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Abstract

Given a multigraph G = (V,E), the edge-coloring problem (ECP) is to color the edges of
G with the minimum number of colors so that no two adjacent edges have the same color.
This problem can be naturally formulated as an integer program, and its linear programming
relaxation is called the fractional edge-coloring problem (FECP). In the literature, the optimal
value of ECP (resp. FECP) is called the chromatic index (resp. fractional chromatic index)
of G, denoted by χ′(G) (resp. χ∗(G)). Let ∆(G) be the maximum degree of G and let

Γ(G) = max
{2|E(U)|

|U | − 1
: U ⊆ V, |U | ≥ 3 and odd

}

,

where E(U) is the set of all edges of G with both ends in U . Clearly, max{∆(G), ⌈Γ(G)⌉} is
a lower bound for χ′(G). As shown by Seymour, χ∗(G) = max{∆(G), Γ(G)}. In the 1970s
Goldberg and Seymour independently conjectured that χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}.
Over the past four decades this conjecture, a cornerstone in modern edge-coloring, has been
a subject of extensive research, and has stimulated a significant body of work. In this paper
we present a proof of this conjecture. Our result implies that, first, there are only two
possible values for χ′(G), so an analogue to Vizing’s theorem on edge-colorings of simple
graphs, a fundamental result in graph theory, holds for multigraphs; second, although it
is NP -hard in general to determine χ′(G), we can approximate it within one of its true
value, and find it exactly in polynomial time when Γ(G) > ∆(G); third, every multigraph G
satisfies χ′(G) − χ∗(G) ≤ 1, so FECP has a fascinating integer rounding property.
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†The third author was supported in part by the Research Grants Council of Hong Kong.
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1 Introduction

Given a multigraph G = (V,E), the edge-coloring problem (ECP) is to color the edges of G with
the minimum number of colors so that no two adjacent edges have the same color. Its optimal
value is called the chromatic index of G, denoted by χ′(G). In addition to its great theoretical
interest, ECP arises in a variety of applications, so it has attracted tremendous research efforts
in several fields, such as combinatorial optimization, theoretical computer science, and graph
theory. Holyer [15] proved that it is NP -hard in general to determine χ′(G), even when restricted
to a simple cubic graph, so there is no efficient algorithm for solving ECP exactly unlessNP = P ,
and hence the focus of extensive research has been on near-optimal solutions to ECP or good
estimates of χ′(G).

Let ∆(G) be the maximum degree of G. Clearly, χ′(G) ≥ ∆(G). There are two classical

upper bounds on the chromatic index: the first of these, χ′(G) ≤ ⌊3∆(G)
2 ⌋, was established by

Shannon [35] in 1949, and the second, χ′(G) ≤ ∆(G) + µ(G), where µ(G) is the maximum
multiplicity of edges in G, was proved independently by Vizing [38] and Gupta [11] in the 1960s.
This second result is widely known as Vizing’s theorem, which is particularly appealing when
applied to a simple graph G, because it reveals that χ′(G) can take only two possible values:
∆(G) and ∆(G)+1. Nevertheless, in the presence of multiple edges, the gap between χ′(G) and
these three bounds can be arbitrarily large. Therefore it is desirable to find some other graph
theoretic parameters connected to the chromatic index.

Observe that each color class in an edge-coloring of G is a matching, so it contains at most
(|U | − 1)/2 edges in E(U) for any U ⊆ V with |U | odd, where E(U) is the set of all edges of G
with both ends in U . Hence the density of G, defined by

Γ(G) = max
{2|E(U)|

|U | − 1
: U ⊆ V, |U | ≥ 3 and odd

}

,

provides another lower bound for χ′(G). It follows that χ′(G) ≥ max{∆(G), Γ(G)}.
To facilitate better understanding of the parameter max{∆(G), Γ(G)}, let A be the edge-

matching incidence matrix of G. Then ECP can be naturally formulated as an integer program,
whose linear programming (LP) relaxation is exactly as given below:

Minimize 1Tx
subject to Ax = 1

x ≥ 0.

This linear program is called the fractional edge-coloring problem (FECP), and its optimal value
is called the fractional chromatic index of G, denoted by χ∗(G). As shown by Seymour [34] using
Edmonds’ matching polytope theorem [7], it is always true that χ∗(G) = max{∆(G), Γ(G)}.
Thus the preceding inequality actually states that χ′(G) ≥ χ∗(G).

As χ′(G) is integer-valued, we further obtain χ′(G) ≥ max{∆(G), ⌈Γ(G)⌉}. How good is
this bound? In the 1970s Goldberg [9] and Seymour [34] independently made the following
conjecture.

Conjecture 1.1. Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}.

2



Let r be a positive integer. A multigraph G = (V,E) is called an r-graph if G is regular
of degree r and for every X ⊆ V with |X| odd, the number of edges between X and V − X
is at least r. Note that if G is an r-graph, then |V (G)| is even and Γ(G) ≤ r. Seymour [34]
also proposed the following weaker version of Conjecture 1.1, which amounts to saying that
χ′(G) ≤ max{∆(G), ⌈Γ(G)⌉} + 1 for any multigraph G.

Conjecture 1.2. Every r-graph G satisfies χ′(G) ≤ r + 1.

The following conjecture was posed by Gupta [11] in 1967 and can be deduced from Conjec-
ture 1.1, as verified by Scheide [30].

Conjecture 1.3. Let G be a multigraph with µ(G) = µ, such that ∆(G) cannot be expressed in
the form 2pµ− q, where q ≥ 0 and p > ⌊(q + 1)/2⌋. Then χ′(G) ≤ ∆(G) + µ(G)− 1.

A multigraph G is called critical if χ′(H) < χ′(G) for any proper subgraph H of G. In
edge-coloring theory, critical multigraphs are of special interest, because they have much more
structural properties than arbitrary multigraphs. The following two conjectures are due to
Jakobsen [16, 17] and were proved by Andersen [1] to be weaker than Conjecture 1.1.

Conjecture 1.4. Let G be a critical multigraph with χ′(G) ≥ ∆(G) + 2. Then G contains an
odd number of vertices.

Conjecture 1.5. Let G be a critical multigraph with χ′(G) > m∆(G)+(m−3)
m−1 for an odd integer

m ≥ 3. Then G has at most m− 2 vertices.

Motivated by Conjecture 1.1, Hochbaum, Nishizeki, and Shmoys [14] formulated the following
conjecture concerning the approximability of ECP.

Conjecture 1.6. There is a polynomial-time algorithm that colors the edges of any multigraph
G using at most χ′(G) + 1 colors.

Over the past four decades Conjecture 1.1 has been a subject of extensive research, and has
stimulated a significant body of work, with contributions from many researchers; see McDonald
[23] for a survey on this conjecture and Stiebitz et al. [36] for a comprehensive account of
edge-colorings.

Several approximate results state that χ′(G) ≤ max{∆(G) + ρ(G), ⌈Γ(G)⌉}, where ρ(G) is
a positive number depending on G. Asymptotically, Kahn [19] showed that ρ(G) = o(∆(G)).

Scheide [31] and Chen, Yu, and Zang [5] independently proved that ρ(G) ≤
»

∆(G)/2. Chen

et al. [3] improved this to ρ(G) ≤ 3
»

∆(G)/2. Recently, Chen and Jing [4] further strengthened

this as ρ(G) ≤ 3
»

∆(G)/4.

There is another family of results, asserting that χ′(G) ≤ max{m∆(G)+(m−3)
m−1 , ⌈Γ(G)⌉}, for

increasing values of m. Such results have been obtained by Andersen [1] and Goldberg [9] for
m = 5, Andersen [1] for m = 7, Goldberg [10] and Hochbaum, Nishizeki, and Shmoys [14] for
m = 9, Nishizeki and Kashiwagi [25] and Tashkinov [37] for m = 11, Favrholdt, Stiebitz, and
Toft [8] for m = 13, Scheide [31] for m = 15, Chen et al. [3] for m = 23, and Chen and Jing [4]
for m = 39. It is worthwhile pointing out that, when ∆(G) ≤ 39, the validity of Conjecture 1.1

follows instantly from Chen and Jing’s result [4], because 39∆(G)+36
38 < ∆(G) + 2.
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Haxell and McDonald [13] obtained a different sort of approximation to Conjecture 1.1:

χ′(G) ≤ max{∆(G) + 2
»

µ(G) log ∆(G), ⌈Γ(G)⌉}. Another way to obtain approximations for
Conjecture 1.1 is to incorporate the order n of G (that is, number of vertices) into a bound. In

this direction, Plantholt [28] proved that χ′(G) ≤ max{∆(G), ⌈Γ(G)⌉ + 1 +
»

n log(n/6)} for
any multigraph G with ever order n ≥ 572. In [29], he established an improved result that is
applicable to all multigraphs.

Marcotte [22] showed that χ′(G) = max{∆(G), ⌈Γ(G)⌉} for any multigraph G with no
K−

5 -minor, thereby confirming Conjecture 1.1 for this multigraph class. Recently, Haxell, Kriv-
elevich, and Kronenberg [12] established Conjecture 1.1 for random multigraphs.

The purpose of this paper is to present a proof of the Goldberg-Seymour conjecture.

Theorem 1.1. Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}.

As stated before, Conjectures 1.2-1.5 are all weaker than the Goldberg-Seymour conjecture,
so the truth of them follows from Theorem 1.1 as corollaries.

Theorem 1.2. Every r-graph G satisfies χ′(G) ≤ r + 1.

Theorem 1.3. Let G be a multigraph with µ(G) = µ, such that ∆(G) cannot be expressed in
the form 2pµ− q, where q ≥ 0 and p > ⌊(q + 1)/2⌋. Then χ′(G) ≤ ∆(G) + µ(G)− 1.

Theorem 1.4. Let G be a critical multigraph with χ′(G) ≥ ∆(G) + 2. Then G contains an odd
number of vertices.

Theorem 1.5. Let G be a critical multigraph with χ′(G) > m∆(G)+(m−3)
m−1 for an odd integer

m ≥ 3. Then G has at most m− 2 vertices.

We have seen that FECP is intimately tied to ECP. For any multigraph G, the fractional
chromatic index χ∗(G) = max{∆(G), Γ(G)} can be determined in polynomial time by combining
the Padberg-Rao separation algorithm for b-matching polyhedra [26] (see also [21, 27]) with
binary search. In [6], Chen, Zang, and Zhao designed a combinatorial polynomial-time algorithm
for finding the density Γ(G) of any multigraph G, thereby resolving a problem posed in both
Stiebitz et al. [36] and Jensen and Toft [18]. Nemhauser and Park [24] observed that FECP can
be solved in polynomial time by an ellipsoid algorithm, because the separation problem of its LP
dual is exactly the maximum-weight matching problem (see also Schrijver [33], Theorem 28.6
on page 477). In [6], Chen, Zang, and Zhao devised a combinatorial polynomial-time algorithm
for FECP as well.

We believe that our proof of Theorem 1.1 can be adapted to yield a polynomial-time algo-
rithm for finding an edge-coloring of any multigraph G with at most max{∆(G) + 1, ⌈Γ(G)⌉}
colors, and we are working on the design of this algorithm. A successful implementation would
lead to an affirmative answer to Conjecture 1.6 as well.

Some remarks may help to put Theorem 1.1 in proper perspective.
First, by Theorem 1.1, there are only two possible values for the chromatic index of a

multigraph G: max{∆(G), ⌈Γ(G)⌉} and max{∆(G)+1, ⌈Γ(G)⌉}. Thus an analogue to Vizing’s
theorem on edge-colorings of simple graphs, a fundamental result in graph theory, holds for
multigraphs.
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Second, Theorem 1.1 exhibits a dichotomy on edge-coloring: While Holyer’s theorem [15]
tells us that it is NP -hard to determine χ′(G), we can approximate it within one of its true
value, because max{∆(G) + 1, ⌈Γ(G)⌉} − χ′(G) ≤ 1. Furthermore, if Γ(G) > ∆(G), then
χ′(G) = ⌈Γ(G)⌉, so it can be found in polynomial time [6, 26].

Third, by Theorem 1.1 and aforementioned Seymour’s theorem, every multigraph G = (V,E)
satisfies χ′(G)− χ∗(G) ≤ 1, which can be naturally extended to the weighted case. Let w(e) be
a nonnegative integral weight on each edge e ∈ E and let w = (w(e) : e ∈ E). The chromatic
index of (G,w), denoted by χ′

w(G), is the minimum number of matchings in G such that each
edge e is covered exactly w(e) times by these matchings, and the fractional chromatic index of
(G,w), denoted by χ∗

w(G), is the optimal value of the following linear program:

Minimize 1Tx
subject to Ax = w

x ≥ 0,

where A is again the edge-matching incidence matrix of G. Clearly, χ′
w(G) is the optimal value

of the corresponding integer program. Let Gw be obtained from G by replacing each edge e with
w(e) parallel edges between the same ends. It is then routine to check that χ′

w(G) = χ′(Gw)
and χ∗

w(G) = χ∗(Gw). So the inequality χ′
w(G) − χ∗

w(G) ≤ 1 holds for all nonnegative integral
weight functions w, and hence FECP has a fascinating integer rounding property (see Schrijver
[32, 33]).

So far the most powerful and sophisticated technique for multigraph edge-coloring is the
method of Tashkinov trees [37], which generalizes the earlier methods of Vizing fans [38] and
Kierstead paths [20]. (These methods are named after the authors who invented them, respec-
tively.) Most approximate results described above Theorem 1.1 were obtained by using the
method of Tashkinov trees. As remarked by McDonald [23], the Goldberg-Seymour conjecture
and ideas culminating in this method are two cornerstones in modern edge-coloring. Never-
theless, this method suffers some theoretical limitation when applied to prove the conjecture;
the reader is referred to Asplund and McDonald [2] for detailed information. Despite various
attempts to extend the Tashkinov trees (see, for instance, [3, 4, 5, 31, 36]), the difficulty en-
countered by the method remains unresolved. Even worse, new problem emerges: it becomes
very difficult to preserve the structure of an extended Tashkinov tree under Kempe changes (the
most useful tool in edge-coloring theory). In this paper we introduce a new type of extended
Tashkinov trees and develop an effective control mechanism over Kempe changes, which can
overcome all the aforementioned difficulties.

The remainder of this paper is organized as follows. In Section 2, we introduce some basic
concepts and techniques of edge-coloring theory, and exhibit some important properties of stable
colorings. In Section 3, we define the extended Tashkinov trees to be employed in subsequent
proof, and give an outline of our proof strategy. In Section 4, we establish some auxiliary results
concerning the extended Tashkinov trees and stable colorings, which ensure that this type of
trees is preserved under some restricted Kempe changes. In Section 5, we develop an effective
control mechanism over Kempe changes, the so-called good hierarchy of an extended Tashkinov
tree; our proof relies heavily on this novel recoloring technique. In Section 6, we derive some
properties satisfied by the good hierarchies introduced in the preceding section. In Section 7,
we present the last step of our proof based on these good hierarchies.
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2 Preliminaries

This section presents some basic definitions, terminology, and notations used in our paper, along
with some important properties and results.

2.1 Terminology and Notations

Let G = (V,E) be a multigraph. For each X ⊆ V , let G[X] denote the subgraph of G induced
by X, and let G −X denote G[V −X]; we write G − x for G −X if X = {x}. Moreover, we
use ∂(X) to denote the set of all edges with precisely one end in X, and write ∂(x) for ∂(X) if
X = {x}. For each pair x, y ∈ V , let E(x, y) denote the set of all edges between x and y. As it
is no longer appropriate to represent an edge f between x and y by xy in a multigraph, we write
f ∈ E(x, y) instead. For each subgraph H of G, let V (H) and E(H) denote the vertex set and
edge set of H, respectively, let |H| = |V (H)|, and let G[H] = G[V (H)] and ∂(H) = ∂(V (H)).

Let e be an edge of G. A tree sequence with respect to G and e is a sequence T =
(y0, e1, y1, . . . , ep, yp) with p ≥ 1, consisting of distinct edges e1, e2, . . . , ep and distinct vertices
y0, y1, . . . , yp, such that e1 = e and each edge ej with 1 ≤ j ≤ p is between yj and some yi with
0 ≤ i < j. Given a tree sequence T = (y0, e1, y1, . . . , ep, yp), we can naturally associate a linear
order ≺ with its vertices, such that yi ≺ yj if i < j. We write yi � yj if i ≤ j. This linear order
will be used repeatedly in subsequent sections. For each vertex yj of T with j ≥ 1, let T (yj)
denote (y0, e1, y1, . . . , ej , yj). Clearly, T (yj) is also a tree sequence with respect to G and e. We
call T (yj) the segment of T induced by yj. Let T1 and T2 be two tree sequences with respect to
G and e. We write T2 − T1 for E[T2]− E[T1], write T1 ⊆ T2 if T1 is a segment of T2, and write
T1 ⊂ T2 if T1 is a proper segment of T2; that is, T1 ⊆ T2 and T1 6= T2.

A k-edge-coloring of G is an assignment of k colors, 1, 2, . . . , k, to the edges of G so that no
two adjacent edges have the same color. By definition, the chromatic index χ′(G) of G is the
minimum k for which G has a k-edge-coloring. We use [k] to denote the color set {1, 2, . . . , k},
and use Ck(G) to denote the set of all k-edge-colorings of G. Note that every k-edge-coloring of
G is a mapping from E to [k].

Let ϕ be a k-edge-coloring of G. For each α ∈ [k], the edge set Eϕ,α = {e ∈ E : ϕ(e) = α} is
called a color class, which is a matching in G. For any two distinct colors α and β in [k], let H
be the spanning subgraph of G with E(H) = Eϕ,α ∪Eϕ,β. Then each component of H is either
a path or an even cycle; we refer to such a component as an (α, β)-chain with respect to ϕ, and
also call it an (α, β)-path (resp. (α, β)-cycle) if it is a path (resp. cycle). We use Pv(α, β, ϕ) to
denote the unique (α, β)-chain containing each vertex v. Clearly, for any two distinct vertices
u and v, either Pu(α, β, ϕ) and Pv(α, β, ϕ) are identical or are vertex-disjoint. Let C be an
(α, β)-chain with respect to ϕ, and let ϕ′ be the k-edge-coloring arising from ϕ by interchanging
α and β on C. We say that ϕ′ is obtained from ϕ by recoloring C, and write ϕ′ = ϕ/C. This
operation is called a Kempe change.

Let F be an edge subset of G. As usual, G− F stands for the multigraph obtained from G
by deleting all edges in F ; we write G− f for G− F if F = {f}. Let π ∈ Ck(G− F ). For each
K ⊆ E, define π(K) = ∪e∈K−F π(e). For each v ∈ V , define

π(v) = π(∂(v)) and π(v) = [k]− π(v).
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We call π(v) the set of colors present at v and call π(v) the set of colors missing at v. For each
X ⊆ V , define

π(X) = ∪v∈X π(v).

We call X elementary with respect to π if π(u)∩π(v) = ∅ for any two distinct vertices u, v ∈ X.
We call X closed with respect to π if π(∂(X)) ∩ π(X) = ∅; that is, no missing coloring of X
appears on the edges in ∂(X). Furthermore, we call X strongly closed with respect to π if X is
closed with respect to π and π(e) 6= π(f) for any two distinct colored edges e, f ∈ ∂(X). For
each subgraph H of G, write π(H) for π(V (H)), and write π〈H〉 for π(E(H)). Moreover, define

∂π,α(H) = {e ∈ ∂(H) : π(e) = α},

and define

I[∂π,α(H)] = {v ∈ V (H) : v is incident with an edge in ∂π,α(H)}.

For an edge e ∈ ∂(H), we call its end in (resp. outside) H the in-end (resp. out-end) relative
to H. Thus I[∂π,α(H)] consists of all in-ends (relative to H) of edges in ∂π,α(H). A color α is
called a defective color of H with respect to π if |∂π,α(H)| ≥ 2. A color α ∈ π(H) is called closed
in H under π if ∂π,α(H) = ∅. For convenience, we say that H is closed (resp. strongly closed)
with respect to π if V (H) is closed (resp. strongly closed) with respect to π. Let α and β be two
colors that are not assigned to ∂(H) under π. We use π/(G−H,α, β) to denote the coloring π′

obtained from π by interchanging α and β in G − V (H); that is, for any edge f in G− V (H),
if π(f) = α then π′(f) = β, and if π(f) = β then π′(f) = α. Obviously, π′ ∈ Ck(G− F ).

2.2 Elementary Multigraphs

Let G = (V,E) be a multigraph. We call G an elementary multigraph if χ′(G) = ⌈Γ(G)⌉. With
this notion, Conjecture 1.1 can be rephrased as follows.

Conjecture 2.1. Every multigraph G with χ′(G) ≥ ∆(G) + 2 is elementary.

Recall that G is critical if χ′(H) < χ′(G) for any proper subgraph H of G. As pointed
out by Stiebitz et al. [36] (see page 7), to prove Conjecture 2.1, it suffices to consider critical
multigraphs. To see this, let G be an arbitrary multigraph with χ′(G) ≥ ∆(G) + 2. Then G
contains a critical multigraph H with χ′(H) = χ′(G), which implies that χ′(H) ≥ ∆(H) + 2.
Note that ifH is elementary, then so isG, because ⌈Γ(G)⌉ ≤ χ′(G) = χ′(H) = ⌈Γ(H)⌉ ≤ ⌈Γ(G)⌉.
Thus both inequalities hold with equalities, and hence χ′(G) = ⌈Γ(G)⌉.

To prove Conjecture 1.1, we shall actually establish the following statement.

Theorem 2.1. Every critical multigraph G with χ′(G) ≥ ∆(G) + 2 is elementary.

In our proof we shall appeal to the following theorem, which reveals some intimate connection
between elementary multigraphs and elementary sets. This result is implicitly contained in
Andersen [1] and Goldberg [10], and explicitly proved in Stiebitz et al. [36] (see Theorem 1.4 on
page 8).

Theorem 2.2. Let G = (V,E) be a multigraph with χ′(G) = k+1 for an integer k ≥ ∆(G)+1.
If G is critical, then the following conditions are equivalent:
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(i) G is an elementary multigraph.

(ii) For each edge e ∈ E and each coloring ϕ ∈ Ck(G− e), the vertex set V is elementary with
respect to ϕ.

(iii) There exists an edge e ∈ E and a coloring ϕ ∈ Ck(G − e), such that the vertex set V is
elementary with respect to ϕ.

(iv) There exists an edge e ∈ E, a coloring ϕ ∈ Ck(G− e), and a subset X of V , such that X
contains both ends of e, and X is elementary as well as strongly closed with respect to ϕ.

2.3 Stable Colorings

In this subsection, we assume that T is a tree sequence with respect to a multigraph G = (V,E)
and an edge e, C is a subset of [k], and ϕ is a coloring in Ck(G− e), where k ≥ ∆(G) + 1.

A coloring π ∈ Ck(G − e) is called a (T,C, ϕ)-stable coloring if the following two conditions
are satisfied:

(i) π(f) = ϕ(f) for any f ∈ E incident to T with ϕ(f) ∈ ϕ(T ) ∪ C; and

(ii) π(v) = ϕ(v) for any v ∈ V (T ).

By convention, π(e) = ϕ(e) = ∅. From the definition we see that if ϕ〈T 〉 ⊆ ϕ(T ) ∪ C, then
π(f) = ϕ(f) for all edges f on T ; this special type of stable colorings will be our major concern.

In our proof we shall perform a sequence of Kempe changes so that the resulting colorings
are stable in some sense. The following lemma gives an equivalent definition of stable colorings.

Lemma 2.3. A coloring π ∈ Ck(G − e) is (T,C, ϕ)-stable iff the following two conditions are
satisfied:

(i’) π(f) = ϕ(f) for any f ∈ E incident to T with ϕ(f) ∈ ϕ(T ) ∪C or π(f) ∈ ϕ(T )∪C; and

(ii) π(v) = ϕ(v) for any v ∈ V (T ).

Proof. Note that condition (ii) described here is exactly the same as given in the definition
and that (i′) implies (i), so the “if” part is trivial. To establish the “only if” part, let f ∈ E be an
arbitrary edge incident to T with π(f) ∈ ϕ(T )∪C. We claim that ϕ(f) = π(f), for otherwise, let
v ∈ V (T ) be an end of f . By (ii), we have π(v) = ϕ(v). So π(v) = ϕ(v) and hence there exists
an edge g ∈ ∂(v) − {f} with ϕ(g) = π(f). It follows that ϕ(g) ∈ ϕ(T ) ∪ C. By (i), we obtain
π(g) = ϕ(g), which implies π(f) = π(g), contradicting the hypothesis that π ∈ Ck(G− e). Our
claim asserts that ϕ(f) = π(f) for any f ∈ E incident to T with π(f) ∈ ϕ(T ) ∪ C. Combining
this with (i), we see that (i′) holds.

Let us derive some properties satisfied by stable colorings.

Lemma 2.4. Being (T,C, ·)-stable is an equivalence relation on Ck(G− e).

Proof. From Lemma 2.3 it is clear that being (T,C, ·)-stable is reflexive, symmetric, and
transitive. So it defines an equivalence relation on Ck(G− e).

Let P be a path in G whose edges are colored alternately by α and β in ϕ, with |P | ≥ 2,
and let u and v be the ends of P with v ∈ V (T ). We say that P is a T -exit path with respect
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to ϕ if V (T ) ∩ V (P ) = {v} and ϕ(u) ∩ {α, β} 6= ∅; in this case, v is called a (T, ϕ, {α, β})-exit
and P is also called a (T, ϕ, {α, β})-exit path. Note that possibly ϕ(v) ∩ {α, β} = ∅.

Let f ∈ E(u, v) be an edge in ∂(T ) with v ∈ V (T ). We say that f is T ∨ C-nonextendable
with respect to ϕ if there exists a (T,C ∪{ϕ(f)}, ϕ)-stable coloring π and a color α ∈ π(v), such
that v is a (T, π, {α,ϕ(f)})-exit. Otherwise, we say that f is T ∨ C-extendable with respect to
ϕ.

Lemma 2.5. Suppose T is closed with respect to ϕ, and f ∈ E(u, v) is an edge in ∂(T ) with
v ∈ V (T ). If there exists a (T,C ∪ {ϕ(f)}, ϕ)-stable coloring π, such that π(u)∩ π(T ) 6= ∅, then
f is T ∨ C-nonextendable with respect to ϕ.

Proof. Let α ∈ π(u) ∩ π(T ) and β ∈ π(v). By the definition of stable colorings, we have
α ∈ ϕ(T ) and β ∈ ϕ(v). Since both α and β are closed in T under ϕ, they are also closed in T
under π by Lemma 2.3. Define π′ = π/(G − T, α, β). Clearly, π′ is a (T,C ∪ {ϕ(f)}, π)-stable
coloring. By Lemma 2.4, π′ is also a (T,C ∪ {ϕ(f)}, ϕ)-stable coloring. Since Pv(β, ϕ(f), π

′)
consists of a single edge f , it is a T -exit path with respect to π′. Hence f is T ∨C-nonextendable
with respect to ϕ.

Lemma 2.6. Suppose T is closed with respect to ϕ, and f ∈ E(u, v) is an edge in ∂(T ) with
v ∈ V (T ). If f is T ∨ C-nonextendable with respect to ϕ, then for any α ∈ ϕ(v) there exists a
(T,C ∪ {ϕ(f)}, ϕ)-stable coloring π, such that v is a (T, π, {α,ϕ(f)})-exit.

Proof. Since f is T ∨ C-nonextendable, by definition, there exist a (T,C ∪ {ϕ(f)}, ϕ)-
stable coloring ϕ′ and a color β ∈ ϕ(v), such that v is a (T, ϕ′, {β, ϕ(f)})-exit. Since both
α and β are closed in T under ϕ, they are also closed in T under ϕ′ by Lemma 2.3. Define
π = ϕ′/(G−T, α, β). Clearly, π is a (T,C ∪{ϕ(f)}, ϕ′)-stable coloring. By Lemma 2.4, π is also
a (T,C∪{ϕ(f)}, ϕ)-stable coloring. Note that Pv(α,ϕ(f), π) = Pv(β, ϕ(f), ϕ

′), so Pv(α,ϕ(f), π)
is a T -exit path with respect to π, and hence v is a (T, π, {α,ϕ(f)})-exit.

Lemma 2.7. Suppose T is closed but not strongly closed with respect to ϕ, with |V (T )| odd,
and suppose π is a (T,C, ϕ)-stable coloring. Then T is also closed but not strongly closed with
respect to π.

Proof. Let X = V (T ) and let t be the size of the set [k]−ϕ(X). Since π is a (T,C, ϕ)-stable
coloring, from Lemma 2.3 we deduce that T is closed with respect to π and that π(X) = ϕ(X)
(so [k]− π(X) is also of size t). By hypotheses, |V (T )| is odd and T is not strongly closed with
respect to ϕ. Thus under the coloring ϕ each color in [k]−ϕ(X) is assigned to at least one edge
in ∂(T ), and some color in [k]− ϕ(X) is assigned to at least two edges in ∂(T ). It follows that
|∂(T )| ≥ t+1. Note that under the coloring π only colors in [k]−π(X) can be assigned to edges
in ∂(T ), so some of these colors is used at least twice by the Pigeonhole Principle. Hence T is
not strongly closed with respect to π.

2.4 Tashkinov Trees

A multigraph G is called k-critical if it is critical and χ′(G) = k+1. Throughout this paper, by
a k-triple we mean a k-critical multigraph G = (V,E), where k ≥ ∆(G) + 1, together with an
uncolored edge e ∈ E and a coloring ϕ ∈ Ck(G− e); we denote it by (G, e, ϕ).
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Let (G, e, ϕ) be a k-triple. A Tashkinov tree with respect to e and ϕ is a tree sequence
T = (y0, e1, y1, . . . , ep, yp) with respect to G and e, such that for each edge ej with 2 ≤ j ≤ p,
there is a vertex yi with 0 ≤ i < j satisfying ϕ(ej) ∈ ϕ(yi).

The following theorem is due to Tashkinov [37]; its proof can also be found in Stiebitz et al.
[36] (see Theorem 5.1 on page 116).

Theorem 2.8. Let (G, e, ϕ) be a k-triple and let T be a Tashkinov tree with respect to e and ϕ.
Then V (T ) is elementary with respect to ϕ.

Let G = (V,E) be a critical multigraph G with χ′(G) ≥ ∆(G) + 2. For each edge e ∈ E
and each coloring ϕ ∈ Ck(G − e), there is a Tashkinov tree T with respect to e and ϕ. The
Tashkinov order of G, denoted by t(G), is the largest number of vertices contained in such a
Tashkinov tree. Scheide [31] (see Proposition 4.5) has established the following result, which
will be employed in our proof.

Theorem 2.9. Let G be a critical multigraph G with χ′(G) ≥ ∆(G) + 2. If t(G) < 11, then G
is an elementary multigraph.

The method of Tashkinov trees consists of modifying a given partial edge-coloring with
sequences of Kempe changes and resulting extensions (that is, coloring an edge e with a color
α, which is missing at both ends of e). When applied to prove Conjecture 1.1, the crux of
this method is to capture the density Γ(G) by exploring a sufficiently large Tashkinov tree (see
Theorem 2.8). However, this target may become unreachable when χ′(G) gets close to ∆(G),
even if we allow for an unlimited number of Kempe changes; such an example has been found
by Asplund and McDonald [2]. To circumvent this difficulty and to make this method work, we
shall introduce a new type of extended Tashkinov trees in this paper by using the procedure
described below.

Given a k-triple (G, e, ϕ) and a tree sequence T with respect to G and e, we may construct
a tree sequence T ′ = (T, e1, y1, . . . , ep, yp) from T by recursively adding edges e1, e2, . . . , ep and
vertices y1, y2, . . . , yp outside T , such that

• e1 is incident to T and each edge ei with 1 ≤ i ≤ p is between yi and V (T )∪{y1, y2, . . . , yi−1};
• for each edge ei with 1 ≤ i ≤ p, there is a vertex xi in V (T ) ∪ {y1, y2, . . . , yi−1}, satisfying

ϕ(ei) ∈ ϕ(xi).
Such a procedure is referred to as Tashkinov’s augmentation algorithm (TAA). We call T ′ a

closure of T under ϕ if it cannot grow further by using TAA (equivalently, T ′ becomes closed).
We point out that, although there might be several ways to construct a closure of T under ϕ,
the vertex set of these closures is unique.

3 Extended Tashkinov Trees

The purpose of this section is to present extended Tashkinov trees to be used in our proof and
to give an outline of our proof strategy.

Given a k-triple (G, e, ϕ), we first propose an algorithm for constructing a Tashkinov series,
which is a series of tuples (Tn, ϕn−1, Sn−1, Fn−1,Θn−1) for n = 1, 2, . . ., where

• ϕn−1 is the k-edge-coloring of G− e exhibited in iteration n− 1,
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• Tn is the tree sequence with respect to e and ϕn−1 constructed in iteration n− 1,
• Sn−1 consists of the connecting colors used in iteration n− 1 with |Sn−1| ≤ 2,
• Fn−1 consists of the connecting edge used in iteration n− 1 if n ≥ 2 and F0 = ∅, and
• Θn−1 ∈ {RE,SE,PE} if n ≥ 2, which stands for the extension type used in iteration

n− 1; we set Θ0 = ∅.
For ease of description, we make some preparations. Since each Tn is a tree sequence with

respect to G and e, the linear order ≺ defined in Subsection 2.1 is valid for Tn. By Tn + fn we
mean the tree sequence augmented from Tn by adding an edge fn. By a segment of a cycle we
mean a path contained in it.

Let Dn−1 be a certain subset of [k] and let π be a (Tn,Dn−1, ϕn−1)-stable coloring. We
use vπ,α to denote the maximum vertex in I[∂π,α(Tn)] in the order ≺ for each defective color α
of Tn with respect to π, and use vπ to denote the maximum vertex in the order ≺ among all
these vertices vπ,α. We reserve the symbol vn for the maximum vertex in the order ≺ among
all these vertices vπ, where π ranges over all (Tn,Dn−1, ϕn−1)-stable colorings. We also reserve
the symbol πn−1 for the corresponding π (that is, vn = vπn−1), and reserve fn ∈ E(un, vn) for
an edge in ∂(Tn) such that πn−1(fn) is a defective color with respect to πn−1. We call vn the
maximum defective vertex with respect to (Tn,Dn−1, ϕn−1).

(3.1) In our algorithm, there are three types of augmentations: revisiting extension (RE),
series extension (SE), and parallel extension (PE). Each iteration n (≥ 1) involves a special
vertex vn, which is called an extension vertex if Θn = SE and a supporting vertex if Θn = PE.

Algorithm 3.1

Step 0. Let ϕ0 = ϕ and let T1 be a closure of e under ϕ0, which is a closed Tashkinov tree with
respect to e and ϕ0. Set S0 = F0 = Θ0 = ∅ and set n = 1.

Step 1. If Tn is strongly closed with respect to ϕn−1, stop. Else, if there exists a subscript
h ≤ n − 1 with Θh = PE and Sh = {δh, γh}, such that Θi = RE for all i with h + 1 ≤ i ≤
n − 1, if any, and such that some (γh, δh)-cycle with respect to ϕn−1 contains both an edge
fn ∈ ∂ϕn−1,γh(Tn) and a segment L connecting V (Th) and vn with V (L) ⊆ V (Tn), where vn is
the end of fn in Tn, go to Step 2. Else, let Dn−1 = ∪i≤n−1Si − ϕn−1(Tn−1), where T0 = ∅. Let
vn, πn−1, and fn ∈ E(un, vn) be as defined above the algorithm, and let δn = πn−1(fn). If for
every (Tn,Dn−1∪{δn}, πn−1)-stable coloring σn−1, we have σn−1(un)∩σn−1(Tn) = ∅, go to Step
3. Else, go to Step 4.

Step 2. Let ϕn = ϕn−1, let Tn+1 be a closure of Tn + fn under ϕn, and let δn = δh, γn = γh,
Sn = {δn, γn}, Fn = {fn}, and Θn = RE. Set n = n + 1, return to Step 1. (We call this
augmentation a revisiting extension (RE), call fn an RE connecting edge, and call δn and
γn connecting colors. Note that vn is neither called an extension vertex nor called a supporting
vertex (see (3.1)).

Step 3. Let ϕn = πn−1, let Tn+1 be a closure of Tn+fn under ϕn, and let Sn = {δn}, Fn = {fn},
and Θn = SE. Set n = n+1, return to Step 1. (We call this augmentation a series extension
(SE), call fn an SE connecting edge, call δn a connecting color, and call vn an extension vertex.)

Step 4. Let An−1 be the set of all iterations i with 1 ≤ i ≤ n−1 such that Θi = PE and vi = vn.
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Let γn be a color in πn−1(vn)∩(∪i∈An−1Si) if An−1 6= ∅ (see (3.5) below), and a color in πn−1(vn)
otherwise. By Lemmas 2.5 and 2.6, there exists a (Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring π′

n−1,
such that vn is a (Tn, π

′
n−1, {γn, δn})-exit. Let ϕn = π′

n−1/Pvn(γn, δn, π
′
n−1), Sn = {δn, γn},

Fn = {fn}, and Θn = PE. Let Tn+1 be a closure of Tn under ϕn. Set n = n + 1, return to
Step 1. (We call this augmentation a parallel extension (PE), call fn a PE connecting edge,
call δn and γn connecting colors, and call vn a supporting vertex. Note that fn is not necessarily
contained in Tn+1.)

Throughout the remainder of this paper, we reserve all symbols used for the same usage as
in this algorithm. In particular, Dn = ∪i≤nSi − ϕn(Tn) (see Step 1) for n ≥ 0. So D0 = ∅.

To help understand the algorithm better, let us make a few remarks and offer some simple
observations.

(3.2) In our proof we shall restrict our attention to the case when |Tn| is odd (as we shall
see). Suppose Tn is not strongly closed with respect to ϕn−1 (see Step 1). Then, by Lemma 2.7,
Tn is closed but not strongly closed with respect to any (Tn,Dn−1, ϕn−1)-stable coloring. Thus
vn, πn−1, and fn involved in Step 1 are all well defined. It follows that at least one of RE, SE
and PE applies to each iteration, and hence the algorithm terminates only when Tn is strongly
closed with respect to ϕn−1, which contains the case when V (Tn) = V (G).

(3.3) As described in the algorithm, revisiting extension (RE) has priority over both series
and parallel extensions (SE and PE). If Θn = RE, then from Algorithm 3.1 we see that the
(γh, δh)-cycle with respect to ϕn−1 displayed in Step 1 must contain at least one edge in G[Th],
at least two boundary edges of Th colored with γh, and at least two boundary edges of Tn colored
with γh, because δh is a missing color in Th under both ϕh and ϕn−1.

(3.4) It is clear that δn is a defective color of Tn with respect to ϕn when Θn = SE or PE
(as |∂πn−1,δn(Tn)| ≥ 3 when |Tn| is odd), while γn is a defective color of Tn with respect to ϕn

when Θn = RE. Moreover, Dn−1 is the set of all connecting colors in ∪h≤n−1Sh that are not
missing in Tn−1 with respect to ϕn−1.

(3.5) As we shall prove in Lemma 3.3, if An−1 6= ∅ in Step 4, then πn−1(vn)∩ (∪i∈An−1Si) =
ϕn−1(vn)∩ (∪i∈An−1Si) contains precisely one color, so γn can be selected in a unique way. This
property will play an important role in our proof.

Lemma 3.2. For n ≥ 1, the following statements hold:

(i) ϕn−1(Tn) ∪Dn−1 ⊆ ϕn(Tn) ∪Dn ⊆ ϕn(Tn+1) ∪Dn.

(ii) For any edge f incident to Tn, if ϕn−1(f) ∈ ϕn−1(Tn) ∪ Dn−1, then ϕn(f) = ϕn−1(f),
unless Θn = PE and f = fn. So ϕn(f) ∈ ϕn(Tn)∪Dn provided that ϕn−1(f) ∈ ϕn−1(Tn)∪
Dn−1.

