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Abstract

In this paper, we propose stochastic structure-preserving schemes to compute the effective

diffusivity for particles moving in random flows. We first introduce the motion of parti-

cles using the Lagrangian formulation, which is modeled by stochastic differential equations

(SDEs). We also discuss the definition of the corrector problem and effective diffusivity.

Then we propose stochastic structure-preserving schemes to solve the SDEs and provide a

sharp convergence analysis for the numerical schemes in computing effective diffusivity. The

convergence analysis follows a probabilistic approach, which interprets the solution process

generated by our numerical schemes as a Markov process. By using the central limit theo-

rem for the solution process, we obtain the convergence analysis of our method in computing

long time solutions. Most importantly our convergence analysis reveals the connection of

discrete-type and continuous-type corrector problems, which is fundamental and interesting.

We present numerical results to demonstrate the accuracy and efficiency of the proposed

method and investigate the convection-enhanced diffusion phenomenon in two- and three-

dimensional incompressible random flows.
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1. Introduction

In this paper, we study the diffusion enhancement phenomenon for particle motions in ran-

dom flows, which is described by the following passive tracer model, i.e., a stochastic differ-

ential equation (SDE) with a random drift,

dX(t) = b(t,X(t), ω)dt+ σdw(t), X(0) = 0, (1)

where X(t) ∈ Rd is the position of the particle, σ > 0 is the molecular diffusivity, and

{w(t)}t≥0 is the standard d-dimensional Brownian motion. Here the velocity field b(t,X(t), ω)
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is modeled by a random field in order to mimic the energy spectra of the turbulent flow

[11, 13]. Specifically, we assume b(t,X(t), ω) is a zero mean, jointly stationary, ergodic ran-

dom vector field over a certain probability space, where ω is an element of the probability

space describing all possible environments. The randomness in b(t,X(t), ω) is independent

of the randomness in the Brownian motion w(t). In addition, we assume that the realizations

of b(t,X(t), ω) are almost surely divergence free, i.e. ∇ · b(t,X(t), ω) = 0. Furthermore, in

order to guarantee the existence of the solution to (1), we assume that b(t,X(t), ω) is almost

surely locally Lipschitz in X. We emphasize that since any statement, such as the effective

diffusivity, involving statistical properties of the solution X(t) requires only convergence in

law, the regularity assumption on the velocity field is natural and will facilitate our algorithm

design and convergence analysis in this paper.

We are interested in studying the long-time large-scale behavior of the particles X(t)

in (1). Namely, whether the motion of the particles X(t) has a long time diffusive limit?

More specifically, let Xε(t) ≡ εX(t/ε2) denote the rescaled process of (1). We want to find

conditions under which Xε(t) converges in law, as ε→ 0, to a Brownian motion w1(t) with

a certain covariance matrix DE ∈ Rd×d, where DE is called the effective diffusivity matrix.

This problem is referred to as the homogenization of time-dependent flow problem.

Computing the effective diffusivity matrix DE (i.e., homogenization of time-dependent

flows) has been widely studied under various conditions on the flows. For spatial-temporal

periodic velocity fields and random velocity fields with short-range correlations, one can

apply the homogenization theory [1, 7, 8, 14] to compute the effective diffusivity matrix DE,

where DE can be expressed in terms of particle ensemble average (Lagrangian framework)

or an average of solutions to corrector problems (Eulerian framework).

The dependence of DE on the velocity field of the problem is highly nontrivial. For time-

independent Taylor-Green flows, the authors of [15] proposed a stochastic splitting method

and calculated the effective diffusivity in the limit of vanishing molecular diffusion. For time-

dependent chaotic flows, we proposed a Lagrangian-type numerical integrator to compute

the effective diffusivity using structure-preserving schemes [19]. In the subsequent work

[18], we provided a sharp and uniform-in-time error estimate for the numerical integrator

in computing the effective diffusivity. However, we point out that the method and the

convergence analysis obtained in [19, 18] were designated for flows generated from separable

and deterministic Hamiltonian only.

For random flows with long-range correlations, the long-time large-scale behavior of the

particle motion is complicated and difficult to study in general, since various forms of anoma-

lous diffusion, such as super-diffusion and sub-diffusion may exist. The interested reader is

referred to the review paper [13], where some anomalous diffusion was obtained for exactly

solvable models, i.e. shear flows generated from separable Hamiltonian

There are several theoretical works on homogenization of time-dependent random flows.

