (36).

5.3. Convergence analysis for the QTT method

Finally, we analyze the error between the solutions obtained by using the QTT method and

the FD method. Let ε1 denote a given precision in the construction of QTT-format and TT-

rounding, and ε2 denote the error (in the sense of Frobenius norm) of operator (τA + I)
∆T
τ

between the FD matrix and QTT-format approximation matrix, respectively.

We first analyze the convergence of the QTT method to FD scheme. Note that the QTT

method gives approximate solutions only at time tj, j = 0, 1, · · · , Nt. Hence in the following

analysis, we only need U0
l,j and U

∆T
τ

l,j to denote the FD solutions at time tj−1, j = 1, ..., Nt

after the exponential transformation, and at time tj, j = 1, ..., Nt before the exponential

transformation, respectively.

Lemma 5.5. Let Û0
l,j and Û

∆T
τ

l,j denote the QTT solutions at time tj−1, j = 1, ..., Nt after the

exponential transformation, and at time tj, j = 1, ..., Nt before the exponential transformation,

respectively. We have the error estimate∣∣∣∣Û ∆T
τ

l,j − U
∆T
τ

l,j

∣∣∣∣
2
≤ (1 + ε2)c6

∣∣∣∣Û0
l,j − U0

l,j

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2
, (45)

where c6 =
∣∣∣∣(τA + I)

∆T
τ

∣∣∣∣
2
. Finally, we have the error estimate at the final time

∣∣∣∣Û ∆T
τ

l,Nt
− U

∆T
τ

l,Nt

∣∣∣∣
2
≤ cNt7

(
ε1
∣∣∣∣U ∆T

τ
l,0

∣∣∣∣
2

)
+

Nt∑
j=1

cNt−j7

(
(1 + ε2)ε1c6e

c2
∣∣∣∣U ∆T

τ
l,j−1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

)
, (46)

where c7 = (1 + ε2)(1 + ε1)c6e
c2.
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Proof. Notice that the online procedure, i.e., the Algorithm 2, is divided into two main parts

of computations. The first part is assimilating the observation data into the predicted solution

with a TT-rounding procedure afterward. By using the triangular inequality and stability of

the FD scheme, we easily obtain∣∣∣∣Û0
l,j+1 − U0

l,j+1

∣∣∣∣
2
≤
∣∣∣∣ ̂exp[hTj (ytj − ytj−1

)]Û
∆T
τ

l,j − exp[hTj (ytj − ytj−1
)]U

∆T
τ

l,j

∣∣∣∣
2
,

≤
∣∣∣∣ exp[hTj (ytj − ytj−1

)]
∣∣∣∣

2

(∣∣∣∣Û ∆T
τ

l,j − U
∆T
τ

l,j

∣∣∣∣
2

)
+(∣∣∣∣ exp[hTj (ytj − ytj−1

)]− ̂exp[hTj (ytj − ytj−1
)]
∣∣∣∣

2

)∣∣∣∣Û ∆T
τ

l,j

∣∣∣∣
2
,

≤ec2
∣∣∣∣Û ∆T

τ
l,j − U

∆T
τ

l,j

∣∣∣∣
2

+ ε1e
c2(
∣∣∣∣Û ∆T

τ
l,j − U

∆T
τ

l,j

∣∣∣∣
2

+
∣∣∣∣U ∆T

τ
l,j

∣∣∣∣
2
),

≤(1 + ε1)ec2
∣∣∣∣Û ∆T

τ
l,j − U

∆T
τ

l,j

∣∣∣∣
2

+ ε1e
c2
∣∣∣∣U ∆T

τ
l,j

∣∣∣∣
2
, (47)

where ̂exp[hTj (ytj − ytj−1
)] denotes the QTT-format of the vector exp[hTj (ytj − ytj−1

)].