(iii) ϕn−1〈Tn〉 ⊆ ϕn−1(Tn) ∪ Dn−1 and ϕn〈Tn〉 ⊆ ϕn(Tn) ∪ Dn. So σn(f) = ϕn(f) for any
(Tn,Dn, ϕn)-stable coloring σn and any edge f on Tn.

(iv) If Θn = PE, then ∂ϕn,γn(Tn) = {fn}, and edges in ∂ϕn,δn(Tn) are all incident to V (Tn(vn)−
vn). Furthermore, each color in ϕn(Tn)− {δn} is closed in Tn under ϕn.

Proof. By definition, Dn−1 = ∪i≤n−1Si − ϕn−1(Tn−1). So ϕn−1(Tn) ∪Dn−1 = ϕn−1(Tn) ∪
[∪i≤n−1Si − ϕn−1(Tn−1)]. Since ϕn−1(Tn−1) ⊆ ϕn−1(Tn), we obtain

(1) ϕn−1(Tn) ∪Dn−1 = ϕn−1(Tn) ∪ (∪i≤n−1Si).
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Similarly, we can prove that
(2) ϕn(Tn) ∪Dn = ϕn(Tn) ∪ (∪i≤nSi).
(i) For any α ∈ ϕn−1(Tn), from Algorithm 3.1 and definition of stable colorings we see that

α ∈ ϕn(Tn), unless Θn = PE and α = γn; in this exceptional case, α ∈ Sn. So ϕn−1(Tn) ⊆
ϕn(Tn) ∪ Sn and hence ϕn−1(Tn) ∪ (∪i≤n−1Si) ⊆ ϕn(Tn)∪ (∪i≤nSi). It follows from (1) and (2)
that ϕn−1(Tn) ∪Dn−1 ⊆ ϕn(Tn) ∪Dn. Clearly, ϕn(Tn) ∪Dn ⊆ ϕn(Tn+1) ∪Dn.

(ii) Let f be an edge incident to Tn with ϕn−1(f) ∈ ϕn−1(Tn) ∪ Dn−1. If Θn = RE, then
ϕn = ϕn−1 by Step 1 of Algorithm 3.1, which implies ϕn(f) = ϕn−1(f). So we may assume
that Θn 6= RE. Let πn−1 be the (Tn,Dn−1, ϕn−1)-stable coloring as specified in Step 1 of
Algorithm 3.1. By the definition of stable colorings, we obtain πn−1(f) = ϕn−1(f). If Θn = SE,
then ϕn(f) = πn−1(f) by Step 3 of Algorithm 3.1. Hence ϕn(f) = ϕn−1(f). It remains to
consider the case when Θn = PE. Let π′

n−1 be the (Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring as
specified in Step 4 of Algorithm 3.1. By Lemma 2.4, π′

n−1 is (Tn,Dn−1, ϕn−1)-stable. Hence
π′
n−1(f) = ϕn−1(f). Since ϕn = π′

n−1/Pvn(δn, γn, π
′
n−1) and Pvn(δn, γn, π

′
n−1) contains only one

edge fn incident to Tn (see Step 4 of Algorithm 3.1), we have ϕn(f) = π′
n−1(f), unless f = fn.

It follows that ϕn(f) = ϕn−1(f), unless f = fn; in this exceptional case, ϕn−1(f) = δn and
ϕn(f) = γn ∈ Sn. Hence ϕn(f) ∈ ϕn−1(Tn) ∪Dn−1 ∪ Sn ⊆ ϕn(Tn) ∪Dn ∪ Sn = ϕn(Tn) ∪Dn by
(i) and (2), as desired.

(iii) Let us first prove the statement ϕn−1〈Tn〉 ⊆ ϕn−1(Tn) ∪ Dn−1 by induction on n. As
the statement holds trivially when n = 1, we proceed to the induction step and assume that the
statement has been established for n− 1; that is,

(3) ϕn−2〈Tn−1〉 ⊆ ϕn−2(Tn−1) ∪Dn−2.
By (3) and (ii) (with n − 1 in place of n), for each edge f on Tn−1 we have ϕn−1(f) ∈

ϕn−1(Tn−1) ∪Dn−1 ⊆ ϕn−1(Tn) ∪Dn−1. For each edge f ∈ Tn − Tn−1, from Algorithm 3.1 and
TAA we see that ϕn−1(f) ∈ Dn−1 if f is a connecting edge and ϕn−1(f) ∈ ϕn−1(Tn) otherwise.
Combining these observations, we obtain ϕn−1(f) ∈ ϕn−1(Tn) ∪ Dn−1. Hence ϕn−1〈Tn〉 ⊆
ϕn−1(Tn) ∪Dn−1, which together with (ii) implies ϕn〈Tn〉 ⊆ ϕn(Tn) ∪Dn.

It follows that for any edge f on Tn, we have ϕn(f) ∈ ϕn(Tn)∪Dn. Thus σn(f) = ϕn(f) for
any (Tn,Dn, ϕn)-stable coloring σn.

(iv) From the definitions of πn−1 and stable colorings, we see that edges in ∂πn−1,δn(Tn) are
all incident to V (Tn(vn)), and each color in πn−1(Tn) is closed in Tn under πn−1. So, by the
definitions of π′

n−1 and stable colorings, edges in ∂π′
n−1,δn

(Tn) are all incident to V (Tn(vn)), and

each color in π′
n−1(Tn) is closed in Tn under π′

n−1. Thus the desired statements follow instantly
from the definition of ϕn in Step 4.

Lemma 3.3. Let u be a vertex of Tn and let Bn−1 be the set of all iterations j with 1 ≤ j ≤ n−1,
such that Θj = PE and vj = u. Suppose Bn−1 = {i1, i2, . . . , ip}, where 1 ≤ i1 < i2 < . . . < ip ≤
n− 1. Then the following statements hold:

(i) ϕn−1(u) ∩ (∪j∈Bn−1Sj) = ϕip(u) ∩ (∪j∈Bn−1Sj) = {δip};

(ii) γi2 = δi1 , γi3 = δi2 , . . . , γip = δip−1 ; and

(iii) ϕi1−1(u) − {γi1} = ϕip(u) − {δip}. So ϕi1−1(u) = (ϕip(u) − {δip}) ∪ {γi1} and ϕip(u) =
(ϕi1−1(u)− {γi1}) ∪ {δip}.
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Proof. By the definition of Bn−1, for any iteration j with ip+1 ≤ j ≤ n− 1, if vj = u, then
Θj = RE or SE. So ϕn−1(u) = ϕip(u) by Algorithm 3.1 and the definition of stable colorings.
Thus, to prove (i), it suffices to show that ϕip(u) ∩ (∪j∈Bn−1Sj) = {δip}.

Set Ch = {i1, i2, . . . , ih} for 1 ≤ h ≤ p. Then Cp = Bn−1 and hence (i) is equivalent to
saying that

(i′) ϕip(u) ∩ (∪j∈CpSj) = {δip}.
Let us prove statements (i′), (ii), and (iii) simultaneously by induction on p.
From Step 4 and the definition of stable colorings, we see that γi1 ∈ πi1−1(u) = ϕi1−1(u),

δi1 /∈ πi1−1(u) = ϕi1−1(u), and ϕi1
(u) is obtained from ϕi1−1(u) by replacing γi1 with δi1 . So

ϕi1(u) ∩ (∪j∈C1Sj) = ϕi1(u) ∩ {γi1 , δi1} = {δi1} and ϕi1−1(u) − {γi1} = ϕi1(u) − {δi1}. Thus
both (i′) and (iii) hold for p = 1. For (ii), there is nothing to prove now.

Suppose we have established these statements for p−1. Let us proceed to the induction step
for p.

By the induction hypotheses on (i′) and (iii), we obtain the following two equalities:
(1) ϕip−1

(u) ∩ (∪j∈Cp−1Sj) = {δip−1} and
(2) ϕi1−1(u)− {γi1} = ϕip−1

(u)− {δip−1}.
From the definition of Bn−1, we see that for any iteration j with ip−1 + 1 ≤ j ≤ ip − 1, if

vj = u, then Θj = RE or SE. Thus, by Algorithm 3.1 and the definition of stable colorings, we
obtain ϕip−1

(u) = ϕip−1(u) = πip−1(u). According to Step 4 and using (1),
(3) γip = δip−1 ∈ ϕip−1

(u), δip /∈ ϕip−1
(u), and ϕip(u) is obtained from ϕip−1

(u) by replacing
γip with δip .

Clearly, (3) implies (ii) and the following equality:
(4) ϕip(u)− {δip} = ϕip−1

(u)− {δip−1}.
It follows from (2) and (4) that ϕi1−1(u)− {γi1} = ϕip(u)− {δip}, thereby proving (iii).

By (1), we have (ϕip−1
(u)−{δip−1})∩(∪j∈Cp−1Sj) = ∅. So (ϕip−1

(u)−{δip−1})∩(∪j∈CpSj) =
(ϕip−1

(u) − {δip−1}) ∩ Sip = (ϕip−1
(u) − {γip}) ∩ {γip , δip} = ∅, where last two equalities follow

from (3). Combining this observation with (4) yields ϕip(u)∩(∪j∈CpSj) = [(ϕip−1
(u)−{δip−1})∪

{δip}] ∩ (∪j∈CpSj) = {δip} ∩ (∪j∈CpSj) = {δip}. Hence (i′) is established.
Since γi1 ∈ ϕi1−1(u) and δip ∈ ϕip(u), from the equality ϕi1−1(u)−{γi1} = ϕip(u)−{δip}, we

immediately deduce that ϕi1−1(u) = (ϕip(u)− {δip}) ∪ {γi1} and ϕip(u) = (ϕi1−1(u)− {γi1}) ∪
{δip}.

Lemma 3.4. |Dn| ≤ n.

Proof. Recall that Dn = ∪i≤nSi − ϕn(Tn). For 1 ≤ i ≤ n, by Algorithm 3.1, we have
Si = {δi} if Θi = SE and Si = {δi, γi} otherwise.

To establish the desired inequality, we apply induction on n. Trivially, the statement holds
when n = 0, 1. So we proceed to the induction step, and assume that |Dn−1| ≤ n − 1 for some
n ≥ 2.

If Θn = RE, then ϕn = ϕn−1 and Sn = Sn−1 by Step 2 in Algorithm 3.1. So Dn ⊆ Dn−1

and hence |Dn| ≤ n− 1.
If Θn = SE, then Sn = {δn} and ϕn(Tn) = ϕn−1(Tn) by Step 3 in Algorithm 3.1 and the

definition of stable colorings. It follows that Dn ⊆ Dn−1 ∪ {δn}. Hence |Dn| ≤ |Dn−1|+ 1 ≤ n.
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It remains to consider the case when Θn = PE. By Step 4 in Algorithm 3.1 and the definition
of stable colorings, we obtain δn /∈ ϕn−1(Tn) and (ϕn−1(Tn)− {γn}) ∪ {δn} ⊆ ϕn(Tn). So

Dn = ∪i≤nSi − ϕn(Tn)

⊆ ∪i≤n−1Si ∪ {δn, γn} − [(ϕn−1(Tn)− {γn}) ∪ {δn}]

⊆ ∪i≤n−1Si ∪ {γn} − (ϕn−1(Tn)− {γn})

⊆ [∪i≤n−1Si − ϕn−1(Tn)] ∪ {γn}

⊆ Dn−1 ∪ {γn}.

Hence |Dn| ≤ |Dn−1|+ 1 ≤ n.

Lemma 3.5. Suppose Θn = PE (see Step 4). Let σn be a (Tn,Dn, ϕn)-stable coloring and let
σn−1 = σn/Pvn(γn, δn, σn). If Pvn(γn, δn, σn)∩Tn = {vn}, then σn−1 is (Tn,Dn−1 ∪{δn}, πn−1)-
stable and hence is (Tn,Dn−1, ϕn−1)-stable.

Proof. Let π′
n−1 be as specified in Step 4 of Algorithm 3.1. Recall that

(1) π′
n−1 is (Tn,Dn−1 ∪ {δn}, πn−1)-stable.

By definition, ϕn = π′
n−1/Pvn(γn, δn, π

′
n−1). So

(2) π′
n−1 = ϕn/Pvn(γn, δn, ϕn).

We propose to show that
(3) σn−1 is (Tn,Dn−1 ∪ {δn}, π′

n−1)-stable.
To justify this, note that σn(v) = ϕn(v) for all v ∈ V (Tn), because σn is a (Tn,Dn, ϕn)-stable

coloring. Thus, by the definition of σn−1 and (2), we obtain
(4) σn−1(v) = π′

n−1(v) for all v ∈ V (Tn).
Let f be an edge incident to Tn with π′

n−1(f) ∈ π′
n−1(Tn) ∪Dn−1 ∪ {δn}. By (1), we have

π′
n−1(f) ∈ πn−1(Tn) ∪ Dn−1 ∪ {δn}. Since πn−1 is (Tn,Dn−1, ϕn−1)-stable, we further obtain

π′
n−1(f) ∈ ϕn−1(Tn) ∪Dn−1 ∪ {δn}. So π′

n−1(f) ∈ ϕn(Tn) ∪Dn by Lemma 3.2(i). From Step 4
we see that

(5) π′
n−1(f) = ϕn(f) if f 6= fn, π

′
n−1(fn) = δn, and ϕn(fn) = γn.

So ϕn(f) ∈ ϕn(Tn) ∪ Dn. Hence σn(f) = ϕn(f), because σn is a (Tn,Dn, ϕn)-stable coloring.
From the definition of σn−1, we deduce that σn−1(f) = σn(f) if f 6= fn and σn−1(fn) = δn.
Combining these observations with (5) yields

(6) σn−1(f) = π′
n−1(f) for any edge f incident to Tn with π′

n−1(f) ∈ π′
n−1(Tn)∪Dn−1∪{δn}.

Thus (3) follows instantly from (4) and (6). Using (1), (3) and Lemma 2.4, we conclude
that σn−1 is (Tn,Dn−1 ∪ {δn}, πn−1)-stable. So σn−1 is (Tn,Dn−1, πn−1)-stable. Since πn−1

is (Tn,Dn−1, ϕn−1)-stable, from Lemma 2.4 it follows that σn−1 is (Tn,Dn−1, ϕn−1)-stable.

Let us now present a generalized version of Tashkinov trees to be used in our proof.

Definition 3.6. Let (G, e, ϕ) be a k-triple. A tree sequence T with respect to G and e is called an
extended Tashkinov tree (ETT) if there exists a Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) :
1 ≤ i ≤ n + 1} constructed from (G, e, ϕ) by using Algorithm 3.1, such that Tn ⊂ T ⊆ Tn+1,
where T0 = ∅.

As introduced in Subsection 2.1, by Tn ⊂ T ⊆ Tn+1 we mean that Tn is a proper segment of
T , and T is a segment of Tn+1.
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Observe that the extended Tashkinov tree T has a built-in ladder-like structure. So we
propose to call the sequence T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T the ladder of T , and call n the rung
number of T and denote it by r(T ). Moreover, we call (ϕ0, ϕ1, . . . , ϕn) the coloring sequence of
T , call ϕn the generating coloring of T , and call T the Tashkinov series corresponding to T .

In our proof we shall frequently work with stable colorings; the following concept will be
used to keep track of the structures of ETTs.

Definition 3.7. Let T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov se-
ries constructed from a k-triple (G, e, ϕ) by using Algorithm 3.1. A coloring σn ∈ Ck(G − e)
is called ϕn mod Tn if there exists an ETT T ∗ with corresponding Tashkinov series T ∗ =
{(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, satisfying σ0 ∈ Ck(G − e) and the following
conditions for all i with 1 ≤ i ≤ n:

• T ∗
i = Ti and

• σi is a (Ti,Di, ϕi)-stable coloring in Ck(G− e), where Di = ∪h≤iSh − ϕi(Ti).

We call T ∗ an ETT corresponding to (σn, Tn) (or simply corresponding to σn if no ambiguity
arises).

Remark. Comparing T ∗ with T , we see that T ∗
i+1 in T ∗ is obtained from Ti by using the same

connecting edge, connecting color, and extension type as Ti+1 in T for 1 ≤ i ≤ n. Furthermore,
T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T ∗ is the ladder of T ∗ and r(T ∗) = n. Since σi is a (Ti,Di, ϕi)-stable
coloring, by Lemma 3.2(iii), we have σi(f) = ϕi(f) for any edge f on Ti and 1 ≤ i ≤ n; this fact
will be used repeatedly in our paper.

To ensure that the structures of ETTs are preserved under taking stable colorings, we impose
some restrictions on such trees.

Definition 3.8. Let T be an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov
series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+1}. We say that T has themaximum property
(MP) under (ϕ0, ϕ1, . . . , ϕn) (or simply under ϕn if no ambiguity arises), if |T1| is maximum
over all Tashkinov trees T ′

1 with respect to an edge e′ ∈ E and a coloring ϕ′
0 ∈ Ck(G− e′), and

|Ti+1| is maximum over all (Ti,Di, ϕi)-stable colorings for any i with 1 ≤ i ≤ n − 1; that is,
|Ti+1| is maximum over all tree sequences T ′

i+1, which is a closure of Ti + fi (resp. Ti) under a
(Ti,Di, ϕi)-stable coloring ϕ′

i if Θi = RE or SE (resp. if Θi = PE), where fi is the connecting
edge in Fi.

At this point a natural question is to ask whether an ETT with sufficiently large size and
satisfying the maximum property can be constructed to fulfill our needs. We shall demonstrate
that it is indeed the case (see Lemma 3.11). The statement below follows instantly from the
above two definitions and Lemma 2.4 (the details can also be found in the proof of Lemma 3.11).

Lemma 3.9. Let T be an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov
series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+1}, let σn be a ϕn mod Tn coloring, and let
T ∗ be an ETT corresponding to (σn, Tn) (see Definition 3.7). If T satisfies MP under ϕn, then
T ∗ satisfies MP under σn.

The importance of the maximum property is revealed by the following statement to be
established: If T enjoys the maximum property under ϕn, then V (T ) is elementary with respect

16



to ϕn; Theorem 2.1 follows from it and Theorem 2.2 as a corollary. We shall prove this statement
by induction on the rung number r(T ). To carry out the induction step, we need several auxiliary
results concerning ETTs with the maximum property. Thus what we are going to establish is a
stronger version.

Let us define a few terms before presenting our theorem. For each v ∈ V (T ), we use m(v)
to denote the minimum subscript i such that v ∈ V (Ti). Let α and β be two colors in [k].
We say that α and β are T -interchangeable under ϕn if there is at most one (α, β)-path with
respect to ϕn intersecting T . When T is closed (that is, T = Tn+1), we also say that T has
the interchangeability property with respect to ϕn if under any (T,Dn, ϕn)-stable coloring σn,
any two colors α and β are T -interchangeable, provided that σn(T ) ∩ {α, β} 6= ∅ (equivalently
ϕn(T ) ∩ {α, β} 6= ∅).

The undefined symbols and notations in the theorem below can all be found in Algorithm
3.1.

Theorem 3.10. Let T be an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov
series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+ 1}. If T has the maximum property under
ϕn, then the following statements hold:

(i) V (T ) is elementary with respect to ϕn.

(ii) Tn+1 has the interchangeability property with respect to ϕn.

(iii) For any i ≤ n, if vi is a supporting vertex and m(vi) = j, then every (Ti,Di, ϕi)-stable
coloring σi is (T (vi)− vi,Dj−1, ϕj−1)-stable. In particular, σi is (Tj−1,Dj−1, ϕj−1)-stable.
Furthermore, for any two distinct supporting vertices vi and vj with i, j ≤ n, if m(vi) =
m(vj), then Si ∩ Sj = ∅.

(iv) If Θn = PE, then Pvn(γn, δn, σn) contains precisely one vertex, vn, from Tn for any
(Tn,Dn, ϕn)-stable coloring σn.

(v) For any (Tn,Dn, ϕn)-stable coloring σn and any defective color δ of Tn with respect to σn,
if v is a vertex but not the smallest one (in the order ≺) in I[∂σn,δ(Tn)], then v � vi for
any supporting or extension vertex vi with i ≥ m(v).

(vi) Every (Tn,Dn, ϕn)-stable coloring σn is a ϕn mod Tn coloring. (So every ETT correspond-
ing to (σn, Tn) (see Definition 3.7) satisfies MP under σn by Lemma 3.9.)

Recall that in the definition of maximum property (see Definition 3.8), |Tn+1| is not required
to be maximum over all (Tn,Dn, ϕn)-stable colorings. This relaxation allows us to proceed by
induction in our proof of Theorem 3.10. Now let us show that Theorem 2.1 can be deduced
easily from this theorem.

Lemma 3.11. Let T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a Tashkinov series
constructed from a k-triple (G, e, ϕ) by using Algorithm 3.1. Suppose Tn+1 has MP under ϕn.
Then there exists a Tashkinov series T ∗ = {(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1},
satisfying σ0 ∈ Ck(G− e), |T ∗

n+1| ≥ |Tn+1|, and the following conditions for 1 ≤ i ≤ n:

(i) T ∗
i = Ti;

(ii) σi is a (Ti,Di, ϕi)-stable coloring in Ck(G − e); and

(iii) |T ∗
i+1| is maximum over all (Ti,Di, σi)-stable colorings (see Definition 3.8).
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Furthermore, if T ∗
n+1 is not strongly closed with respect to σn, then there exists a Tashkinov

series {(T ∗
i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 2}, such that T ∗

n+1 ⊂ T ∗
n+2 and T ∗

n+2 satisfies
MP under σn+1.

Proof. Let µ be an arbitrary (Tn,Dn, ϕn)-stable coloring. Then µ is a ϕn mod Tn coloring
by Theorem 3.10(vi) (with T = Tn+1). Thus Definition 3.7 guarantees the existence of an ETT,
denoted by Tn+1(µ), corresponding to (µ, Tn), which is a closure of Tn + fn (resp. Tn) under
µ if Θn = RE or SE (resp. if Θn = PE). Let us reserve σn for a (Tn,Dn, ϕn)-stable coloring
such that Tn+1(σn) has the maximum number of vertices among all these Tn+1(µ)’s, and let
T ∗
i+1 = Tn+1(σn). Then |T ∗

n+1| ≥ |Tn+1|. By Lemma 2.4, every (Tn,Dn, σn)-stable coloring is a
(Tn,Dn, ϕn)-stable coloring. So |T ∗

n+1| is also maximum over all (Tn,Dn, σn)-stable colorings.
Since σn is a ϕn mod Tn coloring, by Definition 3.7, there exists a Tashkinov series T ∗ =

{(T ∗
i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} that satisfies conditions (i) and (ii) as described

in the lemma. Using the same argument as employed in the preceding paragraph, we see that
|T ∗

i+1| is maximum over all (Ti,Di, σi)-stable colorings as well for 1 ≤ i ≤ n− 1.
Suppose T ∗

n+1 is not strongly closed with respect to σn. Then we can construct a new tuple
(T ∗

n+2, σn+1, Sn+1, Fn+1,Θn+1) by using Algorithm 3.1. Clearly, T ∗
n+1 ⊂ T ∗

n+2 and T ∗
n+2 satisfies

MP under σn+1.

Proof of Theorem 2.1. Let T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1} be a
Tashkinov series constructed from a k-triple (G, e, ϕ), such that

(a) Tn+1 satisfies MP under ϕn;
(b) subject to (a), |Tn+1| is maximum over all (Tn,Dn, ϕi)-stable colorings; and
(c) subject to (a) and (b), Tn+1 contains as many vertices as possible.

By Lemma 3.11, such a Tashkinov series T exists, and Tn+1 is strongly closed with respect to
ϕn. By Theorem 3.10(i), V (Tn+1) is elementary with respect to ϕn. From Theorem 2.2(i) and
(iv), we thus deduce that G is an elementary multigraph.

The proof of Theorem 3.10 will take up the entire remainder of this paper.

4 Auxiliary Results

We prove Theorem 3.10 by induction on the rung number r(T ) = n. The present section is
devoted to a proof of statement (ii) in Theorem 3.10 in the base case and proofs of statements
(iii)-(vi) in the general case.

For n = 0, statement (i) follows from Theorem 2.8, statements (iii)-(vi) hold trivially, and
statement (ii) is a corollary of the following more general lemma.

Lemma 4.1. Let (G, e, ϕ) be a k-triple, let T be a closed Tashkinov tree with respect to e and
ϕ, and let α and β be two colors in [k] with ϕ(T ) ∩ {α, β} 6= ∅. Then there is at most one
(α, β)-path with respect to ϕ intersecting T .

Proof. Assume the contrary: there are at least two (α, β)-paths Q1 and Q2 with respect to
ϕ intersecting T . By Theorem 2.8, V (T ) is elementary with respect to ϕ. So T contains at most
two vertices v with ϕ(v) ∩ {α, β} 6= ∅, which in turn implies that at least two ends of Q1 and
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Q2 are outside T . By hypothesis, T is closed with respect to ϕ. Hence precisely one of α and β,
say α, is in ϕ(T ). Thus we further deduce that at least three ends of Q1 and Q2 are outside T .
Traversing Q1 and Q2 from these ends respectively, we can find at least three (T, ϕ, {α, β})-exit
paths P1, P2, P3. We call the tuple (ϕ, T, α, β, P1, P2, P3) a counterexample and use K to denote
the set of all such counterexamples.

With a slight abuse of notation, let (ϕ, T, α, β, P1 , P2, P3) be a counterexample in K with
the minimum |P1| + |P2| + |P3|. For i = 1, 2, 3, let ai and bi be the ends of Pi with bi ∈ V (T ),
and fi be the edge of Pi incident to bi. Renaming subscripts if necessary, we may assume that
b1 ≺ b2 ≺ b3. Let γ ∈ ϕ(b3) and let σ1 = ϕ/(G − T, α, γ). Clearly, σ1 ∈ Ck(G− e) and T is also
a Tashkinov tree with respect to e and σ1. Furthermore, fi is colored by β under both ϕ and
σ1 for i = 1, 2, 3.

Consider σ2 = σ1/Pb3(γ, β, σ1). Note that β ∈ σ2(b3). Let T ′ be obtained from T (b3) by
adding f1 and f2 and let T ′′ be a closure of T ′ under σ2. Obviously, both T ′ and T ′′ are Tashkinov
trees with respect to e and σ2. By Theorem 2.8, V (T ′′) is elementary with respect to σ2.

Observe that none of a1, a2, a3 is contained in T ′′, for otherwise, let ai ∈ V (T ′′) for some i
with 1 ≤ i ≤ 3. Since {β, γ} ∩ σ2(ai) 6= ∅ and β ∈ σ2(b3), we obtain γ ∈ σ2(ai). Hence from
TAA we see that P1, P2, P3 are all entirely contained in G[T ′′], which in turn implies γ ∈ σ2(aj)
for j = 1, 2, 3. So V (T ′′) is not elementary with respect to σ2, a contradiction. Each Pi contains
a subpath Qi, which is a T2-exit path with respect to σ2. Since f1 is not contained in Q1,
we obtain |Q1| + |Q2| + |Q3| < |P1| + |P2| + |P3|. Thus the existence of the counterexample
(σ2, T

′′, γ, β,Q1, Q2, Q3) violates the minimality assumption on (ϕ, T, α, β, P1, P2, P3).

So Theorem 3.10 is true in the base case. Suppose we have established that
(4.1) Theorem 3.10 holds for all ETTs with at most n−1 rungs and satisfying MP, for some

n ≥ 1.
Let us proceed to the induction step. We postpone the proof of Theorem 3.10(i) and (ii)

to Section 7, and present a proof of Theorem 3.10(iii)-(vi) in this section. In our proof of the
(i+ 2)th statement in Theorem 3.10 for 2 ≤ i ≤ 4, we further assume that

(4.i) the jth statement in Theorem 3.10 holds for all ETTs with at most n rungs and
satisfying MP, for all j with 3 ≤ j ≤ i+ 1.

We break the proof of the induction step into a series of lemmas. The following lemma
generalizes Lemma 3.2(ii), and will be used in the proofs of Theorem 3.10(iii) and (iv).

Lemma 4.2. Let T be an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov
series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. For any 1 ≤ s ≤ n and any edge f
incident to Ts, if ϕs−1(f) ∈ ϕs−1(Ts) ∪Ds−1, then ϕt(f) = ϕs−1(f) for any t with s ≤ t ≤ n,
unless f = fp ∈ Fp for some p with s ≤ p ≤ t and Θp = PE. In particular, if f is an edge in
G[Ts] with ϕs−1(f) ∈ ϕs−1(Ts) ∪Ds−1, then ϕt(f) = ϕs−1(f) for any t with s ≤ t ≤ n.

Proof. By Lemma 3.2(i), we have ϕi−1(Ti) ∪ Di−1 ⊆ ϕi(Ti+1) ∪ Di for all i ≥ 1. So to
establish the first half, it suffices to prove the statement for t = s, which is exactly the same as
Lemma 3.2(ii).

Note that if f is an edge in G[Ts], then f /∈ ∂(Tp) for any p with s ≤ p ≤ t. Hence f 6= fp ∈ Fp

for any p with s ≤ p ≤ t and Θp = PE. Thus the second half also holds.
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Lemma 4.3. (Assuming (4.1)) Theorem 3.10(iii) holds for all ETTs with n rungs and satisfying
MP; that is, for any i ≤ n, if vi is a supporting vertex and m(vi) = j, then every (Ti,Di, ϕi)-
stable coloring σi is (T (vi)−vi,Dj−1, ϕj−1)-stable. In particular, σi is (Tj−1,Dj−1, ϕj−1)-stable.
Furthermore, for any two distinct supporting vertices vi and vj with i, j ≤ n, if m(vi) = m(vj),
then Si ∩ Sj = ∅.

Proof. By hypothesis, T is an ETT constructed from a k-triple (G, e, ϕ) by using the
Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+1}, and T satisfies MP under ϕn.

We prove the first half by contradiction. Assume the contrary: there exists a subscript i ≤ n,
such that vi is a supporting vertex, m(vi) = j, and some (Ti,Di, ϕi)-stable coloring σi is not
(T (vi)− vi,Dj−1, ϕj−1)-stable. By definition, there exists an edge f incident to T (vi)− vi, with
ϕj−1(f) ∈ ϕj−1(T (vi) − vi) ∪ Dj−1, such that σi(f) 6= ϕj−1(f), or there exists a vertex v of
T (vi) − vi such that σi(v) 6= ϕj−1(v). In the former case, since j ≤ i, repeated application of
Lemma 3.2(i) and (ii) yields ϕj−1(T (vi) − vi) ∪Dj−1 ⊆ ϕj−1(Tj) ∪Dj−1 ⊆ ϕi−1(Ti) ∪Di−1 ⊆
ϕi(Ti) ∪Di and ϕi(f) ∈ ϕi(Ti) ∪Di. Hence σi(f) = ϕi(f), which implies ϕi(f) 6= ϕj−1(f). In
the latter case, since σi(v) = ϕi(v), we have ϕi(v) 6= ϕj−1(v). From Lemma 2.3 we deduce that
ϕi is not (T (vi)− vi,Dj−1, ϕj−1)-stable in either case.

Set V −
i = V (T (vi) − vi). Then there exists an edge f incident to V −

i with ϕj−1(f) ∈
ϕj−1(V

−
i )∪Dj−1 such that ϕj−1(f) 6= ϕi(f), or there exist a vertex v ∈ V −

i such that ϕj−1(v) 6=

ϕi(v). In either case, by Lemma 4.2 and Algorithm 3.1, there exists a supporting vertex vk ∈ V −
i

with j ≤ k < i. Thus j ≤ i− 1 and vk ≺ vi.
Since vi ∈ V (Tj), we have vi ∈ V (Ti−1). Let πi−1 be the (Ti,Di−1, ϕi−1)-stable coloring as

specified in Steps 1 and 4 of Algorithm 3.1. Recall that δi = πi−1(fi). Since vi is the maximum
vertex in I[∂πi−1,δi(Ti)], we see that δi is a defective color of Ti−1 with respect to πi−1, and vi
is not the smallest vertex in I[∂πi−1,δi(Ti−1)]. As πi−1 is also (Ti−1,Di−1, ϕi−1)-stable, applying
(4.1) and Theorem 3.10(v) to v = vi and πi−1, we obtain vi � vk; this contradiction establishes
the first half of the assertion. Since m(vi) = j, we have vi /∈ V (Tj−1). So Tj−1 is entirely
contained in T (vi)− vi, and hence σi is (Tj−1,Dj−1, ϕj−1)-stable.

To establish the second half, let vi and vj be two distinct supporting vertices with i < j ≤ n
and m(vi) = m(vj). We aim to show that Si ∩ Sj = ∅.

For k = i, j, let πk−1 be the (Tk,Dk−1, ϕk−1)-stable coloring as specified in Steps 1 and 4 of
Algorithm 3.1. Recall that δk = πk−1(fk) is a defective color of Tk with respect to πk−1, and vk is
the maximum vertex in I[∂πk−1,δk(Tk)]. Let r = m(vi) = m(vj). Since r ≤ i < j and vj ∈ V (Tr),
we have vj ∈ V (Tj−1). As πj−1 is also (Tj−1,Dj−1, ϕj−1)-stable, applying Theorem 3.10(v) to
πj−1, Tj−1 and v = vj , we obtain vj ≺ vi. By definition, Si = {δi, γi}. Observe that

(1) γi /∈ Sj . Indeed, since γi ∈ ϕi−1(vi) and V (Ti) is elementary with respect to ϕi−1 by (4.1)
and Theorem 3.10(i), we have γi /∈ ϕi−1(vj). Let f be the edge incident to vj with ϕi−1(f) = γi.
Then f is an edge in G[Ti], because Ti is closed with respect to ϕi−1. By Lemma 4.2, we have
ϕj−1(f) = ϕi−1(f) = γi. So γi /∈ ϕj−1(vj) and f /∈ ∂(Tj−1). Let π′

j−1 be as specified in Step 4
in Algorithm 3.1. Since π′

j−1 is (Tj ,Dj−1, ϕj−1)-stable, we have γi /∈ π′
j−1(vj) and π′

j−1(f) = γi,
which implies γi /∈ Sj.

(2) δi /∈ Sj. To justify this, note that V (Ti+1) is elementary with respect to ϕi by (4.1) and
Theorem 3.10(i). Since δi ∈ ϕi(vi), we have δi /∈ ϕi(vj). Let f be the edge incident to vj with
ϕi(f) = δi. Since Ti+1 is closed with respect to ϕi, edge f is contained in G[Ti+1]. Since j > i
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and ϕi(f) ∈ ϕi(Ti)∪Di, we have ϕj−1(f) = ϕi(f) = δi and f /∈ ∂(Tj−1) by Lemma 4.2. Let π′
j−1

be as specified in Step 4 of Algorithm 3.1. Then π′
j−1 is (Tj ,Dj−1, ϕj−1)-stable. By definition,

δi /∈ π′
j−1(vj) and π′

j−1(f) = δi. Hence δi /∈ Sj.
Combining (1) and (2), we conclude that Si ∩ Sj = ∅, as desired.

The following lemma asserts that parallel extensions used in Algorithm 3.1 are preserved
under taking certain stable colorings.

Lemma 4.4. (Assuming (4.1) and (4.2)) Theorem 3.10(iv) holds for all ETTs with n rungs
and satisfying MP; that is, if Θn = PE, then Pvn(γn, δn, σn) contains precisely one vertex, vn,
from Tn for any (Tn,Dn, ϕn)-stable coloring σn.

Proof. Assume the contrary: Pvn(γn, δn, σn) contains at least two vertices from Tn for some
(Tn,Dn, ϕn)-stable coloring σn. Let j = m(vn). By applying a series of Kempe changes to σn,
we shall construct a (Tj(vn) − vn,Dj−1, ϕj−1)-stable coloring µ and an ETT T ∗

j corresponding
to (µ, Tj−1) with ladder T1 ⊂ T2 ⊂ . . . ⊂ Tj−1 ⊂ T ∗

j , such that either |T ∗
j | > |Tj | or V (T ∗

j ) is not
elementary with respect to µ, which contradicts either the maximum property satisfied by T or
the induction hypothesis (4.1) on Theorem 3.10(i).

Let L denote the set of all subscripts i with j ≤ i ≤ n, such that Θi = PE and m(vi) = j,
where vi is the supporting vertex involved in iteration i. We partition L into disjoint subsets
L1, L2, . . . , Lκ, such that two subscripts s, t ∈ L are in the same subset if and only if vs = vt.
For 1 ≤ i ≤ κ, write Li = {i1, i2, . . . , ic(i)}, where i1 < i2 < . . . < ic(i), and let wi denote
the common supporting vertex corresponding to Li. Renaming subscripts if necessary, we may
assume that w1 ≺ w2 ≺ . . . ≺ wκ. For each Li, define Pi to be the graph with vertex set
V (Pi) = ∪t∈Li

St = ∪t∈Li
{δt, γt} and edge set E(Pi) = {δtγt : t ∈ Li}.

For each t ∈ L, we have vt /∈ V (Tj−1) because m(vt) = j. It follows that wi /∈ V (Tj−1) for
1 ≤ i ≤ κ. So each Li consists of all subscripts t with 1 ≤ t ≤ n, such that Θt = PE and
vt = wi. By Lemma 3.3(ii) (with wi and Li in place of u and Bn−1, respectively), we obtain

(1) γi2 = δi1 , γi3 = δi2 , . . . , γic(i) = δic(i)−1
. So Pi is the walk: γi1 → δi1 = γi2 → δi2 = γi3 →

· · · → δic(i)−1
= γic(i) → δic(i) , where γi1 ∈ ϕi1−1(wi) and δic(i) ∈ ϕic(i)

(wi).

(2) P1, P2, . . . , Pκ are pairwise vertex-disjoint paths. In particular, for any 1 ≤ i ≤ κ and
any 1 ≤ s < t ≤ c(i), we have γis 6= δit .

To justify this, note that Sp ∩ Sq = ∅ whenever p and q are contained in different Li’s by
(4.2) and Theorem 3.10(iii). So P1, P2, . . . , Pκ are pairwise vertex-disjoint. It remains to prove
that each Pi is a path.

Assume on the contrary that Pi contains a cycle. Then γis = δit for some subscripts s and
t with s < t by (1). Let v ∈ V (T ) be an arbitrary vertex with v ≺ wi. Since γis ∈ ϕis−1(wi),
we have γis /∈ ϕis−1(v) by (4.1) and Theorem 3.10(i). Let f be the edge incident with v with
ϕis−1(f) = γis . Since Tis is closed with respect to ϕis−1, edge f is contained G[Tis ]. By
Lemma 4.2, we have ϕit−1(f) = ϕis−1(f) = γis . From the definitions of πit−1 and π′

it−1 in Step
4 of Algorithm 3.1, it follows that v 6∈ I[∂ϕit−1,γis

(Tit)] = I[∂ϕit−1,δit
(Tit)]. Therefore wi cannot

be the supporting vertex of Tit with respect to ϕit and connecting color δit (see Algorithm 3.1);
this contradiction proves (2).

(3) vn = w1.
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Assume the contrary: vn 6= w1. Then w1 ≺ vn. By (2), P1 is a path and γ11 6= δ1c(1) .
From Lemma 3.3(iii) (with wi in place of u) we thus deduce that ϕ11−1(w1) = (ϕ1c(1)

(w1) −

{δ1c(1)}) ∪ {γ11} 6= ϕ1c(1)
(w1). Since L1 consists of all subscripts t with 1 ≤ t ≤ n, such that

vt = w1 and Θt = PE, by Algorithm 3.1 and the definition of stable colorings, ϕj−1(w1) =
ϕ11−1(w1) and ϕn(w1) = ϕ1c(1)

(w1). Hence ϕj−1(w1) 6= ϕn(w1). On the other hand, by (4.2)

and Theorem 3.10(iii), ϕn is a (T (vn)−vn,Dj−1, ϕj−1)-stable coloring, which implies ϕj−1(w1) =
ϕn(w1); this contradiction justifies (3).