Such results include, among others, in [2], the authors proved the existence of the effective

diffusivity for a two-dimensional time-dependent incompressible Gaussian velocity field. In

[12, 10], the authors proved the homogenization of convection-diffusion in a time-dependent,
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ergodic, incompressible random flow. In [6, 5], the authors proved some necessary conditions

under which the long-time behavior for convection-diffusion in a turbulent flow is diffusive.

Those results show that the dependence of the effective diffusivity upon the molecular dif-

fusion σ and the velocity field b in the random flow is complicated and how to describe this

dependence is very difficult in general. Additionally, it seems difficult to study the existence

of residual diffusivity for the passive tracer model (1). The residual diffusivity refers to the

non-zero effective diffusivity in the limit of zero molecular diffusion σ.

This motivates us to develop robust numerical schemes so that we can compute the

effective diffusivity of random flows. Notice that these random flows are generated from

non-separable Hamiltonians, which are much more difficult than the problems studied in

[13, 19]. In this work, we first propose an implicit structure-preserving scheme to solve the

SDE (1), in order to deal with the non-separable Hamiltonian. Second, we provide a sharp

error estimate for the numerical scheme in computing effective diffusivity. Our analysis is

based on a probabilistic approach. We interpret the solution process generated by our numer-

ical scheme as a Markov process, where the transition kernel can be constructed according

to the numerical scheme in solving (1). By exploring the ergodicity of the solution process

and using the central limit theorem for Markov process, we obtain a sharp convergence anal-

ysis for our method. Most importantly, our convergence analysis reveals the connection of

discrete-type and continuous-type corrector problems, which is fundamental and interesting.

Finally, we present numerical results to demonstrate the accuracy of the proposed method

in computing effective diffusivity for several incompressible random flows in both two- and

three-dimensional space.

To the best of our knowledge, this paper appears to be the first one in the literature

to develop Lagrangian numerical methods to compute effective diffusivity in random flows

through the connection with Eulerian corrector problem. The probabilistic approach in the

convergence analysis takes into account the ergodic nature of the solution process and leads

to a sharp error estimate. Notice that if one chooses the Gronwall inequality in the error

estimate, one cannot get rid of the exponentially growth pre-factor in the error term, which

makes the estimate not sharp. Moreover, stochastic structure-preserving Lagrangian scheme

enables us to investigate the convection-enhanced diffusion phenomenon in random flows.

Especially, we can numerically study the dependence of the effective diffusivity in the regime

of molecular diffusion σ and the setting of the velocity field b in the random flow.

The rest of the paper is organized as follows. In Section 2, we briefly review some exist-

ing results for diffusion in random flows and introduce the definition of effective diffusivity

by solving a continuous-type corrector problem. In Section 3, we propose our stochastic

structure-preserving schemes in computing effective diffusivity for the passive tracer model

(1). In Section 4, we provide the convergence analysis for the proposed method based on a

probabilistic approach. In addition, we prove the equivalence of the definition of the effec-

tive diffusivity through the discrete-type and continuous-type corrector problems. In Section

5, we present numerical results to demonstrate the accuracy and efficiency of our method.

Concluding remarks are made in Section 6.
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2. Preliminaries

To make this paper self-contained, we give a brief review of existing results on convection-

enhanced diffusion in random flows and the effective diffusivity. Since these are standard

results, we adopt the notations that were used in [6, 5].

2.1. Some formulations and results for diffusion in random flows

Let (X ,H, P0) be a probability space. Let τx, x ∈ Rd be an almost surely continuous, jointly

measurable group of measure preserving transformation of X with the following properties:

(T1) τ0 = IdX and τx+y = τxτy, ∀ x,y ∈ Rd.

(T2) The mapping (χ,x) 7→ τxχ is jointly measurable.

(T3) P0(τx(A)) = P0(A), for x ∈ Rd, A ∈ H.

(T4) limx→0 P0

(
χ : |f ◦ τx(χ)− f(χ)| ≥ η

)
= 0, ∀f ∈ L2(X ) and ∀η > 0.