The second part of computation is a matrix-vector multiplication in the QTT-format with

a TT-rounding procedure. By using the triangular inequality and the fact
∣∣∣∣M∣∣∣∣

2
≤
∣∣∣∣M∣∣∣∣

F

for any matrix M, we easily obtain∣∣∣∣Û ∆T
τ

l,j+1 − U
∆T
τ

l,j+1

∣∣∣∣
2
≤
∣∣∣∣ ̂

(τA + I)
∆T
τ Û0

l,j+1 − (τA + I)
∆T
τ U0

l,j+1

∣∣∣∣,
≤
∣∣∣∣(τA + I)

∆T
τ

∣∣∣∣
2

(∣∣∣∣Û0
l,j+1 − U0

l,j+1

∣∣∣∣
2

)
+
(∣∣∣∣(τA + I)

∆T
τ − ̂

(τA + I)
∆T
τ

∣∣∣∣
2

)∣∣∣∣Û0
l,j+1

∣∣∣∣
2
,

≤c6

∣∣∣∣Û0
l,j+1 − U0

l,j+1

∣∣∣∣
2

+ ε2c6

(∣∣∣∣Û0
l,j+1 − U0

l,j+1

∣∣∣∣
2

+
∣∣∣∣U0

l,j+1

∣∣∣∣
2

)
,

≤(1 + ε2)c6

∣∣∣∣Û0
l,j+1 − U0

l,j+1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j+1

∣∣∣∣
2
, (48)

where
̂

(τA + I)
∆T
τ is the QTT-format of the operator matrix (τA+I)

∆T
τ , and we have denoted

c6 =
∣∣∣∣(τA + I)

∆T
τ

∣∣∣∣
2
. The estimate (45) is proved. Combining the above two estimates (47)

and (48), we get∣∣∣∣Û ∆T
τ

l,j+1 − U
∆T
τ

l,j+1

∣∣∣∣
2
≤(1 + ε2)(1 + ε1)c6e

c2
∣∣∣∣Û ∆T

τ
l,j − U

∆T
τ

l,j

∣∣∣∣
2

+ (1 + ε2)ε1c6e
c2
∣∣∣∣U ∆T

τ
l,j

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j+1

∣∣∣∣
2
. (49)

We denote c7 = (1 + ε2)(1 + ε1)c6e
c2 for notational simplicity. Recursively using the above

estimate (49), we obtain

∣∣∣∣Û ∆T
τ

l,Nt
− U

∆T
τ

l,Nt

∣∣∣∣
2
≤ cNt7

(∣∣∣∣Û ∆T
τ

l,0 − U
∆T
τ

l,0

∣∣∣∣
2

)
+

Nt∑
j=1

cNt−j7

(
(1 + ε2)ε1c6e

c2
∣∣∣∣U ∆T

τ
l,j−1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

)
,

≤ cNt7

(
ε1
∣∣∣∣U ∆T

τ
l,0

∣∣∣∣
2

)
+

Nt∑
j=1

cNt−j7

(
(1 + ε2)ε1c6e

c2
∣∣∣∣U ∆T

τ
l,j−1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

)
,

(50)

which completes the proof.
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Remark 5.1. The estimate (46) reveals the dependence of the error of the QTT solution on

different parameters. Since
∣∣∣∣U ∆T

τ
·,j
∣∣∣∣

2
, j = 0, ...., Nt are bounded, given parameters c6, c7, and

Nt, one can choose ε1 and ε2 accordingly so that the error
∣∣∣∣Û ∆T

τ
l,Nt
− U

∆T
τ

l,Nt

∣∣∣∣
2

is small.

As an immediate result of Lemma 5.4 and Lemma 5.5, we can estimate the error between

the solution of the QTT method and the exact solution for the FKE (26) on each time interval

[tj−1, tj]. We provide such an estimate in the following lemma, of which the proof is a simple

application of the triangular inequality.

Lemma 5.6. Let Û
∆T
τ

l,j denote the solution of the QTT method and ũj(xl, tj) denote the exact

solution for FKE (26) on each time interval [tj−1, tj], respectively. We have the error estimate

∣∣∣∣Û ∆T
τ

l,j − ũj(xl, tj)
∣∣∣∣
∞ ≤(ε1 + ε1ε2 + ε2)c6

∣∣∣∣U0
l,j

∣∣∣∣
2

+
C(τ + h2)

dLf
. (51)