For each t with 1 ≤ t ≤ n−1 and Θt = PE, let ǫ(t) be the smallest subscript s > t such that
Θs 6= RE. This ǫ(t) is well defined and ǫ(t) ≤ n, as Θn = PE 6= RE. Given a coloring ϕ and
two colors α and β, recall that α and β are called Tt-interchangeable under ϕ if there is at most
one (α, β)-path with respect to ϕ intersecting Tt; that is, all (α, β)-chains intersecting Tt are
(α, β)-cycles except possibly one, which is an (α, β)-path. We say that α and β are Tt-strongly
interchangeable (Tt-SI) under ϕ if for each vertex v in Tt − vt, the chain Pv(α, β, ϕ) is an (α, β)-
cycle which is fully contained in G[Tǫ(t)] (equivalently, V (Pv(α, β, ϕ)) ⊆ V (Tǫ(t))). Observe that
if α and β are Tt-SI under ϕ, then they are Tt-interchangeable under ϕ. Furthermore, Pvt(α, β, ϕ)
contains only one vertex vt from Tt, if it is a path.

Claim 4.1. The coloring σn satisfies the following properties:

(a1) σn is (Tj(vn)− vn,Dj−1, ϕj−1)-stable;

(a2) σn(f) = ϕj−1(f) for all edges f in G[Tj ] with ϕj−1(f) ∈ ϕj−1(Tj) ∪Dj−1; in particular,
this equality holds for all edges on Tj ;

(a3) σn(v) = ϕj−1(v) for all v ∈ V (Tj)−{w1, w2, . . . , wκ} and ϕj−1(wi) = (ϕn(wi)−{δic(i)})∪
{γi1} = (σn(wi)− {δic(i)}) ∪ {γi1} for each i = 1, 2, . . . , κ; and

(a4) for any t ∈ L− {n}, the colors γt and δt are Tt-SI under σn

To justify this claim, note that (a1) follows instantly from (4.2) and Theorem 3.10(iii).
(a2) For each edge f in G[Tj ] with ϕj−1(f) ∈ ϕj−1(Tj) ∪ Dj−1, by Lemma 4.2, we have

ϕn(f) = ϕj−1(f). Repeated application of Lemma 3.2(i) and (ii) implies that ϕn−1(f) ∈
ϕn−1(Tn) ∪ Dn−1. By Lemma 3.2(ii), we further obtain ϕn(f) ∈ ϕn(Tn) ∪ Dn. Since σn is
a (Tn,Dn, ϕn)-stable coloring, σn(f) = ϕn(f), which implies σn(f) = ϕj−1(f). By Lemma
3.2(iii), each edge f on Tj satisfies ϕj−1(f) ∈ ϕj−1(Tj)∪Dj−1, so the equality σn(f) = ϕj−1(f)
holds for all edges f on Tj .

(a3) Let v be a vertex in V (Tj) − {w1, w2, . . . , wκ}. If v is contained in Tj(vn) − vn, then
σn(v) = ϕj−1(v) by (a1). So we assume that v is outside Tj(vn) − vn. Note that v is not
a supporting vertex during any iteration p with j ≤ p ≤ n by the definition of L. Hence
ϕn(v) = ϕj−1(v) by Algorithm 3.1 and the definition of stable colorings. As σn is a (Tn,Dn, ϕn)-
stable coloring, σn(v) = ϕn(v) = ϕj−1(v).

Since Li consists of all subscripts t with 1 ≤ t ≤ n, such that vt = wi and Θt = PE,
we have ϕj−1(wi) = ϕi1−1(wi) and ϕn(wi) = ϕic(i)

(wi) by Algorithm 3.1 and the definition

of stable colorings. Furthermore, ϕi1−1(wi) = (ϕic(i)
(wi) − {δic(i)}) ∪ {γi1} by Lemma 3.3(iii)

(with wi in place of u). So ϕj−1(wi) = (ϕn(wi) − {δic(i)}) ∪ {γi1} for 1 ≤ i ≤ κ. Since σn is a
(Tn,Dn, ϕn)-stable coloring, σn(wi) = ϕn(wi). Hence ϕj−1(wi) = (σn(wi) − {δic(i)}) ∪ {γi1} for
1 ≤ i ≤ κ.
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(a4) By the induction hypothesis (4.1) on Theorem 3.10(ii), γt and δt are Tt-interchangeable
under ϕt. Since Θt = PE, Pvt(γt, δt, ϕt) is a path containing only one vertex vt from Tt by
Algorithm 3.1. For each vertex v in Tt − vt, observe that Pv(γt, δt, ϕt) is a (γt, δt)-cycle, for
otherwise, Pvt(γt, δt, ϕt) and Pv(γt, δt, ϕt) are two distinct (γt, δt)-paths intersecting Tt, a con-
tradiction. Since RE has priority over PE and SE in Algorithm 3.1, the cycle Pv(γt, δt, ϕt)
is fully contained in G[Tǫ(t)], for otherwise, Θǫ(t) = RE, contradicting the definition of ǫ(t).
Hence γt and δt are Tt-SI under ϕt. By Lemma 4.2, we have ϕt(f) = ϕn(f) for each edge f
on Pv(γt, δt, ϕt), because γt, δt ∈ Dt. It follows that γt and δt are Tt-SI under ϕn. Since σn is
(Tn,Dn, ϕn)-stable, {γt, δt} = St ⊆ ϕn(Tn) ∪Dn, and Tǫ(t) ⊆ Tn, we deduce that γt and δt are
also Tt-SI under σn. Hence Claim 4.1 is established.

Let us now apply the following algorithm to construct a new coloring from σn, which has
the same missing color set as ϕj−1 at each wi with i ≥ 2.

(A) Let I = ∅ and σ = σn. While I 6= L−L1, do: let i ≥ 2 be a subscript with Li − I 6= ∅ and
let t be the largest member of Li − I. Set

A(i, t) : σ = σ/Pwi
(γt, δt, σ) and I = I ∪ {t}.

Let us make some observations about this algorithm.

(4) Let I, i, t, σ be as specified in Algorithm (A) before performing the iteration A(i, t). Then
Pwi

(γt, δt, σ) is a path containing precisely one vertex wi from Tt, with δt ∈ σ(wi). Furthermore,
let σ′ = σ/Pwi

(γt, δt, σ) and I ′ = I ∪ {t} denote the objects generated in the iteration A(i, t).
Then for any s ∈ L− {n} − I ′, the colors γs and δs are Ts-SI under the coloring σ′.

To justify this, we apply induction on |I|. Note that wi = vt for each iteration A(i, t) by the
definitions of Li and wi.

Let us first consider the case when I = ∅. Now t is the largest subscript ic(i) in Li. By
Algorithm 3.1 and the definition of stable colorings, we have δt ∈ ϕt(wi) and σn(wi) = ϕn(wi) =
ϕt(wi). So δt ∈ σn(wi). By (a4) in Claim 4.1,

(5) for any s ∈ L− {n}, the colors γs and δs are Ts-SI under σn.
In particular, (5) holds for s = t, so Pwi

(γt, δt, σn) is a path containing precisely one vertex
wi from Tt. For any s ∈ L− {n, t}, either s ∈ Lh for some h with h 6= i or s ∈ Li with s < t. In
the former case, Ss ∩ St = ∅ by (4.2) and Theorem 3.10(iii), so γs and δs are Ts-SI under σ

′ by
(5). In the latter case, vs = vt = wi and ǫ(s) ≤ t. Furthermore, no color on any edge in G[Tt] is
changed under the Kempe change that transforms σ into σ′. So γs and δs are still Ts-SI under
σ′.

So we proceed to the induction step. Let us show that (4) holds for a general I with
I 6= L− L1.

Let I, i, t, σ be as specified in Algorithm (A) before performing the iteration A(i, t). By
induction hypothesis,

(6) for any s ∈ L− {n} − I, the colors γs and δs are Ts-SI under the coloring σ.
It follows from (6) (with s = t) that γt and δt are Tt-SI under the coloring σ. So Pwi

(γt, δt, σ)
contains precisely one vertex vt = wi from Tt, if it is a path.

To prove that Pwi
(γt, δt, σ) is a path with δt ∈ σ(wi), we first assume that t is the largest

subscript in Li. By (4.2) and Theorem 3.10(iii), neither γt not δt has been used in any Kempe
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change before the iteration A(i, t). By Algorithm 3.1, the definition of stable colorings, and
the induction hypothesis, we have δt ∈ ϕt(wi) and σ(wi) = σn(wi) = ϕn(wi) = ϕt(wi). So
δt ∈ σ(wi). Next, we assume that t is not the largest subscript in Li. Let t = ip. Then ip+1 is
the smallest element of Li greater than ip. So the last Kempe change involving wi before iteration
A(i, t) was performed on a path of the form Pwi

(γip+1 , δip+1 , ·). By induction hypothesis, δip+1

was a color missing at wi before this Kempe change. Thus γip+1 becomes a missing color at
wi after this operation; it remains to be missing at wi until the iteration A(i, t) by (4.2) and
Theorem 3.10(iii). Hence γip+1 ∈ σ(wi). By (1), we have δt = δip = γip+1 . It follows that
δt ∈ σ(wi). Therefore, Pwi

(γt, δt, σ) is a path containing precisely one vertex wi from Tt, with
δt ∈ σ(wi).

Let I ′ = I ∪{t} and σ′ = σ/Pwi
(γt, δt, σ). For each s ∈ L−{n}−I ′, either s ∈ Lh for some h

with h 6= i or s ∈ Li with s < t. In the former case, Ss ∩ St = ∅ by (4.2) and Theorem 3.10(iii),
so γs and δs are Ts-SI under σ

′ by (6). In the latter case, vs = vt and ǫ(s) ≤ t. Furthermore, no
color on any edge in G[Tt] is changed under the Kempe change that transforms σ into σ′. So γs
and δs are still Ts-SI under σ

′ by (6). Hence (4) holds.

Claim 4.2. Let ̺1 denote the coloring σ output by Algorithm (A). Then the following statements
hold:

(b1) ̺1 is (Tj(vn)− vn,Dj−1, ϕj−1)-stable;

(b2) ̺1(v) = ϕj−1(v) for all v ∈ V (Tj − vn), ̺1(vn) = ϕn(vn), and ̺1(f) = σn(f) = ϕj−1(f)
for all edges f on Tj ;

(b3) for any edge f ∈ E(G), if ̺1(f) 6= σn(f), then f is not contained in G[Tj ] and σn(f) ∈
∪i∈L−L1Si; and

(b4) for any i ∈ L1 − {n} (so vi = vn), the colors γi and δi are Ti-SI under ̺1.

To justify this claim, recall from (4) that
(7) at each iteration A(i, t) of Algorithm (A), the chain Pwi

(γt, δt, σ) is a path containing
precisely one vertex wi = vt from Tt, with δt ∈ σ(wi) and i ≥ 2.

By (3) and the definitions of L and wi’s, we have
(8) vn = w1 ≺ wi for all i ≥ 2, and Tj ⊂ Tt for each iteration A(i, t) of Algorithm (A).
It follows from (7) and (8) that σ(f) = σn(f) for all edges f incident to Tj(vn) − vn. So σ

and hence ̺1 is a (Tj(vn)− vn,Dj−1, σn)-stable coloring. By (4.2) and Theorem 3.10(iii), σn is
(Tj(vn)−vn,Dj−1, ϕj−1)-stable. From Lemma 2.4 we deduce that ̺1 is (Tj(vn)−vn,Dj−1, ϕj−1)-
stable. So (b1) holds.

By (a3) in Claim 4.1, we have
(9) ϕj−1(wi) = (ϕn(wi)−{δic(i)})∪{γi1} = (σn(wi)−{δic(i)})∪{γi1} for each vertex wi with

i ≥ 2.
Recall that Sp ∩ Sq = ∅ whenever p and q are contained in different Li’s by (4.2) and Theo-

rem 3.10(iii), and that P1, P2, . . . , Pκ are pairwise vertex-disjoint paths by (2). After executing
Algorithm (A), the direction of each Pi gets reversed (see (1)). Using Lemma 3.3(iii), we obtain
̺1(wi) = (σn(wi) − {δic(i)}) ∪ {γi1}, so ̺1(wi) = ϕj−1(wi) for i ≥ 2 by (9). Combining this
with (a3) in Claim 4.1, we see that ̺1(v) = ϕj−1(v) for all v ∈ V (Tj − vn). By (4), the path
Pwi

(γt, δt, σ) involved in each iteration A(i, t) of Algorithm (A) is disjoint from vn = w1. So
̺1(vn) = σn(vn) = ϕn(vn). In view of (7) and (8), we get σ(f) = σn(f) for all edges f on Tj at
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each iteration A(i, t) of Algorithm (A). Hence ̺1(f) = σn(f) = ϕj−1(f) for all edges f on Tj,
where the second equality follows from (a2) in Claim 4.1. Thus (b2) is established.

Since the Kempe changes performed in Algorithm (A) only involve edges outside G[Tj ] and
colors in ∪h∈L−L1Sh, we immediately get (b3). Clearly, (b4) follows from (4). This proves Claim
4.2.

Consider the coloring ̺1 ∈ Ck(G − e) described in Claim 4.2. Let T ′
j be a closure of Tj(vn)

under ̺1. By (4.1) and Theorem 3.10(i), V (Tn) is elementary with respect to ϕn−1, so |V (Tn)|
is odd. From Step 4 in Algorithm 3.1, we see that |∂π′

n−1,δn
(Tn)| ≥ 3. Hence |∂ϕn,δn(Tn)| ≥ 2.

Since σn is a (Tn,Dn, ϕn)-stable coloring, we have |∂σn,δn(Tn)| ≥ 2. By Lemma 3.2(iv), edges
in ∂σn,δn(Tn) are all incident to V (Tn(vn) − vn). Furthermore, each color in σn(Tn) − {δn} is
closed in Tn under σn. It follows from (b3) and TAA that T ′

j − Tn 6= ∅ and at least one edge
in T ′

j − Tn is colored by δn under ̺1. By (b1), ̺1 is (Tj(vn) − vn,Dj−1, ϕj−1)-stable, so it is a
(Tj−1,Dj−1, ϕj−1)-stable coloring and hence is a ϕj−1 mod Tj−1 coloring by (4.1) and Theorem
3.10(vi). By (b2), we have ̺1(f) = ϕj−1(f) for any edge f on Tj(vn). Note that Tj(vn) under ̺1
is obtained from Tj−1 by using the same connecting edge, connecting color, and extension type
as Tj. By (4.1) and Theorem 3.10(vi), we obtain

(10) T ′
j is an ETT corresponding to coloring ̺1 and satisfies MP under ̺1. So V (T ′

j) is
elementary with respect to ̺1 by (4.1) and Theorem 3.10(i), because j ≤ n.

Depending on the intersection of ̺1(T
′
j − vn) and ∪i∈L1Si, we consider two cases.

Case 1. ̺1(T
′
j − vn) ∩ (∪i∈L1Si) 6= ∅.

Let u be the minimum vertex (in the order ≺) in T ′
j − vn such that ̺1(u) ∩ (∪i∈L1Si) 6= ∅.

Clearly, u 6= vn. By (10), V (T ′
j) is elementary with respect to ̺1. Since δn ∈ ϕn(vn) = ̺1(vn)

by (b2), we have δn /∈ ̺1(T
′
j − vn); in particular, δn /∈ ̺1(u). Recall that L1 = {11, 12, . . . , 1c(1)}

and that n = 1c(1). Since δ1c(1) /∈ ̺1(u) and δ1s = γ1s+1 for any 1s ∈ L1 with 1s < n (see (1)),
the definition of u guarantees the existence of a minimum member r (as an integer) of L1, such
that γr ∈ ̺1(u). Note that γr ∈ ∪i∈L1Si. Since m(vr) = j, we have r ≥ j. Let us show that

(11) u ∈ V (T ′
j)− V (Tr).

Otherwise, u ∈ V (Tr). Since γr ∈ ̺1(u), we obtain γr ∈ σn(u), for otherwise, there exists an
edge f incident with u such that ̺1(f) 6= σn(f) = γr. It follows from (b3) that γr ∈ ∪i∈L−L1Si,
so (∪i∈L1Si)∩ (∪i∈L−L1Si) 6= ∅, contradicting Theorem 3.10(iii). Since σn is (Tn,Dn, ϕn)-stable,
γr ∈ ϕn(u). On the other hand, by (4.1) and Theorem 3.10(i), V (Tr) is elementary with respect
to ϕr−1. From Step 4 in Algorithm 4.1, we see that γr ∈ ϕr−1(vn) (as vr = vn), so G[Tr]
contains an edge f incident to u with ϕr−1(f) = γr. By Lemma 4.2, we obtain ϕn(f) = γr.
Hence γr ∈ ϕn(u); this contradiction justifies (11).

(12) ̺1(T
′
j(u)− u) ∩ (∪i∈L1Si − {δn}) = ∅.

By the minimality assumption on u, we have ̺1(T
′
j(u) − {vn, u}) ∩ (∪i∈L1Si) = ∅. Using

Lemma 3.3(i), we obtain ϕn(vn) ∩ (∪i∈L1Si) = {δn}. It follows from (b2) in Claim 4.2 that
̺1(vn) ∩ (∪i∈L1Si) = {δn}. Thus (12) holds.

Let r be the subscript as defined above (11). Then r = 1p for some 1 ≤ p ≤ c(1). By (1), we
have γr = γ1p = δ1p−1 . Let L∗

1 = {11, 12, . . . , 1p−1}. Since 1p−1 < 1p = r ≤ n, we have n /∈ L∗
1.

Observe that
(13) ̺1(vn) ∩ (∪i∈L∗

1
Si) = ∅.
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Indeed, by (b2) in Claim 4.2 and Lemma 3.3(i), we obtain ̺1(vn) = ϕn(vn) and ϕn(vn) ∩
(∪i∈L1Si) = {δn}. As n /∈ L∗

1, from (1) and (2) we see that δn /∈ ∪i∈L∗
1
Si. So ϕn(vn)∩(∪i∈L∗

1
Si) =

∅. Hence (13) follows.

We construct a new coloring from ̺1 by using the following algorithm.

(B) Let I = ∅ and ̺ = ̺1. While I 6= L∗
1, do: let t be the largest member of L∗

1 − I and set

B(t) : ̺ = ̺/Pu(γt, δt, ̺) and I = I ∪ {t}.

Let us exhibit some properties satisfied by this algorithm.
(14) Let I, t, ̺ be as specified in Algorithm (B) before performing the iteration B(t). Then

δt ∈ ̺(u), and Pu(γt, δt, ̺) is a path containing at most one vertex vn from Tt, but vn is not
an end of Pu(γt, δt, ̺). Furthermore, let ̺′ = ̺/Pu(γt, δt, ̺) and I ′ = I ∪ {t} denote the objects
generated in the iteration B(t). Then for any s ∈ L∗

1 − I ′, the colors γs and δs are Ts-SI under
the coloring ̺′.

To justify this, we apply induction on |I|. Note that vn = vt for each iteration B(t) by the
definition of L1.

Let us first consider the case when I = ∅. Now t is the largest member of L∗
1 (that is,

t = 1p−1). So δt = δ1p−1 = γ1p = γr ∈ ̺(u). By (b4) in Claim 4.2,
(15) for any s ∈ L1 − {n}, the colors γs and δs are Ts-SI under ̺1.
In particular, (15) holds for s = t, so Pu(γt, δt, ̺) is a path containing at most one vertex

vn = vt from Tt. From (13) we see that vn is not an end of Pu(γt, δt, ̺). For any s ∈ L∗
1 − {t},

we have s < t. So ǫ(s) ≤ t. Since no color on any edge in G[Tt] is changed under the Kempe
change that transforms ̺ into ̺′, the colors γs and δs are still Ts-SI under ̺

′ by (15).
So we proceed to the induction step. Let us show that (14) holds for a general I with I 6= L∗

1.
Let I, t, ̺ be as specified in Algorithm (B) before performing the iteration B(t). Let t = iq.

Then iq+1 is the smallest element of L∗
1 greater than iq. So in the iteration B(iq+1), the Kempe

change was performed on a path of the form Pu(γiq+1 , δiq+1 , ·). By induction hypothesis, δiq+1

was a color missing at u before the iteration B(iq+1). So γiq+1 becomes a missing color at u
after this operation. Hence γiq+1 ∈ ̺(u). By (1), we have δt = δiq = γiq+1 . Thus δt ∈ ̺(u). By
induction hypothesis,

(16) for any s ∈ L∗
1 − I, the colors γs and δs are Ts-SI under ̺.

In particular, (16) holds for s = t, so Pu(γt, δt, ̺) is a path containing at most one vertex
vn = vt from Tt. Since none of the path involved in previous Kempe changes terminates at vn,
by (13) we have ̺(vn) ∩ (∪i∈L∗

1
Si) = ∅. It follows that vn is not an end of Pu(γt, δt, ̺).

Let I ′ = I ∪ {t} and ̺′ = ̺/Pu(γt, δt, ̺). For each s ∈ L∗
1 − I ′, we have s < t. So ǫ(s) ≤ t.

Since no color on any edge in G[Tt] is changed under the Kempe change that transforms ̺ into
̺′, the colors γs and δs are still Ts-SI under σ

′. Hence (14) holds.

Claim 4.3. Let ̺2 denote the coloring ̺ output by Algorithm (B). Then the following statements
hold:

(c1) ̺2 is (Tj(vn)− vn,Dj−1, ϕj−1)-stable;

(c2) ̺2(v) = ̺1(v) for all v ∈ V (Tj ∪ T ′
j(u)− u) and ̺2(f) = ̺1(f) for all f ∈ E(Tj ∪ T ′

j(u));

(c3) γ11 ∈ ̺2(u).
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To justify this claim, recall from (14) that
(17) at each iteration B(t), the path Pu(γt, δt, ̺) contains at most one vertex vn from Tt, but

vn is not an end of Pu(γt, δt, ̺).
Since Tj ⊆ Tt, we have ̺(f) = ̺1(f) (and hence ̺2(f) = ̺1(f)) for each edge f incident to

Tj(vn) − vn by (17). It follows that ̺2 is a (Tj(vn) − vn,Dj−1, ̺1)-stable coloring. By (b1) in
Claim 4.2, ̺1 is a (Tj(vn) − vn,Dj−1, ϕj−1)-stable coloring. From Lemma 2.4 we see that (c1)
holds.

Similarly, from (17) we deduce that ̺2(v) = ̺1(v) for all v ∈ V (Tj) and ̺2(f) = ̺1(f) for all
f ∈ E(Tj). In view of (12), it is clear that T ′

j(u) does not contain the other end of Pu(γt, δt, ̺)
at each iteration B(t). So ̺2(v) = ̺1(v) for each v ∈ V (T ′

j(u) − u). By (1), (2) and (12), we
also have ̺1(T

′
j(u)− u) ∩ (∪i∈L∗

1
Si) = ∅. Since T ′

j is a closure of Tj(vn) under ̺1, from TAA we
deduce that ̺1〈T

′
j(u) − Tj(vn)〉 ∩ (∪i∈L∗

1
Si) = ∅. It follows that ̺(f) = ̺1(f) for all edges f in

T ′
j(u) − Tj(vn) at each iteration B(t). So ̺2(f) = ̺1(f) for all edges f in T ′

j(u) − Tj(vn) and
hence (c2) holds.

By (14), we have δt ∈ ̺(u) before each iteration B(t). So γt becomes a missing color at u
after performing iteration B(t). It follows that γ11 ∈ ̺2(u). Hence (c3) and therefore Claim 4.3
is established.

By (c1) in Claim 4.3, ̺2 is (Tj(vn)−vn,Dj−1, ϕj−1)-stable, so it is a (Tj−1,Dj−1, ϕj−1)-stable
coloring and hence is a ϕj−1 mod Tj−1 coloring by (4.1) and Theorem 3.10(vi). By (b2) and (c2),
we have ̺2(f) = ϕj−1(f) for each edge f on Tj(vn). Let T 1

j be a closure of Tj(vn) under ̺2.
Then T 1

j is an ETT corresponding to the coloring ̺2 and satisfies the maximum property under
̺2 by (4.1) and Theorem 3.10(vi), because it is obtained from Tj−1 by using the same connecting
edge, connecting color, and extension type as Tj. In view of (b2) and (c2), we have

• ̺2(v) = ϕj−1(v) for all v ∈ V (Tj − vn);
• ̺2(f) = ϕj−1(f) for all f ∈ E(Tj);
• ̺2(v) = ̺1(v) for all v ∈ V (T ′

j(u)− u);
• ̺2(f) = ̺1(f) for all f ∈ E(T ′

j(u)); and
• ̺2(vn) = ϕn(vn).

Using (c3) and Lemma 3.3(iii), we obtain γ11 ∈ ̺2(u) and ϕj−1(vn) = ϕ11−1(vn) ⊆ ϕ1c(1)
(vn) ∪

{γ11} = ϕn(vn) ∪ {γ11} = ̺2(vn) ∪ {γ11}. Therefore, V (Tj ∪ T ′
j(u)) ⊆ V (T 1

j ) by TAA, which
contradicts the maximum property satisfied by T under ϕn, because u /∈ V (Tj).

Case 2. ̺1(T
′
j − vn) ∩ (∪i∈L1Si) = ∅.

Recall that L1 = {11, 12, ..., 1c(1)}. Set S
′ = ∪i∈L1Si. Let us make some simple observations

about Tj and T ′
j.

(18) ̺1(T
′
j) ∩ S′ = ̺1(vn) ∩ S′ = {δn} and ̺1〈T

′
j − Tj(vn)〉 ∩ S′ = {δn}.

To justify this, note that V (T ′
j) is elementary with respect to ̺1 by (10) and that ̺1(vn) =

ϕn(vn) by (b2). By Lemma 3.3(i), we have ϕn(vn)∩S′ = {δn}. So ̺1(vn)∩S′ = {δn} and hence
δn /∈ ̺1(T

′
j−vn). By the hypothesis of the present case, we obtain ̺1(T

′
j)∩S

′ = ̺1(vn)∩S
′ = {δn}.

Since T ′
j is a closure of Tj(vn) under ̺1, from TAA and the paragraph above (10), we deduce

that ̺1〈T
′
j − Tj(vn)〉 ∩ S′ = {δn}. Hence (18) holds.

(19) δn /∈ ̺1(Tj − V (Tj(vn))) and δn /∈ ̺1〈Tj − Tj(vn)〉.
Assume on the contrary that δn ∈ ̺1(Tj − V (Tj(vn))). Then δn ∈ ϕj−1(Tj − V (Tj(vn)))
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by (b2) in Claim 4.2. Since V (Tj) is elementary with respect to ϕj−1 by (4.1) and Theorem
3.10(vi), we have δn /∈ ϕj−1(vn). So G[Tj ] contains an edge f incident to vn colored by δn under
ϕj−1. By Lemma 4.2, ϕn(f) = ϕj−1(f) = δn. Hence δn ∈ ϕn(vn); this contradiction proves that
δn /∈ ̺1(Tj − V (Tj(vn))).

By (3) and Lemma 3.3(iii), we have ϕj−1(vn) = ϕ11−1(vn) = (ϕ1c(1)
(vn)−{δ1c(1)})∪ {γ11} =

(ϕn(vn) − {δn}) ∪ {γ11}. So δn /∈ ϕj−1(vn) (see (2)). By (18), we obtain δn /∈ ̺1(Tj(vn) − vn),
which together with (b2) implies δn /∈ ϕj−1(Tj(vn) − vn). Hence δn /∈ ϕj−1(Tj(vn)). As δn /∈
̺1(Tj−V (Tj(vn))), we further conclude that δn /∈ ϕj−1(Tj) by (b2). Hence no edge in Tj−Tj(vn)
is colored by δn under ϕj−1, because Tj is a closure of Tj(vn) under ϕj−1 by TAA. It follows
from (b2) that δn /∈ ̺1〈Tj − Tj(vn)〉. So (19) is justified.

By Lemma 3.2(iv), ∂ϕn,γn(Tn) = {fn}, and edges in ∂ϕn,δn(Tn) are all incident to V (Tn(vn)−
vn). These two properties remain valid if we replace ϕn by σn, because σn is (Tn,Dn, ϕn)-stable.
Thus, by (b3) in Claim 4.2, they also hold true if we replace ϕn by ̺1. Since T ′

j is a closure of
Tj(vn) under ̺1 and δn ∈ ϕn(vn) = ̺1(vn) by (b2), from TAA we see that no boundary edge of
Tn ∪ T ′

j is colored by δn under ̺1. So ∂̺1,γn(Tn) = {fn} and ∂̺1,δn(Tn ∪ T ′
j) = ∅.

At the beginning of our proof, we assume that Pvn(γn, δn, σn) contains at least two vertices
from Tn. Let P denote Pvn(γn, δn, ̺1). Then P = Pvn(γn, δn, σn) by (b3) and hence P ∩ Tn 6=
{vn}. Since ∂̺1,γn(Tn) = {fn} and ∂̺1,δn(Tn∪T

′
j) = ∅, from the hypothesis of the present case, we

deduce that the other end x of P is outside Tn∪T ′
j . Furthermore, P contains a subpath P [w, x],

which is a Tn ∪T ′
j-exit path with respect to ̺1. Note that w is contained in T ′

j −V (Tn), because
the edge incident with w on P [w, x] is colored by γn and ∂̺1,γn(Tn) = {fn}. Let β ∈ ̺1(w). By
the hypothesis of the present case, we have

(20) β /∈ S′.
Possibly β ∈ ̺1(Tj − V (Tj(vn))); in this situation, let z be the first vertex in Tj − V (Tj(vn)) in
the order ≺ such that β ∈ ̺1(z).

Claim 4.4. There exists a coloring ̺3 ∈ Ck(G− e) with the following properties:

(d1) ̺3 is (Tj(vn)− vn,Dj−1, ϕj−1)-stable;

(d2) if β /∈ ̺1(Tj − V (Tj(vn))), then ̺3(v) = ̺1(v) for all v ∈ V (Tj ∪ T ′
j(w) − w) and ̺3(f) =

̺1(f) for all f ∈ E(Tj ∪ T ′
j(w));

(d3) if β ∈ ̺1(Tj − V (Tj(vn))), then ̺3(v) = ̺1(v) for all v ∈ V (Tj(z) ∪ T ′
j(w)) − {w, z} and

̺3(f) = ̺1(f) for all f ∈ E(Tj(z) ∪ T ′
j(w)). Furthermore, δn ∈ ̺3(z); and

(d4) γ11 ∈ ̺3(w).

(Assuming Claim 4.4) By (d1) in Claim 4.4, ̺3 is a (Tj(vn) − vn,Dj−1, ϕj−1)-stable
coloring. So it is a (Tj−1,Dj−1, ϕj−1)-stable coloring and hence is a ϕj−1 mod Tj−1 coloring by
(4.1) and Theorem 3.10(vi). By (b2), (d2) and (d3), we have ̺3(f) = ̺1(f) = ϕj−1(f) for each
edge f on Tj(vn). Let T

2
j be a closure of T ′

j(w) under ̺3. Then T 2
j is an ETT corresponding to

the coloring ̺3 and satisfies MP under ̺3 by (4.1) and Theorem 3.10(vi), because it is obtained
from Tj−1 by using the same connecting edge, connecting color, and extension type as Tj. By
(4.1) and Theorem 3.10(i), V (T 2

j ) is elementary with respect to ̺3. By (d4), we have γ11 ∈ ̺3(w).
By Lemma 3.3(iii), we obtain ϕj−1(vn) = ϕ11−1(vn) ⊆ ϕ1c(1)

(vn) ∪ {γ11} = ϕn(vn) ∪ {γ11}. So

ϕj−1(vn) ⊆ ̺3(vn) ∪ {γ11} by (b2), (d2) and (d3).
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When β /∈ ̺1(Tj − V (Tj(vn))), by (b2) and (d2) we have
• ̺3(v) = ϕj−1(v) for all v ∈ V (Tj − vn);
• ̺3(f) = ϕj−1(f) for all f ∈ E(Tj);
• ̺3(v) = ̺1(v) for all v ∈ V (T ′

j(w) − w); and
• ̺3(f) = ̺1(f) for all f ∈ E(T ′

j(w)).
From TAA we see that V (Tj ∪ T ′

j(w)) ⊆ V (T 2
j ), which contradicts the maximum property

satisfied by T .
When β ∈ ̺1(Tj − V (Tj(vn))), by (b2) and (d3) we get
• ̺3(v) = ϕj−1(v) for all v ∈ V (Tj(z)− {z, vn});
• ̺3(f) = ϕj−1(f) for all f ∈ E(Tj(z));
• ̺3(v) = ̺1(v) for all v ∈ V (T ′

j(w) − w); and
• ̺3(f) = ̺1(f) for all f ∈ E(T ′

j(w)).
From TAA we conclude that V (Tj(z) ∪ T ′

j(w)) ⊆ V (T 2
j ). As δn ∈ ̺3(z) ∩ ̺3(vn), V (T 2

j ) is not
elementary with respect to ̺3, a contradiction again.

To prove Claim 4.4, we consider the coloring ̺0 = ̺1/(G− T ′
j , β, δn). Since T ′

j is closed with
respect to ̺1 and {vn, w} ⊆ V (T ′

j), no boundary edge of T ′
j is colored by β or δn under ̺1. So

̺0 is (T ′
j ,Dj−1, ̺1)-stable and hence is (Tj(vn) − vn,Dj−1, ̺1)-stable. Clearly, Pw(γn, β, ̺0) =

Pw(γn, δn, ̺1). Define µ0 = ̺0/Pw(γn, β, ̺0).

Claim 4.5. The coloring µ0 satisfies the following properties:

(e1) µ0 is a (Tj(vn)− vn,Dj−1, ϕj−1)-stable coloring;

(e2) if β /∈ ̺1(Tj − V (Tj(vn))), then µ0(v) = ̺1(v) for all v ∈ V (Tj ∪ T ′
j(w)− w) and µ0(f) =

̺1(f) for all f ∈ E(Tj ∪ T ′
j(w));

(e3) if β ∈ ̺1(Tj − V (Tj(vn))), then µ0(v) = ̺1(v) for all v ∈ V (Tj(z) ∪ T ′
j(w)) − {w, z} and

µ0(f) = ̺1(f) for all f ∈ E(Tj(z) ∪ T ′
j(w)). Furthermore, δn ∈ ̺3(z);

(e4) γn = δ1c(1)−1
∈ µ0(w) and β /∈ µ0(w);

(e5) for any t ∈ L1 − {n}, the colors γt and δt are Tt-SI under µ0; and

(e6) µ0(T
′
j − w) ∩ S′ = µ0(vn) ∩ S′ = {δn} and µ0〈T

′
j − Tj(vn)〉 ∩ S′ = {δn}.

To justify this, recall that ̺1 is (Tj(vn) − vn,Dj−1, ϕj−1)-stable by (b1). By the definitions
of ̺0 and µ0, the transformation from ̺1 to µ0 only changes colors on some edges disjoint from
V (Tj(vn)). So (e1) holds. Statement (e4) follows instantly from the definition of µ0. Note that
δn, β /∈ ∪t∈L1−{n}St by (1), (2) and (20), and that Tǫ(t) ⊆ Tn for each t ∈ L1−{n}. Furthermore,
Pw(γn, β, ̺0) is disjoint from V (Tn). So (e5) can be deduced from (b4) immediately. Using (18)
and the definitions of ̺0 and µ0, we obtain (e6).

By (10), V (T ′
j) is elementary with respect to ̺1. Since β ∈ ̺1(w), we have β /∈ ̺1(T

′
j − w).

By (b2), we obtain β /∈ ϕj−1(Tj(vn) − vn) and β /∈ ϕn(vn). From Lemma 3.3(iii) we deduce
that ϕj−1(vn) = ϕ11−1(vn) ⊆ ϕ1c(1)

(vn) ∪ {γ11} = ϕn(vn) ∪ {γ11}. Since β 6= γ11 by (20), we get

β /∈ ϕj−1(vn). Hence
(21) β /∈ ϕj−1(Tj(vn)).
Suppose β /∈ ̺1(Tj − V (Tj(vn))). Then β /∈ ϕj−1(Tj) by (b2) and (21). Thus β /∈ ϕj−1〈Tj −

Tj(vn)〉, because Tj is obtained from Tj(vn) by TAA under ϕj−1. By (b2) and (19), we obtain
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β /∈ ̺1〈Tj − Tj(vn)〉, δn /∈ ̺1(Tj − V (Tj(vn))), and δn /∈ ̺1〈Tj − Tj(vn)〉. From the definitions of
̺0 and µ0, we see that (e2) holds.

Suppose β ∈ ̺1(Tj − V (Tj(vn))). Recall that z is the first vertex in Tj − V (Tj(vn)) in the
order ≺ with β ∈ ̺1(z). By (b2) and (21), we get β ∈ ϕj−1(z) and β /∈ ϕj−1(Tj(z) − z).
Since Tj is obtained from Tj(vn) by TAA under ϕj−1, we have β /∈ ϕj−1〈Tj(z) − Tj(vn)〉. It
follows from (b2) that β /∈ ̺1〈Tj(z) − Tj(vn)〉. By (19), we obtain δn /∈ ̺1(Tj − V (Tj(vn))) and
δn /∈ ̺1〈Tj − Tj(vn)〉. From the definition of ̺0 and µ0, we see that (e3) holds. So Claim 4.5 is
established.

Let L∗
1 = L1 − {n}. We construct a new coloring from µ0 by using the following algorithm.

(C) Let I = ∅ and µ = µ0. While I 6= L∗
1, do: let t be the largest member in L∗

1 − I and set

C(t): µ = µ/Pw(γt, δt, µ) and I = I ∪ {t}.

Let ̺3 denote the coloring µ output by Algorithm (C). We aim to show that ̺3 is as described
in Claim 4.4; our proof is based on the following statement.

(22) Let I, t, µ be as specified in Algorithm (C) before performing the iteration C(t). Then
δt ∈ µ(w), and Pw(γt, δt, µ) is a path containing at most one vertex vn from Tt, but vn is not
an end of Pw(γt, δt, µ). Furthermore, let µ′ = µ/Pw(γt, δt, ̺) and I ′ = I ∪ {t} denote the objects
generated in the iteration C(t). Then for any s ∈ L∗

1 − I ′, the colors γs and δs are Ts-SI under
the coloring µ′.

To justify this, we apply induction on |I|. Let us first consider the case when I = ∅.
Now t is the largest member of L∗

1 (that is, t = 1c(1)−1). By (e4) in Claim 4.5, we have
δt = δ1c(1)−1

= γn ∈ µ0(w). By (e5), we obtain
(23) for any s ∈ L∗

1, the colors γs and δs are Ts-SI under µ0.
In particular, (23) holds for s = t, so Pw(γt, δt, µ0) is a path containing at most one vertex

vn = vt from Tt. By (1), (2) and (e6), we obtain
(24) µ0(vn) ∩ (∪i∈L∗

1
Si) = ∅.

From (24) we deduce that vn is not an end of Pw(γt, δt, µ0). For any s ∈ L∗
1 − {t}, we have

s < t. So ǫ(s) ≤ t. Since no color on any edge in G[Tt] is changed under the Kempe change that
transforms µ = µ0 into µ′, the colors γs and δs are still Ts-SI under µ

′ by (23).
So we proceed to the induction step. Let us show that (22) holds for a general I with I 6= L∗

1.
Let I, t, µ be as specified in Algorithm (C) before performing the iteration C(t). Let t = iq.

Then iq+1 is the smallest element of L∗
1 greater than iq. So in the iteration C(iq+1), the Kempe

change was performed on a path of the form Pw(γiq+1 , δiq+1 , ·). By induction hypothesis, δiq+1

was a color missing at w before the iteration B(iq+1). So γiq+1 becomes a missing color at w
after this operation. Hence γiq+1 ∈ µ(w). By (1), we have δt = δiq = γiq+1 . Thus δt ∈ µ(w). By
induction hypothesis,

(25) for any s ∈ L∗
1 − I, the colors γs and δs are Ts-SI under µ.