(T5) If P0(A∆τx(A)) = 0, ∀ x ∈ Rd, then A is a trivial event, i.e., P0(A) is either 0 or 1.

One can verify that τx induces a strongly continuous group of unitary mapping Ux on L2(X ),

which satisfies

Uxf(χ) = f(τx(χ)), f ∈ L2(X ), x ∈ Rd. (2)

In addition, it is easily to find that the group Ux has d independent, skew-adjoint generators

Dk : Dk → L2(X ) corresponding to directions ek, k = 1, · · · , d.

We introduce some function spaces that are useful in the analysis. Let Cm
b (X ) be the

space of functions f in the intersection of the domains of Dn
k with ||Dn

kf ||L∞(X ) < +∞,

k = 1, · · · , d, n = 1, · · · ,m. It is well known that C∞b (X ) = ∩m≥1C
m
b (X ) is dense in

Lp(X ), 1 ≤ p < +∞; see [3]. Let L2
0(X ) = {f ∈ L2(X )|E0f = 0}, where E0 is the

expectation associated with the probability measure P0.

Let Ω be the space of X -valued continuous function C([0,∞);X ) and let ` be its Borel

σ−algebra. Let P t, t ≥ 0, be a stronly continuous Markov semigroup on L2(X ), which

satisfies the following properties.

(P1) P t1 = 1 and P tf ≥ 0, if f ≥ 0.

(P2)
∫
P tfdP0 =

∫
fdP0, for all f ∈ L2(X ), t ≥ 0.

(P3) Eχ[f(θt+h(ω))|`≤t] = P hF (ω(t)), where F (χ) := Eχf , for any f ∈ L1(Ω), t, h ≥ 0,

χ ∈ X .

In the property P3, Eχ[·] is the expectation associated with the probability measures Pχ, `≤t
are the σ-algebras generated by events measurable up to time t, and θt(ω)(·) := ω(·+t), t ≥ 0

is the standard shift operator on the path space (Ω, `).

Moreover, we can define a Markovian measure P on the path space (Ω, `) through

P (A) =

∫
Pχ(A)P0(dχ), A ∈ ` (3)

and define E to be the corresponding expectation operator with respect to the measure P .

As a direct consequence of (T3) and (P2), we know that P is stationary.
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Proposition 2.1. P is invariant under the action of θt and τx for any (t,x) ∈ R+ ×Rd.

Let L : D(L) → L2(X ) be the generator of the semigroup P t. To establish the central

limit theorem for the Markov process associated with P t, we assume the generator L satisfies

the following time relaxation property, also known as the spectral gap condition,

−(Lf, f)L2(X ) ≥ c1||f ||2L2(X ), where c1 > 0. (4)

The time relaxation property (4) is equivalent to the exponential decay property

||P tf ||L2(X ) ≤ exp(−c1t)||f ||L2(X ), f ∈ L2
0(X ). (5)

In addition, time relaxation property (4) is equivalent to ρ mixing of the process X(t), t ≥ 0.

Specifically, let ρ(h) = sup{Cor(Y1, Y2) : Y1 is `≥t+h measurable, Y2 is `≤t measurable}, where

Cor(Y1, Y2) is the correlation function. Then, (4) or (5) implies that limh→∞ ρ(h) = 0; see

[16, 4]. The time relaxation property (4) (or the exponential decay property (5)) plays

an important rule in proving the existing of the effective diffusivity. We will numerically

investigate this property in Section 5.

2.2. The corrector problem and effective diffusivity

Equipped with the necessary properties and notations, we are ready to study the effective

diffusivity of the random flows associated with the passive tracer model (1). First we assume

that the random flow b = (b1, ..., bd) ∈ (L2(X ))d is jointly continuous in (t,x), locally

Lipschitzian in x, with finite second moments, and is divergence free. In this paper, we are

interested in statistical properties of the solution X(t), which only requires convergence in

law. Therefore, our above assumptions on the velocity field b are reasonable.