Proof. From the error estimate (35) in Lemma 5.4 and the estimate (45) in Lemma 5.5, and

the infinity norm of any vector is bounded by its 2-norm, we have∣∣∣∣Û ∆T
τ

l,j − ũj(xl, tj)
∣∣∣∣
∞ ≤

∣∣∣∣Û ∆T
τ

l,j − U
∆T
τ

l,j

∣∣∣∣
∞ + ||U

∆T
τ

l,j − ũj(xl, tj)||∞

≤(1 + ε2)c6

∣∣∣∣Û0
l,j − U0

l,j

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

+ e∆TdLf ||U0
l,j − ũj(xl, tj−1)||∞ +

C

dLf
(τ + h2). (52)

Since at each initial time tj1 the FD method uses the exact initial data ũj(xl, tj−1) to compute,

so we have ||U0
l,j − ũj(xl, tj−1)||∞ = 0. In addition, we have

∣∣∣∣Û0
l,j − U0

l,j

∣∣∣∣
2
≤ ε1

∣∣∣∣U0
l,j

∣∣∣∣
2
. Thus,

the error estimate in (51) is proved.

Now we are in a position to present the main result. Recall that u(x, t) denote the solution

of pathwise robust DMZ equation (21) on Ω × [0, T ], uNt(x, t) denote the solution of frozen

time equation (22) on Ω× [tNt−1, tNt ]. Let I denote an interpolation operator, which can be a

polynomial interpolation or spline interpolation, and let û(x, tj) = IÛ
∆T
τ

l,j denote the obtained

function based on the QTT solution.

Theorem 5.7. The QTT solution converges to the solution of the pathwise robust DMZ equa-

tion on a bounded domain in the sense of L1 norm. Specifically, we have the error estimate

as follows,

∣∣∣∣u(x, T )− exp(−h(x)TytNt−1
)û(x, tNt)

∣∣∣∣
L1 ≤

2c5

α + 1

Tα+1ec3T

Nt
α +

Cec2
( Cec2Nt+TdLf

dLf (ec2+∆TdLf − 1)
(τ + h2) + h2||∆ũNt(x, T )||L2

)
+

Cec2cNt7

(
ε1
∣∣∣∣U ∆T

τ
l,0

∣∣∣∣
2

)
+ Cec2

Nt∑
j=1

cNt−j7

(
(1 + ε2)ε1c6e

c2
∣∣∣∣U ∆T

τ
l,j−1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

)
. (53)
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Proof. By the triangle inequality, we split the error into three main parts∣∣∣∣u(x, T )− exp(−h(x)TytNt−1
)û(x, tNt)

∣∣∣∣
L1

≤
∣∣∣∣u(x, T )− uNt(x, T )

∣∣∣∣
L1 +

∣∣∣∣ exp(−h(x)TytNt−1
)ũNt(x, T )− exp(−h(x)TytNt−1

)IU
∆T
τ

l,Nt

∣∣∣∣
L1

+
∣∣∣∣ exp(−h(x)TytNt−1

)IU
∆T
τ

l,Nt
− exp(−h(x)TytNt−1

)IÛ
∆T
τ

l,Nt

∣∣∣∣
L1 ,

:=E1 + E2 + E3, (54)

where we have used the condition uNt(x, T ) = exp(−h(x)TytNt−1
)ũNt(x, T ) (see Eq.(27)). In

what follows, we shall estimate these three error terms separately.

From Prop.5.1, we know the error term E1 satisfies

E1 = ||u(x, T )− uNt(x, T )||L1 ≤ 2c5

α + 1

Tα+1ec3T

Nt
α . (55)

Then, we have the estimate for the error term E2 as follows,

E2 = || exp(−h(x)TytNt−1
)ũNt(x, T )− exp(−h(x)TytNt−1

)IU
∆T
τ

l,Nt
||L1

≤ec2||ũNt(x, T )− IU
∆T
τ

l,Nt
||L1

≤ec2
(
||IU

∆T
τ

l,Nt
− IũNt(xl, T )||L1 + ||IũNt(xl, T )− ũNt(x, T )||L1

)
≤Cec2

(
||U

∆T
τ

l,Nt
− ũNt(xl, T )||∞ + h2||∆ũNt(x, T )||L2

)
≤Cec2

( Cec2Nt+TdLf

dLf (ec2+∆TdLf − 1)
(τ + h2) + h2||∆ũNt(x, T )||L2

)
(56)

where C is a generic constant depending on Ω. Here we have used the fact that the norm of

the operator I is bounded since the function ũNt(x, T ) is smooth. In addition, the estimate

(36) in Lemma 5.4 is used.