In particular, (25) holds for s = t, so Pw(γt, δt, µ) is a path containing at most one vertex
vn = vt from Tt. Since none of the path involved in previous Kempe changes terminates at vn,
by (24) we have µ(vn) ∩ (∪i∈L∗

1
Si) = ∅. It follows that vn is not an end of Pw(γt, δt, µ).

Let I ′ = I ∪ {t} and µ′ = µ/Pw(γt, δt, µ). For each s ∈ L∗
1 − I ′, we have s < t. So ǫ(s) ≤ t.

Since no color on any edge in G[Tt] is changed under the Kempe change that transforms µ into
µ′, the colors γs and δs are still Ts-SI under µ

′ by (25). Hence (22) holds.
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To justify Claim 4.4, recall from (22) that
(26) at each iteration C(t), the path Pw(γt, δt, µ) contains at most one vertex vn = vt from

Tt, but vn is not an end of Pw(γt, δt, µ).
Since Tj ⊆ Tt, we have µ(f) = µ0(f) (and hence ̺3(f) = µ0(f)) for each edge f incident to

Tj(vn) − vn by (26). It follows that ̺3 is a (Tj(vn) − vn,Dj−1, µ0)-stable coloring. By (e1) in
Claim 4.5, µ0 is a (Tj(vn)− vn,Dj−1, ϕj−1)-stable coloring. From Lemma 2.4 we see that (d1)
holds.

Let us first assume that β /∈ ̺1(Tj − V (Tj(vn))). Again, since Tj ⊆ Tt, from (26) we deduce
that ̺3(v) = µ0(v) for all v ∈ V (Tj) and ̺3(f) = µ0(f) for all f ∈ E(Tj). By (e6), we have
µ0(T

′
j − w) ∩ S′ = µ0(vn) ∩ S′ = {δn} and µ0〈T

′
j − Tj(vn)〉 ∩ S′ = {δn}. By (1) and (2),

we obtain δn /∈ ∪i∈L∗
1
Si. So at each iteration C(t) the path Pw(γt, δt, µ) neither contains any

edge from T ′
j(w) nor terminate at a vertex in T ′

j(w) − w. It follows that ̺3(v) = µ0(v) for all
v ∈ V (T ′

j(w)−w) and ̺3(f) = µ0(f) for all edges f in T ′
j(w)− Tj(vn). Hence ̺3(v) = µ0(v) for

all v ∈ V (Tj ∪ T ′
j(w) − w) and ̺3(f) = µ0(f) for all f ∈ E(Tj ∪ T ′

j(w)). Combining this with
(e2), we see that (d2) holds.

Similarly, we can prove that if β ∈ ̺1(Tj − V (Tj(vn))), then (d3) is true.
By (22), we have δt ∈ µ(w) before each iteration C(t). So γt becomes a missing color at w

after performing iteration C(t). It follows that γ11 ∈ ̺3(w). Hence (d4) is established. This
completes the proof of Claim 4.4 and hence of Lemma 4.4.

Lemma 4.5. (Assuming (4.1) and (4.3)) Theorem 3.10(v) holds for all ETTs with n rungs and
satisfying MP; that is, for any (Tn,Dn, ϕn)-stable coloring σn and any defective color δ of Tn

with respect to σn, if v is a vertex but not the smallest one (in the order ≺) in I[∂σn,δ(Tn)], then
v � vi for any supporting or extension vertex vi with i ≥ m(v).

Proof. By hypothesis, T is an ETT constructed from a k-triple (G, e, ϕ) by using the
Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, and T satisfies MP under
ϕn. Depending on the extension type Θn, we consider two cases.

Case 1. Θn = PE. In this case, according to Step 4 in Algorithm 3.1, π′
n−1 is a (Tn,Dn−1∪

{δn}, πn−1)-stable coloring, vn is a (Tn, π
′
n−1, {γn, δn})-exit and ϕn = π′

n−1/Pvn(γn, δn, π
′
n−1).

Since σn is a (Tn,Dn, ϕn)-stable coloring, from Lemma 3.2(iv) we deduce that ∂σn,γn(Tn) = {fn}.
So δ 6= γn.

By Theorem 3.10(iv), Pvn(γn, δn, σn) ∩ Tn = {vn}. Define σn−1 = σn/Pvn(γn, δn, σn). Then
(1) σn−1 is (Tn,Dn−1, ϕn−1)-stable by Lemma 3.5 and hence it is also (Tn−1,Dn−1, ϕn−1)-

stable. Furthermore, ∂σn,δ(Tn) ⊆ ∂σn−1,δ(Tn) (as δ 6= γn).
If i < n, then v ∈ Tn−1 because m(v) ≤ i < n. Since v is not the smallest vertex in

I[∂σn,δ(Tn)], from (1) it can be seen that δ is a defective color of Tn−1 with respect to σn−1.
Applying (4.3) and Theorem 3.10(v) to Tn−1 and σn−1 (see (1)), we obtain v � vi. So we assume
that i = n. Since vn the maximum defective vertex with respect to (Tn,Dn−1, ϕn−1) (see the
definition above (3.1)), by (1) we also have v � vn.

Case 2. Θn = RE or SE. In this case, ϕn is (Tn,Dn−1, ϕn−1)-stable (see Algorithm 3.1).
Since σn is (Tn,Dn, ϕn)-stable and ϕn−1(Tn)∪Dn−1 ⊆ ϕn(Tn)∪Dn by Lemma 3.2(i), we deduce
that σn is (Tn,Dn−1, ϕn−1)-stable and hence is also (Tn−1,Dn−1, ϕn−1)-stable. If i < n, then
m(v) < n. Since v ∈ Tn−1, δ is a defective color of Tn−1 with respect to σn. Thus v � vi by
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(4.3) and Theorem 3.10(v). So we assume that i = n. Since vn the maximum defective vertex
with respect to (Tn,Dn−1, ϕn−1), we also have v � vn.

The proof of Theorem 3.10(vi) is based on the following technical lemma.

Lemma 4.6. (Assuming (4.1) and (4.4)) Let T1 = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+1}
(resp. T2 = {(Ti, σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n}) be a Tashkinov series constructed from a
k-triple (G, e, ϕ0) (resp. (G, e, σ0)) by using Algorithm 3.1. Suppose Tn+1 satisfies MP under
ϕn, and σi is a (Ti,Di, ϕi)-stable coloring in Ck(G − e) for 1 ≤ i ≤ n − 1. Furthermore,
σn−1 is a (Tn,Dn−1, ϕn−1)-stable coloring. If Θn = RE, then there exists a Tashkinov series
T3 = {(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, such that σn = σn−1 and T ∗
i = Ti for

1 ≤ i ≤ n.

Proof. Since Θn = RE, according to Step 1 in Algorithm 3.1, there exists a subscript
h ≤ n − 1 with Θh = PE and Sh = {δh, γh}, such that for all i with h + 1 ≤ i ≤ n − 1, if
any, we have Θi = RE and Si = {δi, γi} = Sh, where δi = δh and γi = γh, and such that some
(γh, δh)-cycle C with respect to ϕn−1 contains both an edge fn ∈ ∂ϕn−1,γh(Tn) and a segment L
connecting V (Th) and vn with V (L) ⊆ V (Tn), where vn is the end of fn in Tn. According to
Step 2 in this algorithm, ϕn = ϕn−1, Tn+1 is a closure of Tn + fn under ϕn, δn = δh, γn = γh,
Sn = {δn, γn}, and Fn = {fn}. Since Θi = RE for h + 1 ≤ i ≤ n − 1, from Algorithm 3.1 we
further deduce that

(1) ϕh = ϕh+1 = . . . = ϕn and Sh = Sh+1 = . . . = Sn.
Moreover,

(2) σh = σh+1 = . . . = σn−1.
Set σn = σn−1. As σi is a (Ti,Di, ϕi)-stable coloring for h ≤ i ≤ n− 1, by (2) we get

(3) σn is (Th,Dh, ϕh)-stable.
Let fn, L and C be as specified in the first paragraph of our proof. By the definition of

Dn−1, we have ϕn−1(Tn) ∪Dn−1 = ϕn−1(Tn) ∪ (∪i≤n−1Si) (see (1) in the proof of Lemma 3.2).
So {δh, γh} ⊆ ϕn−1(Tn) ∪Dn−1. Since σn−1 is (Tn,Dn−1, ϕn−1)-stable, σn−1(f) = ϕn−1(f) for
all f ∈ E(L) ∪ {fn}. Thus edges on L are also colored alternately by δh and γh in σn. Let C∗

be the (δh, γh)-chain with respect to σn containing L. Then fn ∈ C∗.
We claim that C∗ is a cycle. Assume the contrary: C∗ is a (δh, γh)-path with respect to σn.

By Step 4 in Algorithm 3.1, we have δh ∈ ϕh(vh). Using (1), we obtain δh ∈ ϕn−1(vh), so vh is
outside C. It follows that L and hence C∗ contains a vertex different from vh in Th. By (3) and
Theorem 3.10(iv), Pvh(δh, γh, σn) contains only vertex vh from Th. Thus C

∗ and Pvh(δh, γh, σn)
are two disjoint (δh, γh)-paths with respect to σn. Since σh = σh+1 = . . . = σn, we see that
C∗ and Pvh(δh, γh, σn) are two disjoint (δh, γh)-paths with respect to σh intersecting Th+1; this
contradiction to Theorem 3.10(ii) justifies the claim.

The above claim and Algorithm 3.1 guarantee the existence of a Tashkinov series T3 =
{(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+ 1}, such that σn = σn−1 and T ∗
i = Ti for 1 ≤ i ≤ n.

The lemma below actually states that ETTs along with the maximum property are also
maintained under taking some stable colorings.
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Lemma 4.7. (Assuming (4.1) and (4.4)) Theorem 3.10(vi) holds for all ETTs with n rungs
and satisfying MP; that is, every (Tn,Dn, ϕn)-stable coloring σn is a ϕn mod Tn coloring. (So
every ETT corresponding to (σn, Tn) satisfies MP under σn by Lemma 3.9.)

Proof. By hypothesis, T is an ETT constructed from a k-triple (G, e, ϕ) by using the
Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, and T satisfies MP under
ϕn. We aim to show (recall Definition 3.7), by induction on r(T ), the existence of an extended
Tashkinov tree T ∗ with corresponding Tashkinov series T ∗ = {(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤
i ≤ n+ 1}, satisfying σ0 ∈ Ck(G− e) and the following conditions for all i with 1 ≤ i ≤ n:

(1) T ∗
i = Ti and

(2) σi is a (Ti,Di, ϕi)-stable coloring in Ck(G− e), where Di = ∪h≤iSh − ϕi(Ti).
For this purpose, we shall define a (Tn−1,Dn−1, ϕn−1)-stable coloring σn−1 based on σn, and
apply induction hypothesis to σn−1.

Since Tn is an ETT constructed from the k-triple (G, e, ϕ) by using the Tashkinov series
Tn = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n}, with r(Tn) = n − 1, and since Tn satisfies MP
under ϕn−1, by (4.4) and Theorem 3.10(vi), σn−1 is a ϕn−1 mod Tn−1 coloring. So

(3) there exists a Tashkinov series T ∗
n = {(T ∗

i , σi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n}, satisfying
σ0 ∈ Ck(G− e) and (1) and (2) for all i with 1 ≤ i ≤ n− 1.

Our objective is to find σn−1, such that
(4) T ∗

n can be set to Tn, and an ETT T ∗
n+1 with respect to e and σn can be obtained from

T ∗
n = Tn by using the same connecting edge, connecting color, and extension type Θn as Tn+1

in T .
Combining (3) and (4), we see that σn is indeed a ϕn mod Tn coloring. To establish (4), we

consider three cases, according to the extension type Θn.
Case 1. Θn = RE. In this case, define σn−1 = σn. By hypothesis, σn is a (Tn,Dn, ϕn)-

stable coloring. So σn−1 is also (Tn,Dn, ϕn)-stable. Since ϕn = ϕn−1 by Algorithm 3.1 and
ϕn−1(Tn) ∪ Dn−1 ⊆ ϕn(Tn) ∪ Dn by Lemma 3.2(i), we deduce that σn−1 is (Tn,Dn−1, ϕn−1)-
stable and hence is also (Tn−1,Dn−1, ϕn−1)-stable. By Lemma 3.2(iii), we have σn(f) = ϕn(f)
for any edge f on Tn. It follows that σn−1(f) = ϕn−1(f) for any edge f on Tn. Thus we can
set T ∗

n = Tn. Therefore, by Lemma 4.6, an ETT T ∗
n+1 with respect to e and σn can be obtained

from Tn by using the same connecting edge, connecting color, and extension type RE as Tn+1

in T .
Case 2. Θn = SE. In this case, according to Step 3 of Algorithm 3.1, ϕn = πn−1, Tn+1 is

a closure of Tn + fn under ϕn, Sn = {δn}, and Fn = {fn}, where πn−1 is a (Tn,Dn−1, ϕn−1)-
stable coloring so that vπn−1 = vn, which is the maximum defective vertex with respect to
(Tn,Dn−1, ϕn−1) (see the paragraph above (3.1)). By the definition of ϕn, we have

(5) ϕn is (Tn,Dn−1, ϕn−1)-stable and hence is also (Tn−1,Dn−1, ϕn−1)-stable. Moreover,
∂ϕn,δn(Tn) = ∂πn−1,δn(Tn).

Define σn−1 = σn. Since σn is a (Tn,Dn, ϕn)-stable coloring, so is σn−1. In view of (5) and
Lemma 3.2(i), we obtain

(6) σn−1 is (Tn,Dn−1, ϕn−1)-stable and hence is also (Tn−1,Dn−1, ϕn−1)-stable. Moreover,
∂σn−1,δn(Tn) = ∂σn,δn(Tn) = ∂ϕn,δn(Tn).

By Lemma 3.2(iii), we have ϕn−1〈Tn〉 ⊆ ϕn−1(Tn)∪Dn−1. It follows from (6) that σn−1(f) =
ϕn−1(f) for any edge f on Tn. Thus we can set T ∗

n = Tn. Moreover, by (5), (6) and Lemma
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2.4, vn is also the maximum defective vertex with respect to (Tn,Dn−1, σn−1) (see the definition
above (3.1)). We claim that

(7) for any (Tn,Dn−1∪{δn}, σn−1)-stable coloring µn−1, there holds µn−1(un)∩µn−1(Tn) = ∅,
where un is the vertex of fn outside Tn.

To justify this, note that σn−1 = σn is (Tn,Dn, ϕn)-stable. Since ϕn(Tn) ∪Dn = ϕn(Tn) ∪
Dn−1∪{δn}, by the definition of stable colorings, σn−1 is (Tn,Dn−1∪{δn}, ϕn)-stable and hence
(Tn,Dn−1 ∪ {δn}, πn−1)-stable. Therefore µn−1 is (Tn,Dn−1 ∪ {δn}, πn−1)-stable by Lemma 2.4.
From Step 1 in Algorithm 3.1 we see that µn−1(un) ∩ µn−1(Tn) = ∅.

By (7), a tree sequence T ∗
n+1 with respect to e and σn can thus be obtained from Tn by

using Step 3 in Algorithm 3.1 (with σn−1 in place of both ϕn−1 and πn−1) and using the same
connecting edge, connecting color, and extension type SE as Tn+1 in T .

Recall that RE has priority over both SE and PE in the construction of a Tashkinov series
using Algorithm 3.1. To prove that T ∗

n+1 constructed above is an ETT, we still need to check
that no ETT with respect to e and σn can be obtained from Tn by using RE. Assume the
contrary: T ∗

n+1 (with a slight abuse of notation) is such an ETT. Since T satisfies MP, so does
the ETT T ∗

n+1. Let T1 be the Tashkinov series obtained from {(Ti, σi−1, Si−1, Fi−1,Θi−1) : 1 ≤
i ≤ n} by adding a tuple (T ∗

n+1, σn, S
∗
n, F

∗
n ,Θ

∗
n) corresponding to T ∗

n+1, where Θ
∗
n = RE, and let

T2 = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n}. Since σn−1 is a (Tn,Dn−1, ϕn−1)-stable coloring
by (6), it follows from Lemma 2.4 that ϕn−1 is a (Tn,Dn−1, σn−1)-stable coloring. Similarly, ϕi

is a (Ti,Di, σi)-stable coloring for 1 ≤ i ≤ n − 1, because σi is a (Ti,Di, ϕi)-stable coloring by
(2) and (3). Applying Lemma 4.6 to T1 and T2, we see that an ETT with respect to e and the
coloring ϕn−1 in Ck(G− e) can be obtained from Tn by using RE, contradicting the hypothesis
of the present case.

Case 3. Θn = PE. In this case, define σn−1 = σn/Pvn(γn, δn, σn). Since σn is a (Tn,Dn, ϕn)-
stable coloring, by (4.4) and Theorem 3.10(iv), we obtain Pvn(γn, δn, σn) ∩ Tn = {vn}. Using
Lemma 3.5, we have

(8) σn−1 is (Tn,Dn−1 ∪ {δn}, πn−1)-stable and hence is (Tn,Dn−1, ϕn−1)-stable.
By Lemma 3.2(iii), we have ϕn−1〈Tn〉 ⊆ ϕn−1(Tn) ∪Dn−1. It follows from (8) that σn−1(f) =
ϕn−1(f) for any edge f on Tn. Thus we can set T ∗

n = Tn. Moreover, by (8) and Lemma 2.4, vn
is also the maximum defective vertex with respect to (Tn,Dn−1, σn−1). We claim that

(9) for some (Tn,Dn−1∪{δn}, σn−1)-stable coloring µn−1, there holds µn−1(un)∩µn−1(Tn) 6=
∅, where un is the vertex of fn outside Tn.

To justify this, let µn−1 be a (Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring for which µn−1(un) ∩
µn−1(Tn) 6= ∅; such a coloring exists by Steps 1 and 4 in Algorithm 3.1. From (8) and Lemma
2.4 we deduce that µn−1 is a (Tn,Dn−1 ∪ {δn}, σn−1)-stable coloring.

By (9), a tree sequence T ∗
n+1 with respect to e and σn can thus be obtained from Tn by

using Step 4 in Algorithm 3.1 (with σn−1 in place of both ϕn−1 and πn−1) and using the same
connecting edge, connecting color, and extension type PE as Tn+1 in T .

Using the same argument as in Case 2, we conclude that no ETT with respect to e and σn
can be obtained from Tn by using RE. So T ∗

n+1 constructed above is an ETT with respect to e
and σn.
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5 Good Hierarchies

As is well known, Kempe changes play a fundamental role in edge-coloring theory. To ensure
that ETTs are preserved under such operations, in this section we develop an effective control
mechanism, the so-called good hierarchy of an ETT, which will serve as a powerful tool in the
proof of Theorem 3.10(i). Throughout this section, we assume that

(5.1) Theorem 3.10(i) and (ii) holds for all ETTs with at most n − 1 rungs and satisfying
MP, and Theorem 3.10(iii)-(iv) hold for all ETTs with at most n rungs and satisfying MP.

Let Jn be a closure of Tn(vn) under a (Tn,Dn, ϕn)-stable coloring σn. We use Tn ∨ Jn to
denote the tree sequence obtained from Tn by adding all vertices in V (Jn) − V (Tn) to Tn one
by one, following the linear order ≺ in Jn, and using edges in Jn.

Lemma 5.1. (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by using
the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Suppose Θn = PE and
T enjoys MP under ϕn. If Jn is a closure of Tn(vn) under a (Tn,Dn, ϕn)-stable coloring σn,
then V (Tn ∨ Jn) is elementary with respect to σn.

Proof. Clearly, Tn is an ETT with corresponding Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,
Θi−1) : 1 ≤ i ≤ n}, and satisfies MP under ϕn−1. Since r(Tn) = n − 1, by (5.1) and
Theorem 3.10(i), V (Tn) is elementary with respect to ϕn−1. Let πn−1 and π′

n−1 be as spec-
ified in Step 4 of Algorithm 3.1. Since πn−1 is a (Tn,Dn−1, ϕn−1)-stable coloring and π′

n−1 is
(Tn,Dn−1 ∪ {δn}, πn−1)-stable coloring, by definition V (Tn) is also elementary with respect to
π′
n−1. As ϕn = π′

n−1/Pvn(δn, γn, π
′
n−1) and δn /∈ π′

n−1(Tn), we further obtain
(1) V (Tn) is elementary with respect to ϕn and hence elementary with respect to σn.
As σn is a (Tn,Dn, ϕn)-stable coloring, it follows from (5.1) and Theorem 3.10(iii) that σn is

(Tj(vn)− vn,Dj−1, ϕj−1)-stable, where j = m(vn). So σn is a (Tj−1,Dj−1, ϕj−1)-stable coloring
and hence is a ϕj−1 mod Tj−1 coloring by Theorem 3.10(vi). By Lemma 3.2(iii) and Lemma 4.2,
we obtain σn(f) = ϕn(f) = ϕj−1(f) for each edge f on Tj . By (5.1) and Theorem 3.10(vi), Jn
is an ETT corresponding to σn, because it is obtained from Tj−1 by using the same connecting
edge, connecting color, and extension type as Tj. Clearly, Jn also satisfies the maximum property
under σn. Since Jn has j − 1 rungs, using (5.1), we obtain

(2) V (Jn) is elementary with respect to σn.
Suppose on the contrary that V (Tn∨Jn) is not elementary with respect to σn. Then Tn∨Jn

contains two distinct vertices u and v such that σn(u) ∩ σn(v) 6= ∅. By (1) and (2), we may
assume that u ∈ V (Tn)− V (Jn) and v ∈ V (Jn) − V (Tn). Let α ∈ σn(u) ∩ σn(v). Then α 6= δn
by (2), because δn ∈ ϕn(vn) = σn(vn). Moreover, since γn ∈ ϕn−1(vn) and V (Tn) is elementary
with respect to ϕn−1, from Step 4 of Algorithm 3.1 and the definition of stable colorings, we
deduce that γn /∈ ϕn(Tn) and hence γn /∈ σn(Tn). So α 6= γn. Consequently,

(3) α /∈ Sn.
Since Tn(vn) contains the uncolored edge e, it contains a vertex w 6= vn. Note that w is

contained in both Tn and Jn. Let β ∈ σn(w). Since δn ∈ σn(vn) and γn /∈ σn(Tn), we obtain
(4) β /∈ Sn (see (2)).
As V (Jn) is closed and elementary with respect to σn (see (2)), the other end of Pv(α, β, σn)

is w. From (3), (4), and Step 4 of Algorithm 3.1, we see that ∂(Tn) contains no edge colored by
α or β under ϕn and hence under σn, because σn is (Tn,Dn, ϕn)-stable. Combining this with
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(1), we conclude that the other end of Pu(α, β, σn) is also w. Thus Pw(α, β, σn) terminates at
both u and v, a contradiction.

Let T be an ETT as specified in Theorem 3.10; that is, T is constructed from a k-triple
(G, e, ϕ) by using the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. To
prove that V (T ) is elementary with respect to ϕn, we shall turn to considering a restricted ETT
T ′ with ladder T1 ⊂ T2 ⊂ . . . ⊂ Tn ⊂ T ′ and V (T ′) = V (Tn+1), and then show that V (T ′) is
elementary with respect to ϕn. For convenience, we may simply view T ′ as T .

In the remainder of this paper, we reserve the symbol Rn for a fixed closure of Tn(vn) under
ϕn, if Θn = PE. Let Tn ∨ Rn be the tree sequence as defined above Lemma 5.1. We assume
hereafter that

(5.2) Tn+1 is a closure of Tn ∨Rn under ϕn, which is a special closure of Tn under ϕn (see
Step 4 in Algorithm 3.1), when Θn = PE.

By Lemma 5.1, V (Tn∨Rn) is elementary with respect to ϕn, so we may further assume that
(5.3) T 6= Tn ∨Rn if Θn = PE, which together with (5.2) implies that Tn ∨Rn is not closed

with respect to ϕn.
(5.4) If Θn = PE, then each color in ϕn(Tn) ∩ ϕn(Rn) is closed in Tn ∨Rn with respect to

ϕn.
To justify this, note that each color in ϕn(Rn) is closed in Rn under ϕn because Rn is a

closure. By Lemma 3.2(iv), each color in ϕn(Tn) − {δn} is closed in Tn under ϕn. Hence each
color in ϕn(Tn) ∩ ϕn(Rn) − {δn} is closed in Tn ∨ Rn with respect to ϕn. Lemma 3.2(iv) also
asserts that edges in ∂ϕn,δn(Tn) are all incident to V (Tn(vn)− vn). So δn is closed in Tn ∨Rn as
well, because it is closed in Rn. Hence (5.4) follows.

To prove Theorem 3.10(i), we shall appeal to a hierarchy of T of the form
(5.5) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T , such that Tn ∨ Rn ⊂ Tn,1 if Θn = PE

and Tn,i = T (ui) for 1 ≤ i ≤ q, where u1 ≺ u2 ≺ . . . ≺ uq are some vertices in T − V (Tn), called
dividers of T . (So T has q dividers in total.)

As introduced in Algorithm 3.1, Dn = ∪h≤nSh − ϕn(Tn), where Sh = {δh} if Θh = SE and
Sh = {δh, γh} otherwise. By Lemma 3.4, we have

(5.6) |Dn| ≤ n.
Write Dn = {η1, η2, . . . , ηn′}. In Definition 5.2 given below and the remainder of this paper,

• T ∗
n,0 = Tn ∨Rn if Θn = PE and T ∗

n,0 = Tn otherwise, and T ∗
n,j = Tn,j if j ≥ 1;

• Dn,j = ∪h≤nSh − ϕn(T
∗
n,j) for 0 ≤ j ≤ q;

• vηh , for ηh ∈ Dn, is defined to be the first vertex u of T in the order ≺ with ηh ∈ ϕn(u), if
any, and defined to be the last vertex of T in the order ≺ otherwise;

• Λ0
h = ϕn(Tn)− ϕn〈Tn,1(vηh)− T ∗

n,0〉 for ηh ∈ Dn,0, where Tn,1(vηh) = Tn,1 if vηh is outside
Tn,1;

• Λj
h = ϕn(Tn,j)− ϕn〈Tn,j+1(vηh)− Tn,j〉 for 1 ≤ j ≤ q and ηh ∈ Dn,j, where Tn,j+1(vηh) =

Tn,j+1 if vηh is outside Tn,j+1; and

• Γj = ∪ηh∈Dn,j
Γj
h for 0 ≤ j ≤ q.

Let H be a subgraph of G and let C be a subset of [k]. We say that H is C-closed with
respect to ϕn if ∂ϕn,α(H) = ∅ for any α ∈ C, and say that H is C−-closed with respect to ϕn if
it is (ϕn(H)− C)-closed with respect to ϕn.
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Definition 5.2. Hierarchy (5.5) of T is called good with respect to ϕn if for any j with 0 ≤ j ≤ q
and any ηh ∈ Dn,j, there exists a 2-color subset Γj

h = {γjh1
, γjh2

} ⊆ [k], such that

(i) Γj
h ⊆ Λj

h (so Γj
h ⊆ ϕn(Tn) if j = 0 and Γj

h ⊆ ϕn(Tn,j) if j ≥ 1);

(ii) Γj
g ∩ Γj

h = ∅ whenever ηg and ηh are two distinct colors in Dn,j ;

(iii) for any j with 1 ≤ j ≤ q, there exists precisely one color ηg ∈ Dn,j, such that Γj
g ⊆

ϕn(Tn,j − V (T ∗
n,j−1)) (so Γj

g ∩ Γj−1
g = ∅) and Γj

h = Γj−1
h for all ηh ∈ Dn,j − {ηg};

(iv) if Θn = PE, then Tn ∨ Rn is not (Γ0)−-closed with respect to ϕn and, subject to this,
|ϕn(Tn) ∩ ϕn(Rn) − Γ0| is maximized (this maximum value is at least 4, as we shall see);
and

(v) Tn,j is (∪ηh∈Dn,j
Γj−1
h )−-closed with respect to ϕn for all j with 1 ≤ j ≤ q.

The sets Γj
h are referred to as Γ-sets of the hierarchy (or of T ) under ϕn.

Some remarks may help to understand the concept of good hierarchies.
(5.7) From Condition (i) we see that neither the color γjh1

nor γjh2
can be used by edges on

Tn,j+1 until after ηh becomes missing at the vertex vηh in Tn,j+1.
(5.8) Condition (iv) implies that Tn,1 6= Tn ∨Rn if Θn = PE.

(5.9) For 1 ≤ j ≤ q, by definitions, Dn,j ⊆ Dn,j−1, so Γj−1
h is well defined for any ηh ∈ Dn,j

and ∪ηh∈Dn,j
Γj−1
h ⊆ Γj−1. In view of Condition (v), the first edge added to Tn,j+1 − Tn,j is

colored by a color α in Γj−1
g for some g with ηg ∈ Dn,j. From Condition (i) and (5.7) we see

that α /∈ Γj
g. So Γj

g 6= Γj−1
g . According to Condition (iii), now Γj

g consists of two colors in
ϕn(Tn,j − V (T ∗

n,j−1)). Thus Γ
j−1
g ∩ Γj

g = ∅ and hence α /∈ Γj.

(5.10) If a color α ∈ ϕn(Tn,j − V (T ∗
n,j−1)) for some j with 1 ≤ j ≤ q, then α /∈ Γj−1 by

Condition (i), and hence α is closed in Tn,j with respect to ϕn by Condition (v). This simple
observation will be used repeatedly in subsequent proofs.

(5.11) Note that not every ETT admits a good hierarchy. Suppose T does have such a
hierarchy. To prove that V (T ) is elementary with respect to ϕn, as usual, we shall perform a
sequence of Kempe changes. Since interchanging with colors in Dn,j often results in a coloring

which is not stable, in our proof we shall use colors in Γj
h as stepping stones to switch with the

color ηh in Dn,j while maintaining stable colorings in subsequent proofs. So we may think of Γj
h

as a color set exclusively reserved for ηh and think of a good hierarchy as a control mechanism
over Kempe changes.

We break the proof of Theorem 3.10(i) into the following two theorems. Although the first
theorem appears to be weaker than Theorem 3.10(i), the second one implies that they are
actually equivalent. We only present a proof of the second theorem in this section, and will give
a proof of the first one in the next two sections.

Theorem 5.3. (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by using
the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+1}. Suppose T admits a good
hierarchy and satisfies MP with respect to ϕn. Then V (T ) is elementary with respect to ϕn.

Theorem 5.4. (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by using
the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n+ 1}. If T satisfies MP under
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ϕn, then there exists a closed ETT T ′ constructed from Tn under ϕn by using the same connecting
edge, connecting color, and extension type as T , with r(T ′) = n and V (T ′) = V (Tn+1), such
that T ′ admits a good hierarchy and satisfies MP with respect to ϕn.

Remark. As we shall see, our proof of Theorem 5.4 is based on Theorem 5.3, while the proof
of Theorem 5.3 is completely independent of Theorem 5.4.

Proof of Theorem 5.4. By (5.1) and Theorem 3.10(i), V (Ti) is elementary with respect
to ϕi−1 for 1 ≤ i ≤ n. So each |Ti| is an odd number. Thus |Ti| − |Ti−1| ≥ 2 for each 1 ≤ i ≤ n.
By Theorem 2.9, if |T1| ≤ 10, then G is an elementary multigraph, thereby proving Theorem
2.1 in this case. So we may assume that |T1| ≥ 11. Hence

(1) |Ti| ≥ 2i+ 9 for 1 ≤ i ≤ n.
We shall actually construct an ETT T ′ from Tn by using the same connecting edge, connect-

ing color, and extension type as T , which has a good hierarchy:
(2) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T ′, such that Tn ∨ Rn ⊂ Tn,1 if Θn = PE and such

that V (T ′) = V (Tn+1).
Since V (Tn) is elementary with respect to ϕn−1, by (1) we have |ϕn−1(Tn)| ≥ 2n+ 11 (as e

is uncolored). From Algorithm 3.1 we see that |ϕn−1(Tn)| = |ϕn(Tn)|. So
(3) |ϕn(Tn)| ≥ 2n+ 11. Moreover, |Dn,0| ≤ |Dn| ≤ n by (5.6).
(4) If Θn = PE, then we can find a 2-color set Γ0

h = {γ0h1
, γ0h2

} ⊆ ϕn(Tn) for each ηh ∈
Dn,0 = ∪h≤nSh−ϕn(Tn ∨Rn), such that Γ0

g ∩Γ0
h = ∅ whenever ηg and ηh are two distinct colors

in Dn,0, and such that Tn ∨Rn is not (Γ0)−-closed with respect to ϕn, where Γ0 = ∪ηh∈Dn,0Γ
0
h.

To justify this, let α be a color in ϕn(Tn ∨Rn) that is not closed in Tn ∨Rn under ϕn; such
a color exists by (5.3). In view of (3), ϕn(Tn) − {α} contains at least 2n + 10 colors. So (4)
follows if we pick all colors in Γ0 from ϕn(Tn)− {α}.

(5) If Θn = PE, then there exists a 2-color set Γ0
h = {γ0h1

, γ0h2
} ⊆ ϕn(Tn) for each ηh ∈ Dn,0

as described in (4), such that |ϕn(Tn) ∩ ϕn(Rn)− Γ0| is maximized, which is at least 4.
To justify this, let α be as specified in the proof of (4). Then α /∈ ϕn(Tn)∩ϕn(Rn) by (5.4).

If we pick all colors in Γ0 from ϕn(Tn)− {α}, with priority given to those in ϕn(Tn)− ϕn(Rn),
then |ϕn(Tn)∩ϕn(Rn)−Γ0| ≥ 4 by (3), because the ends of the uncolored edge e are contained
in both Tn and Rn. So (5) is established.

Thus Definition 5.2(iv) is satisfied by these sets Γ0
h. Using (3), we can similarly get the

following statement.
(6) If Θn 6= PE, then we can find a 2-color set Γ0

h = {γ0h1
, γ0h2

} ⊆ ϕn(Tn) for each ηh ∈
Dn,0 = Dn, such that Γ0

g ∩ Γ0
h = ∅ whenever ηg and ηh are two distinct colors in Dn,0.

Note that the ETT T ′ to be constructed is not necessarily T , so Tn,j may not be a segment
of T for 1 ≤ j ≤ q. Since T ′ is a tree sequence, we can obviously associate a linear order ≺′ with
its vertices, so that ≺′ is identical with ≺ when restricted to T ∗

n,0. Thus, in Algorithms 5.5 and
5.6, vηh is defined to be the first vertex of T ′ in the order ≺′ for which ηh ∈ ϕn(vηh), if any, and
defined to be the last vertex of T ′ in the order ≺′ otherwise; and Tn,j+1(vηh) = Tn,j+1 if vηh is
not contained in Tn,j+1 for 0 ≤ j ≤ q.

Given {Γ0
h : ηh ∈ Dn,0}, let us construct Tn,1 using the following procedure.
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Algorithm 5.5

Step 0. Set Tn,1 = Tn∨Rn if Θn = PE and Tn,1 = Tn+fn otherwise, where fn is the connecting
edge used in Step 2 or 3 of Algorithm 3.1, depending on Θn.

Step 1. While there exists f ∈ ∂(Tn,1) with ϕn(f) ∈ ϕn(Tn,1), do: set Tn,1 = Tn,1 + f if the
resulting Tn,1 satisfies Γ0

h ∩ ϕn〈Tn,1(vηh) − T ∗
n,0〉 = ∅ for all ηh ∈ Dn,0, where T ∗

n,0 = Tn ∨ Rn if
Θn = PE and T ∗

n,0 = Tn otherwise.

Step 2. Return Tn,1.

Note that if Θn = PE, then Tn ∨ Rn is not (Γ0)−-closed with respect to ϕn by (4) and
(5). So Step 1 is applicable to Tn ∨ Rn, and hence Tn,1 6= Tn ∨ Rn. If Θn = RE or SE,
then Tn,1 6= Tn by the algorithm. For each ηh ∈ Dn,0, it follows from (5), (6), and Step
1 that Γ0

h ⊆ ϕn(Tn) − ϕn〈Tn,1(vηh) − T ∗
n,0〉. So Γ0

h ⊆ Λ0
h. Moreover, Tn,1 is (∪ηh∈Dn,1Γ

0
h)

−-
closed with respect to ϕn. To justify this, assume the contrary: there exists f ∈ ∂(Tn,1) with
ϕn(f) ∈ ϕn(Tn,1) − (∪ηh∈Dn,1Γ

0
h). Then either ϕn(f) ∈ ϕn(Tn,1) − (∪ηh∈Dn,0Γ

0
h) or ϕn(f) ∈ Γ0

h

for some ηh ∈ Dn,0 but ηh /∈ Dn,1; in the latter case, ηh is a missing color at the vertex vηh
in Tn,1. Thus we can further grow Tn,1 by using f and Step 1 in either case, a contradiction.
Therefore, Tn,1 and {Γ0

h : ηh ∈ Dn,0} satisfy all the conditions stated in Definition 5.2.

Suppose we have constructed Tn,i and {Γi−1
h : ηh ∈ Dn,i−1} for all i with 1 ≤ i ≤ j,

which are as described in Definition 5.2. If Tn,j is closed with respect to ϕn (equivalently
V (Tn,j) = V (Tn+1)), set T ′ = Tn,j. Otherwise, we proceed to the construction of Tn,j+1 and

{Γj
h : ηh ∈ Dn,j} using the following procedure.

Algorithm 5.6

Step 0. Set Γj
h = Γj−1

h for each ηh ∈ Dn,j.

Step 1. Let f be an edge in ∂(Tn,j) with ϕn(f) ∈ Γj−1
h for some ηh ∈ Dn,j, let Tn,j+1 = Tn,j+f ,

and let {γjh1
, γjh2

} be a 2-subset of ϕn(Tn,j − V (Tn,j−1)). Replace Γj
h by {γjh1

, γjh2
}.

Step 2. While there exists f ∈ ∂(Tn,j+1) with ϕn(f) ∈ ϕn(Tn,j+1), do: set Tn,j+1 = Tn,j+1 + f

if the resulting Tn,j+1 satisfies Γj
h ∩ ϕn〈Tn,j+1(vηh)− Tn,j〉 = ∅ for all ηh ∈ Dn,j.

Step 3. Return Tn,j+1 and {Γj
h : ηh ∈ Dn,j}.

Let us make some observations about this algorithm and its output.
As Tn,j is not closed with respect to ϕn, V (Tn,j) is a proper subset of V (Tn+1). By

Definition 5.2(v), Tn,j is (∪ηh∈Dn,j
Γj−1
h )−-closed with respect to ϕn. So there exists a color

β ∈ ∪ηh∈Dn,j
Γj−1
h , such that ∂ϕn,β(Tn,j) 6= ∅. Hence the edge f specified in Step 1 is available.

For 1 ≤ i ≤ j, we have |ϕn(Tn,i)| ≥ |ϕn(Tn)| ≥ 2n + 11 and |Dn,i| ≤ |Dn,0| ≤ |Dn| ≤ n by
(3). So ϕn(Tn,i) − (∪ηh∈Dn,i

Γi−1
h ) 6= ∅; let α be a color in this set. By Theorem 5.3 (see the

remark right above the proof of this theorem), V (Tn,i) is elementary with respect to ϕn, which
implies that |Tn,i| is odd, because α is closed in Tn,j under ϕn by Definition 5.2(v). It follows
that |Tn,j| − |Tn,j−1| ≥ 2. So ϕn(Tn,j − V (Tn,j−1)) contains at least two distinct colors, and

hence the 2-subset {γjh1
, γjh2

} involved in Step 1 exists.

Note that each color in ϕn(Tn,j+1) − (∪ηh∈Dn,j+1Γ
j
h) is closed in Tn,j+1 with respect to ϕn,
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for otherwise, Tn,j+1 can be augmented further using Step 2 (see the paragraph succeeding

Algorithm 5.5 for details). Thus Tn,j+1 is (∪ηh∈Dn,j+1Γ
j
h)

−-closed with respect to ϕn for 1 ≤

j ≤ q − 1. From the algorithm we see that Γj
h ⊆ ϕ(Tn,j) − ϕn〈Tn,j+1(vηh) − T ∗

n,j〉 = Λj
h for all

ηh ∈ Dn,j. So Tn,j+1 and {Γj
h : ηh ∈ Dn,j} satisfy all the conditions in Definition 5.2 and hence

are as desired.
Repeating the process, we can eventually get a closed ETT T ′, with V (T ′) = V (Tn+1), that

admits a good hierarchy with respect to ϕn. Clearly, T
′ also satisfies MP under ϕn.