For each fixed realization ω of the environment, we consider the stochastic process gen-

erated by the following SDE, {
dXω

t = b(t,Xω
t , ω)dt+ σdwt,

Xω
0 = 0,

(6)

where the superscript in Xω
t means that it depends on the realization of the environment

ω in the random flow b. Viewed from a particle at any instant of time t, we can define an

environment process η : [0,∞)× Ω→ X as{
η(t) = τXω

t
ω(t),

η(0) = ω(0).
(7)

In addition, we define Stf(χ) = Eχf(η(t)), t ≥ 0 for f ∈ L∞(X ), where η(t) is the environ-

ment process given by (7). Then, St satisfies the following properties,

Proposition 2.2. (i) St, t ≥ 0 is a strongly continuous, Markov semigroup of contraction

on L2(X ).
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(ii) St, t ≥ 0 is measure-preserving, that is,∫
StfdP0 =

∫
fdP0, t ≥ 0, f ∈ L2(X ). (8)

Let D1 = D(L) ∩ C2
b (X ) and L denote the generator of the semigroup St, t ≥ 0, i.e.,

Lf = Lf +
σ2

2
∆f + b · ∇f. (9)

One can easily verify the following properties.

Proposition 2.3. (i) D1 is dense in L2(X ) and is invariant under the semigroup P t,

t ≥ 0, i.e., P t(D1) ⊆ D1 for all t ≥ 0.

(ii) Assume that the random flow b is bounded. Then D1 is invariant under the semigroup

St, t ≥ 0, i.e., St(D1) ⊆ D1 for all t ≥ 0.

Lemma 2.4. From the spectral gap condition (4), we obtain that for any f ∈ L2
0(X )

||Stf ||L2(X ) ≤ exp(−c1t)||f ||L2(X ), where c1 > 0. (10)

Proof. We first assume b is bounded and f ∈ D1 ⊆ D(L). Using the spectral gap condition,

we have

(−Lf, f)L2
0(X ) ≥ (−Lf, f)L2

0(X ) ≥ c1||f ||2L2
0(X ) (11)

for all f ∈ D1 ∩ L2
0(X ). By Proposition 2.3, Stf ∈ D1, t ≥ 0 for any f ∈ D1. Consequently,

d

dt
||Stf ||2L2(X ) = −2(LStf, Stf)L2(X ) ≤ −2c1||Stf ||2L2(X ), (12)

thus

||Stf ||2L2(X ) ≤ exp(−c1t)||f ||2L2(X ) ∀t ≥ 0 (13)

and f ∈ D1 ∩ L2
0(X ). Then, the statement in (10) is extended to L2

0(X ) by using an

approximation argument. Likewise the boundedness of the random flow b is removed by

using another approximation argument.

Thanks to Proposition 2.2, we can define

ψ =

∫ ∞
0

Stb(t,X(t), ω)dt (14)

which satisfies the following continuous-type corrector problem

Lψ = −b (15)

where L is the generator of St defined in (9). By solving the corrector problem (15), we are

able to define the effective diffusivity. This can be summarized into the following result.
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Proposition 2.5. Let X(t) be the solution to (1) and Xε(t) ≡ εX(t/ε2). For any unit vector

v ∈ Rd, let ψv = ψ · v denote the projection of the vector solution ψ along the direction

v, where ψ is the solution to corrector problem (15). Then, the law of the process Xε(t) · v
converges weakly in C[0,+∞) to a Brownian motion with diffusion coefficient given by

vTDEv =
σ2

2
+ (−Lψv, ψv)L2(X ), (16)

where DE is the effective diffusivity associated with the passive tracer model (1).

The proof of Prop. 2.5 relies on an approximation of the additive functional of an

ergodic Markov process by a martingale and applying the central limit theorem to continuous-

time Markov process, which is very useful in studying the long-time behavior of a random

dynamics; see Lemma 1 of [5] or Theorem of [2]. We shall prove in Theorem 4.3 that the

numerical solutions obtained by our Lagrangian numerical scheme recover the definition of

the effective diffusivity in (16).

3. Stochastic structure-preserving schemes and related properties

3.1. Derivation of numerical schemes

In this section, we construct numerical schemes for the passive tracer model (6), which is

based on an operator splitting method [17]. For each fixed realization ω ∈ Ω, we first split

the original problem (6) into two sub-problems.

dXω
t = b(t,Xω

t , ω)dt, (17)

dXω
t = σdwt. (18)

Let Xω
n∆t denote the numerical solution of Xω

t at time t = tn, n = 0, 1, 2, .... From time

t = tn to time t = tn+1, where tn+1 = tn + ∆t, t0 = 0, assuming the solution Xω
n∆t is given,

we now discuss how to discretize the above two sub-problems (17)-(18), separately.