Finally, we estimate the error term E3 and get∣∣∣∣ exp(−h(x)TytNt−1
)IÛ

∆T
τ

l,Nt
− exp(−h(x)TytNt−1

)IU
∆T
τ

l,Nt

∣∣∣∣
L1

≤ec2
∣∣∣∣IÛ ∆T

τ
l,Nt
− IU

∆T
τ

l,Nt

∣∣∣∣
L1 ≤ Cec2

∣∣∣∣Û ∆T
τ

l,Nt
− U

∆T
τ

l,Nt

∣∣∣∣
2

≤Cec2cNt7

(
ε1
∣∣∣∣U ∆T

τ
l,0

∣∣∣∣
2

)
+ Cec2

Nt∑
j=1

cNt−j7

(
(1 + ε2)ε1c6e

c2
∣∣∣∣U ∆T

τ
l,j−1

∣∣∣∣
2

+ ε2c6

∣∣∣∣U0
l,j

∣∣∣∣
2

)
(57)

where C is a constant depending on Ω and the estimate (46) in Lemma 5.5 is used. Combining

above formulas (55)(56)(57), we prove the statement in the theorem 5.7.

Remark 5.2. The accuracy of the QTT method in computing the the solution of pathwise

robust DMZ equation controlled by three components of approximations, i.e. E1, E2, and

E3. In practice, we can choose Nt, τ , h, ε1 and ε2 accordingly so that the error
∣∣∣∣u(x, T ) −

exp(−h(x)TytNt−1
)û(x, tNt)

∣∣∣∣
L1 is small.
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6. Numerical results

In this section, we are interested in investigating the approximation properties of our method

and computational savings over the existing methods, such as the FD method and particle

filter (PF) method. We shall carry out numerical experiments on two 3D NLF problems. The

definitions of these two NLF problems are given as follows,

Example 1: An almost linear problem This problem is modeled by a SDE in the Ito form

as follows, 

dx1 = −0.3x1 + dv1,

dx2 = −0.3x2 + dv2,

dx3 = −0.3x3 + dv3,

dy1 = (x2 + sin(x1))dt+ dw1,

dy2 = (x3 + sin(x2))dt+ dw2,

dy3 = (x1 + sin(x3))dt+ dw3.

(58)

where E[dvtdv
T
t ] = 1.5I3dt with v = [v1, v2, v3]T , E[dwtdw

T
t ] = I3dt with w = [w1, w2, w3]T ,

and I3 is the identity matrix of size 3× 3. The noise are independent Brownian motions. The

initial state is x(0) = [x1(0), x2(0), x3(0)]T = [0, 0, 0]T with x(t) = [x1(t), x2(t), x3(t)]T .

Example 2: A cubic sensor problem This problem is modeled by a SDE in the Ito form as

follows, 

dx1 = (−0.6x1 − 0.1x2)dt+ dv1,

dx2 = (−0.5x2 + 0.1x3)dt+ dv2,

dx3 = (−0.6x3 + 0.1x1)dt+ dv3,

dy1 = x3
2dt+ dw1,

dy2 = x3
3dt+ dw2,

dy3 = x3
1dt+ dw3,

(59)

where E[dvtdv
T
t ] = 1.5I3dt with v = [v1, v2, v3]T , E[dwtdw

T
t ] = I3dt with w = [w1, w2, w3]T , I3

is the identity matrix of size 3× 3. The initial state is x(0) = [x1(0), x2(0), x3(0)]T = [0, 0, 0]T

with x(t) = [x1(t), x2(t), x3(t)]T .

The total experimental time is T = 20s for both examples. The cubic sensor problem has

higher nonlinearity than the almost linear one. Thus, it is more difficult.

6.1. QTT-ranks in the spatial discretization

We consider the spatial discretization of operators on the 3D domain in the QTT-format.