Consider the case when Θn = PE. By the definition of hierarchy (see (5.5)), Tn ∨Rn is fully
contained in Tn,1. To maintain the structure of Tn ∨ Rn under Kempe changes, we need the
following concept in subsequent proofs. A coloring σ ∈ Ck(G− e) is called a (Tn ⊕Rn,Dn, ϕn)-
stable coloring if it is both (Tn,Dn, ϕn)-stable and (Rn, ∅, ϕn)-stable; that is, the following
conditions are satisfied:

• σ(f) = ϕn(f) for any edge f incident to Tn with ϕn(f) ∈ ϕn(Tn) ∪Dn;
• σ(f) = ϕn(f) for any edge f incident to Rn with ϕn(f) ∈ ϕn(Rn); and
• σ(v) = ϕn(v) for any v ∈ V (Tn ∪Rn).

(5.12) If σ is a (Tn ⊕ Rn,Dn, ϕn)-stable coloring, then σ(f) = ϕn(f) for any edge f on
Tn ∪Rn. To justify this, note that, for any edge f on Tn, this equality holds by Lemma 3.2(iii).
For any edge f in Rn−Tn, we have ϕn(f) ∈ ϕn(Rn) by the definition of Rn and TAA. It follows
from the above definition that σ(f) = ϕn(f).

From Lemma 2.4 it is clear that being (Tn ⊕Rn,Dn, ·)-stable is also an equivalence relation
on Ck(G− e). Moreover, every (Tn ∨Rn,Dn, ϕn)-stable coloring is (Tn⊕Rn,Dn, ϕn)-stable, but
the converse need not hold.

Lemma 5.7. Let T be an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov
series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Suppose Θn = PE and T enjoys MP
under ϕn. Let Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T be a hierarchy of T , and let σn be a
(Tn⊕Rn,Dn, ϕn)-stable coloring. If T can be built from Tn∨Rn by using TAA under σn, then T
is also an ETT satisfying MP with respect to σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be a hierarchy of T under σn.

Proof. Since σn is a (Tn ⊕Rn,Dn, ϕn)-stable coloring, we have σ(f) = ϕn(f) for any edge
f on Tn ∨Rn by (5.12). By definition, σn is a (Tn,Dn, ϕn)-stable coloring, so it is a ϕn mod Tn

coloring by (5.1) and Theorem 3.10(vi). Thus Tn is an ETT corresponding to σn. As Rn is
a closure of Tn(vn) under ϕn and σn is (Rn, ∅, ϕn)-stable, Rn is also a closure of Tn(vn) under
σn. By hypothesis, T can be built from Tn ∨ Rn by using TAA under σn. So T is an ETT
corresponding to the coloring σn and satisfies MP under σn by Theorem 3.10(vi). Obviously,
Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a hierarchy of T under σn.

We define one more term before proceeding. Let T be a tree sequence with respect to G and
e. A coloring π ∈ Ck(G − e) is called (T, ϕn)-invariant if π(f) = ϕn(f) for any f ∈ E(T − e)
and π(v) = ϕn(v) for any v ∈ V (T ). Clearly, being (T, ·)-invariant is also an equivalence
relation on Ck(G − e). Note that for any subset C of [k], a (T,C, ϕn)-stable coloring π is also
(T, ϕn)-invariant, provided that π〈T 〉 ⊆ ϕn(T ) ∪ C.
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Lemma 5.8. (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by using
the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Suppose T satisfies
MP under ϕn. Let σn be obtained from ϕn by recoloring some (α, β)-chains fully contained in
G− V (T ). Then the following statements hold:

(i) σn is (T,Dn, ϕn)-stable. In particular, σn is (T, ϕn)-invariant. Furthermore, if Θn = PE,
then σn is (Tn ⊕Rn,Dn, ϕn)-stable.

(ii) T is an ETT satisfying MP with respect to σn.

(iii) If T admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T under ϕn, then this hier-
archy of T remains good under σn, with the same Γ-sets (see Definition 5.2). Furthermore,
if T is (∪ηh∈Dn,q+1Γ

q
h)

−-closed with respect to ϕn, then T is also (∪ηh∈Dn,q+1Γ
q
h)

−-closed
with respect to σn.

Proof. Since the recolored (α, β)-chains are fully contained in G− V (T ), we have
(1) σn(f) = ϕn(f) for each edge f incident to V (T ) and ϕn(v) = σn(v) for each v ∈ V (T ).

Our proof relies heavily on this observation.
(i) By (1) and definitions, it is clear that σn is a (T,Dn, ϕn)-stable. In particular, σn is

(T, ϕn)-invariant. Furthermore, if Θn = PE, then σn is (Tn ∨Rn,Dn, ϕn)-stable, which implies
that σn is (Tn ⊕Rn,Dn, ϕn)-stable.

(ii) In view of (1), we can construct T from Tn under σn in exactly the same way as under ϕn.
From (1) we also deduce that σn is a (Tn,Dn, ϕn)-stable coloring. Hence, by Theorem 3.10(vi),
T remains to be an ETT and satisfies MP under σn.

(iii) From (1), (5.5) and Lemma 5.7 (when Θn = PE), we see that the given hierarchy
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T is also a hierarchy of T under σn. By hypothesis,
this hierarchy is good with respect to ϕn. Consider the Γ-sets specified in Definition 5.2 with
respect to ϕn. Using (1) it is routine to check that these Γ-sets satisfy all the conditions in
Definition 5.2 with respect to σn. So the given hierarchy of T remains good under σn, with
the same Γ-sets. Furthermore, if T is (∪ηh∈Dn,q+1Γ

q
h)

−-closed with respect to ϕn, then T is also
(∪ηh∈Dn,q+1Γ

q
h)

−-closed with respect to σn.

6 Basic Properties

As we have seen, Theorem 3.10(i) follows from Theorems 5.3 and 5.4. In the preceding section
we have proved Theorem 5.4. The remainder of this paper is devoted to a proof of Theorem 5.3.
In this section we make some technical preparations.

Let T is an ETT that admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
and satisfies MP with respect to the generating coloring ϕn. To prove Theorem 5.3 (that is,
V (T ) is elementary with respect to ϕn), we apply induction on q, and the induction base is
Theorem 3.10(i) for Tn. For convenience, we view Tn,0 as an ETT with −1 divider and n rungs
in the following assumption. Throughout this section we assume that

(6.1) In addition to (5.1), Theorem 5.3 holds for every ETT that admits a good hierarchy
and satisfies MP, with n rungs and at most q − 1 dividers, where q ≥ 0.

Let us first prove two technical lemmas that will be used in the proof of Theorem 5.3.
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Lemma 6.1. (Assuming (5.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by using
the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Suppose Θn = PE and
T enjoys MP under ϕn. Let σn be a (Tn ⊕ Rn,Dn, ϕn)-stable coloring and let α and β be two
colors in [k]. Then the following statements hold:

(i) α and β are Rn-interchangeable under σn if α ∈ σn(Rn);

(ii) α and β are Tn-interchangeable under σn if α ∈ σn(Tn);

(iii) α and β are Tn ∨ Rn-interchangeable under σn if α ∈ σn(Tn ∨ Rn) is closed in Tn ∨ Rn

under σn; and

(iv) α and β are Tn ∨Rn-interchangeable under σn if α ∈ σn(Tn) and β ∈ σn(Rn).

Proof. Since σn is a (Tn⊕Rn,Dn, ϕn)-stable coloring, it is (Tn,Dn, ϕn)-stable by definition.
Let j = m(vn). It follows from (5.1) and Theorem 3.10(iii) that σn is a (Tj(vn)−vn,Dj−1, ϕj−1)-
stable coloring. So σn is (Tj−1,Dj−1, ϕj−1)-stable and hence, by (5.1) and Theorem 3.10(vi), it
is a ϕj−1 mod Tj−1 coloring. Furthermore, σ(f) = ϕn(f) for any edge f in Tn ∪ Rn by (5.12)
and σn(v) = ϕn(v) for all v ∈ V (Tn ∪Rn).

(i) Since Rn is a closure of Tn(vn) under ϕn and σn is (Rn, ∅, ϕn)-stable, Rn is also a closure of
Tn(vn) under σn. Since Rn is obtained from Tj−1 by using the same connecting edge, connecting
color, and extension type as Tj , by (5.1) and Theorem 3.10(vi), Rn is an ETT corresponding to
(σn, Tj−1) and satisfies MP under σn. Let α and β be as specified in the lemma. As r(Rn) = j−1,
by (5.1) and Theorem 3.10(ii), there is at most one (α, β)-path with respect to σn intersecting
Rn. Hence α and β are Rn-interchangeable under σn.

Let us make some observations before proving statements (ii) and (iii). By (5.4), each color
in ϕn(Tn)∩ϕn(Rn) is closed in Tn∨Rn with respect to ϕn. Since σn is a (Tn⊕Rn,Dn, ϕn)-stable
coloring, by definition we obtain

(1) each color in σn(Tn) ∩ σn(Rn) is closed in Tn ∨Rn under σn.
(2) α and β are Tn-interchangeable under σn if α ∈ σn(Tn), α 6= δn, and β 6= δn.
To justify this, note that α 6= γn, because γn /∈ ϕn(Tn) = σn(Tn). So α /∈ Sn. Nevertheless,

there are two possibilities for β.
Let us first consider the case when β 6= γn. Since σn is (Tn,Dn, ϕn)-stable, Pvn(γn, δn, σn)∩

Tn = {vn} by (5.1) and Theorem 3.10(iv). Define σ′
n = σn/Pvn(γn, δn, σn). By Lemma 3.5,

σ′
n is (Tn,Dn−1, ϕn−1)-stable. From (5.1) and Theorem 3.10(ii) we deduce that α and β are

Tn-interchangeable under σ′
n. So they are Tn-interchangeable under σn because {α, β}∩Sn = ∅.

It remains to consider the case when β = γn. In this case, fn is the only edge in ∂σn,γn(Tn) =
∂ϕn,γn(Tn) by Lemma 3.2(iv). Since V (Tn) is elementary with respect to ϕn, it is also elementary
with respect to σn. As ∂σn,α(Tn) = ∅, there is at most one (α, γn)-path with respect to σn
intersecting Tn. So α and β are Tn-interchangeable under σn. Thus (2) is established.

By (1), δn is closed in Tn ∨ Rn with respect to σn. So statement (ii) follows instantly from
(2) and statement (iii).

(iii) Assume the contrary: there are at least two (α, β)-paths P1 and P2 with respect to σn
intersecting Tn ∨Rn. We may assume that

(3) α ∈ σn(Tn) ∩ σn(Rn).
To justify this, let A be the set of four ends of P1 and P2. Then at least two vertices from

A are outside Tn ∨ Rn because, by Lemma 5.1, V (Tn ∨ Rn) is elementary with respect to σn.
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Using (i), it is then routine to check that P1 ∪ P2 contains two vertex-disjoint subpaths Q1 and
Q2, which are Tn-exit paths with respect to σn. Let u ∈ V (Tn) ∩ V (Rn), let η ∈ σn(u), and
let σ′

n = σn/(G − Tn ∨ Rn, α, η). By (1), η is closed in Tn ∨ Rn with respect to σn; so is α by
hypothesis. Hence σ′

n is a (Tn ⊕ Rn,Dn, ϕn)-stable coloring, and Q1 and Q2 are two Tn-exit
paths with respect to σ′

n. Since Pu(η, β, σ
′
n) contains at most one of Q1 and Q2, replacing σn

and α by σ′
n and η, respectively, we obtain (3).

Let v be a vertex in V (Tn) ∩ V (Rn) with α ∈ σn(v). Clearly, we may assume that P1 =
Pv(α, β, σn). By (i), we may further assume that P2 is disjoint from Rn. So P2 intersects Tn.
Therefore α and β are not Tn-interchangeable under σn. Since γn /∈ ϕn(Tn) = σn(Tn), we have
α 6= γn. By (2), we may assume that α = δn or β = δn.

Suppose β = δn. By Lemma 3.2(iv) and the definition of stable colorings, edges in ∂σn,δn(Tn)
are all incident to V (Tn)∩V (Rn). Thus both P1 and P2 intersect V (Tn)∩V (Rn), contradicting
statement (i).

Suppose α = δn. By (1), δn is closed in Tn ∨ Rn under σn. Since V (Tn) ∩ V (Rn) contains
both ends of the uncolored edge e, there exists a color θ ∈ σn(Tn) ∩ σn(Rn) − {δn}. Let
σ′′
n = σn/(G − Tn ∨Rn, δn, θ). Then σ′′

n is also (Tn ⊕ Rn,Dn, ϕn)-stable. From the existence of
P1 and P2, we see that θ and β are not Tn ∨ Rn-interchangeable under σ′′

n, contradicting our
observation (2) above the case when α 6= δn and β 6= δn.

(iv) Assume the contrary: there are at least two (α, β)-paths P1 and P2 with respect to σn
intersecting Tn ∨ Rn. Let u be a vertex in Tn with α ∈ σn(u) and let v be a vertex in Rn with
β ∈ σn(v). By (ii) (resp. (i)), Pu(α, β, σn) (resp. Pv(α, β, σn)) is the only (α, β)-path with
respect to σn intersecting Tn (resp. Rn). Hence P1 = Pu(α, β, σn), P2 = Pv(α, β, σn) (rename
subscripts if necessary), and Pu(α, β, σn) 6= Pv(α, β, σn). Moreover, neither Pu(α, β, σn) nor
Pv(α, β, σn) has an end in V (Tn) ∩ V (Rn), which in turn implies that

(4) u ∈ V (Tn)− V (Rn) and v ∈ V (Rn)− V (Tn).
By (4) and statement (ii), Pv(α, β, σn) is disjoint from Tn. Let σ′

n = σn/Pv(α, β, σn). By
Lemma 5.8, σ′

n is a (Tn,Dn, ϕn)-stable coloring. By Lemma 5.1, V (Tn ∨Rn) is elementary with
respect to σn. Since α ∈ σn(u) and β ∈ σn(v), from TAA we see that no edge in Rn(v)−Tn(vn)
is colored by α or β under both ϕn and σn. Thus edges in Rn(v) − Tn(vn) are colored exactly
the same under σ′

n as under σn and σn(x) = σ′
n(x) for any x ∈ V (Rn(v) − v)) ∪ V (Tn). Let

R′
n be a closure of Tn(vn) under σ′

n. Then v ∈ V (R′
n). In view of Lemma 5.1, V (Tn ∨ R′

n) is
elementary with respect to σ′

n. However, α ∈ σ′
n(u) ∩ σ′

n(v), a contradiction.

As introduced in Section 5, T ∗
n,0 = Tn∨Rn if Θn = PE and T ∗

n,0 = Tn otherwise. Throughout

a coloring σn ∈ Ck(G − e) is called a (T ∗
n,0,Dn, ϕn)-strongly stable coloring if it is a (Tn ⊕

Rn,Dn, ϕn)-stable coloring when Θn = PE and is a (Tn,Dn, ϕn)-stable coloring when Θn 6= PE.
By Lemma 3.2(iii) and (5.12), every (T ∗

n,0,Dn, ϕn)-strongly stable coloring is (T ∗
n,0, ϕn)-invariant.

It follows from Lemma 2.4 that being (T ∗
n,0,Dn, ·)-strongly stable is an equivalence relation on

Ck(G− e).

Lemma 6.2. (Assuming (6.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by
using the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}, and let σn
be a (T ∗

n,0,Dn, ϕn)-strongly stable coloring. Suppose T ′ is an ETT obtained from T ∗
n,0 cor-

responding to (σn, Tn) (see Definition 3.7 and Theorem 3.10(vi)) that has a good hierarchy
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Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p = T ′, where 1 ≤ p ≤ q (see Definition 5.2 and (6.1)). Further-

more, T ′ is (∪ηh∈Dn,pΓ
p−1
h )−-closed with respect to σn. Let α ∈ σn(T

′) and β ∈ [k] − {α}. If α
is closed in T ′ under σn, then α and β are T ′-interchangeable under σn.

A very useful corollary of this lemma is given below.

Corollary 6.3. (Assuming (6.1)) Let T be an ETT constructed from a k-triple (G, e, ϕ) by
using the Tashkinov series T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Suppose T has a
good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T . Let p be a subscript with 1 ≤ p ≤ q,
and let α ∈ ϕn(Tn,p) and β ∈ [k] − {α}. If α is closed in Tn,p under ϕn, then α and β are
Tn,p-interchangeable under ϕn.

Proof of Lemma 6.2. Assume the contrary: there are two (α, β)-paths Q1 and Q2 with
respect to σn intersecting T ′ = Tn,p; subject to this, p is minimum. Let us make some simple
observations about T ′ before proceeding. Since σn is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring,
by Theorem 3.10(vi) we have

(1) T ′ satisfies MP under σn, and hence V (T ′) is elementary with respect to σn by (6.1) and
Theorem 5.3.

By hypothesis, α is closed in T ′ with respect to σn, which together with (1) implies that
(2) |T ′| is odd.

In our proof we shall repeatedly use the following hypothesis:
(3) T ′ is (∪ηh∈Dn,pΓ

p−1
h )−-closed with respect to σn.

Depending on whether β is contained in σn(T
′), we consider two cases.

Case 1. β ∈ σn(T
′).

In this case, |∂σn,β(T
′)| is even by (1) and (2). From the existence of Q1 and Q2, we see that

G contains two vertex-disjoint (T ′, σn, {α, β})-exit paths P1 and P2. For i = 1, 2, let ai and bi be
the ends of Pi with bi ∈ V (T ′). Renaming subscripts if necessary, we may assume that b1 ≺ b2.
We distinguish between two subcases according to the location of b2.

Subcase 1.1. b2 ∈ V (T ′)− V (T ∗
n,p−1).

Since the edge on P1 incident to b1 is a boundary edge of T ′ and is colored by β, we have
β ∈ Γp−1

h for some h with ηh ∈ Dn,p by (3), which together with Definition 5.2(i) implies that
vβ ∈ V (Tn,p−1), where vβ is the vertex in T ′ (see (1)) for which β ∈ σn(vβ). Let γ ∈ σn(b2).
By the assumption of the present subcase and Definition 5.2(i), we have γ /∈ Γp−1. Hence γ is
closed with respect to σn in T ′ by (3). So

(4) both α and γ are closed in T ′ under σn.
Let µ1 = σn/(G − T ′, α, γ). Clearly, µ1 is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring. By
Lemma 5.8,

(5) the given hierarchy of T ′ remains good under µ1, with the same Γ-sets as those under σn
(see Definition 5.2). Furthermore, T ′ is (∪ηh∈Dn,pΓ

p−1
h )−-closed under µ1.

Note that P1 and P2 are two (T ′, µ1, {γ, β})-exit paths. Let µ2 = µ1/Pb2(γ, β, µ1). Since
Pb2(γ, β, µ1) ∩ T ′ = {b2}, all edges incident to V (T ′(b2) − b2) are colored the same under µ2 as
under µ1. By (5) and Lemma 5.8, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ T ′(b2) − b2 is a good
hierarchy of T ′(b2)− b2 under µ2, with the same Γ-sets as T ′ under σn. So

(6) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ T ′(b2) is a good hierarchy of T ′(b2) under µ2, with
the same Γ-sets as T ′ under σn.
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Clearly, µ2 is a (T ∗
n,0,Dn, ϕn)-strongly stable coloring. By Theorem 3.10(vi), T ′(b2) satisfies

MP under µ2. Thus from (6.1) we conclude that V (T ′(b2)) is elementary with respect to µ2.
However, β ∈ µ2(Tn,p−1) ∩ µ2(b2), a contradiction.

Subcase 1.2. b2 ∈ V (T ∗
n,p−1).

We propose to show that
(7) there exists a color θ ∈ σn(Tn) that is closed in both T ∗

n,0 and Tn,1 under σn if p = 1, and
a color θ ∈ σn(Tn,p−1) that is closed in both Tn,p−1 and Tn,p under σn if p ≥ 2.

Our proof is based on the following simple observation (see (3) in the proof of Theorem 5.4).
(8) |σn(Tn)| ≥ 2n + 11 and |Dn,i| ≤ |Dn| ≤ n for 0 ≤ i ≤ q.
Let us first assume that p = 1. When Θn 6= PE, let θ be a color in σn(Tn)− (∪ηh∈Dn,1Γ

0
h);

such a color exists by (8). From Algorithm 3.1 we see that Tn is closed under ϕn and hence
under σn. By (3) and Definition 5.2(v), Tn,1 is (∪ηh∈Dn,1Γ

0
h)

−-closed under σn. So θ is as
desired. When Θn = PE, we have |σn(Tn) ∩ σn(Rn) − Γ0| ≥ 4 by Definition 5.2(iv). Let
θ ∈ σn(Tn)∩σn(Rn)−Γ0−{δn}. By the hypothesis of the present lemma, σn is a (T ∗

n,0,Dn, ϕn)-
strongly stable coloring. It follows from (5.4) that θ is closed in Tn∨Rn under σn. By Definition
5.2(v), Tn,1 is (∪ηh∈Dn,1Γ

0
h)

−-closed with respect to σn. So θ is also as desired.
Next we assume that p ≥ 2. By (8), we have |σn(Tn,p−2)| ≥ |σn(Tn)| ≥ 2n+11 and |Dn,p−2| ≤

|Dn| ≤ n. So there exists a color θ in σn(Tn,p−2) − (∪ηh∈Dn,p−1Γ
p−2
h ). Since σn(Tn,p−2) ⊆

σn(Tn,p−1), we have θ ∈ σn(Tn,p−1) − (∪ηh∈Dn,p−1Γ
p−2
h ). By Definition 5.2(v), θ is closed in

Tn,p−1 under σn. From the definition of θ and Definition 5.2(iii), we also see that θ /∈ Γp−1. So

θ ∈ σn(Tn,p) − Γp−1 ⊆ σn(Tn,p) − (∪ηh∈Dn,pΓ
p−1
h ). By (3), θ is closed in Tn,p under σn. Hence

(7) is established.
Let µ3 = σn/(G − T ′, α, θ). Since both α and θ are closed in T ′ with respect to σn, by

Lemma 5.8, µ3 is a (T ∗
n,0,Dn, ϕn)-strongly stable coloring. Furthermore, Tn,p admits a good

hierarchy and satisfies MP with respect to µ3. Thus Tn,p−1 also admits a good hierarchy and
satisfies MP with respect to µ3 if p ≥ 2. By (7), θ is closed in T ∗

n,0 if p = 1 and closed in Tn,p−1

if p ≥ 2 under µ3. Note that both P1 and P2 are (T ∗
n,p−1, µ3, {θ, β})-exit paths. So θ and β are

not T ∗
n,0-interchangeable under µ3 if p = 1 and not Tn,p−1-interchangeable under µ3 if p ≥ 2,

which contradicts Lemma 6.1(iii) or the interchangeability property of Tn when p = 1 and the
minimality assumption on p when p ≥ 2.

Case 2. β /∈ σn(T
′).

In this case, |∂σn,β(T
′)| is odd and at least three by (1) and (2). From the existence of Q1

and Q2, we see that G contains at least three (T, σn, {α, β})-exit paths P1, P2, P3. For i = 1, 2, 3,
let ai and bi be the ends of Pi with bi ∈ V (T ), and fi be the edge of Pi incident to bi. Renaming
subscripts if necessary, we may assume that b1 ≺ b2 ≺ b3.

Subcase 2.1. b3 ∈ V (T ′)− V (T ∗
n,p−1).

For convenience, we call the tuple (σn, T
′, α, β, P1, P2, P3) a counterexample and use K to

denote the set of all such counterexamples. With a slight abuse of notation, we still use
(σn, T

′, α, β, P1, P2, P3) to denote a counterexample in K with the minimum |P1| + |P2| + |P3|.
Let γ ∈ ϕ(b3). By the hypothesis of the present subcase and Definition 5.2(i), we have γ /∈ Γp−1.
So γ is closed in T ′ under σn by (3). Note that γ might be some ηh ∈ Dn.

Let µ4 = σn/(G − T ′, α, γ). By Lemma 5.8, µ4 is a (T ∗
n,0,Dn, ϕn)-strongly stable coloring.

Furthermore, T ′ admits a good hierarchy and satisfies MP under µ4. Note that P1, P2, P3 are
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three (T ′, µ4, {γ, β})-exit paths.
Consider µ5 = µ4/Pb3(γ, β, µ4). Clearly, β ∈ µ5(b3) and β /∈ Γp−1. Since Pb3(γ, β, µ4)∩ T ′ =

{b3}, it is easy to see that µ5 is a (T ∗
n,0,Dn, ϕn)-strongly stable coloring and all edges incident

to V (T ′(b3) − b3) are colored the same under µ5 as under µ4. By (5.1) and Theorem 3.10(vi),
T ′(b3) is an ETT satisfying MP under µ5. By Lemma 5.7 and Lemma 5.8, Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,p−1 ⊂ T ′(b3)− b3 is a good hierarchy of T ′(b3) − b3 under µ5, with the same Γ-sets as
T ′ under σn. So

(9) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ T ′(b3) is a good hierarchy of T ′(b3) under µ5, with
the same Γ-sets as T ′ under σn.

Let H be obtained from T ′(b3) by adding f1 and f2. Since β /∈ Γp−1, it can be seen from (9)
that

(10) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ H is a good hierarchy of H under µ5, with the same
Γ-sets as T ′ under σn.

By (5.1) and Theorem 3.10(vi), H satisfies MP under µ5. Set T ′′ = H. Let us grow T ′′ by
using the following algorithm:

(11) While there exists f ∈ ∂(T ′′) with µ5(f) ∈ µ5(T
′′), do: set T ′′ = T ′′ + f if the resulting

T ′′ satisfies Γp−1
h ∩ µ5〈T

′′(vηh)− Tn,p−1〉 = ∅ for all ηh ∈ Dn,p−1.
Note that this algorithm is exactly the same as Step 2 in Algorithm 5.6. From (11) we see

that
(12) T ′′ is (∪ηh∈D′′

n,p
Γp−1
h )−-closed with respect to µ5, where D′′

n,p = ∪h≤nSh − µ5(T
′′) (so

D′′
n,p ⊆ Dn,p−1).
In view of (10) and (11), we conclude that
(13) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,p−1 ⊂ T ′′ is a good hierarchy of H under µ5, with the same

Γ-sets as T ′ under σn.
Clearly, T ′′ satisfies MP under µ5. By (13), (6.1), and Theorem 5.3, V (T ′′) is elementary with

respect to µ5. Observe that none of a1, a2, a3 is contained in T ′′, for otherwise, let ai ∈ V (T2)
for some i with 1 ≤ i ≤ 3. Since {β, γ} ∩ µ5(ai) 6= ∅ and β ∈ µ5(b3), we obtain γ ∈ σ2(ai).
Hence from TAA we see that P1, P2, P3 are all entirely contained in G[T ′′], which in turn implies
γ ∈ σ2(aj) for j = 1, 2, 3. So V (T ′′) is not elementary with respect to µ5, a contradiction.
Each Pi contains a subpath Li, which is a T ′′-exit path with respect to µ5. Since f1 is not
contained in L1, we obtain |L1| + |L2| + |L3| < |P1| + |P2| + |P3|. Thus, in view of (12), the
existence of the counterexample (µ5, T

′′, γ, β, L1, L2, L3) violates the minimality assumption on
(σn, T

′, α, β, P1, P2, P3).
Subcase 2.2. b3 ∈ V (T ∗

n,p−1).
The proof in this subcase is essentially the same as that in Subcase 1.2. Let θ be a color

as described in (7). Consider µ3 = σn/(G − T ′, α, θ). Then we can verify that θ and β are not
T ∗
n,0-interchangeable under µ3 if p = 1 and not Tn,p−1-interchangeable under µ3 if p ≥ 2, which

contradicts Lemma 6.1(iii) or the minimality assumption on p; for the omitted details, see the
proof in Subcase 1.2.

Let us make some further preparations before proving Theorem 5.3. Let Tn = Tn,0 ⊂
Tn,1 ⊂ . . . ⊂ Tn,q+1 = T be a good hierarchy of T (see (5.5) and Definition 5.2). Recall that
T ∗
n,0 = Tn ∨ Rn if Θn = PE and T ∗

n,0 = Tn otherwise, T ∗
n,0 ⊂ Tn,1 by (5.5), and T ∗

n,i = Tn,i if
i ≥ 1. Let T be constructed from T ∗

n,q using TAA by recursively adding edges e1, e2, . . . , ep and
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vertices y1, y2, . . . , yp, where yi is the end of ei outside T (yi−1) for i ≥ 1, with T (y0) = T ∗
n,q.

Write T = T ∗
n,q ∪ {e1, y1, e2, ..., ep, yp}. The path number of T , denoted by p(T ), is defined to be

the smallest subscript i ∈ {1, 2, ..., p} such that the sequence (yi, ei+1, ..., ep, yp) corresponds to
a path in G.

A coloring σn ∈ Ck(G − e) is called a (T ∗
n,i,Dn, ϕn)-strongly stable coloring, with 1 ≤ i ≤ q,

if it is both a (T ∗
n,0,Dn, ϕn)-strongly stable and a (T ∗

n,i, ϕn)-invariant coloring. Since every
(T ∗

n,0,Dn, ϕn)-strongly stable coloring is (T ∗
n,0, ϕn)-invariant by Lemma 3.2(iii) and (5.12), this

concept is a natural extension of (T ∗
n,0,Dn, ϕn)-strongly stable colorings. Let v be a vertex of

G. By T ≺ v we mean that u ≺ v for any u ∈ V (T ). Given a color α ∈ [k], we use vα to denote
the first vertex u of T in the order ≺ for which α ∈ ϕn(u), if any, and defined to be the last
vertex of T in the order ≺ otherwise.

Recall that our proof of Theorem 5.3 proceeds by induction on q (see (6.1)). The induc-
tion step will be carried out by contradiction. Throughout the remainder of this section and
Subsection 7.1, (T, ϕn) stands for a minimum counterexample to Theorem 5.3; that is,

(6.2) T is an ETT that admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1

= T and satisfies MP with respect to the generating coloring ϕn;
(6.3) subject to (6.2), V (T ) is not elementary with respect to ϕn;
(6.4) subject to (6.2) and (6.3), p(T ) is minimum; and
(6.5) subject to (6.2)-(6.4), |T | − |Tn,q| is minimum.

Our objective is to find another counterexample (T ′, σn) to Theorem 5.3, which violates the
minimality assumption (6.4) or (6.5) on (T, ϕn).

The following fact will be used frequently in subsequent proof.
(6.6) V (T (yp−1)) is elementary with respect to ϕn.

Let us exhibit some basic properties satisfied by the minimum counterexample (T, ϕn) as
specified above.

Lemma 6.4. For 0 ≤ i ≤ p, the inequality

|ϕn(T (yi))| − |ϕn(T
∗
n,0 − V (Tn))| − |ϕn〈T (yi)− T ∗

n,q〉| ≥ 2n+ 11

holds, where T (y0) = T ∗
n,q. Furthermore, if

|ϕn(T (yi))| − |ϕn(T
∗
n,0 − V (Tn))| − |ϕn〈T (yi)− T ∗

n,q〉| − |Γq ∪Dn,q| ≤ 4,

then there exist 7 distinct colors ηh ∈ Dn,q∩ϕn(T (yi)) such that (Γq
h∪{ηh})∩ϕn〈T (yi)−T ∗

n,q〉 = ∅,
where Γq and Γq

h are introduced in Definition 5.2.

Proof. Since the number of vertices in T (yi) − V (T ∗
n,q) is i, and the number of edges in

T (yi)− T ∗
n,q is also i, we obtain |ϕn(T (yi)− V (T ∗

n,q))| ≥ |ϕn〈T (yi)− T ∗
n,q〉|. Hence
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|ϕn(T (yi))| − |ϕn(T
∗
n,0 − V (Tn))| − |ϕn〈T (yi)− T ∗

n,q〉|

≥ |ϕn(T (yi))| − |ϕn(T
∗
n,0 − V (Tn))| − |ϕn(T (yi)− V (T ∗

n,q))|

= |ϕn(T
∗
n,q)| − |ϕn(T

∗
n,0 − V (Tn))|

≥ |ϕn(T
∗
n,0)| − |ϕn(T

∗
n,0)− ϕn(Tn)|

= |ϕn(Tn)|

≥ 2n+ 11,

where the last inequality can be found in the proof of Theorem 5.4 (see (3) therein). So the first
inequality is established.

Suppose the second inequality also holds. Then these two inequalities guarantee the existence
of at least 2n+7 colors in the intersection of ϕn(T (yi))−ϕn(T

∗
n,0−V (Tn))−ϕn〈T (yi)−T ∗

n,q〉 and
Γq∪Dn,q. Let C denote this intersection. Then |C| ≥ 2n+7. By (5.6), we have |Dn,q| ≤ |Dn| ≤ n
and |Γq| ≤ 2|Dn,q| ≤ 2n. So |Γq∪Dn,q| ≤ 3n. Since |C| ≤ |Γq∪Dn,q|, it follows that 2n+7 ≤ 3n,
which implies n ≥ 7. Note that C = ∪ηh∈Dn,q (Γ

q
h ∪ {ηh}) ∩C and |(Γq

h ∪ {ηh}) ∩C| ≤ 3 for any
ηh in Dn,q. Since |C| ≥ 2n + 7 and n ≥ 7, by the Pigeonhole Principle, there exist at least 7
distinct colors ηh in Dn,q, such that |(Γq

h ∪ {ηh}) ∩ C| = 3, or equivalently, Γq
h ∪ {ηh} ⊆ C. For

each of these ηh, clearly ηh ∈ Dn,q ∩ ϕn(T (yi)) and (Γq
h ∪ {ηh}) ∩ ϕn〈T (yi)− T ∗

n,q〉 = ∅.

Lemma 6.5. Suppose q ≥ 1 and α ∈ ϕn(Tn,q). If there exists a subscript i with 0 ≤ i ≤ q,
such that α is closed in T ∗

n,i with respect to ϕn, then α /∈ ϕn〈Tn,q − T ∗
n,r〉, where r is the largest

such i. If there is no such subscript i, then α ∈ ∪ηh∈Dn,j
Γj−1
h ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE,

vα ∈ V (Tn)− V (Rn), and α /∈ ϕn〈Tn,q − Tn〉.

Proof. Let us first assume the existence of a subscript i with 0 ≤ i ≤ q, such that α is
closed in T ∗

n,i with respect to ϕn. By definition, r is the largest such i. Suppose the contrary:
α ∈ ϕn〈Tn,q − T ∗

n,r〉. Then r < q and there exists a subscript s with r + 1 ≤ s ≤ q, such that
α ∈ ϕn〈Tn,s − T ∗

n,s−1〉. From the definition of r, we see that α is not closed in Tn,s with respect

to ϕn. It follows from Definition 5.2(v) that α ∈ Γs−1
h for some ηh ∈ Dn,s. By the definitions of

Dn,s and Dn,s−1, we have Dn,s ⊆ Dn,s−1. So ηh ∈ Dn,s−1. Since α in Γs−1
h is used by at least

one edge in Tn,s − T ∗
n,s−1, from Definition 5.2(i) (with j = s − 1) we deduce that ηh is a color

missing at some vertex in Tn,s (see (5.7)). Thus ηh /∈ Dn,s by definition, a contradiction.
Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α is closed in T ∗

n,i

with respect to ϕn. Since α ∈ ϕn(Tn,q), it follows from (5.10) that α ∈ ϕn(T
∗
n,0). By Definition

5.2(v), we obtain
(1) α ∈ ∪ηh∈Dn,j

Γj−1
h ⊆ Γj−1 for 1 ≤ j ≤ q.

Hence α ∈ Γj for all 0 ≤ j ≤ q − 1. From the definition of Γ0, we see that vα ∈ V (Tn). If
Θn 6= PE, then α would be closed in Tn = T ∗

n,0 under ϕn, a contradiction. So Θn = PE.
Moreover, by the assumption on α, Algorithm 3.1 and (5.4), we have vα ∈ V (Tn) − V (Rn).
Since Rn is a closure of Tn(vn) under ϕn, using (6.6) and TAA we obtain

(2) α /∈ ϕn(Rn − V (Tn)) and α /∈ ϕn〈Rn − Tn〉.
(3) α /∈ ϕn〈Tn,q − T ∗

n,0〉.
Assume the contrary: α ∈ ϕn〈Tn,q−T ∗

n,0〉. Then there exists a subscript 1 ≤ s ≤ q such that

α ∈ ϕn〈Tn,s − T ∗
n,s−1〉. By (1), we have α ∈ Γs−1

h for some ηh ∈ Dn,s. As Dn,s ⊆ Dn,s−1, we
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obtain ηh ∈ Dn,s−1. Since α is used by at least one edge in Tn,s − T ∗
n,s−1, from Definition 5.2(i)

(with j = s − 1) we deduce that ηh is a color missing at some vertex in Tn,s (see (5.7)). Thus
ηh /∈ Dn,s by definition, a contradiction.

Combining (2) and (3), we conclude that α /∈ ϕn〈Tn,q − Tn〉.

Our proof of Theorem 5.3 relies heavily on the following two technical lemmas.

Lemma 6.6. Let α and β be two colors in ϕn(T (yp−1)). Suppose vα ≺ vβ and α /∈ ϕn〈T (vβ)−
T ∗
n,q〉 if {α, β} − ϕn(T

∗
n,q) 6= ∅. Then Pvα(α, β, ϕn) = Pvβ (α, β, ϕn) if one of the following cases

occurs:

(i) q ≥ 1, and α ∈ ϕn(Tn,q) or {α, β} ∩Dn,q = ∅;

(ii) q = 0, and α ∈ ϕn(Tn) or {α, β} ∩Dn = ∅; and

(iii) α ∈ ϕn(T
∗
n,q) and is closed in T ∗

n,q with respect to ϕn.

Furthermore, in Case (iii), Pvα(α, β, ϕn) = Pvβ (α, β, ϕn) is the only (α, β)-path with respect to
ϕn intersecting T ∗

n,q.

Proof. Let a = vα and b = vβ. We distinguish among three cases according to the locations
of a and b.

Case 1. {a, b} ⊆ V (T ∗
n,q).

By (6.6), V (T ∗
n,q) is elementary with respect to ϕn. So a (resp. b) is the only vertex in T ∗

n,q

missing α (resp. β). If both α and β are closed in T ∗
n,q with respect to ϕn, then no boundary

edge of T ∗
n,q is colored by α or β. Hence Pa(α, β, ϕn) = Pb(α, β, ϕn) is the only path intersecting

T ∗
n,q. So we may assume that α or β is not closed in T ∗

n,q with respect to ϕn. It follows that if
q = 0, then Θn = PE, for otherwise, Algorithm 3.1 would imply that both α and β are closed
in Tn = T ∗

n,0, a contradiction. Therefore
(1) T ∗

n,0 = Tn ∨Rn if q = 0.
Let us first assume that precisely one of α and β is closed in T ∗

n,q with respect to ϕn. In this
subcase, by Corollary 6.3 if q ≥ 1 and by (1) and Lemma 6.1(iii) if q = 0, colors α and β are
T ∗
n,q-interchangeable under ϕn, so Pa(α, β, ϕn) = Pb(α, β, ϕn) is the only path intersecting T ∗

n,q.
Next we assume that neither α nor β is closed in T ∗

n,q with respect to ϕn. In this subcase, we
only need to show that Pa(α, β, ϕn) = Pb(α, β, ϕn). Symmetry allows us to assume that a ≺ b.
Let r be the subscript with β ∈ ϕn(T

∗
n,r − V (T ∗

n,r−1)), where 0 ≤ r ≤ q and T ∗
n,−1 = ∅. Then

a, b ∈ V (T ∗
n,r). By (6.2), Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T is a good hierarchy of T . If

r ≥ 1, then β is closed in Tn,r with respect to ϕn by Definition 5.2 (see (5.10)). From the above
discussion about T ∗

n,q (with r in place of q), we similarly deduce that Pa(α, β, ϕn) = Pb(α, β, ϕn).
So we may assume that r = 0. If Θn 6= PE, then both α and β are closed in Tn with respect
to ϕn (see Algorithm 3.1), so Pa(α, β, ϕn) = Pb(α, β, ϕn) by (6.6). If Θn = PE, then it follows
from Lemma 6.1(i), (ii) and (iv) that Pa(α, β, ϕn) = Pb(α, β, ϕn).