In the sub-problem (17), the velocity b(t,X(t), ω) is almost surely divergence-free. Thus,

we apply a volume-preserving scheme to discretize the velocity. Let Φ∆t denote the numerical

integrator associated with the volume-preserving scheme during ∆t time and let DΦ∆t denote

the corresponding Jacobian matrix. The volume-preserving property requests det(DΦ∆t) =

1. We obtain the numerical integrator for the sub-problem (17) as follows,

Xω
n+1 = Φ

ω(n∆t)
∆t

(
Xω
n

)
, (19)

where the superscript in Φ
ω(n∆t)
∆t means that the numerical integrator implicitly depends on

the realization of b at different computational times. Suppose b has bounded first derivatives

with respect to x for almost all ω, it is easy to verify that the volume-preserving integrator

Φ
ω(n∆t)
∆t also has bounded first derivatives for ∆t small enough and the n-th step volume-

preserving integrator Φ
ω(n∆t)
∆t is well defined. In addition, we assume that the numerical

scheme only relies on the information of X and b at the beginning of each computational
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time. For instance, to compute Xω
n+1 the numerical scheme only relies on the information of

X and b (may including high-order derivatives of b) at t = tn.

Given the numerical integrator Φ
ω(n∆t)
∆t , we define

B
ω(n∆t)
∆t (x) = Φ

ω(n∆t)
∆t (x)− x. (20)

One can easily verity that B
ω(n∆t)
∆t is an approximation to the exact integrator of the sub-

problem (17) as follows,

Xω
(n+1)∆t −Xω

n∆t =

∫ (n+1)∆t

n∆t

b(t,Xω
t , ω)dt. (21)

The sub-problem (18) can be approximated easily using the Euler-Maruyama scheme [9].

Finally, we apply the Lie-Trotter splitting method and get the stochastic structure-

preserving scheme as follows,

Xω
n+1 = Xω

n + B
ω(n∆t)
∆t (Xω

n) + σξn, (22)

where ξn = (ξ1, ..., ξd)
T is a d-dimensional i.i.d. mean-free Gaussian random vector with

EξTn ⊗ ξn = ∆tId, where Id is an identity matrix.

The volume-preserving schemes for the sub-problem (17) are implicit in general. Com-

pared with explicit schemes, however, they allow us to choose a relatively larger time step

to compute. In practice, we find that few steps of Newton iterations are enough to main-

tain accurate results. Therefore, the computational cost is controllable. To design adaptive

time-stepping method for the passive tracer model (6) is an interesting issue, which will be

studied in our future work.

In general, the second-order Strang splitting [17] is more frequently used in developing

numerical schemes. In fact, the only difference between the Strang splitting method and the

Lie-Trotter splitting method is that the first and last steps are half of the normal step ∆t.

Thus a more accurate method can be implemented in a very simple way. We skip the details

in implementing the Strang splitting scheme here as it is straightforward.

3.2. Some properties of the numerical schemes

In this subsection, we shall prove some properties of the proposed stochastic structure-

preserving scheme. Especially, we shall show that some important properties of the random

flows are maintained after numerical discretization. Before proceeding to the analysis, we first

introduce some notations and assumptions. To emphasize the properties in spatial-domain,

for any f ∈ L1(X ), we use fχ(x) to represent f(τxχ). Moreover, we denote b(t,x, ω) =

b(τxω(t)), where b(τxω(t)) ∈ X .

Assumption 3.1. Suppose the velocity field has certain regularity in the physical space, i.e.,

b ∈ (Cm
b (X ))d for some m ≥ 2.

Assumption 3.2. Bχ
∆t(x) defined in (20) is a stationary process with respect to x, i.e., we

can write Bχ
∆t(x) = B∆t(τxχ).
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Assumption 3.3. B∆t ∈ (Cm
b (X ))d provides that b ∈ (Cm

b (X ))d for ∆t small enough. And

||B∆t||Cm
b (X ) = K||b||Cm

b (X )∆t, where K is a constant and does not depend on ∆t.