We have shown that the exact QTT-decomposition of the discretized Laplace operator via

standard FD scheme and first partial derivative operator via central difference scheme have

low QTT-ranks. Hence, we mainly compute the QTT-ranks of the discretization of velocity

field f(x) = [f1(x), f2(x), f3(x)]T and function hTS−1h.
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Let us define the effective QTT-rank of a QTT-format as

reff :=

√
(r0n1 + rdnd)2 + 4(

∑d−1
k=2 nk)

∑d
k=1 rk−1nkrk − (r0n1 + rdnd)

2
∑d−1

k=2 nk
, (60)

where nk, rk representing mode sizes and QTT-ranks. Notice that nk = 2, k = 1, · · · , d, in the

QTT-format case. In Table 1 and Table 2, we show the effective QTT-rank for the Example

1 and Example 2, respectively. We observe a very slow grow in the effective QTT-rank with

respect to the degree of freedom in the spatial discretization.

N on each direction f1(x) f2(x) f3(x) hTS−1h

24 1.32 1.32 1.32 3.03

25 1.34 1.34 1.34 3.53

26 2.20 1.35 2.04 4.27

27 2.23 2.34 2.29 4.80

28 2.40 2.35 2.30 5.15

Table 1: Effective QTT-rank of the discretized functions on the spatial grid with a given precision 1× 10−12

in the almost linear problem.

N on each direction f1(x) f2(x) f3(x) hTS−1h

24 1.69 1.69 2.00 4.77

25 1.70 1.70 2.00 5.41

26 1.71 1.71 2.00 5.82

27 2.65 2.65 2.93 6.08

28 2.66 2.63 2.94 6.27

Table 2: Effective QTT-rank of the discretized functions on the spatial grid with a given precision 1× 10−12

in the cubic sensor problem.

In Table 3 and Table 4, we show the effective QTT-ranks of assembled tensors (τA + I)

and (τA + I)
∆T
τ that are pre-computed in the offline procedure; see Eq.(17) and Eq.(18). In

our experiments, we set ∆T = 0.05 and ∆T
τ

= 100 in Example 1 (∆T
τ

= 200 in Example 2).

Recall the ∆T is the time between two observations and τ is the time step in discretizing the

FKE (8). The time step τ in Example 1 and Example 2 is chosen in such a way that the

Courant-Friedrichs-Lewy (CFL) stability condition is satisfied. Note that the requirement of

a small enough τ makes the finite difference method expensive for solving high-dimensional

and/or nonlinear problems. While in our QTT method, the trouble caused by small τ is

avoided since we can compute (τA+ I)
∆T
τ and approximated it using the QTT method in the

offline procedure. Moreover, we can find that the accuracy of (τA+ I)
∆T
τ is bounded by ∆T

τ
ε,

if the TT-rounding precision ε is given.

From the results in Tables (1)-(2) and (3)-(4), we find that the QTT-ranks increase very

slowly when N increases. Hence, by extracting low-dimensional structures in the solution

space, the QTT method helps us alleviate the curse of dimensionality to a certain extent.
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spatial N on each direction Example 1 Example 2

24 15.56 15.42

25 16.65 16.31

26 19.56 17.25

27 22.17 22.37

28 22.96 22.87

Table 3: Effective QTT-rank of the assembled operator (τA + I) with a given precision 1× 10−12.

spatial N on each direction Example 1 Example 2

24 8.28 9.04

25 9.63 12.96

26 12.94 17.46

27 17.28 21.88

28 23.47 28.17

Table 4: Effective QTT-rank of the assembled operator (τA+I)
∆T
τ with a given TT-rounding precision 5×10−4

in Example 1 and 5× 10−5 in Example 2.

6.2. Comparison with existing methods

To compute the reference solution, we solve Eqns.(58) and (59) using Euler-Maruyama scheme

[17] with a fine time step, which generates two sequences Xti and Yti of length dt = 0.001 as

discrete real states at time ti = idt, i = 1, ..., 20000. We feed the observation Ytj into the online

procedure at each observation time tj = j∆T , i.e. only a subsequence Ytj of Yti is regarded as

observation sequence and utilized.