Case 2. {a, b} ∩ V (T ∗
n,q) = ∅.

By the hypotheses of the present case and the present lemma, we have {α, β} ∩Dn,q = ∅ if
q ≥ 1 and {α, β} ∩Dn = ∅ if q = 0. So

(2) α, β /∈ Dn,q ∪ ϕn(T
∗
n,q) if q ≥ 1 and α, β /∈ Dn ∪ ϕn(T

∗
n,0) if q = 0.

By the definitions of Dn and Dn,q, we have Dn∪ϕn(Tn) ⊆ Dn,q ∪ϕn(T
∗
n,q). Since α /∈ ϕn〈T (b)−

T ∗
n,q〉 by hypothesis, from (2), Lemma 3.2(iii) and TAA we see that
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(3) α, β /∈ ϕn〈T (b)〉.
Suppose on the contrary that Pa(α, β, ϕn) 6= Pb(α, β, ϕn). Consider σn = ϕn/Pb(α, β, ϕn). Using
(2), (3) and (6.6), it is routine to check that σn is a (T ∗

n,q,Dn, ϕn)-strongly stable coloring, and
T (b) is an ETT satisfying MP with respect to σn. Moreover, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂
T (b) is a good hierarchy of T (b) under σn, with the same Γ-sets as T under ϕn (see Definition
5.2). As α ∈ σn(a) ∩ σn(b), the pair (T (b), σn) is a counterexample to Theorem 5.3, which
contradicts the minimality assumption (6.5) on (T, ϕn).

Case 3. a ∈ V (T ∗
n,q) and b /∈ V (T ∗

n,q).
By the hypotheses of the present case and the present lemma, (6.6) and TAA, we obtain
(4) α /∈ ϕn〈T (b)− T ∗

n,q〉 and β /∈ ϕn(T (b)− b). So β is not used by any edge in T (b)− T ∗
n,q,

except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and β ∈ Dn).

Let us first assume that α is closed in T ∗
n,q with respect to ϕn. By Corollary 6.3 if q ≥ 1 and

by Lemma 6.1(iii) or Theorem 3.10(ii) (see (5.1)) if q = 0, colors α and β are T ∗
n,q-interchangeable

under ϕn. So Pa(α, β, ϕn) is the only (α, β)-path intersecting T ∗
n,q. Suppose on the contrary that

Pa(α, β, ϕn) 6= Pb(α, β, ϕn). Then Pb(α, β, ϕn) is vertex-disjoint from T ∗
n,q and hence contains

no edge incident to T ∗
n,q.

Consider σn = ϕn/Pb(α, β, ϕn). It is routine to check that σn is a (T ∗
n,q,Dn, ϕn)-strongly

stable coloring, and T (b) is an ETT satisfying MP with respect to σn. Moreover, Tn = Tn,0 ⊂
Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is a good hierarchy of T (b) under σn, with the same Γ-sets as T under
ϕn, by (4). As α ∈ σn(a)∩σn(b), the pair (T (b), σn) is a counterexample to Theorem 5.3, which
contradicts the minimality assumption (6.5) on (T, ϕn).

So we assume hereafter that
(5) α is not closed in T ∗

n,q with respect to ϕn.
Our objective is to show that Pa(α, β, ϕn) = Pb(α, β, ϕn). Assume the contrary: Pa(α, β, ϕn)

6= Pb(α, β, ϕn). We distinguish between two subcases according to the value of q.
Subcase 3.1. q = 0.
By the hypothesis of the present lemma, α ∈ ϕn(Tn) or {α, β} ∩Dn = ∅. So α /∈ Dn. From

(5) and Algorithm 3.1 we deduce that T ∗
n,0 6= Tn. Hence

(6) Θn = PE, which together with (5) and (5.4) yields a /∈ V (Tn) ∩ V (Rn).
Consider σn = ϕn/Pb(α, β, ϕn). We claim that
(7) σn is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring.
To justify this, note that if a ∈ V (Tn) − V (Rn), then α, β /∈ ϕn(Rn) by (6.6) and the

hypothesis of the present case. By definition, σn is (Rn, ∅, ϕn)-stable. In view of Lemma 6.1(ii),
Pb(α, β, ϕn) is disjoint from Tn and hence contains no edge incident to Tn. So σn is (Tn,Dn, ϕn)-
stable. Hence (7) holds. Suppose a ∈ V (Rn)− V (Tn). By the hypothesis of the present lemma,
{α, β} ∩ Dn = ∅. By (6.6), we also have α, β /∈ ϕn(Tn). Thus α, β /∈ ϕn(Tn) ∪ Dn. By
definition, σn is (Tn,Dn, ϕn)-stable. Using Lemma 6.1(i), Pb(α, β, ϕn) is disjoint from Rn and
hence contains no edge incident to Rn. By definition, σn is (Rn, ∅, ϕn)-stable. Therefore (7) is
true.

From (4), (7) and (6.6) we see that σn(f) = ϕn(f) for each f ∈ E(T (b)) (see the remark
above lemma 6.2) and σn(u) = ϕn(u) for each u ∈ V (T (b) − b). Furthermore, T (b) is an ETT
satisfying MP with respect to σn, and Tn = Tn,0 ⊂ T (b) is a good hierarchy of T (b) under σn,
with the same Γ-sets as T under ϕn. As α ∈ σn(a)∩σn(b), the pair (T (b), σn) is a counterexample
to Theorem 5.3, which contradicts the minimality assumption (6.5) on (T, ϕn).
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Subcase 3.2. q ≥ 1.
Let us first assume that α is closed in T ∗

n,i with respect to ϕn for some i with 0 ≤ i ≤ q. Let
r be the largest subscript i with this property. Then r ≤ q − 1 by (5). By Lemma 6.5, we have
α /∈ ϕn〈Tn,q − T ∗

n,r〉, which together with (4) yields
(8) α /∈ ϕn〈T (b)− T ∗

n,r〉.
By Corollary 6.3 if r ≥ 1 and by Theorem 3.10(ii) or Lemma 6.1(iii) if r = 0, colors α and

β are T ∗
n,r-interchangeable under ϕn. So Pa(α, β, ϕn) is the only (α, β)-path with respect to ϕn

intersecting T ∗
n,r. Hence Pb(α, β, ϕn) is vertex-disjoint from T ∗

n,r and therefore contains no edge
incident to T ∗

n,r. Consider σn = ϕn/Pb(α, β, ϕn). By Lemma 5.8, σn is a (T ∗
n,r,Dn, ϕn)-strongly

stable coloring, and T ∗
n,r is an ETT having a good hierarchy and satisfying MP with respect to

σn. By (4) and TAA, β is not used by any edge in T (b) − T ∗
n,r, except possibly e1 when r = 0

and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and β ∈ Dn). Since σn is (Tn,Dn, ϕn)-stable, it

follows from (8) and (6.6) that σn(f) = ϕn(f) for each f ∈ E(T (b)) and σn(u) = ϕn(u) for each
u ∈ V (T (b)− b). So T (b) is an ETT satisfying MP with respect to σn. Moreover,

(9) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is a good hierarchy of T (b) under σn, with the
same Γ-sets as T under ϕn.

To justify this, it suffices to verify that Definition 5.2(v) is satisfied with respect to σn; that
is, Tn,j is (∪ηh∈Dn,j

Γj−1
h )−-closed with respect to σn for 1 ≤ j ≤ q. As the statement holds

trivially if Pb(α, β, ϕn) is vertex-disjoint from Tn,j, we may assume that Pb(α, β, ϕn) intersects

Tn,j. Thus r+1 ≤ j ≤ q. Observe that α ∈ ∪ηh∈Dn,j
Γj−1
h , for otherwise, α is closed in Tn,j with

respect to ϕn by Definition 5.2(v), contradicting the definition of r. By (6.6), we also obtain
β /∈ ϕn(Tj). Consequently, Tn,j is (∪ηh∈Dn,j

Γj−1
h )−-closed with respect to σn. (Note that α may

become closed in Tn,j with respect to σn. Yet, even in this situation the desired statement is
true.) This proves (9).

As α ∈ σn(a)∩σn(b), the existence of (T (b), σn) contradicts the minimality assumption (6.5)
on (T, ϕn).

Next we assume that α is not closed in T ∗
n,i with respect to ϕn for any i with 0 ≤ i ≤ q. In

view of Lemma 6.5, we obtain
(10) α ∈ (∪ηh∈Dn,j

Γj−1
h ) ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, a ∈ V (Tn) − V (Rn), and

α /∈ ϕn〈Tn,q − Tn〉.
It follows from (4), (10) and TAA that
(11) α /∈ ϕn〈T (b)− Tn〉 and β /∈ ϕn〈T (b)− T ∗

n,0〉.
Since Rn is a closure of Tn(vn) under ϕn, using (10), (6.6) and TAA we obtain

(12) α, β /∈ ϕn(Rn) and β /∈ ϕn〈Rn − Tn〉.
By Lemma 6.1(ii), colors α and β are Tn-interchangeable under ϕn. So Pa(α, β, ϕn) is

the only (α, β)-path with respect to ϕn intersecting Tn. Hence Pb(α, β, ϕn) is vertex-disjoint
from Tn and therefore contains no edge incident to Tn. Consider σn = ϕn/Pb(α, β, ϕn). By
Lemma 5.8, σn is a (Tn,Dn, ϕn)-stable coloring, and Tn is an ETT satisfying MP with respect
to σn. From (11) and (12) we further deduce that σn is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring,
σn(f) = ϕn(f) for each f ∈ E(T (b)), and σn(u) = ϕn(u) for each u ∈ V (T (b) − b). So T (b) is
an ETT satisfying MP with respect to σn. Moreover, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (b) is a
good hierarchy of T (b) under σn, with the same Γ-sets as T under ϕn (see (10) and the proof
of (9) for omitted details). As α ∈ σn(a) ∩ σn(b), the existence of (T (b), σn) contradicts the
minimality assumption (6.5) on (T, ϕn).
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Lemma 6.7. Let α and β be two colors in ϕn(T (yp−1)), let Q be an (α, β)-chain with respect
to ϕn, and let σn = ϕn/Q. Suppose one of the following cases occurs:

1) q ≥ 1, α ∈ ϕn(Tn,q), and Q is an (α, β)-path disjoint from Pvα(α, β, ϕn);

2) q = 0, α ∈ ϕn(Tn), or α ∈ ϕn(T
∗
n,0) with α, β /∈ Dn, and Q is an (α, β)-path disjoint from

Pvα(α, β, ϕn); and

3) T ∗
n,q ≺ vα ≺ vβ, α, β /∈ Dn,q, α /∈ ϕn〈T (vβ)− T (vα)〉, and Q is an arbitrary (α, β)-chain.

Then the following statements hold:

(i) σn is a (T ∗
n,q,Dn, ϕn)-strongly stable coloring;

(ii) T ∗
n,q is an ETT satisfying MP with respect to σn; and

(iii) if q ≥ 1, then Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q is a good hierarchy of Tn,q under σn, with the

same Γ-sets (see Definition 5.2) as T under ϕn, and Tn,q is (∪ηh∈Dn,qΓ
q−1
h )−-closed with

respect to σn.

Furthermore, in Case 3, T is also an ETT satisfying MP with respect to σn, and Tn = Tn,0 ⊂
Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under σn, with the same
Γ-sets (see Definition 5.2) as T under ϕn.

Remark. To prove Theorem 5.3, we shall perform a series of Kempe changes as described in
Lemma 6.7 starting from ϕn and T . Let σ′ be a resulting coloring and let T ′ be a resulting
ETT. By the above statement (iii), to show that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good
hierarchy of T ′ under σ′, with the same Γ-sets as T under ϕn, it suffices to verify that Definition
5.2(i) is satisfied, which is fairly straightforward in our proof, as we shall see.

Proof of Lemma 6.7. Write a = vα and b = vβ. Let us consider the three cases described
in the lemma separately.

Case 1. q ≥ 1, α ∈ ϕn(Tn,q), and Q is an (α, β)-path disjoint from Pvα(α, β, ϕn).
We distinguish between two subcases according to the location of b.
Subcase 1.1. b ∈ V (Tn,q).
Let us first assume that there exists a subscript i with 0 ≤ i ≤ q, such that α or β is closed

in T ∗
n,i with respect to ϕn. Let r be the largest such i. By (5.10) and Lemma 6.5, we have
(1) {a, b} ⊆ V (T ∗

n,r) and α, β /∈ ϕn〈Tn,q − T ∗
n,r〉.

(2) α and β are T ∗
n,r-interchangeable under ϕn. So Pα(α, β, ϕn) = Pβ(α, β, ϕn).

To justify this, note that if r ≥ 1, then (2) holds by Corollary 6.3. So we assume that r = 0.
Then α or β is closed in T ∗

n,0 with respect to ϕn. Hence, by Lemma 6.1(iii) if Θn = PE and by
(5.1) and Theorem 3.10(ii) otherwise, α and β are T ∗

n,0-interchangeable under ϕn. This proves
(2).

It follows from (2) that Q is vertex-disjoint from T ∗
n,r and hence contains no edge incident

to T ∗
n,r. By Lemma 5.8, σn = ϕn/Q is a (T ∗

n,r,Dn, ϕn)-strongly stable coloring, and T ∗
n,r is an

ETT satisfying MP with respect to σn. By (1) and (6.6), we obtain σn(f) = ϕn(f) for each
edge f of Tn,q and σn(u) = ϕn(u) for each vertex u of Tn,q. Therefore σn is a (Tn,q,Dn, ϕn)-
strongly stable coloring. By the definition of r, for any r + 1 ≤ j ≤ q and θ ∈ {α, β}, we
have ∂ϕn,θ(Tn,j) 6= ∅, so θ ∈ ∪ηh∈Dn,j

Γj−1
h by Definition 5.2(v). It is then routine to check that
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Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q is a good hierarchy of Tn,q under σn, with the same Γ-sets as T

under ϕn
1, and Tn,q is (∪ηh∈Dn,qΓ

q−1
h )−-closed with respect to σn.

Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α or β is closed in
T ∗
n,i with respect to ϕn. By Lemma 6.5, we have

(3) α, β ∈ (∪ηh∈Dn,j
Γj−1
h ) ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, vα, vβ ∈ V (Tn) − V (Rn), and

α, β /∈ ϕn〈Tn,q − Tn〉.
Since Rn is a closure of Tn(vn) under ϕn, using (6.6) and TAA we obtain
(4) α, β /∈ ϕn(Rn).
By Lemma 6.1(ii), colors α and β are Tn-interchangeable under ϕn. So Pa(α, β, ϕn) is the

only (α, β)-path with respect to ϕn intersecting Tn. Hence Q is vertex-disjoint from Tn and
therefore contains no edge incident to Tn. By Lemma 5.8, σn = ϕn/Q is a (Tn,Dn, ϕn)-stable
coloring, and Tn is an ETT satisfying MP with respect to σn. By (3), (4) and (6.6), we further
deduce that σn is a (T ∗

n,0,Dn, ϕn)-stable coloring, σn(f) = ϕn(f) for each edge f of Tn,q, and
σn(u) = ϕn(u) for each vertex u of Tn,q. It is then routine to check that the desired statements
hold.

Subcase 1.2. b /∈ V (Tn,q).
Let us first assume that there exists a subscript i with 0 ≤ i ≤ q, such that α is closed in

T ∗
n,i with respect to ϕn. Let r be the largest such i. By (5.10), Lemma 6.5 and TAA, we have
(5) a ⊆ V (T ∗

n,r) and α /∈ ϕn〈Tn,q − T ∗
n,r〉. Furthermore, no edge in Tn,q − T ∗

n,r is colored by
β, except possibly e1 when r = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and β ∈ Dn).
Using the same argument as that of (2), we obtain
(6) α and β are T ∗

n,r-interchangeable under ϕn.
It follows from (6) that Q is vertex-disjoint from T ∗

n,r and hence contains no edge incident to
T ∗
n,r. By Lemma 5.8, σn = ϕn/Q is a (T ∗

n,r,Dn, ϕn)-strongly stable coloring, and T ∗
n,r is an ETT

satisfying MP with respect to σn. Using (5), we obtain σn(f) = ϕn(f) for each edge f of Tn,q

and σn(u) = ϕn(u) for each vertex u of Tn,q. Therefore σn is a (Tn,q,Dn, ϕn)-strongly stable
coloring, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q is a good hierarchy of Tn,q under σn, with the same

Γ-sets as T under ϕn, and Tn,q is (∪ηh∈Dn,qΓ
q−1
h )−-closed with respect to σn (see the justification

of (9) in the proof of Lemma 6.6 for omitted details).
Next we assume that there exists no subscript i with 0 ≤ i ≤ q, such that α is closed in T ∗

n,i

with respect to ϕn. By Lemma 6.5, we have
(7) α ∈ (∪ηh∈Dn,j

Γj−1
h ) ⊆ Γj−1 for 1 ≤ j ≤ q, Θn = PE, vα ∈ V (Tn) − V (Rn), and

α /∈ ϕn〈Tn,q − Tn〉.
It follows that (4) also holds. By Lemma 6.1(ii), colors α and β are Tn-interchangeable

under ϕn. So Pa(α, β, ϕn) is the only (α, β)-path with respect to ϕn intersecting Tn. Hence
Q is vertex-disjoint from Tn and therefore contains no edge incident to Tn. By Lemma 5.8,
σn = ϕn/Q is a (Tn,Dn, ϕn)-stable coloring, and Tn is an ETT satisfying MP with respect to
σn. Since b /∈ V (Tn,q), no edge in Tn,q − T ∗

n,0 is colored by β by TAA, because T ∗
n,0 = Tn ∨ Rn

by (7). Using (4) and (7), it is routine to check that the desired statements hold.

1See the justification of (9) in the proof of Lemma 6.6 for omitted details. Note that α or β may become closed
in Tn,j with respect to σn for some j with r + 1 ≤ j ≤ q. Yet, even in this situation Definition 5.2(v) remains
valid with respect to σn.
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Case 2. q = 0, α ∈ ϕn(Tn), or α ∈ ϕn(T
∗
n,0) with α, β /∈ Dn, and Q is an (α, β)-path disjoint

from Pvα(α, β, ϕn).
Let us first assume that α or β is closed in T ∗

n,0 with respect to ϕn. By Lemma 6.1(iii) or
Theorem 3.10(ii) (see (5.1)), colors α and β are T ∗

n,0-interchangeable under ϕn. So Pa(α, β, ϕn)
is the only (α, β)-path intersecting T ∗

n,0, and hence Q is vertex-disjoint from T ∗
n,0. It is then

routine to check that σn = ϕn/Q is a (T ∗
n,0,Dn, ϕn)-strongly stable coloring, and T ∗

n,0 is an ETT
satisfying MP with respect to σn by Theorem 3.10(vi). So we assume hereafter that

(8) neither α nor β is closed in T ∗
n,0 with respect to ϕn.

By the hypothesis of the present case, α ∈ ϕn(Tn) or {α, β} ∩Dn = ∅. So α /∈ Dn. From (8)
and Algorithm 3.1 we deduce that T ∗

n,0 6= Tn. Hence
(9) Θn = PE, which together with (5.4) yields a, b /∈ V (Tn) ∩ V (Rn).
Let us show that
(10) σn = ϕn/Q is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring.
To justify this, note that if one of a and b is contained in V (Tn) − V (Rn) and the other is

contained in V (Rn)−V (Tn), then α and β are T ∗
n,0-interchangeable under ϕn by Lemma 6.1(iv).

So Q is vertex-disjoint from T ∗
n,0 and hence (10) holds. In view of (9), we may assume that

(11) if a, b ∈ V (T ∗
n,0), then either a, b ∈ V (Tn)− V (Rn) or a, b ∈ V (Rn)− V (Tn).

Let us first assume that a ∈ V (Tn) − V (Rn). Then α /∈ ϕn(Rn) by (6.6) and b ∈ V (Tn) −
V (Rn) if b ∈ V (T ∗

n,0) by (11). So α and β are Tn-interchangeable under ϕn by Lemma 6.1(ii)
and β /∈ ϕn(Rn) by (6.6). It follows that Q is vertex-disjoint from Tn and that σn(f) = ϕn(f)
for any edge f incident to Rn with ϕn(f) ∈ ϕn(Rn). Hence (10) holds.

Next we assume that a ∈ V (Rn)−V (Tn). Then α /∈ ϕn(Tn) by (6.6) and b ∈ V (Rn)−V (Tn)
if b ∈ V (T ∗

n,0) by (11). So α and β are Rn-interchangeable under ϕn by Lemma 6.1(i) and
β /∈ ϕn(Tn) by (6.6). It follows that Q is vertex-disjoint from Rn. By the hypothesis of the
present case, {α, β} ∩Dn = ∅. So α, β /∈ ϕn(Tn) ∪Dn and hence (10) holds.

From (10) we deduce that T ∗
n,0 is an ETT satisfying MP with respect to σn.

Case 3. T ∗
n,q ≺ vα ≺ vβ, α, β /∈ Dn,q, α /∈ ϕn〈T (vβ) − T (vα)〉, and Q is an arbitrary

(α, β)-chain.
By (6.6), V (T (yp−1)) is elementary with respect to ϕn. So α, β /∈ ϕn(T

∗
n,q). By hypothesis,

α, β /∈ Dn,q. Hence
(12) α, β /∈ ϕn(T

∗
n,q) ∪Dn,q.

By the definitions ofDn andDn,q, we have Dn∪ϕn(Tn) ⊆ Dn,q∪ϕn(T
∗
n,q). So α, β /∈ ϕn(Tn)∪Dn.

From Lemma 3.2(iii), TAA and the hypothesis of the present case, we further deduce that
(13) α, β /∈ ϕn〈T (b)〉.

In view of Lemma 6.6, we obtain
(14) Pa(α, β, ϕ) = Pb(α, β, ϕ). (Possibly Q is this path.)
Since T ∗

n,q ≺ a ≺ b, using (12)-(14), it is straightforward to verify that σn = ϕn/Q is a
(T ∗

n,q,Dn, ϕn)-strongly stable coloring.
From (12) and (13) we also see that T (b) can be obtained from T ∗

n,q by using TAA, no matter
whether Q = Pa(α, β, ϕ). Thus T is an ETT corresponding to (σn, Tn). It is clear that T also
satisfies MP under σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good
hierarchy of T under σn, with the same Γ-sets as T under ϕn.
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7 Elementariness and Interchangeability

In Section 5 we have developed a control mechanism over Kempe changes; that is, a good
hierarchies of an ETT. In Section 6 we have derived some properties satisfied by such hierarchies.
Now we are ready to present a proof of Theorem 5.3 by using a novel recoloring technique based
on these hierarchies.

7.1 Proof of Theorem 5.3

By hypothesis, T is an ETT constructed from a k-triple (G, e, ϕ) by using the Tashkinov series
T = {(Ti, ϕi−1, Si−1, Fi−1,Θi−1) : 1 ≤ i ≤ n + 1}. Furthermore, T admits a good hierarchy
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T and satisfies MP with respect to ϕn. Our objective is to
show that V (T ) is elementary with respect to ϕn.

As introduced in the preceding section, T = T ∗
n,q ∪ {e1, y1, e2, ..., ep, yp}, where yi is the end

of ei outside T (yi−1) for i ≥ 1, with T (y0) = T ∗
n,q. Suppose on the contrary that V (T ) is not

elementary with respect to ϕn. Then
(7.1) ϕn(T (yp−1)) ∩ ϕn(yp) 6= ∅ by (6.6).
For ease of reference, recall that (see (3) in the proof of Theorem 5.4)
(7.2) |ϕn(Tn)| ≥ 2n + 11 and |Dn,j | ≤ |Dn| ≤ n for 0 ≤ j ≤ q.
In our proof we shall frequently make use of a coloring σn ∈ Ck(G−e) with properties (i)-(iii)

as described in Lemma 6.7; that is,
(7.3) σn is a (T ∗

n,q,Dn, ϕn)-strongly stable coloring, and T ∗
n,q is an ETT satisfying MP with

respect to σn. Furthermore, if q ≥ 1, then Tn,q admits a good hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,q under σn, with the same Γ-sets (see Definition 5.2) as T under ϕn, and Tn,q is

(∪ηh∈Dn,qΓ
q−1
h )−-closed with respect to σn (see the remark succeeding Lemma 6.7).

Claim 7.1. p ≥ 2.

Assume the contrary: p = 1; that is, T = T ∗
n,q ∪ {e1, y1}. Then

(1) there exists a color α in ϕn(T
∗
n,q) ∩ ϕn(y1) by (7.1).

We consider two cases according to the value of q.
Case 1. q = 0. In this case, from (1) and Algorithm 3.1 we see that Θn 6= SE. Let

us first assume that Θn = RE. Let δn, γn be as specified in Step 2 of Algorithm 3.1. Since
α, δn ∈ ϕn(Tn), both of them are closed in Tn with respect to ϕn. Hence Py1(α, δn, ϕn) is vertex-
disjoint from Tn. Let σn = ϕn/Py1(α, δn, ϕn). Then δn ∈ σn(Tn) ∩ σn(y1). By Lemma 5.8,
σn is a (Tn,Dn, ϕn)-stable coloring. It follows from Theorem 3.10(vi) that σn is a ϕn mod Tn

coloring. From Definition 3.7 and Step 1 of Algorithm 3.1, we see that fn = e1 is still an RE
connecting edge under σn and is contained in a (δn, γn)-cycle under σn, which is impossible
because δn ∈ σn(y1).

So we may assume that Θn = PE. Let β = ϕn(e1). From TAA we see that β ∈ ϕn(T
∗
n,0).

Let θ ∈ ϕn(Tn)∩ϕn(Rn). Then θ is closed in T ∗
n,0 under ϕn by (5.4). In view of Lemma 6.1(iii),

Pvθ (α, θ, ϕn) is the only (α, θ)-path intersecting T ∗
n,0. Thus Py1(α, θ, ϕn) ∩ T ∗

n,0 = ∅. Let σn =
ϕn/Py1(α, θ, ϕn). By Lemma 6.7 (the second case), σn is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring,
so θ is also closed in T ∗

n,0 with respect to σn. In view of Lemma 6.1(iii), β and θ are T ∗
n,0-

interchangeable under σn. As Py1(θ, β, σn) ∩ T ∗
n,0 6= ∅, there are at least two (θ, β)-paths with

respect to σn intersecting T ∗
n,0, a contradiction.
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Case 2. q ≥ 1. In this case, by Definition 5.2(v), we have
(2) Tn,q is (∪ηh∈Dn,qΓ

q−1
h )−-closed with respect to ϕn

So e1 is colored by some color γ1 in ∪ηh∈Dn,qΓ
q−1
h . By Definition 5.2(i) and (5.9), we have

γ1 /∈ Γq. Let θ ∈ ϕn(Tn,q) − ϕn(T
∗
n,q−1). Then θ /∈ Γq−1 (so θ 6= γ1) by Definition 5.2(i).

Furthermore, θ is closed in Tn,q under ϕn by (2). In view of Corollary 6.3, α and θ are Tn,q-
interchangeable under ϕn. So Pvθ (α, θ, ϕn) = Pvα(α, θ, ϕn) is the unique (α, θ)-path intersecting
Tn,q. Hence Py1(α, θ, ϕn) ∩ Tn,q = ∅. Let σn = ϕn/Py1(α, θ, ϕn). Then σn satisfies all the
properties described in (7.3) by Lemma 6.7. Since e1 is still colored by γ1 ∈ Γq−1 under σn and
γ1 /∈ Γq, we can obtain T from Tn,q by TAA under σn, so T is an ETT satisfying MP under
σn. Moreover, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q+1 = T remains to be a good hierarchy of T under
σn, with the same Γ-sets as those under ϕn. Hence (T, σn) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)). As Py1(θ, γ1, σn) ∩ Tn,q 6= ∅, there are at least two (θ, γ1)-
paths with respect to σn intersecting Tn,q, contradicting Lemma 6.6(iii) (with σn in place of
ϕn), because θ, γ1 ∈ σn(Tn,q) and θ is also closed in Tn,q under σn by (2). Hence Claim 7.1 is
justified.

Recall that the path number p(T ) of T is the smallest subscript i ∈ {1, 2, ..., p}, such that the
sequence (yi, ei+1, ..., ep, yp) corresponds to a path in G, where p ≥ 2 by Claim 7.1. Depending
on the value of p(T ), we distinguish among three situations, labeled as Situation 7.1, Situation
7.2, and Situation 7.3.

Situation 7.1. p(T ) = 1. Now T − V (T ∗
n,q) is a path obtained by using TAA under ϕn.

Claim 7.2. We may assume that ϕn(yi) ∩ ϕn(yp) 6= ∅ for some i with 1 ≤ i ≤ p− 1.

To justify this, let α ∈ ϕn(T (yp−1)) ∩ ϕn(yp) (see (7.1)). If α ∈ ϕn(yi) ∩ ϕn(yp) for some i
with 1 ≤ i ≤ p− 1, we are done. So we assume that

(1) α ∈ ϕn(T
∗
n,q) ∩ ϕn(yp) and α /∈ ϕn(yi) for all 1 ≤ i ≤ p− 1.

(2) If Θn = PE and q = 0, then we may further assume that α ∈ ϕn(Tn).
By (1), we have α ∈ ϕn(T

∗
n,0). Suppose α ∈ ϕn(Rn − V (Tn)). Then α /∈ Γ0 by Definition

5.2(i). In view of (7.2), we have |ϕn(Tn)| ≥ 11 + 2n and |Γ0| ≤ 2|Dn,0| ≤ 2n. So there
exists β ∈ ϕn(Tn) − Γ0. By Lemma 6.1(iv), α and β are T ∗

n,0-interchangeable under ϕn. Thus
Pvα(α, β, ϕn) = Pvβ (α, β, ϕn) and Pyp(α, β, ϕn) is disjoint from T ∗

n,0. Let σn = ϕn/Pyp(α, β, ϕn).
By Lemma 6.7 (the second case), σn is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring, and T ∗
n,0 is an

ETT satisfying MP with respect to σn. Note that T can also be obtained from T ∗
n,0 by TAA

under σn, because α, β ∈ σn(T
∗
n,0). Hence T satisfies MP under σn as well. Since α, β /∈ Γ0 and

α, β /∈ ϕn(T (yp−1)−V (T ∗
n,0)), the hierarchy Tn = Tn,0 ⊂ Tn,1 = T remains to be good under σn,

with the same Γ-sets as those under ϕn. Therefore (T, σn) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)). As β ∈ σn(Tn) ∩ σn(yp), replacing ϕn by σn and α by β if
necessary, we see that (2) holds.

Depending on whether α is used by edges in T − T ∗
n,q, we consider two cases.

Case 1. α /∈ ϕn〈T − T ∗
n,q〉. In this case, let β ∈ ϕn(yp−1). Then β is not used by any edge

in T − T ∗
n,q, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and
ϕn(e1) = β ∈ Dn). By (1) and (2), we have α ∈ ϕn(Tn,q) if q ≥ 1 and α ∈ ϕn(Tn) if q = 0.
It follows from Lemma 6.6 that Pvα(α, β, ϕn) = Pyp−1(α, β, ϕn). So Pyp(α, β, ϕn) is disjoint
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from Pvα(α, β, ϕn). Let σn = ϕn/Pyp(α, β, ϕn). By Lemma 6.7, σn satisfies all the properties
described in (7.3). In particular, if e1 = fn and ϕn(e1) = β ∈ Dn, then σn(e1) = ϕn(e1), which
implies that e1 is outside Pyp(α, β, ϕn). So σn(f) = ϕn(f) for each f ∈ E(T ) and σn(u) = ϕn(u)
for each u ∈ V (T (yp−1)). Thus T can be obtained from T ∗

n,q+e1 by TAA and satisfies MP under
σn. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy
of T under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn) is also a minimum
counterexample to Theorem 5.3 (see (6.2)-(6.5)). As β ∈ σn(yp−1)∩ σn(yp), replacing ϕn by σn
if necessary, we see that Claim 7.2 is true.

Case 2. α ∈ ϕn〈T − T ∗
n,q〉. In this case, let ej be the edge with the smallest subscript in

T − T ∗
n,q such that ϕ(ej) = α. We distinguish between two subcases according to the value of j.

Subcase 2.1. j ≥ 2. In this subcase, let β ∈ ϕn(yj−1). Then β is not used by any edge
in T (yj) − T ∗

n,q, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm

3.1 and ϕn(e1) = β ∈ Dn). By (1) and (2), we have α ∈ ϕn(Tn,q) if q ≥ 1 and α ∈ ϕn(Tn) if
q = 0. It follows from Lemma 6.6 that Pvα(α, β, ϕn) = Pyj−1(α, β, ϕn). So Pyp(α, β, ϕ) is disjoint
from Pvα(α, β, ϕn). Let σn = ϕn/Pyp(α, β, ϕn). By Lemma 6.7, σn satisfies all the properties
described in (7.3). In particular, if e1 = fn and ϕn(e1) = β ∈ Dn, then σn(e1) = ϕn(e1), which
implies that e1 is outside Pyp(α, β, ϕn). So T can be obtained from T ∗

n,q + e1 by TAA under σn
and hence satisfies MP under σn.

Note that β /∈ Γq by Definition 5.2(i) and that σn(u) = ϕn(u) for each u ∈ V (T (yp−1))
by (6.6). If α /∈ Γq, then clearly Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T is a good
hierarchy of T under σn, with the same Γ-sets as those under ϕn. If α ∈ Γq, say α ∈ Γq

h for
some ηh ∈ Dn,q, then Definition 5.2(i) implies that ηh ∈ ϕn(w) for some w � yj−1. Since only
edges outside T (w) may change colors between α and β as we transform ϕn into σn, it follows
that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under σn,
with the same Γ-sets as those under ϕn. Hence (T, σn) is also a minimum counterexample to
Theorem 5.3 (see (6.2)-(6.5)). Since β ∈ σn(yj−1) ∩ σn(yp), replacing ϕn by σn if necessary, we
see that Claim 7.2 holds.

Subcase 2.2. j = 1. In this subcase, α = ϕ(e1). Note that α /∈ Γq by Definition 5.2(i) and
(5.9). We propose to show that

(3) there exists a color γ in ϕn(Tn,q)− Γq if q ≥ 1 and in ϕn(Tn)− Γ0 if q = 0, such that γ
is closed in T ∗

n,q with respect to ϕn.
Let us first assume that q ≥ 1. By (7.2), we obtain |ϕn(Tn,q)| ≥ |ϕn(Tn)| ≥ 2n + 11

and |Γq−1| ≤ 2|Dn,q−1| ≤ 2n. So |ϕn(Tn,q) − Γq−1| ≥ 11. By Definition 5.2(iii), we have
|Γq − Γq−1| = 2. So |ϕn(Tn,q)− (Γq−1 ∪ Γq)| ≥ 9. Let γ be a color in ϕn(Tn,q)− (Γq−1 ∪ Γq). By
Definition 5.2(v), γ is closed in Tn,q with respect to ϕn.

Next we assume that q = 0. Again, by (7.2), we have |ϕn(Tn)| ≥ 2n+11 and |Γ0| ≤ 2|Dn,0| ≤
2|Dn| ≤ 2n. Let γ be a color in ϕn(Tn)−Γ0 if Θn 6= PE and a color in ϕn(Tn)∩ϕn(Rn)−Γ0 if
Θn = PE (see Definition 5.2(iv)). By Algorithm 3.1 and (5.4), γ is closed in T ∗

n,0 with respect
to ϕn. So (3) holds.

By (3) and Lemma 6.6, Pvα(α, γ, ϕn) = Pvγ (α, γ, ϕn) is the only (α, γ)-path intersecting T ∗
n,q.

So Pyp(α, γ, ϕn) is disjoint from T ∗
n,q and hence it does not contain e1. Let σn = ϕn/Pyp(α, γ, ϕn).

Then σn satisfies all the properties described in (7.3) by Lemma 6.7. Moreover, σn(u) = ϕn(u)
for all u ∈ V (T (yp−1)). Since α, γ ∈ ϕn(T

∗
n,q), we have α, γ ∈ σn(T

∗
n,q). Hence we can obtain T

from T ∗
n,q+e1 by using TAA under σn, so T satisfies MP under σn. Since α, γ /∈ Γq, the hierarchy
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Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be good under σn, with the same Γ-sets
as those under ϕn. Therefore, (T, σn) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)). Since e1 is outside Pyp(α, γ, ϕn), we have σn(e1) = α. As γ ∈ σn(yp) ∩ σn(v) for
some v ∈ V (Tn,q) and α 6= γ, the present subcase reduces to Case 1 if γ /∈ σn〈T − T ∗

n,q〉 or to
Subcase 2.1 if γ ∈ σn〈T − T ∗

n,q〉. This proves Claim 7.2.

Claim 7.3. We may assume that ϕn(yp−1) ∩ ϕn(yp) 6= ∅.

To justify this, let K be the set of all minimum counterexamples (T, ϕn) to Theorem 5.3
(see (6.2)-(6.5)), and let i be the largest subscript with 1 ≤ i ≤ p − 1, such that there exists a
member (T, µn) of K with µn(yi) ∩ µn(yp) 6= ∅; this i exists by Claim 7.2. We aim to show that
i = p− 1. Thus Claim 7.3 follows by replacing ϕn with µn, if necessary.

With a slight abuse of notation, we assume that ϕn(yi) ∩ ϕn(yp) 6= ∅ and assume, on the
contrary, that i ≤ p− 2. Let α ∈ ϕn(yi) ∩ ϕn(yp). Using (6.6) and TAA, we obtain

(1) α /∈ ϕn(T (yi−1)), where T (y0) = T ∗
n,q. So α is not used by any edge in T (yi+1) − T ∗

n,q,
except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = α ∈
Dn).

Recall that Definition 5.2 involves Γq
h = {γqh1

, γqh2
} for each ηh ∈ Dn,q. Nevertheless, in our

proof we only consider a fixed ηh ∈ Dn,q. For simplicity, we abbreviate its corresponding γqhj
to

γj for j = 1, 2. By Definition 5.2(i) and (5.9), we have
(2) γj ∈ ϕn(Tn,q) if q ≥ 1 and γj ∈ ϕn(Tn) if q = 0. Moreover, if ηh ∈ ϕn(yt) for some t ≥ 1,

then γj /∈ ϕn〈T (yt)− T ∗
n,q〉 for j = 1, 2.

Depending on whether α ∈ Dn,q, we consider two cases.
Case 1. α /∈ Dn,q. In this case, let θ ∈ ϕn(yi+1). From TAA and (6.6) it follows that
(3) θ /∈ ϕn(T (yi)), so θ is not used by any edge in T (yi+1) − T ∗

n,q, except possibly e1 when
q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = θ ∈ Dn).
If θ /∈ Dn,q, then {α, θ}∩Dn,q = ∅. By the definitions of Dn and Dn,q, we have ϕn(Tn)∪Dn ⊆

ϕn(T
∗
n,q)∪Dn,q, which together with (1) and (3) implies {α, θ} ∩Dn = ∅. Hence Pyi(α, θ, ϕn) =

Pyi+1(α, θ, ϕn) by Lemma 6.6. Let σn = ϕn/Pyp(α, θ, ϕn). Since both yi and yi+1 are contained
in T − V (T ∗

n,q) and (1) holds, by Lemma 6.7 (the third case), σn satisfies all the properties
described in (7.3). Furthermore, T is also an ETT satisfying MP with respect to σn, and
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under σn, with
the same Γ-sets as those under ϕn. Hence (T, σn) is also a minimum counterexample to Theorem
5.3 (see (6.2)-(6.5)). Since θ ∈ σn(yp) ∩ σn(yi+1), we reach a contradiction to the maximality
assumption on i.