As an analogy to the continuous-time case (7), we define the environment process as

viewed from the numerical solution Xω
n at different time steps{
ηn = τXω

n
ω(n∆t),

η0 = ω(0).
(23)

The above environment process induces a probability measure Qχ on the space of trajectories

(Ω̃, `), where Ω̃ = C([0,∞) ∩ ∆tZ;X ). We denote the corresponding expectation operator

as Eχ. Under this process, we can write B∆t(ηn) = B
ω(n∆t)
∆t (Xω

n ). In addition, we define

Snf(χ) = Eχf(ηn). (24)

We shall prove that, similar to St, Sn is a discrete-time Markov semi-group of contraction

on L2(X ), and is measure-preserving.

Lemma 3.4. P0 is an invariant probability measure of ηn, i.e., P0 is an invariant measure

of the Markov semigroup {Sn} .

Proof. Let p1
χ(x,y) denote the transition probability density of the solution process, which

is defined by applying the numerical integrator 22 for one time step. It is known that

p1
χ(x,y) =

1

(2πσ2∆t)d/2
exp

(
−||y − x−Bχ

∆t(x)||2

2σ2∆t

)
=

1

(2πσ2∆t)d/2
exp

(
−||y −Φχ

∆t(x)||2

2σ2∆t

)
.

(25)

Let us define p0(x,y) = 1
(2πσ2∆t)d/2 exp

(
− ||y−x||2

2σ2∆t

)
. Then, we can verify that∫

p1
χ(x,y)dx =

∫
p0(x + Bχ

∆t(x),y)dx,

=

∫
p0(z,y) det(DΦχ

∆t)
−1dz =

∫
p0(z,y)dz = 1, a.e.χ, (26)

where we have used the fact det(DΦχ
∆t) = 1. Thus, for all f ∈ L2(X ), we have∫

X
S1f(χ)P0(dχ) =

∫
X

Eχf(η1)P0(dχ) =

∫
X
P0(dχ)

∫
Rd

p1
χ(0,y)Eχf(τyω(∆t))dy,

=

∫
X

Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
τ−yχ

(0,y)dy,

=

∫
X

Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
χ(−y,0)dy, (27)

where we have used the fact that pnτxχ(y, z) = pnχ(y + x, z + x). Follow from 26, we have

ES1f = EP∆tf = Ef , where P∆t is measure-preserving by property (P2) in Section 2.1.

Similar argument shows that ESnf = ESn−1f for all n. Thus, Sn is measure-preserving.
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The following lemma will be very useful in our analysis.

Lemma 3.5. For any y ∈ Rd and f ∈ L2(X ), we have that

Ef(τyηn) = Ef(ηn−1) = Ef. (28)

Moreover,

Ef(ηn+1) = Ef
(
τXω

n+b∆t(ηn)ω((n+ 1)∆t)
)

= Ef. (29)

Proof. We prove the above equations through direct calculations. For the equation (28),

Ef(τyηn) = EEηn−1f(τyη̃1) =

∫
X
P0(dχ)

∫
Rd

p1
ηn−1

(0, z)Eηn−1f(τy+zω(∆t))dz,

=

∫
X

Eηn−1f(ω(∆t))P0(dχ)

∫
Rd

p1
τ−y−zηn−1

(0, z)dz,

=

∫
X

Eηn−1f(ω(∆t))P0(dχ)

∫
Rd

p1
ηn−1

(−y − z,−y)dz,

=

∫
X

Eηn−1f(ω(∆t))P0(dχ) =

∫
X
f(ηn−1)P0(dχ), (30)

where {η̃1} is as defined in 23 but with initial condition η̃0 = ηn−1. For the equation (29),

let Yω
n = Xω

n + B∆t(ηn) = Xω
n+1 − σξn. Then, we have

Ef(ηn+1) = EEηnf(τYω
n+σξnω(∆t) =

∫
X
P0(dχ)

∫
Rd

p0(0, z)Eηnf(τzτYω
n
ω(∆t))dz,

=

∫
X

Eηnf(τY ω
n
ω(∆t))P0(dχ)

∫
Rd

p0(0, z)dz,

= Ef(τXω
n+b∆t(ηn)ω((n+ 1)∆t)). (31)

Equipped with these preparations, we can state the main results. The first result is that

the operator Sn defined in (24) is a contractive map on L2(X ).