To solve the NLF problem in a real time manner, one need to solve the path-wise robust

DMZ equation associated with Eqns.(58) and (59). As such, one can solve the FKEs associated

with Eqns.(58) and (59) using a FD method. However, the FD method becomes expensive

when the dimension of the NLF problem increases. We shall show that the QTT method

provides considerable savings over the FD method.

For the FKE associated with the almost linear problem, we restrict the FKE on the domain

[−5, 5]3 and discretize the domain into 26 grids on each dimension. Thus the total degree of

freedom is 218. The initial distribution is assumed to be a Gaussian function, where the

corresponding unnormalized conditional density function is σ0(x) = exp(−4|x|2). The time

step is chosen to be τ = ∆T
100

so that the CFL stability condition is satisfied. Based on the

initial discretization of σ0(x), we implement the QTT method to solve the FKE simultaneously,

where we fix the TT-rounding precision to be ε = 5× 10−4.

Since Û
∆T
τ

l,j denotes the predicted solution of the QTT method at different time, which

approximates the unnormalized conditional density of the states x(t) = [x1(t), x2(t), x3(t)]T .

Thus, we can compute the state estimation results in three coordinates separately. Specifically,

we first compute the Hadamard product of Û
∆T
τ

l,j and the QTT-format of each coordinate. Then,

compute its total sum and divide it by the total sum of Û
∆T
τ

l,j . The results corresponding the
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FD method can be computed similarly.

In Fig.1, we show the state estimation results of the almost linear problem in three co-

ordinates separately. The CPU time of the FD method is 2052s, but the QTT method only

requires 15.19s. A significant computational saving is achieved by our method because most of

the operations in the QTT method only logarithmically depend on the total degree of freedom

and polynomially depend on the QTT-ranks, which are relatively small; see Tables (1)–(4).

The CPU time of the PF method is 17.36. The efficiency of the PF method is closely related

to the number of particles. In this example, we use 3000 particles to avoid explosion in the

tracking, which might happen frequently if only 2000 particles are used. In Fig.2, we show the

profile of the density function at time t = 10.
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Figure 1: Comparison of a trajectory of the almost linear problem obtained by using different methods.

-5

5

5

0

x
3

x
2

0

x
1

5

0

-5 -5

0

1

2

3

4

5

6

×10
-4

Figure 2: The estimations of density function at t = 10s in the almost linear problem.

For the FKE associated with the cubic sensor problem, we restrict the FKE on the domain

[−3, 3]3 and discretize the domain into 26 grids on each dimension. Thus, the total degree of

freedom is 218. The unnormalized conditional density function of the initial state is σ0(x) =

exp(−10(x4
1 + x4

2 + x4
3)). The time step is chosen to be τ = ∆T

200
, which is smaller than the
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first example, in order to satisfy the CFL stability condition. We fix a higher TT-rounding

precision ε = 5× 10−5 due to the higher nonlinearity in this example.

In Fig. 3, we show the estimation results of the cubic sensor problem in three coordinates

separately. The CPU time of the FD method is 4079s, while the QTT method is only 17.11s.

The time cost of offline computing of the QTT method is 17.35s. Even though the QTT-

format tensor constructor has linear dependence on the degree of freedom (see Prop.4.3), it

takes up a minor part of the total computational time. The CPU time of the PF is 29.45s. In

this example, we use 5000 particles to avoid explosion in the tracking. In Fig.4, we show the

profile of the density function at time t = 12s.

We repeat the experiment for Npath = 100 times and record the mean square errors (MSEs)

averaged over 100 sample paths. We find that the MSE between the QTT solution and the

FD solution is 0.007 in Example 1 and 0.023 in Example 2, respectively, which shows that FD

discretization of the unnormalized conditional density function has a low-rank structure and

such structure is approximated well in the QTT-format. Therefore, the QTT method gives a

very accurate approximation to the FD solution with considerable savings.
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Figure 3: Comparison of a trajectory of the cubic sensor problem obtained using different methods.

Remark 6.1. The PF method is a very popular method in solving NLF problem, which is

a Monte Carlo method and it requires a certain amount of sample to compute statistical

quantities. Since the PF method and our method are based on a totally different methodology,

we cannot reach a general conclusion about their performances for NLF problems.