So we may assume that θ ∈ Dn,q. Let θ = ηh ∈ Dn,q. In view of (2) and Lemma 6.6,
we obtain Pvγ1

(α, γ1, ϕn) = Pyi(α, γ1, ϕn), which is disjoint from Pyp(α, γ1, ϕn). Let σn =
ϕn/Pyp(α, γ1, ϕn). By Lemma 6.7, σn satisfies all the properties described in (7.3). In particular,
if e1 = fn and ϕn(e1) = α ∈ Dn, then σn(e1) = ϕn(e1), which implies that e1 is outside
Pyp(α, γ1, ϕn). By (6.6), (1) and (2), we have σn(u) = ϕn(u) for each u ∈ V (T (yp−1)) and
σn(f) = ϕn(f) for each edge f in T (yi+1). So T can be obtained from T ∗

n,q + e1 by TAA
under σn, and hence satisfies MP under σn. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂
Tn,q+1 = T remains to be a good hierarchy of T under σn, with the same Γ-sets as those under
ϕn. Hence (T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), with
γ1 ∈ σn(yp) ∩ σn(Tn,q).
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Using (2) and Lemma 6.6, we obtain Pvγ1
(ηh, γ1, σn) = Pyi+1(ηh, γ1, σn), which is disjoint

from Pyp(ηh, γ1, σn). Let σ
′
n = σn/Pyp(ηh, γ1, σn). By Lemma 6.7, σ′

n satisfies all the properties
described in (7.3) (with σ′

n in place of σn). In particular, if e1 = fn and σn(e1) = ηh ∈ Dn, then
σ′
n(e1) = σn(e1), which implies that e1 is outside Pyp(ηh, γ1, σn). By (6.6), (2) and (3), we have

σ′
n(u) = σn(u) for each u ∈ V (T (yp−1)) and σ′

n(f) = σn(f) for each edge f in T (yi+1). So T can
be obtained from T ∗

n,q + e1 by TAA under σ′
n, and hence satisfies MP under σ′

n. Furthermore,
since ηh ∈ σ′

n(yi+1), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be
good under σ′

n, with the same Γ-sets as those under ϕn. Therefore (T, σ′
n) is also a minimum

counterexample to Theorem 5.3 (see (6.2)-(6.5)). Since ηh ∈ σ′
n(yp) ∩ σ′

n(yi+1), we reach a
contradiction to the maximality assumption on i.

Case 2. α ∈ Dn,q. In this case, let α = ηh ∈ Dn,q. Then Γq
h = {γ1, γ2} (see the paragraph

above (2)). Renaming subscript if necessary, we may assume that ϕn(ei+1) 6= γ1. By (1) and
(2), we have

(4) γ1 /∈ ϕn〈T (yi+1)−T ∗
n,q〉 and ηh is not used by any edge in T (yi+1)−T ∗

n,q, except possibly
e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηh ∈ Dn,q ⊆ Dn).
By (4) and Lemma 6.6, we obtain Pvγ1

(ηh, γ1, ϕn) = Pyi(ηh, γ1, ϕn), which is disjoint from the
path Pyp(ηh, γ1, ϕn). Let σn = ϕn/Pyp(ηk, γ1, ϕn). By Lemma 6.7, σn satisfies all the properties
described in (7.3). In particular, if e1 = fn and ϕn(e1) = ηh ∈ Dn, then σn(e1) = ϕn(e1), which
implies that e1 is outside Pyp(ηk, γ1, ϕn). By (6.6) and (4), we have σn(u) = ϕn(u) for each
u ∈ V (T (yp−1)) and σn(f) = ϕn(f) for each edge f in T (yi+1). So T can be obtained from
T ∗
n,q + e1 by TAA under σn, and hence satisfies MP under σn. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂

. . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under σn, with the same Γ-sets
as those under ϕn. Therefore, (T, σn) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)), with γ1 ∈ σn(yp) ∩ σn(Tn,q). Let θ ∈ σn(yi+1). From TAA we see that

(5) θ is not used by any edge in T (yi+1)− T ∗
n,q under σn, except possibly e1 when q = 0 and

T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and σn(e1) = θ ∈ Dn).
By (6.6), we have θ 6= γ1. Using (4) and Lemma 6.6, we get Pvγ1

(θ, γ1, σn) = Pyi+1(θ, γ1, σn).
Let σ′

n = σn/Pyp(θ, γ1, σn). By Lemma 6.7, σ′
n satisfies all the properties described in (7.3) (with

σ′
n in place of σn). In particular, if e1 = fn and σn(e1) = θ ∈ Dn, then σ′

n(e1) = σn(e1), which
implies that e1 is outside Pyp(θ, γ1, σn). From (6.6) and (4) we deduce that σ′

n(u) = σn(u)
for each u ∈ V (T (yp−1)), and σ′

n(f) = σn(f) for each edge f in T (yi+1). So T can also be
obtained from T ∗

n,q + e1 by TAA under σ′
n, and hence satisfies MP under σ′

n. Furthermore,
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of those under σ′

n,
with the same Γ-sets as those under ϕn. Therefore, (T, σ′

n) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)). Since θ ∈ σ′

n(yp) ∩ σ′
n(yi+1), we reach a contradiction to the

maximality assumption on i. Hence Claim 7.3 is established.

By Claim 7.1, p ≥ 2. By Claim 7.3, ϕn(yp−1) ∩ ϕn(yp) 6= ∅. Let α ∈ ϕn(yp−1) ∩ ϕn(yp) and
β = ϕn(ep). Let σn be obtained from ϕn by recoloring ep with α and let T ′ = T (yp−1). Then
β ∈ σn(yp−1) ∩ σn(T

′(yp−2)) and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′

under σn. So (T ′, σn) is a counterexample to Theorem 5.3 (see (6.2)-(6.4)), which violates the
minimality assumption (6.5) on (T, ϕn). This completes our discussion about Situation 7.1.

Situation 7.2. p(T ) = p. Now ep is not incident to yp−1.
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By (7.1), there exists a color α ∈ ϕn(T (yp−1))∩ϕn(yp). We divide this situation into 3 cases
and further into 6 subcases (see figure below), depending on whether vα = yp−1 and α ∈ Dn,q.
Our proof of Subcase 1.1 is self-contained. Yet, in our discussion Subcase 1.2 may be redirected
to Subcase 1.1 and Subcase 2.1, and Subcase 2.1 may be redirected to Subcase 1.1, etc. Figure
1 illustrates such redirections (note that no cycling occurs).

Figure 1. Redirections

Throughout this situation we reserve the symbol θ for ϕn(ep). Clearly, θ 6= α.

Case 1. α ∈ ϕn(yp) ∩ ϕn(yp−1) and α ∈ Dn,q.

Let α = ηm ∈ Dn,q. For simplicity, we abbreviate the two colors γqm1
and γqm2

in Γq
m (see

Definition 5.2) to γ1 and γ2, respectively. Since ηm ∈ ϕn(yp)∩ϕn(yp−1), from TAA and Definition
5.2(i) we see that

(1) γ1, γ2 /∈ ϕn〈T (yp−1)− T ∗
n,q〉 and ηm is not used by any edge in T − T ∗

n,q, except possibly
e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηm ∈ Dn,q ⊆ Dn).
By (1) and Lemma 6.6 (with respect to (T, ϕn)), we have
(2) Pvγj

(ηm, γj , ϕn) = Pyp−1(ηm, γj , ϕn) for j = 1, 2.

Let us consider two subcases according to whether θ ∈ ϕn(yp−1).
Subcase 1.1. θ /∈ ϕn(yp−1).
In our discussion about this subcase, we shall appeal to the following two tree sequences:

• T− = (T ∗
n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp) and

• T ∗ = (T ∗
n,q, e1, y1, e2, . . . , yp−2, ep, yp, ep−1, yp−1).

Note that T− is obtained from T by deleting yp−1 and T ∗ arises from T by interchanging the order
of (ep−1, yp−1) and (ep, yp). We propose to show that both T− and T ∗ are ETTs corresponding
to ϕn. Indeed, if T (yp−2) 6= Tn, then both T− and T ∗ can be obtained from T (yp−2) by using
TAA under ϕn. So we assume that T (yp−2) = Tn. By the hypothesis of the present subcase,
ϕn(ep) = θ /∈ ϕn(yp−1). From Algorithm 3.1 we deduce that now Θn = PE. Hence both T−

and T ∗ can be obtained from T (yp−2) by using TAA under ϕn as well. Therefore both T− and
T ∗ are ETTs corresponding to ϕn. In view of the maximum property enjoyed by T , we further
conclude that both T− and T ∗ are ETTs satisfying MP with respect to ϕn.

Let us first assume that θ /∈ Γq. Now it is easy to see that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T−

is a good hierarchy of T− under ϕn, with the same Γ-sets (see Definition 5.2) as T . (If θ ∈ Γq,
say θ ∈ Γq

h, and ηh ∈ ϕn(yp−1), then T− no longer satisfies Definition 5.2(i).) Observe that

60



γ1 /∈ ϕn(yp), for otherwise, γ1 is missing at two vertices in T−. Thus (T−, ϕn) is a counterexample
to Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality assumption (6.4) or (6.5)
on (T, ϕn). Let us turn to considering T ∗. Since θ /∈ ϕn(yp−1) and θ /∈ Γq, it is clear that
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ∗ is a good hierarchy of T ∗ under ϕn, with the same Γ-sets as
T . Moreover, by (1), we have γ1 /∈ ϕn〈T

∗(yp)− T ∗
n,q〉. It follows from Lemma 6.6 (with respect

to (T ∗, ϕn)) that Pvγ1
(ηm, γ1, ϕn) = Pyp(ηm, γ1, ϕn), contradicting (2).

Next we assume that θ ∈ Γq. Then θ ∈ Γq
h for some ηh ∈ Dn,q. If ηh /∈ ϕn(yp−1), then

ηh ∈ ϕn(T (yp−2)) by Definition 5.2(i). So we can still ensure that both T− and T ∗ have good
hierarchies under ϕn. Thus, using the same argument as employed in the preceding paragraph,
we can reach a contradiction. Hence we may assume that ηh ∈ ϕn(yp−1).

Clearly, θ 6= γ1 or γ2. Renaming subscripts if necessary, we may assume that
(3) θ 6= γ2.

Since Pvγ2
(ηm, γ2, ϕn) = Pyp−1(ηm, γ2, ϕn) by (2), this path is disjoint from Pyp(ηm, γ2, ϕn). Let

µ1 = ϕn/Pyp(ηm, γ2, ϕn). By Lemma 6.7, µ1 satisfies all the properties described in (7.3) (with
µ1 in place of σn). In particular, if e1 = fn and ϕn(e1) = ηm ∈ Dn, then µ1(e1) = ϕn(e1),
which implies that e1 is outside Pyp(ηm, γ2, ϕn). By (1) and (3), we have µ1(f) = ϕn(f) for
each f ∈ E(T ) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1
by using TAA under µ1; thereby T satisfies MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ1, with the same Γ-sets
as those under ϕn. Therefore, (T, µ1) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)), in which γ2 is missing at two vertices.

By Lemma 6.4, we have |µ1(T (yp−2))| − |µ1(T
∗
n,0 −V (Tn))| − |µ1〈T (yp−2)−T ∗

n,q〉| ≥ 2n+11,
where T (y0) = T ∗

n,q. It follows that |µ1(T (yp−2))| − |µ1(T
∗
n,0−V (Tn))| − |µ1〈T −T ∗

n,q〉| ≥ 2n+9.
As |Γq| ≤ 2|Dn,q| ≤ 2|Dn| ≤ 2n by Lemma 3.4, using (6.6) we obtain

(4) there exists a color β in µ1(T (yp−2))− µ1(T
∗
n,0 − V (Tn))− µ1〈T − T ∗

n,q〉 − Γq.
By Lemma 6.6 (with γ2 in place of α), Pvγ2

(β, γ2, µ1) = Pvβ (β, γ2, µ1), so it is disjoint from
Pyp(β, γ2, µ1). Let µ2 = µ1/Pyp(β, γ2, µ1). By Lemma 6.7, µ2 satisfies all the properties described
in (7.3) (with µ2 in place of σn). By (1), (3) and (4), we have β, γ2 /∈ µ1〈T (yp) − T ∗

n,q〉. So
µ2(f) = µ1(f) for each f ∈ E(T ) and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). Hence we can
obtain T from T ∗

n,q+ e1 by using TAA under µ2; thereby T satisfies MP under µ2. Furthermore,
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ2,
with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)), in which β is missing at two vertices. Since θ ∈ Γq

h and
ηh ∈ ϕn(yp−1) = µ1(yp−1) = µ2(yp−1), we obtain

(5) θ /∈ µ2〈T (yp−1)− T ∗
n,q〉.

By (4), we also have
(6) β /∈ µ2〈T − T ∗

n,q〉.
It follows from (5) and Lemma 6.6 (with θ in place of α) that Pvθ (β, θ, µ2) = Pvβ (β, θ, µ2),
so it is disjoint from Pyp(β, θ, µ2). Finally, set µ3 = µ2/Pyp(β, θ, µ2). By Lemma 6.7, µ3

satisfies all the properties described in (7.3) (with µ3 in place of σn). From (5) and (6) we
see that T can be obtained from T ∗

n,q + e1 by using TAA under µ3. Hence T satisfies MP
under µ3. Note that µ3(f) = µ2(f) for each f ∈ E(T (yp−1)), µ3(ep) = β, and µ3(u) = µ2(u)
for each u ∈ V (T (yp−1)). Moreover, β /∈ Γq by (4). It is a routine matter to check that
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ3,
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with the same Γ-sets as those under µ2. Since µ3(ep) = β /∈ Γq and vβ ≺ yp−1, we see that T−

has a good hierarchy and satisfies MP with respect to µ3. As θ is missing at two vertices in
T−, we conclude that (T−, µ3) is a counterexample to Theorem 5.3 (see (6.2) and (6.3)), which
contradicts the minimality assumption (6.4) or (6.5) on (T, ϕn).

Subcase 1.2. θ ∈ ϕn(yp−1).
In this subcase, from (6.6) and TAA we see that
(7) θ /∈ ϕn(T (yp−2)), so θ /∈ Γq and hence θ 6= γ1, γ2. Furthermore, θ is not used by any edge

in T (yp−1)− T ∗
n,q, except possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1
and ϕn(e1) = θ ∈ Dn).

Since Pvγ1
(ηm, γ1, ϕn) = Pyp−1(ηm, γ1, ϕn) by (2), this path is disjoint from Pyp(ηm, γ1, ϕn).

Let µ1 = ϕn/Pyp(ηm, γ1, ϕn). By Lemma 6.7, µ1 satisfies all the properties described in (7.3)
(with µ1 in place of σn). In particular, if e1 = fn and ϕn(e1) = ηm ∈ Dn, then µ1(e1) = ϕn(e1),
which implies that e1 is outside Pyp(ηm, γ1, ϕn). By (1) and (6.6), we have µ1(f) = ϕn(f) for
each f ∈ E(T ) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1
by using TAA under µ1, and hence T satisfies MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ1, with the same Γ-sets
as those under ϕn. Therefore, (T, µ1) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)), in which γ1 is missing at two vertices.

From (1) and the definition of µ1, we see that
(8) γ1 /∈ µ1〈T − T ∗

n,q〉.
From (8) and Lemma 6.6 (with γ1 in place of α), we deduce that Pvγ1

(θ, γ1, µ1) = Pyp−1(θ, γ1, µ1),
which is disjoint from Pyp(θ, γ1, µ1). Let µ2 = µ1/Pyp(θ, γ1, µ1). By Lemma 6.7, µ2 satisfies
all the properties described in (7.3) (with µ2 in place of σn). In particular, if e1 = fn and
µ1(e1) = θ ∈ Dn, then µ2(e1) = µ1(e1), which implies that e1 is outside Pyp(θ, γ1, µ1). In
view of (7), (8) and (6.6), we have µ2(f) = µ1(f) for each f ∈ E(T (yp−1)), µ2(ep) = γ1, and
µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). Moreover, θ /∈ Γq. So T can be obtained from T ∗

n,q + e1
by using TAA under µ2, and hence satisfies MP under µ2. It is a routine matter to check that
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ2,
with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)). Since θ ∈ µ2(yp) ∩ µ2(yp−1) and µ2(ep) = γ1 /∈ µ2(yp−1), the
present subcase reduces to Subcase 1.1 if θ ∈ Dn,q and reduces to Subcase 2.1 (to be discussed
below) if θ /∈ Dn,q.

Case 2. α ∈ ϕn(yp) ∩ ϕn(yp−1) and α /∈ Dn,q.

By the definitions of Dn and Dn,q, we have ϕn(Tn) ∪Dn ⊆ ϕn(T
∗
n,q)∪Dn,q. Using (6.6) and

this set inclusion, we obtain
(9) α /∈ ϕn(T (yp−2)) and α /∈ Dn. So α /∈ ϕn〈T − T ∗

n,q〉 by TAA (see, for instance, (1)).
Recall that T (y0) = T ∗

n,q and θ = ϕn(ep). We consider two subcases according to whether
θ ∈ ϕn(yp−1).

Subcase 2.1. θ /∈ ϕn(yp−1).
In our discussion about this subcase, we shall also appeal to the following two tree sequences:

• T− = (T ∗
n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp) and

• T ∗ = (T ∗
n,q, e1, y1, e2, . . . , yp−2, ep, yp, ep−1, yp−1).
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As stated in Subcase 1.1, T− is obtained from T by deleting yp−1 and T ∗ arises from T by
interchanging the order of (ep−1, yp−1) and (ep, yp). Furthermore, both T− and T ∗ are ETTs
satisfying MP with respect to ϕn. Observe that

(10) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T ∗ is a good hierarchy of T ∗ under ϕn, unless
θ ∈ Γq

h for some ηh ∈ Dn,q such that ηh ∈ ϕn(yp−1).
Let us first assume that the exceptional case in (10) does not occur; that is, there exists no

ηh ∈ Dn,q such that ηh ∈ ϕn(yp−1) and θ ∈ Γq
h. It is easy to see that now Tn = Tn,0 ⊂ Tn,1 ⊂

. . . ⊂ Tn,q ⊂ T− is a good hierarchy of T− under ϕn.
By Lemma 6.4, we have |ϕ1(T (yp−2))| − |ϕn(T

∗
n,0 − V (Tn))| − |ϕ1〈T (yp−2)− T ∗

n,q〉| ≥ 2n+11
holds, where T (y0) = T ∗

n,q. Since |Γq| ≤ 2|Dn,q| ≤ 2|Dn| ≤ 2n by Lemma 3.4, using (6.6) we
obtain

(11) there exists a color β in ϕn(T (yp−2))− ϕn(T
∗
n,0 − V (Tn))− ϕn〈T − T ∗

n,q〉 − Γq.
Note that β /∈ ϕn(yp), for otherwise, (T−, ϕn) would be a counterexample to Theorem 5.3
(see (6.2) and (6.3)), which violates the minimality assumption (6.4) or (6.5) on (T, σn). Since
α, β /∈ ϕn〈T − T ∗

n,q〉 by (9) and (11), applying Lemma 6.6 to (T, ϕn) and (T ∗, ϕn), respectively,
we obtain Pvβ (α, β, ϕn) = Pyp−1(α, β, ϕn) and Pvβ (α, β, ϕn) = Pyp(α, β, ϕn), a contradiction.

So we assume that the exceptional case in (10) occurs; that is, there exists ηh ∈ Dn,q such
that ηh ∈ ϕn(yp−1) and θ ∈ Γq

h. For simplicity, we abbreviate the two colors γqh1
and γqh2

in Γq
h

(see Definition 5.2) to γ1 and γ2, respectively. Renaming subscripts if necessary, we may assume
that θ = γ1. By Definition 5.2(i) and TAA, we have

(12) γ2 /∈ ϕn〈T − T ∗
n,q〉 and ηh is not used by any edge in T − T ∗

n,q, except possibly e1 when
q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηh ∈ Dn,q ⊆ Dn).
By (12) and Lemma 6.6 (with α in place of β), we obtain Pvγ2

(α, γ2, ϕn) = Pyp−1(α, γ2, ϕn),
which is disjoint from Pyp(α, γ2, ϕn). Let µ1 = ϕn/Pyp(α, γ2, ϕn). By Lemma 6.7, µ1 satisfies all
the properties described in (7.3) (with µ1 in place of σn). Since α, γ2 /∈ ϕn〈T (yp)− T ∗

n,q〉 by (9)
and (12), we have µ1(f) = ϕn(f) for each f ∈ E(T ) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)).
So we can obtain T from T ∗

n,q + e1 by using TAA under µ1, and hence T satisfies MP under
µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy
of T under µ1, with the same Γ-sets as those under ϕn. Therefore, (T, µ1) is also a minimum
counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which γ2 is missing at two vertices.

If ηh ∈ µ1(yp), then ηh ∈ µ1(yp) ∩ µ1(yp−1), ηh ∈ Dn,q, and µ1(ep) = γ1 /∈ ϕn(yp−1). Thus
the present subcase reduces to Subcase 1.1. So we may assume that ηh /∈ µ1(yp). By (12) and
the definition of µ1, we have

(13) γ2 /∈ µ1〈T − T ∗
n,q〉 and ηh is not used by any edge in T − T ∗

n,q under µ1, except possibly
e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and µ1(e1) = ηh ∈ Dn).
By (13) and Lemma 6.6 (with γ2 in place of α), we obtain Pvγ2

(ηh, γ2, µ1) = Pyp−1(ηh, γ2, µ1),
which is disjoint from Pyp(ηh, γ2, µ1). Let µ2 = µ1/Pyp(ηh, γ2, µ1). By Lemma 6.7, µ2 satisfies
all the properties described in (7.3) (with µ2 in place of σn). In particular, if e1 = fn and
µ1(e1) = ηh ∈ Dn, then µ2(e1) = µ1(e1), which implies that e1 is outside Pyp(ηh, γ2, µ1). By
(13), we have µ2(f) = µ1(f) for each f ∈ E(T ) and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)).
So we can obtain T from T ∗

n,q + e1 by using TAA under µ2, and hence T satisfies MP under
µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy
of T under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum
counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which ηh ∈ µ2(yp) ∩ µ2(yp−1), ηh ∈ Dn,q,
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and µ2(ep) = γ1 /∈ µ2(yp−1). Thus the present subcase reduces to Subcase 1.1.
Subcase 2.2. θ ∈ ϕn(yp−1).
Let us first assume that θ ∈ Dn,q; that is, θ = ηm for some ηm ∈ Dn,q. For simplicity, we

use ε1 and ε2 to denote the two colors γqm1
and γqm2

in Γq
m (see Definition 5.2), respectively. By

Definition 5.2(i) and TAA, we have
(14) ε1, ε2 /∈ ϕn〈T − T ∗

n,q〉 and ηm is not used by any edge in T (yp−1)− T ∗
n,q, except possibly

e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηm ∈ Dn).

By (14) and Lemma 6.6, we obtain Pvε1
(α, ε1, ϕn) = Pyp−1(α, ε1, ϕn), which is disjoint from

Pyp(α, ε1, ϕn). Let µ1 = ϕn/Pyp(α, ε1, ϕn). By Lemma 6.7, µ1 satisfies all the properties de-
scribed in (7.3) (with µ1 in place of σn). By (9) and (14), we have

(15) α, ε1 /∈ µ1〈T − T ∗
n,q〉 and ηm is not used by any edge in T (yp−1)− T ∗

n,q under µ1, except
possibly e1 when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and µ1(e1) = ηm ∈ Dn).
So µ1(f) = ϕn(f) for each f ∈ E(T ) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)). Thus

T can be obtained from T ∗
n,q + e1 by using TAA under µ1, and hence satisfies MP under µ1.

Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy
of T under µ1, with the same Γ-sets as those under ϕn. Therefore, (T, µ1) is also a minimum
counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which ε1 is missing at two vertices.

By (15) and Lemma 6.6 (with ε1 in place of α), we obtain Pvε1
(ηm, ε1, µ1) = Pyp−1(ηm, ε1, µ1),

which is disjoint from Pyp(ηm, ε1, µ1). Let µ2 = µ1/Pyp(ηm, ε1, µ1). By Lemma 6.7, µ2 satisfies
all the properties described in (7.3) (with µ2 in place of σn). In particular, if e1 = fn and
µ1(e1) = ηm ∈ Dn, then µ2(e1) = µ1(e1), which implies that e1 is outside Pyp(ηm, ε1, µ1). In
view of (15), we have µ2(f) = µ1(f) for each f ∈ E(T (yp−1)), µ2(ep) = ε1, and µ2(u) = µ1(u)
for each u ∈ V (T (yp−1)). So T can be obtained from T ∗

n,q+e1 by using TAA under µ2, and hence
satisfies MP under µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a
good hierarchy of T under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also
a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which ηm ∈ µ2(yp) ∩ µ2(yp−1),
ηm ∈ Dn,q, and µ2(ep) = ε1 /∈ µ2(yp−1). Thus the present subcase reduces to Subcase 1.1.

Next we assume that θ /∈ Dn,q. Set T (y0) = T ∗
n,q. We propose to show that

(16) there exists a color β ∈ ϕn(T (yp−2)) − ϕn(T
∗
n,0 − V (Tn)) − ϕn〈T − T ∗

n,q〉 − Dn,q, such
that either β /∈ Γq or β ∈ Γq

h for some ηh ∈ Dn,q ∩ ϕn(T (yp−2)).
To justify this, note that if |ϕn(T (yp−2))| − |ϕn(T

∗
n,0−V (Tn))| − |ϕn〈T (yp−2)−T ∗

n,q〉|− |Γq ∪
Dn,q| ≥ 5, then |ϕn(T (yp−2))| − |ϕn(T

∗
n,0 − V (Tn))| − |ϕn〈T − T ∗

n,q〉| − |Γq ∪Dn,q| ≥ 3, because
T −T (yp−2) contains precisely two edges. Thus there exists a color β ∈ ϕn(T (yp−2))−ϕn(T

∗
n,0−

V (Tn))− ϕn〈T − T ∗
n,q〉 −Dn,q, such that β /∈ Γq.

So we assume that |ϕn(T (yp−2))|−|ϕn(T
∗
n,0−V (Tn))|−|ϕn〈T (yp−2)−T ∗

n,q〉|−|Γq∪Dn,q| ≤ 4.
By Lemma 6.4, there exist 7 distinct colors ηh ∈ Dn,q ∩ ϕn(T (yp−2)) such that (Γq

h ∪ {ηh}) ∩
ϕn〈T (yp−2) − T ∗

n,q〉 = ∅. Let β be an arbitrary color in such a Γq
h. From Definition 5.2, we

see that Γq
h ⊆ ϕn(T

∗
n,q) ⊆ ϕn(T (yp−2)), Γ

q
h ∩ ϕn(T

∗
n,0 − V (Tn)) = ∅, and Γq

h ∩ Dn,q = ∅. So
β ∈ ϕn(T (yp−2)) − ϕn(T

∗
n,0 − V (Tn)) − ϕn〈T (yp−2)− T ∗

n,q〉 −Dn,q. Since T − T (yp−2) contains
precisely two edges, there exists β ∈ ϕn(T (yp−2))−ϕn(T

∗
n,0−V (Tn))−ϕn〈T −T ∗

n,q〉−Dn,q, such
that β ∈ Γq

h for some ηh ∈ Dn,q ∩ ϕn(T (yp−2)). Hence (16) is established.
By the definitions of Dn and Dn,q, we have ϕn(Tn) ∪ Dn ⊆ ϕn(T

∗
n,q) ∪ Dn,q. By (16),

β /∈ ϕn(T
∗
n,0 − V (Tn)) ∪Dn,q. It follows from these two observations that

(17) if q ≥ 1, then β ∈ ϕn(T
∗
n,q) or β /∈ Dn; if q = 0, then β ∈ ϕn(Tn) or β /∈ Dn.
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By (9), (17) and Lemma 6.6, we obtain Pvβ (α, β, ϕn) = Pyp−1(α, β, ϕn), which is disjoint
from Pyp(α, β, ϕn). Let µ3 = ϕn/Pyp(α, β, ϕn). By Lemma 6.7, µ3 satisfies all the properties
described in (7.3) (with µ3 in place of σn). By (9) and (16), we have α, β /∈ ϕn〈T − T ∗

n,q〉. So
(18) α, β /∈ µ3〈T − T ∗

n,q〉,
µ3(f) = ϕn(f) for each f ∈ E(T ), and µ3(u) = ϕn(u) for each u ∈ V (T (yp−1)). Thus we can
obtain T from T ∗

n,q+e1 by using TAA under µ3, and hence T satisfies MP under µ3. Furthermore,
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ3,
with the same Γ-sets as those under ϕn. Therefore, (T, µ3) is also a minimum counterexample
to Theorem 5.3 (see (6.2)-(6.5)), in which β is missing at two vertices.

Since θ ∈ ϕn(yp−1), it follows from (6.6) that θ /∈ ϕn(T
∗
n,q). By assumption, θ /∈ Dn,q. As

ϕn(Tn) ∪Dn ⊆ ϕn(T
∗
n,q) ∪Dn,q, we obtain

(19) θ /∈ Dn and hence θ /∈ µ3〈T (yp−1)− T ∗
n,q〉 by TAA.

By (17)-(19) and Lemma 6.6, we obtain Pvβ (θ, β, µ3) = Pyp−1(θ, β, µ3), which is disjoint
from Pyp(θ, β, µ3). Let µ4 = µ3/Pyp(θ, β, µ3). By Lemma 6.7, µ4 satisfies all the properties
described in (7.3) (with µ4 in place of σn). By (18) and (19), we have µ4(f) = µ3(f) for each
f ∈ E(T (yp−1)) and µ4(u) = µ3(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1
by using TAA under µ4, and hence T satisfies MP under µ4. Since either β /∈ Γq or β ∈ Γq

h

for some ηh ∈ Dn,q ∩ µ3(T (yp−2)) by (16), it follows that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂
Tn,q+1 = T remains to be a good hierarchy of T under µ4, with the same Γ-sets as those under
µ3. Therefore, (T, µ4) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in
which θ ∈ µ4(yp) ∩ µ4(yp−1), θ /∈ Dn,q, and µ4(ep) = β /∈ µ4(yp−1). Thus the present subcase
reduces to Subcase 2.1.

Case 3. α ∈ ϕn(yp) ∩ ϕn(v) for some vertex v ≺ yp−1.

Set T (y0) = T ∗
n,q. Let us first impose some restrictions on α.

(20) We may assume that α ∈ ϕn(T (yp−2))−ϕn〈T − T ∗
n,q〉, such that either α /∈ Dn,q ∪ Γq if

q ≥ 1 and α /∈ Dn ∪ Γ0 if q = 0, or α is some ηh ∈ Dn,q satisfying Γq
h ∩ ϕn〈T − T ∗

n,q〉 = ∅.
To justify this, note that if |ϕn(T (yp−2))| − |ϕn(T

∗
n,0−V (Tn))| − |ϕn〈T (yp−2)−T ∗

n,q〉|− |Γq ∪
Dn,q| ≥ 5, then |ϕn(T (yp−2))| − |ϕn(T

∗
n,0 − V (Tn))| − |ϕn〈T − T ∗

n,q〉| − |Γq ∪Dn,q| ≥ 3, because
T −T (yp−2) contains precisely two edges. Thus there exists a color β ∈ ϕn(T (yp−2))−ϕn(T

∗
n,0−

V (Tn))−ϕn〈T −T ∗
n,q〉− (Γq ∪Dn,q). Clearly, β ∈ ϕn(T (yp−2))−ϕn〈T −T ∗

n,q〉 and β /∈ Dn,q ∪Γq

if q ≥ 1 and β /∈ Dn ∪ Γ0 if q = 0 (see the definitions of Dn and Dn,0).
If |ϕn(T (yp−2))|−|ϕn(T

∗
n,0−V (Tn))|−|ϕn〈T (yp−2)−T ∗

n,q〉|−|Γq∪Dn,q| ≤ 4, then, by Lemma
6.4, there exist 7 distinct colors ηh ∈ Dn,q ∩ ϕn(T (yp−2)) such that (Γq

h ∪ {ηh}) ∩ ϕn〈T (yp−2)−
T ∗
n,q〉 = ∅. Since T − T (yp−2) contains precisely two edges, there exists one of these ηh, denoted

by β, such that (Γq
h ∪ {ηh}) ∩ ϕn〈T − T ∗

n,q〉 = ∅.
Combining the above observations, we conclude that
(21) there exists β ∈ ϕn(T (yp−2))−ϕn〈T −T ∗

n,q〉, such that either β /∈ Dn,q ∪Γq if q ≥ 1 and
β /∈ Dn ∪ Γ0 if q = 0, or β is some ηh ∈ Dn,q satisfying Γq

h ∩ ϕn〈T − T ∗
n,q〉 = ∅.

If β ∈ ϕn(yp), then (20) holds by replacing α with β. So we assume hereafter that β /∈ ϕn(yp).
Let Q = Pyp(α, β, ϕn) and let σn = ϕn/Q. We propose to show that one of the following
statements (a) and (b) holds:

(a) σn is a (T ∗
n,q,Dn, ϕn)-strongly stable coloring, T is also an ETT satisfying MP with respect

to σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a hierarchy of T
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under σn, with the same Γ-sets (see Definition 5.2) as those under ϕn. Moreover, (20)
holds with respect to (T, σn).

(b) There exists an ETT T ′ satisfying MP with respect to ϕn, such that Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under ϕn, with the same Γ-sets as T under ϕn.
Moreover, V (T ′) is not elementary with respect to ϕn and p(T ′) < p(T ).

Note that if (b) holds, then (T ′, ϕn) would be a counterexample to Theorem 5.3 (see (6.2) and
(6.3)), which violates the minimality assumption (6.4) on (T, ϕn).

Let us first assume that Q is vertex-disjoint from T (yp−1). By Lemma 5.8, σn is both
(T (yp−1),Dn, ϕn)-stable and (T (yp−1), ϕn)-invariant. If Θn = PE, then σn is also (Tn ⊕
Rn,Dn, ϕn)-stable. Furthermore, T (yp−1) is an ETT satisfying MP with respect to σn, and
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (yp−1) is a good hierarchy of T (yp−1), with the same Γ-sets as
T under σn. By definition, σn is a (T ∗

n,q,Dn, ϕn)-strongly stable coloring. By the hypothesis of
Case 3 and assumption on β, we have ϕn(ep) 6= α, β. Thus it is clear that (a) is true, and (20)
follows if we replace ϕn by σn and α by β.

Next we assume that Q and T (yp−1) have vertices in common. Let u be the first vertex of
Q contained in T (yp−1) as we traverse Q from yp. Define T ′ = T (yp−1) ∪ Q[u, yp] if u = yp−1

and T ′ = T (yp−2) ∪ Q[u, yp] otherwise. By the hypothesis of Case 3 and (21), we have α, β ∈
ϕn(T (yp−2)). So T ′ can be obtained from T (yp−2) by using TAA under ϕn, with p(T ′) < p(T ).
It follows that T ′ is an ETT satisfying MP with respect to ϕn.

By Definition 5.2, we have Dn,q ∩ Γq = ∅. Thus
(22) β /∈ Γq by (21).
Let us proceed by considering three possibilities for α.
• α /∈ Γq. Since both α and β are outside Γq (see (22)), it is easy to see that Tn = Tn,0 ⊂

Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under ϕn, with the same Γ-sets as T under ϕn.
Hence (b) holds.

• α ∈ Γq ∩ ϕn〈T − T ∗
n,q〉. Let α ∈ Γq

h for some ηh ∈ Dn,q. Since ϕ(ep) 6= α, we have α ∈
ϕn〈T (yp−1)−T ∗

n,q〉. Hence ηh ∈ ϕn(T (yp−2)) by Definition 5.2(i). Furthermore, β ∈ ϕn(T (yp−2))
and β /∈ Γq by (21) and (22). Therefore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy
of T ′ under ϕn, with the same Γ-sets as T under ϕn. Hence (b) holds.

• α ∈ Γq−ϕn〈T−T ∗
n,q〉. By the definition of Γq, we have α ∈ ϕn(Tn,q) if q ≥ 1 and α ∈ ϕn(Tn)

if q = 0. It follows from Lemma 6.6 that Pvα(α, β, ϕn) = Pvβ (α, β, ϕn), which is disjoint from Q.
By Lemma 6.7, σn = ϕn/Q satisfies all the properties described in (7.3). Since α, β /∈ ϕn〈T−T ∗

n,q〉
by the assumption on α and (21), we have σn(f) = ϕn(f) for each f ∈ E(T ) and σn(u) = ϕn(u)
for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under σn, and hence
T satisfies MP under σn. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to
be a good hierarchy of T under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn)
is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which β is missing at two
vertices. So (a) holds and therefore (20) is established by replacing ϕn with σn and β with α.

Let α be a color as specified in (20). Recall that θ = ϕn(ep). We consider two subcases
according to whether θ ∈ ϕn(yp−1).

Subcase 3.1. θ /∈ ϕn(yp−1).
Consider the tree sequence T− = (T ∗

n,q, e1, y1, e2, . . . , ep−2, yp−2, ep, yp). As stated in Subcase
1.1, T− arises from T by deleting yp−1, and T− is an ETT satisfying MP with respect to ϕn.
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Observe that
(23) Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T− is a good hierarchy of T− under ϕn, unless θ ∈ Γq

m

for some ηm ∈ Dn,q such that ηm ∈ ϕn(yp−1).
It follows that the exceptional case stated in (23) must occur, for otherwise, (T−, ϕn) would

be a counterexample to Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality as-
sumption (6.4) or (6.5) on (T, ϕn). So θ ∈ Γq

m for some ηm ∈ Dn,q such that ηm ∈ ϕn(yp−1).
Since α ∈ ϕn(T (yp−2)), we have α 6= ηm by (6.6). From Definition 5.2(i), we see that
(24) θ /∈ ϕn〈T (yp−1)− T ∗

n,q〉.
By the definition of Γq, we have θ ∈ ϕn(Tn,q) if q ≥ 1 and θ ∈ ϕn(Tn) if q = 0. Thus, by (20),
(24) and Lemma 6.6, we obtain Pvα(α, θ, ϕn) = Pvθ (α, θ, ϕn), which is disjoint from Pyp(α, θ, ϕn).
Let µ1 = ϕn/Pyp(α, θ, ϕn). By Lemma 6.7, µ1 satisfies all the properties described in (7.3) (with
µ1 in place of σn). Using (20) and (24), we get

(25) α, θ /∈ µ1〈T (yp−1)− T ∗
n,q〉,

µ1(f) = ϕn(f) for each f ∈ E(T (yp−1)), µ1(ep) = α /∈ Γq (see (20)), and µ1(u) = ϕn(u) for
each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under µ1 and hence T
satisfies MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be
a good hierarchy of T under µ1, with the same Γ-sets as those under ϕn. Therefore, (T, µ1) is
also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which θ is missing at two
vertices.

By (25) and Lemma 6.6, we obtain Pvθ (ηm, θ, µ1) = Pyp−1(ηm, θ, µ1), which is disjoint from
Pyp(ηm, θ, µ1). Let µ2 = µ1/Pyp(ηm, θ, µ1). By Lemma 6.7, µ2 satisfies all the properties de-
scribed in (7.3) (with µ2 in place of σn). Note that ηm is not used by any edge in T − T ∗

n,q

under µ1, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and

µ1(e1) = ηm ∈ Dn). So e1 is outside Pyp(ηm, θ, µ1). Hence µ2(f) = µ1(f) for each f ∈ E(T ), and
µ2(u) = µ1(u) for each u ∈ V (T (yp−1)). It follows that T can be obtained from T ∗

n,q+e1 by using
TAA and hence satisfies MP under µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be a good hierarchy of T under µ2, with the same Γ-sets as those under µ1.
Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)). Since
ηm ∈ µ2(yp) ∩ µ2(yp−1), ηm ∈ Dn,q, and µ2(ep) = α /∈ µ2(yp−1), the present subcase reduces to
Subcase 1.1.