Theorem 3.6. Sn has the property that

||Snf ||L2(X ) ≤ exp(−c1n∆t)||f ||L2(X ), (32)

for all f ∈ L2
0(X ).

10



Proof. We first study the case when n = 1. The key observation is that∫
X
S1f(χ) · S1f(χ)P0(dχ) =

∫
X

Eχf(η1) · Eχf(η1)P0(dχ),

=

∫
X
P0(dχ)

∫
Rd

p1
χ(0,y)Eχf(τyω(∆t))dy ·

∫
Rd

p1
χ(0,y)Eχf(τyω(∆t))dy,

≤
∫
X
P0(dχ)

∫
Rd

p1
χ(0,y)Eχf(τyω(∆t)) · Eχf(τyω(∆t))dy,

=

∫
X

Eχf(ω(∆t)) · Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
χ(−y,0)dy,

=

∫
X
P∆tf(χ) · P∆tf(χ)P0(dχ), (33)

where P∆t is a stronly continuous Markov semigroup on L2(X ). In the third line of (33), we

use the fact that p1
χ(0,y) is a probability density function so we can easily get the result by

Cauchy-Schwarz inequality. Therefore, we obtain

||S1f ||L2(X ) ≤ ||P∆tf ||L2(X ) ≤ exp(−c1∆t)||f ||L2(X ), (34)

where the exponential decay property (5) is applied. The assertion in (32) can be obtained

if we repeat to use the above property n times.

Next, we define B̄∆t = EB∆t and B̃∆t = B∆t − B̄∆t. We aim to get some estimates for

the operator B̄∆t and the numerical solution EXω
n, which are important in our convergence

analysis for the effective diffusivity.

Theorem 3.7. If we choose a second-order numerical scheme in computing (19), then B̄∆t

is of order (∆t)2. In addition, EXω
n − nB̄∆t is bounded.

Proof. By using a second-order numerical scheme to compute (19), we have

EB∆t = E

∫ ∆t

0

b(t,Xω
t , ·)dt+O(∆t)2 = E

∫ ∆t

0

b(η0
t )dt+O(∆t)2, (35)

where η0
t is the environment process defined in 7 with σ = 0. Because when we define B∆t,

we only consider the sub-problem (17). Recall the fact that St is measure-preserving, we get

E

∫ ∆t

0

b(η0
t )dt =

∫ ∆t

0

∫
X

Eχb(η0
t )dP0(χ)dt =

∫ ∆t

0

EStbdt =

∫ ∆t

0

Ebdt = 0. (36)

Therefore, EB∆t is of order (∆t)2. Moreover, from the numerical scheme (22) we have

EXω
n = EXω

n−1 + EB
ω(n∆t)
∆t (Xω

n) = EXω
0 +

n−1∑
i=0

ESiB∆t = EXω
0 +

n−1∑
i=0

ESiB̃∆t + nB̄∆t. (37)

According to 32, we can easily verify that
∑n−1

i=0 SiB̃∆t is bounded in L2(X ), which implies∣∣∑n−1
i=0 ESiB̃∆t

∣∣ <∞. Thus, we complete the proof.

11



The corrector problem (15) plays an important role in defining the effective diffusivity

for the random flow. To study the property of the numerical solutions, we will define a

discrete-type corrector problem and study the property of the solution.

Theorem 3.8. Let us define ψ∆t =
∑∞

i=0 SiB̃∆t. Then, ψ∆t is the unique solution in

(L2
0(X ))d of the discrete-type corrector problem as follows

(S1 − I)ψ∆t = −B̃∆t. (38)

Proof. The formulation of ψ∆t solves the discrete-type corrector problem 38 can be easily

verified through simple calculations, i.e.,

(S1 − I)ψ∆t =
∞∑
i=1

SiB̃∆t −
∞∑
i=0

SiB̃∆t = −B̃∆t. (39)

Eψ∆t = 0 is a straight forward result from the formulation of ψ∆t. The uniqueness comes

from Theorem 3.6. Suppose the equation (38) has two different solutions ψ1,ψ2 ∈ L2
0(X ),

we have that (S1 − I)(ψ1 −ψ2) = 0, then

||ψ1 −ψ2||L2(X ) = ||S1(ψ1 −ψ2)||L2(X ) ≤ exp(−c1∆t)||ψ1 −ψ2||L2(X ),

which implies that ψ1 −ψ2 = 0. Thus, the uniqueness of the equation 38 is proved.