In Fig.5, we show the convergence of the QTT method with respect to the TT-rounding

precision at discrete time points. We use the same settings in the spatial and temporal

discretization that were used in the experiments before and only change the TT-rounding

precision. We compare the estimated states obtained by the QTT method and FD method,

which provides the reference solution. One can see that when we decrease the TT-rounding

precision, the relative error of the QTT solution decreases accordingly, which agrees with our

convergence analysis. In practice, we choose the TT-rounding precision in such a way that we

can balance the accuracy and computational speed.

6.3. Verification of the computational complexity

In this subsection, we intend to verify the computational complexity studied in the Prop. 4.3.

Notice that the main computational load in the online procedure consists of two parts. The
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Figure 4: The estimations of density function at t = 12s in cubic sensor problem
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Figure 5: Error of estimated states between the QTT method and reference method under different TT-
rounding precision.

24



first part is O(d log2(N)r6), which comes from the QTT operations in solving the FKEs. It

polynomially depends on QTT-ranks and logarithmically depends on the degree of freedom.

Hence, the QTT method brings in significant savings for high-dimensional problems that have a

low-dimensional approximation. The second part of the computational load is O(Ndr2), which

comes from assimilating the observation data into the QTT solution and depends linearly on

the degree of freedom in the spatial discretization. We find that these two parts are comparable

in the 3D numerical experiments that were studied in this paper.

Let tFKE denote the CPU time in solving the FKE and tEXP is the CPU time in computing

the exponential transformation, i.e., assimilating the observation data, respectively. In Table

5, we show the computational time of the QTT method and FD method in solving the Example

1. The QTT-rank is the averaged effective QTT-rank of the FKE solution ũ at every time. We

find that the growth of computational complexity of the QTT method is significantly slower

than that of the FD method. When QTT operations part is dominant, i.e. tFKE > tEXP , the

QTT method can achieve almost logarithmic complexity with respect to the degree of freedom.

This numerical experiment shows that the QTT method can solving high-dimensional NLF

problems in a real time manner, while the FD method is too expensive. Notice that in Table

5, when N = 27 the FD method would cost about 10 hours of computation, which makes no

sense to do this experiment.

QTT method Finite difference

N tFKE tEXP QTT-rank tFKE tEXP
24 1.87 0.85 6.83 9.62 0.03

25 4.15 1.36 7.88 169 0.08

26 11.18 5.20 8.78 2802 0.65

27 27.49 46.28 8.89 − −

Table 5: CPU time(sec.) of the QTT method and finite difference method. N is the grid number in each
dimension.

7. Conclusions

In this paper, we develop an efficient numerical method to solve high-dimensional nonlinear

filtering (NLF) problems. Specifically, we use the tensor train decomposition method to solve

the forward Kolmogorov equation (FKE) arising from the NLF problem. Our method consists

of offline and online stages. In the offline stage, we use the finite difference method to discrete

the partial differential operators involved in the FKE and extract low-dimensional structures

in the solution space of the FKE using the tensor train decomposition method. In addition, we

approximate the evolution of the FKE operator using the tensor train decomposition method.

With the pre-computed and saved low-rank approximation tensors, we achieve fast computing

in the online stage given new observation data. Under some mild assumptions, we provide

convergence analysis for the proposed method. Our analysis result reveals different sources of

errors and provides some guidance on the implementation of our method so that the error is

controllable. Finally, we present numerical results to verify the efficiency and accuracy of the
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proposed method in solving 3D NLF problems. Numerical results show that the solutions of the

FKEs indeed have certain low-dimensional structures. By using the tensor train decomposition

method to extract the low-dimensional structures in the solution space of the FKE, we succeed

in solving the high-dimensional NLF problems in a real-time manner.

There are two directions we want to explore in our future work. First, we are interested in

developing efficient numerical methods for high-dimensional NLF problems (with d > 3), which

will be reported in our subsequent work. In addition, we will develop numerical methods to

solve NLF problems, where the drift and observation functions are time-dependent. This type

of problem is more difficult since the potential low-dimensional structures in the solution space

may vary with respect to time. One may need to develop some dynamically low-dimensional

approximation methods to address this issue; see e.g. [5, 6].
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