Subcase 3.2. θ ∈ ϕn(yp−1).
We first assume that θ ∈ Dn,q. Let θ = ηm ∈ Dn,q. For simplicity, we abbreviate the two

colors γqm1
and γqm2

in Γq
m (see Definition 5.2) to γ1 and γ2, respectively. By (20) and Definition

5.2(i), we have
(26) {α, γ1, γ2} ∩ ϕn〈T − T ∗

n,q〉 = ∅.
By (26) and Lemma 6.6, we obtain Pvα(α, γ1, ϕn) = Pvγ1

(α, γ1, ϕn), which is disjoint from
Pyp(α, γ1, ϕn). Let µ1 = ϕn/Pyp(α, γ1, ϕn). By Lemma 6.7, µ1 satisfies all the properties
described in (7.3) (with µ1 in place of σn). Since µ1(f) = ϕn(f) for each f ∈ E(T ), and
µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)), we can obtain T from T ∗

n,q + e1 by using TAA under µ1

and hence T satisfies MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be a good hierarchy of T under µ1, with the same Γ-sets as those under µ1. Therefore,
(T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which γ1 is missing
at two vertices. In view of (26) and Definition 5.2(i), we get

(27) {α, γ1, γ2} ∩ µ1〈T − T ∗
n,q〉 = ∅, and ηm is not used by any edge in T − T ∗

n,q under µ1,
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except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and µ1(e1) = ηm ∈

Dn,q ⊆ Dn).
By (27) and Lemma 6.6, we obtain Pvγ1

(γ1, ηm, µ1) = Pyp−1(γ1, ηm, µ1), which is disjoint
from Pyp(γ1, ηm, µ1). Let µ2 = µ1/Pyp(γ1, ηm, µ1). By Lemma 6.7, µ2 satisfies all the properties
described in (7.3) (with µ2 in place of σn). In particular, if e1 = fn and µ1(e1) = ηm ∈ Dn, then
µ2(e1) = µ1(e1), which implies that e1 is outside Pyp(γ1, ηm, µ1). Since µ2(f) = µ1(f) for each
f ∈ E(T (yp−1)) by (27), and µ2(u) = µ1(u) for each u ∈ V (T (yp−1)), we can obtain T from
T ∗
n,q + e1 by using TAA under µ2 and hence T satisfies MP under µ2. Furthermore, Tn = Tn,0 ⊂

Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ2, with the same
Γ-sets as those under µ1. Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3
(see (6.2)-(6.5)). Since ηm ∈ µ2(yp) ∩ µ2(yp−1), ηm ∈ Dn,q, and µ2(ep) = γ1 /∈ µ2(yp−1), the
present subcase reduces to Subcase 1.1.

Next we assume that θ /∈ Dn,q. By (6.6) and the hypothesis of the present subcase, we have
θ /∈ ϕn(T

∗
n,q). So θ /∈ ϕn(T

∗
n,q) ∪Dn,q, which implies θ /∈ ϕn(Tn) ∪Dn. In particular,

(28) θ /∈ Dn,q ∪Γq if q ≥ 1 and θ /∈ Dn ∪Γ0 if q = 0. Furthermore, θ is not used by any edge
in T (yp−1)− T ∗

n,q by TAA (see, for instance, (1)).
We proceed by considering two possibilities for α.
• α /∈ Dn,q. Now it follows from (20) that
(29) α /∈ Dn,q ∪ Γq if q ≥ 1 and α /∈ Dn ∪ Γ0 if q = 0.
By (20) and Lemma 6.6, we obtain Pvα(α, θ, ϕn) = Pyp−1(α, θ, ϕn), which is disjoint from

Pyp(α, θ, ϕn). Let σn = ϕn/Pyp(α, θ, ϕn). By Lemma 6.7, σn satisfies all the properties described
in (7.3). Since σn(f) = ϕn(f) for each f ∈ E(T (yp−1)) by (20) and (28), and σn(u) = ϕn(u) for
each u ∈ V (T (yp−1)), we can obtain T from T ∗

n,q+e1 by using TAA under σn and hence T satisfies
MP under σn. In view of (28) and (29), Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to
be a good hierarchy of T under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn) is
also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)). Since θ ∈ σn(yp) ∩ σn(yp−1),
θ /∈ Dn,q, and σn(ep) = α /∈ σn(yp−1), the present subcase reduces to Subcase 2.1.

• α ∈ Dn,q. Let α = ηh ∈ Dn,q. For simplicity, we use ε1 and ε2 to denote the two colors γqh1

and γqh2
in Γq

h (see Definition 5.2), respectively. By (20), we have
(30) {α, ε1, ε2} ∩ ϕn〈T − T ∗

n,q〉 = ∅.
By (30) and Lemma 6.6, we obtain Pvα(α, ε1, ϕn) = Pvε1

(α, ε1, ϕn), which is disjoint from
Pyp(α, ε1, ϕn). Let µ1 = ϕn/Pyp(α, ε1, ϕn). By Lemma 6.7, µ1 satisfies all the properties de-
scribed in (7.3) (with µ1 in place of σn). Since µ1(f) = ϕn(f) for each f ∈ E(T ) by (30), and
µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)), we can obtain T from T ∗

n,q + e1 by using TAA under µ1

and hence T satisfies MP under µ1. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be a good hierarchy of T under µ1, with the same Γ-sets as those under ϕn. There-
fore, (T, µ1) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which ε1 is
missing at two vertices. From (30) and Definition 5.2(i) we see that

(31) ε1 /∈ µ1〈T − T ∗
n,q〉.

By (31) and Lemma 6.6, we obtain Pvε1
(θ, ε1, µ1) = Pyp−1(θ, ε1, µ1), which is disjoint from

Pyp(θ, ε1, µ1). Let µ2 = µ1/Pyp(θ, ε1, µ1). By Lemma 6.7, µ2 satisfies all the properties de-
scribed in (7.3) (with µ2 in place of σn). In view of (28) and (31), we have µ2(f) = µ1(f) for
each f ∈ E(T (yp−1)) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)). So T can be obtained from
T ∗
n,q + e1 by using TAA and hence satisfies MP under µ2. Furthermore, Tn = Tn,0 ⊂ Tn,1 ⊂
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. . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be a good hierarchy of T under µ2, with the same Γ-sets
as those under µ1. Therefore, (T, µ2) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)). Since θ ∈ µ2(yp) ∩ µ2(yp−1), θ /∈ Dn,q, and µ2(ep) = ε1 /∈ µ2(yp−1), the present
subcase reduces to Subcase 2.1. This completes our discussion about Situation 7.2.

Situation 7.3. 2 ≤ p(T ) ≤ p− 1.

Recall that T = T ∗
n,q ∪ {e1, y1, e2, ..., ep, yp}, and the path number p(T ) of T is the smallest

subscript t ∈ {1, 2, ..., p} such that the sequence (yt, et+1, ..., ep, yp) corresponds to a path in G.
Set Iϕn = {1 ≤ t ≤ p − 1 : ϕn(yp) ∩ ϕn(yt) 6= ∅}. We use max(Iϕn) to denote the maximum
element of Iϕn if Iϕn 6= ∅. For convenience, set max(Iϕn) = −1 if Iϕn = ∅.

If max(Iϕn) ≥ p(T ), then we may assume that max(Iϕn) = p − 1 (the proof is exactly the
same as that of Claim 7.2). Let α ∈ ϕn(yp−1) ∩ ϕn(yp) and β = ϕn(ep). Let σn be obtained
from ϕn by recoloring ep with α and let T ′ = T (yp−1). Then β ∈ σn(yp−1) ∩ σn(T

′) and
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under σn. So (T ′, σn) is a
counterexample to Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality assumption
(6.4) or (6.5) on (T, ϕn).

So we may assume hereafter that max(Iϕn) < p(T ). Let i = max(Iϕn) if Iϕn 6= ∅, and let
j = p(T ). Then ej is not incident to yj−1. In our proof we reserve y0 for the maximum vertex
(in the order ≺) in T ∗

n,q.

Claim 7.4. We may assume that there exists α ∈ ϕn(yp) ∩ ϕn(T (yj−2)), such that either α /∈
Γq ∪ ϕn(T

∗
n,0 − V (Tn)) or α ∈ Γq

m for some ηm ∈ Dn,q with vηm � yj−2.

To establish this statement, we consider two cases, depending on whether Iϕ is nonempty.
Case 1. Iϕ 6= ∅.
By assumption, max(Iϕn) < p(T ). So i ≤ j−1. Let α ∈ ϕn(yp)∩ϕn(yi). By (6.6), we obtain
(1) α /∈ ϕn(T

∗
n,q). So α /∈ Γq ∪ ϕn(T

∗
n,0 − V (Tn)).

If i ≤ j − 2, then α ∈ ϕn(T (yj−2)), as desired. Thus we may assume that i = j − 1.
(2) There exists a color β ∈ ϕn(T (yj−2))−ϕn(T

∗
n,0−V (Tn))−ϕn〈T (yj−1)−T ∗

n,q〉−(Γq∪Dn,q)
or a color β ∈ Γq

m for some ηm ∈ Dn,q with vηm � yj−2 and (Γq
m∪{ηm})∩ϕn〈T (yj−1)−T ∗

n,q〉 = ∅.
To justify this, note that if |ϕn(T (yj−2))| − |ϕn(T

∗
n,0−V (Tn))| − |ϕn〈T (yj−2)−T ∗

n,q〉| − |Γq ∪
Dn,q| ≥ 5, then there exists a color β in ϕn(T (yj−2))−ϕn(T

∗
n,0 −V (Tn))−ϕn〈T (yj−1)−T ∗

n,q〉−
(Γq ∪Dn,q), because T (yj−1)− T (yj−2) contains only one edge.

If |ϕn(T (yj−2))|−|ϕn(T
∗
n,0−V (Tn))|−|ϕn〈T (yj−2)−T ∗

n,q〉|−|Γq∪Dn,q| ≤ 4, then, by Lemma
6.4, there exist 7 distinct colors ηh ∈ Dn,q ∩ ϕn(T (yj−2)) such that (Γq

h ∪ {ηh}) ∩ ϕn〈T (yj−2)−
T ∗
n,q〉 = ∅. Since T (yj−1)− T (yj−2) contains only one edge, there exists at least one of these ηh,

say ηm, such that (Γq
m ∪ {ηm}) ∩ ϕn〈T (yj−1)− T ∗

n,q〉 = ∅. So (2) is true.
Depending on whether α is contained in Dn,q, we distinguish between two subcases.
Subcase 1.1. α ∈ Dn,q. In this subcase, let α = ηh ∈ Dn,q. For simplicity, we abbreviate the

two colors γqh1
and γqh2

in Γq
h (see Definition 5.2) to γ1 and γ2, respectively. Since ηh ∈ ϕn(yj−1),

by Definition 5.2(i) and TAA, we have
(3) γ1, γ2 /∈ ϕn〈T (yj−1) − T ∗

n,q〉, and ηh is not used by any edge in T (yj−1) − T ∗
n,q, except

possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηh ∈ Dn,q ⊆

Dn).
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By (3) and Lemma 6.6, we obtain Pvγ1
(γ1, ηh, ϕn) = Pyj−1(γ1, ηh, ϕn), which is disjoint from

Pyp(γ1, ηh, ϕn). Let µ1 = ϕn/Pyp(γ1, ηh, ϕn). By Lemma 6.7, µ1 satisfies all the properties
described in (7.3) (with µ1 in place of σn). In particular, if e1 = fn and ϕn(e1) = ηh ∈ Dn,
then µ1(e1) = ϕn(e1), which implies that e1 is outside Pyp(γ1, ηh, ϕn). Using (3) and (6.6), we
get µ1(f) = ϕn(f) for each f ∈ E(T (yj−1)) and µ1(u) = ϕn(u) for each u ∈ V (T (yp−1)). So
we can obtain T from T ∗

n,q + e1 by using TAA under µ1, and hence T satisfies MP under µ1.
Furthermore, since ηh ∈ µ1(yp−1), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be good under µ1, with the same Γ-sets as those under µ1. Therefore, (T, µ1) is
also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which γ1 is missing at two
vertices.

From (3) we see that
(4) γ1, γ2 /∈ µ1〈T (yj−1)− T ∗

n,q〉, and ηh is not used by any edge in T (yj−1) − T ∗
n,q under µ1,

except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and µ1(e1) = ηh ∈

Dn,q ⊆ Dn).
Let β be a color as specified in (2). Note that
(5) β /∈ µ1〈T (yj−1)− T ∗

n,q〉, β /∈ Dn,q, and β 6= ηh = α.
Since γ1 ∈ µ1(Tn,q) if q ≥ 1 and γ1 ∈ µ1(Tn) if q = 0, from (4) and Lemma 6.6 we deduce that

Pvγ1
(γ1, β, µ1) = Pvβ (γ1, β, µ1), which is disjoint from Pyp(γ1, β, µ1). Let µ2 = µ1/Pyp(γ1, β, µ1).

By Lemma 6.7, µ2 satisfies all the properties described in (7.3) (with µ2 in place of σn). By
(4), (5) and (6.6), we have µ2(f) = µ1(f) for each f ∈ E(T (yj−1)), and µ2(u) = µ1(u) for each
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q+e1 by using TAA under µ2 and hence T satisfies
MP under µ2. If β /∈ Γq, then clearly Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains
to be a good hierarchy of T under µ2, with the same Γ-sets as those under µ1. So we assume
that β ∈ Γq. By (2), we have β ∈ Γq

m for some ηm ∈ Dn,q with vηm � yj−2 and (Γq
m ∪ {ηm}) ∩

ϕn〈T (yj−1) − T ∗
n,q〉 = ∅. It follows that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T is still a

good hierarchy of T under µ2, with the same Γ-sets as those under µ1. Therefore, (T, µ2) is also
a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which β ∈ µ2(yp)∩µ2(T (yj−2)).
From (2) and the definitions of µ1 and µ2, we see that either β /∈ Γq ∪ ϕn(T

∗
n,0 − V (Tn)) or

β ∈ Γq
m for some ηm ∈ Dn,q with vηm � yj−2. Thus Claim 7.4 holds by replacing ϕn with µ2

and α with β.
Subcase 1.2. α /∈ Dn,q. In this subcase, using (1) and the set inclusion ϕn(Tn) ∪ Dn ⊆

ϕn(T
∗
n,q) ∪Dn,q, we get

(6) α /∈ Dn. So α is not used by any edge in T (yj−1)− T ∗
n,q by TAA.

Let β be a color as specified in (2). Then there are two possibilities for β.
• β ∈ ϕn(T (yj−2)) − ϕn(T

∗
n,0 − V (Tn)) − ϕn〈T (yj−1) − T ∗

n,q〉 − (Γq ∪ Dn,q). Now it follows
from Lemma 6.6 that Pvβ (α, β, ϕn) = Pyj−1(α, β, ϕn), so this path is disjoint from Pyp(α, β, ϕn).
Let σn = ϕn/Pyp(α, β, ϕn). By Lemma 6.7, σn satisfies all the properties described in (7.3).
By (6), the assumption on β and (6.6), we have σn(f) = ϕn(f) for each f ∈ E(T (yj−1)),
and σn(u) = ϕn(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using
TAA under σn and hence T satisfies MP under σn. Since α, β /∈ Γq (see (1)), the hierarchy
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be good under σn, with the same Γ-sets
as those under ϕn. Therefore, (T, σn) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)), in which β ∈ σn(yp) ∩ σn(T (yj−2)). Thus Claim 7.4 holds by replacing ϕn with σn
and α with β.
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• β ∈ Γq
m for some ηm ∈ Dn,q with vηm � yj−2 and (Γq

m ∪ {ηm}) ∩ ϕn〈T (yj−1) − T ∗
n,q〉 = ∅.

Note that ηm ∈ ϕn(T (yj−2)) and hence α 6= ηm by (6.6). In view of Lemma 6.6, we obtain
Pvβ (α, β, ϕn) = Pyj−1(α, β, ϕn), which is disjoint from Pyp(α, β, ϕn). Let σn = ϕn/Pyp(α, β, ϕn).
By Lemma 6.7, σn satisfies all the properties described in (7.3). By (6), the assumption on
β and (6.6), we have σn(f) = ϕn(f) for each f ∈ E(T (yj−1)), and σn(u) = ϕn(u) for each
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under σn and hence T
satisfies MP under σn. Since α /∈ Γq (see (1)) and ηm ∈ ϕn(T (yj−2)), the hierarchy Tn = Tn,0 ⊂
Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be good under σn, with the same Γ-sets as those
under ϕn. Therefore, (T, σn) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)),
in which β ∈ σn(yp) ∩ σn(T (yj−2)). Thus Claim 7.4 holds by replacing ϕn with σn and α with
β.

Case 2. Iϕ = ∅.
Let α ∈ ϕn(yp)∩ϕn(T (yp−1)). By the hypothesis of the present case, we have α ∈ ϕn(T

∗
n,q).

If α /∈ Γq ∪ ϕn(T
∗
n,0 − V (Tn)), we are done. So we assume that α ∈ Γq ∪ ϕn(T

∗
n,0 − V (Tn)).

Subcase 2.1. α ∈ ϕn(T
∗
n,0 − V (Tn))− Γq. Let us first show that

(7) there exists a color β ∈ ϕn(T
∗
n,q)− ϕn(T

∗
n,0 − V (Tn))− Γq.

Indeed, since V (T ∗
n,q) is elementary with respect to ϕn, we have |ϕn(T

∗
n,q)| − |ϕn(T

∗
n,0 −

V (Tn))| − |Γq| ≥ |ϕn(T
∗
n,0)| − |ϕn(T

∗
n,0 − V (Tn))| − |Γq| = |ϕn(Tn)| − |Γq|. In view of (7.2), we

obtain |ϕn(Tn)| ≥ 2n+11 and |Γq| ≤ 2|Dn,q| ≤ 2n. So |ϕn(T
∗
n,q)|−|ϕn(T

∗
n,0−V (Tn))|−|Γq| ≥ 11,

which implies (7).
By (7) and Lemma 6.6, we obtain Pvα(α, β, ϕn) = Pvβ (α, β, ϕn), which is disjoint from

Pyp(α, β, ϕn). Let σn = ϕn/Pyp(α, β, ϕn). By Lemma 6.7, σn satisfies all the properties described
in (7.3). Since α, β ∈ ϕn(T

∗
n,q), we have σn(f) = ϕn(f) for each f ∈ E(T ∗

n,q), and σn(u) = ϕn(u)
for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q+e1 by using TAA under σn and hence T
satisfies MP under σn. As α, β /∈ Γq, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be good under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn) is also
a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which β ∈ σn(yp)∩σn(T (yj−2)).
Thus Claim 7.4 holds by replacing ϕn with σn and α with β.

Subcase 2.2. α ∈ Γq. Let α ∈ Γq
m for some ηm ∈ Dn,q. Depending on whether ηm is

contained in ϕn(T (yp−1)), we consider two possibilities.
• ηm /∈ ϕn(T (yp−1)). By Definition 5.2(i), we have α /∈ ϕn〈T − T ∗

n,q〉. Since T − T (yp−2)
contains precisely two edges, Lemma 6.4 guarantees the existence of a color β in ϕn(T (yp−2))−
ϕn(T

∗
n,0−V (Tn))−ϕn〈T−T ∗

n,q〉−(Γq∪Dn,q) or a color β = ηh ∈ Dn,q∩ϕn(T (yp−2)) such that (Γq
h∪

{ηh})∩ϕn〈T −T ∗
n,q〉 = ∅. Note that β ∈ ϕn(T (yp−2))−ϕn〈T −T ∗

n,q〉. By Lemma 6.6, we obtain
Pvα(α, β, ϕn) = Pvβ (α, β, ϕn), which is disjoint from Pyp(α, β, ϕn). Let σn = ϕn/Pyp(α, β, ϕn).
By Lemma 6.7, σn satisfies all the properties described in (7.3). Since α, β /∈ ϕn〈T − T ∗

n,q〉 and
α, β ∈ ϕn(T (yp−2)), we have σn(f) = ϕn(f) for each f ∈ E(T ), and σn(u) = ϕn(u) for each
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q+e1 by using TAA under σn and hence T satisfies
MP under σn. Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains
to be good under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn) is also a
minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which β ∈ σn(yp)∩ σn(vβ). Thus
Claim 7.4 holds if vβ � yj−2, the present subcase reduces to the case when max(Iσn) ≥ p(T ) if
yj � vβ (see the paragraphs above Claim 7.4), and the present subcase reduces to Case 1 (where
Iσn 6= ∅) if yj−1 = vβ.
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• ηm ∈ ϕn(T (yp−1)). Note that ηm /∈ ϕn(T
∗
n,q) because ηm ∈ Dn,q. So ηm ∈ ϕn(yt)

for some 1 ≤ t ≤ p − 1. If t ≤ j − 2, then Claim 7.4 holds. Thus we may assume that
t ≥ j − 1. Since ηm ∈ ϕn(yt), it is not used by any edge in T (yt) − T ∗

n,q, except possibly e1
when q = 0 and T ∗

n,0 = Tn (now e1 = fn in Algorithm 3.1 and ϕn(e1) = ηm ∈ Dn,q ⊆ Dn).
Since α ∈ Γq

m, by Definition 5.2(i), α is not used by any edge in T (yt) − T ∗
n,q. It follows from

Lemma 6.6 that Pvα(α, ηm, ϕn) = Pyt(α, ηm, ϕn), which is disjoint from Pyp(α, ηm, ϕn). Let
σn = ϕn/Pyp(α, ηm, ϕn). By Lemma 6.7, σn satisfies all the properties described in (7.3). In
particular, if e1 = fn and ϕn(e1) = ηm ∈ Dn, then σn(e1) = ϕn(e1), which implies that e1 is
outside Pyp(α, ηm, ϕn). Since σn(f) = ϕn(f) for each f ∈ E(T (yt)) and σn(u) = ϕn(u) for each
u ∈ V (T (yp−1)), we can obtain T from T ∗

n,q+e1 by using TAA under σn, so T satisfies MP under
σn. Furthermore, As α, ηm ∈ σn(T (yt)), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 =
T remains to be good under σn, with the same Γ-sets as those under ϕn. Therefore, (T, σn) is
also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which ηm ∈ σn(yp)∩σn(yt).
Thus the present subcase reduces to the case when max(Iσn) ≥ p(T ) if j � t (see the paragraphs
above Claim 7.4), and reduces to Case 1 (where Iσn 6= ∅) if t = j − 1. This proves Claim 7.4.

Let α be a color as specified in Claim 7.4; that is, α ∈ ϕn(yp) ∩ ϕn(T (yj−2)), such that
either α /∈ Γq ∪ ϕn(T

∗
n,0 − V (Tn)) or α ∈ Γq

m for some ηm ∈ Dn,q with vηm � yj−2. Since
T (yj) − T (yj−2) contains precisely two edges, Lemma 6.4 guarantees the existence of a color
β in ϕn(T (yj−2)) − ϕn(T

∗
n,0 − V (Tn)) − ϕn〈T (yj) − T ∗

n,q〉 − (Γq ∪ Dn,q) or a color β = ηh ∈
Dn,q ∩ ϕn(T (yj−2)) such that (Γq

h ∪ {ηh}) ∩ ϕn〈T (yj)− T ∗
n,q〉 = ∅. Note that

(8) β /∈ ϕn〈T (yj)− T ∗
n,q〉 ∪ Γq.

Let Q = Pyp(α, β, ϕn). We consider two cases, depending on whether Q intersects T (yj−1).
Case 1. Q and T (yj−1) have vertices in common. Let u be the first vertex of Q contained

in T (yj−1) as we traverse Q from yp. Define T ′ = T (yj−1) ∪ Q[u, yp] if u = yj−1 and T ′ =
T (yj−2) ∪ Q[u, yp] otherwise. By the choices of α and β, we have α, β ∈ ϕn(T (yj−2)). So T ′

can be obtained from T (yj−2) by using TAA under ϕn. It follows that T
′ is an ETT satisfying

MP with respect to ϕn, with p(T ′) < p(T ). If α /∈ Γq, then both α and β are outside Γq (see
(8)), so Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′ is a good hierarchy of T ′ under ϕn, with the same
Γ-sets as T under ϕn. If α ∈ Γq, then α ∈ Γq

m for some ηm ∈ Dn,q with vηm � yj−2 by Claim
7.4. Since α, ηm ∈ ϕn(T (yj−2)) and β /∈ Γq, it is clear that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T ′

is also a good hierarchy of T ′ under ϕn, with the same Γ-sets as T under ϕn. So (T ′, ϕn) is a
counterexample to Theorem 5.3 (see (6.2) and (6.3)), which violates the minimality assumption
(6.4) on (T, ϕn).

Case 2. Q is vertex-disjoint from T (yj−1). Let σn = ϕn/Q. By Lemma 5.8, σn is
(T (yj−1),Dn, ϕn)-stable. In particular, σn is (T (yj−1), ϕn)-invariant. If Θn = PE, then σn
is also (Tn⊕Rn,Dn, ϕn)-stable. Furthermore, T (yj−1) is an ETT satisfying MP with respect to
σn, and Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T (yj−1) is a good hierarchy of T (yj−1) under σn, with
the same Γ-sets as T under ϕn. By definition, σn is a (T ∗

n,q,Dn, ϕn)-strongly stable coloring. If
α /∈ Γq, then both α and β are outside Γq (see (8)), so Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T is
a good hierarchy of T under σn, with the same Γ-sets as T under ϕn. If α ∈ Γq, then α ∈ Γq

m

for some ηm ∈ Dn,q with vηm � yj−2 by Claim 7.4. Since α, ηm ∈ ϕn(T (yj−2)) and β /∈ Γq, it
is clear that Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ T is also a good hierarchy of T under σn, with
the same Γ-sets as T under ϕn. So (T, σn) is a counterexample to Theorem 5.3, in which β is
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missing at two vertices.
From the choice of β above (8) and the definition of σn, we see that
(9) either β /∈ σn(T

∗
n,0−V (Tn))∪σn〈T (yj)−T ∗

n,q〉∪(Γ
q∪Dn,q) or β = ηh ∈ Dn,q∩σn(T (yj−2)),

such that (Γq
h ∪ {ηh}) ∩ σn〈T (yj)− T ∗

n,q〉 = ∅.
Let θ ∈ σn(yj). Then θ /∈ Γq. We proceed by considering two subcases.
Subcase 2.1. θ /∈ Dn,q. In this subcase, using (6.6) and the set inclusion ϕn(Tn) ∪Dn ⊆

ϕn(T
∗
n,q) ∪Dn,q, we obtain

(10) θ /∈ σn(T (yj−1)) and θ /∈ Dn. So θ is not assigned to any edge in T (yj)− T ∗
n,q by TAA.

As described in (9), there are two possibilities for β.
• β /∈ σn(T

∗
n,0 − V (Tn)) ∪ σn〈T (yj) − T ∗

n,q〉 ∪ (Γq ∪ Dn,q). Observe that β /∈ Dn if q = 0.
By Lemma 6.6, we obtain Pvβ (β, θ, σn) = Pyj (β, θ, σn), which is disjoint from Pyp(β, θ, σn). Let
µ1 = σn/Pyp(β, θ, σn). By Lemma 6.7, µ1 satisfies all the properties described in (7.3). By (10),
the assumption on β and (6.6), we have µ1(f) = σn(f) for each f ∈ E(T (yj)) and µ1(u) = σn(u)
for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under µ1 and hence
T satisfies MP under µ1. As β, θ /∈ Γq, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be good under µ1, with the same Γ-sets as those under σn. Therefore, (T, µ1) is also
a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which θ ∈ µ1(yp)∩µ1(yj). Thus
the present subcase reduces to the case when max(Iµ1) ≥ p(T ) (see the paragraphs above Claim
7.4).

• β = ηh ∈ Dn,q ∩ σn(T (yj−2)), such that (Γq
h ∪ {ηh})∩ σn〈T (yj)− T ∗

n,q〉 = ∅. For simplicity,
we abbreviate the two colors γqh1

and γqh2
in Γq

h (see Definition 5.2) to γ1 and γ2, respectively.
By Lemma 6.6, we obtain Pvβ (β, γ1, σn) = Pvγ1

(β, γ1, σn), which is disjoint from Pyp(β, γ1, σn).
Let µ2 = σn/Pyp(β, γ1, σn). By Lemma 6.7, µ2 satisfies all the properties described in (7.3). By
the assumption on β, neither β nor γ1 is used by any edge in T (yj) − T ∗

n,q. So µ2(f) = σn(f)
for each f ∈ E(T (yj)). By (6.6), we get µ2(u) = σn(u) for each u ∈ V (T (yp−1)). It follows
that T can be obtained from T ∗

n,q + e1 by using TAA under µ2 and hence T satisfies MP under
µ2. Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be
good under µ2, with the same Γ-sets as those under σn. Therefore, (T, µ2) is also a minimum
counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which γ1 is missing at both yp and vγ1 .

From the assumption on β and the definition of µ2, we deduce that
(11) β = ηh ∈ Dn,q ∩ µ2(T (yj−2)), such that (Γq

h ∪ {ηh}) ∩ µ2〈T (yj)− T ∗
n,q〉 = ∅.

By (11) and Lemma 6.6, we obtain Pvγ1
(θ, γ1, µ2) = Pyj (θ, γ1, µ2), which is disjoint from

Pyp(θ, γ1, µ2). Let µ3 = µ2/Pyp(θ, γ1, µ2). By Lemma 6.7, µ3 satisfies all the properties described
in (7.3). By (10), (11) and (6.6), we have µ3(f) = µ2(f) for each f ∈ E(T (yj)) and µ3(u) = µ2(u)
for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q+e1 by using TAA under µ3 and hence T
satisfies MP under µ3. Furthermore, the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T
remains to be good under µ3, with the same Γ-sets as those under µ2. Therefore, (T, µ3) is also
a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which θ is missing at both yp
and yj. Thus the present subcase reduces to the case when max(Iµ3) ≥ p(T ) (see the paragraphs
above Claim 7.4).

Subcase 2.2. θ ∈ Dn,q. Let θ = ηt ∈ Dn,q. For simplicity, we use ε1 and ε2 to denote the
two colors γqt1 and γqt2 in Γq

t (see Definition 5.2), respectively. Then
(12) ε1, ε2 /∈ σn〈T (yj)−T ∗

n,q〉 and ηt is not used by any edge in T (yj)−T ∗
n,q under σn, except

possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm 3.1 and σn(e1) = ηt ∈ Dn,q ⊆
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Dn).
By (12) and Lemma 6.6 (with ε1 in place of α), we obtain Pvε1

(ε1, β, σn) = Pvβ (ε1, β, σn),
which is disjoint from Pyp(ε1, β, σn). Let µ4 = σn/Pyp(ε1, β, σn). By Lemma 6.7, µ4 satisfies
all the properties described in (7.3). By (9), we have β /∈ σn〈T (yj) − T ∗

n,q〉, which together
with (12) and (6.6) implies µ4(f) = σn(f) for each f ∈ E(T (yj)) and µ4(u) = σn(u) for each
u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q + e1 by using TAA under µ4 and hence T
satisfies MP under µ4. Since β /∈ Γq by (9) and ηt ∈ µ4(yj), the hierarchy Tn = Tn,0 ⊂ Tn,1 ⊂
. . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be good under µ4, with the same Γ-sets as those under σn.
Therefore, (T, µ4) is also a minimum counterexample to Theorem 5.3 (see (6.2)-(6.5)), in which
ε1 is missing at both yp and vε1 .

From (12) and (6.6) it can be seen that
(13) ε1, ε2 /∈ µ4〈T (yj) − T ∗

n,q〉 and ηt /∈ µ4(T (yj−1)). So ηt is not used by any edge in
T (yj)− T ∗

n,q under µ4, except possibly e1 when q = 0 and T ∗
n,0 = Tn (now e1 = fn in Algorithm

3.1 and µ4(e1) = ηt ∈ Dn,q ⊆ Dn).
By (13) and Lemma 6.6, we obtain Pvε1

(ε1, ηt, µ4) = Pyj (ε1, ηt, µ4), which is disjoint from
Pyp(ε1, ηt, µ4). Let µ5 = µ4/Pyp(ε1, ηt, µ4). By Lemma 6.7, µ5 satisfies all the properties de-
scribed in (7.3). In particular, if e1 = fn and µ4(e1) = ηt ∈ Dn, then µ5(e1) = µ4(e1), which
implies that e1 is outside Pyp(ε1, ηt, µ4). By (13) and (6.6), we have µ5(f) = µ4(f) for each
f ∈ E(T (yj)) and µ5(u) = µ4(u) for each u ∈ V (T (yp−1)). So we can obtain T from T ∗

n,q+ e1 by
using TAA under µ5 and hence T satisfies MP under µ5. Since ηt, ε1 ∈ µ5(T (yj)), the hierarchy
Tn = Tn,0 ⊂ Tn,1 ⊂ . . . ⊂ Tn,q ⊂ Tn,q+1 = T remains to be good under µ5, with the same Γ-sets
as those under µ4. Therefore, (T, µ5) is also a minimum counterexample to Theorem 5.3 (see
(6.2)-(6.5)), in which θ = ηt is missing at both yp and yj. Thus the present subcase reduces to
the case when max(Iµ5) ≥ p(T ) (see the paragraphs above Claim 7.4).

This completes our discussion about Situation 7.3 and hence our proof of Theorem 5.3.

7.2 Proof of Theorem 3.10(ii)

In the preceding subsection we have proved Theorem 5.3 and hence Theorem 3.10(i). To complete
the proof of Theorem 3.10, we still need to establish the interchangeability property as described
in Theorem 3.10(ii).

Lemma 7.1. Suppose Theorem 3.10(i), (iii)-(vi) hold for all ETTs with n rungs and satisfying
MP, and suppose Theorem 3.10(ii) holds for all ETTs with n − 1 rungs and satisfying MP.
Then Theorem 3.10(ii) holds for all ETTs with n rungs and satisfying MP; that is, Tn+1 has
the interchangeability property with respect to ϕn.

Proof. Let T = Tn+1, let σn be a (T,Dn, ϕn)-stable coloring, and let α and β be two
colors in [k] with α ∈ σn(T ) (equivalently α ∈ ϕn(T )). We aim to prove that α and β are
T -interchangeable under σn. Recalling (5.2), we may assume that Tn+1 is a closure of Tn ∨ Rn

under ϕn, which is a special closure of Tn under ϕn, if Θn = PE. As introduced in Section 5,
T ∗
n,0 = Tn ∨ Rn if Θn = PE and T ∗

n,0 = Tn otherwise. From definitions we see that σn is also a
(T ∗

n,0,Dn, ϕn)-strongly stable coloring (see the remark right above Lemma 6.2).
Assume the contrary: there are at least two (α, β)-paths Q1 and Q2 with respect to σn inter-

secting T . By Theorem 3.10(i), V (T ) is elementary with respect to ϕn, so it is also elementary
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with respect to σn. Since T = Tn+1 is closed with respect to ϕn, is it also closed with respect
to σn. As α ∈ σn(T ), it follows that |V (T )| is odd and β is outside σn(T ). From the existence
of Q1 and Q2, we see that |∂σn,β(T )| is odd and at least three. Thus G contains at least three
(T, σn, {α, β})-exit paths P1, P2, P3.

We call the tuple (σn, T, α, β, P1, P2, P3) a counterexample if σn is a (T ∗
n,0,Dn, ϕn)-strongly

stable coloring, and T is a closed ETT corresponding to (σn, Tn) (see Theorem 3.10(vi) and
Definition 3.7) with n rungs, with T ∗

n,0 ⊂ T , and satisfying MP under σn. Moreover, P1, P2, P3

are three (T, σn, {α, β})-exit paths. We use K to denote the set of all such counterexamples.
With a slight abuse of notation, let (σn, T, α, β, P1, P2, P3) be a counterexample in K with the
minimum |P1| + |P2| + |P3|. For i = 1, 2, 3, let ai and bi be the ends of Pi with bi ∈ V (T ),
and fi be the edge of Pi incident to bi. Renaming subscripts if necessary, we may assume that
b1 ≺ b2 ≺ b3. We propose to show that

(1) b3 /∈ V (Tn) if Θn = SE or RE.
Otherwise, b3 ∈ V (Tn). Let γ ∈ σn(Tn). Since T = Tn+1 is closed with respect to σn, both

α and γ are closed in T with respect to σn. Let µ1 = σn/(G − T, α, γ). By Lemma 5.8, µ1 is a
(T,Dn, ϕn)-stable coloring. By definition, µ1 is a (Tn,Dn, ϕn)-stable coloring. Since Θn = SE
or RE, by Algorithm 3.1, µ1 is also a (Tn,Dn−1, ϕn−1)-stable coloring. By Theorem 3.10(vi), Tn

is an ETT corresponding to µ1 (see see Theorem 3.10(vi) and Definition 3.7) and satisfies MP
under µ1, with n−1 rungs. Since P1, P2, P3 are three (Tn, µ1, {γ, β})-exit paths, there are at least
two (γ, β)-paths with respect to µ1 intersecting Tn. Hence γ and β are not Tn-interchangeable
under µ1, contradicting Theorem 3.10(ii) because Tn has n− 1 rungs. So (1) is established.

(2) b3 /∈ V (Tn ∨Rn) if Θn = PE.
The proof is similar to that of (1). Assume the contrary: b3 ∈ V (Tn ∨ Rn). Let γ ∈

σn(Tn) ∩ σn(Rn) and let µ1 = σn/(G − T, α, γ). By Lemma 5.8, µ1 is a (Tn ⊕ Rn,Dn, ϕn)-
stable coloring. Since P1, P2, P3 are three (Tn ∨Rn, µ1, {γ, β})-exit paths, there are at least two
(γ, β)-paths with respect to µ1 intersecting Tn ∨Rn, contradicting Lemma 6.1(iii). So (2) holds.

Let γ ∈ σn(b3) and let µ2 = σn/(G − T, α, γ). By Lemma 5.8, µ2 is a (T,Dn, ϕn)-stable
coloring. So µ2 is a (T ∗

n,0,Dn, ϕn)-strongly stable coloring. By Theorem 3.10(vi), T is an ETT
corresponding to µ2 (see Definition 3.7) and satisfies MP under µ2. Note that fi is colored by β
under both µ2 and σn for i = 1, 2, 3.

Consider µ3 = µ2/Pb3(β, γ, µ2). Clearly, β ∈ µ3(b3). By (1), (2) and Lemma 5.8, µ3 is a
(T ∗

n,0,Dn, µ2)-strongly stable coloring. It follows from Lemma 2.4 that µ3 is a (T ∗
n,0,Dn, ϕn)-

strongly stable coloring. By Theorem 3.10(vi), T (b3) is an ETT corresponding to µ3 (see Defini-
tion 3.7) and satisfies MP under µ3. Let T

′ be obtained from T (b3) by adding f1 and f2 and let
T ′′ be a closure of T ′ under µ3. Obviously, both T ′ and T ′′ are ETTs corresponding to µ3 and
satisfies MP under µ3. By Theorem 3.10(i), V (T ′′) is elementary with respect to µ3, because
T ′′ has n rungs.

Observe that none of a1, a2, a3 is contained in T ′′, for otherwise, let ai ∈ V (T ′′) for some i
with 1 ≤ i ≤ 3. Since {β, γ}∩µ3(ai) 6= ∅ and β ∈ µ3(b3), we obtain γ ∈ µ3(ai). Hence from TAA
we see that P1, P2, P3 are all entirely contained in G[T ′′], which in turn implies γ ∈ µ3(aj) for
j = 1, 2, 3. So V (T ′′) is not elementary with respect to µ3, a contradiction. Each Pi contains a
subpathQi, which is a T ′′-exit path with respect to µ3. Since f1 is not contained in Q1, we obtain
|Q1|+ |Q2|+ |Q3| < |P1|+ |P2|+ |P3|. In view of (1) and (2), we have Tn ⊆ T ′′ if Θn 6= PE and
Tn ∨ Rn ⊆ T ′′ if Θn = PE. Thus the existence of the counterexample (µ3, T

′′, γ, β,Q1, Q2, Q3)
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violates the minimality assumption on (σn, T, α, β, P1, P2, P3).
This completes our proof of Lemma 7.1 and hence of Theorem 3.10.
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