Remark 3.1. The discrete-type corrector problem 38 is equivalent to the equation

E
[
ψ
ω(i∆t)
∆t (Xω

i )|Xω
i−1

]
−ψω((i−1)∆t)

∆t (Xω
i−1) = −B̃

ω(i∆t)
∆t (Xω

i−1). (40)

This can be seen by replacing χ with ηn−1 in the definition of S1.

Finally, we study the regularity of the solution of the discrete-type corrector problem

(38). The following result is based on the regularity assumption on the velocity field b. We

are interested in statistical properties of the solution X(t), which only requires convergence

in law. Thus, we can choose smooth realizations of the velocity field b.

Theorem 3.9. Suppose b ∈ (Cm
b (X ))d, then ψ∆t is in (Hm(X ))d.

Proof. First we prove that, under the assumption b ∈ (Cm
b (X ))d for m ≥ 1, we have that

for any f ∈ L2(X ), S1f ∈ H1(X ). Since

S1f(τxχ) =

∫
Rd

p1
τxχ(0,y)P∆tf(τx+yχ)dy =

∫
Rd

p1
χ(x,x + y)P∆tf(τx+yχ)dy,

=

∫
Rd

p1
χ(x,y)P∆tf(τyχ)dy, (41)

where p1
χ(x,y) is the transition probability density defined in (25). Notice that

Dxp
1
χ(x,y) = 2

(
I + DBχ

∆t(x)
)(

y − x−Bχ
∆t(x)

)
p1
χ(x,y), (42)

12



and B∆t ∈ (Cm
b (X ))d, we can obtain that

∫
Rd(y − x−Bχ

∆t(x))2p1
χ(x,y)dx is uniformly

bounded for almost all χ. This concludes that∫
Rd

Dxp
1
χ(x,y)P∆tf(τyχ)dy ∈ L2(X ). (43)

The statement (43) implies that DS1f ∈ L2(X ) by the dominant convergence theorem. Thus

S1f ∈ H1(X ). According to the definition of the discrete-type corrector problem (38), ψ∆t

satisfies

ψ∆t = S1ψ∆t + B̃∆t. (44)

Therefore, we obtain that ψ∆t ∈ (H1(X ))d. Moreover, noticing that

DS1f(χ) =

∫
Rd

Dxp
1
χ(0,y)P∆tf(τyχ)dy,

=

∫
Rd

2(I + DBχ
∆t(0))(y − 0−Bχ

∆t(0))p1
χ(x,y)P∆tf(τyχ)dy,

= 2(I + DBχ
∆t(0))

∫
Rd

−Dyp
1
χ(0,y)P∆tf(τyχ)dy,

= 2(I + DBχ
∆t(0))

∫
Rd

p1
χ(0,y)DyP

∆tf(τyχ)dy,

= 2(I + DBχ
∆t(0))S1Df(χ). (45)

We arrive that

Dψ∆t = 2(I + DB∆t)S1Dψ∆t + DB̃∆t. (46)

Similar argument shows that Dψ∆t ∈ (H1(X ))d×d. Doing this argument recursively shows

that ψ∆t is in (Hm(X ))d.

4. Convergence analysis

In this section, we shall prove the convergence rate of our stochastic structure-preserving

scheme in computing effective diffusivity. The convergence analysis is based on a probabilistic

approach, which allows us to get rid of the exponential growth factor in the error estimate.

4.1. Convergence of the discrete-type corrector problem to the continuous one

We first show that, if ∆t is small enough, S∆t will converge to S1. Moreover, the following

statement holds.

Lemma 4.1. If f is a globally Lipschitz function with respect to x, then we have

||Snf − Sn∆tf ||L2(X ) ≤ c2L(∆t)2, (47)

where L is the Lipschitz constant for f and c2 depends only on the computational time

T = n∆t.

13



Proof. First we have that (Sn − Sn∆t)f(χ) = Eχ

(
f(ηn)− f(η(n∆t))

)
. This implies that

(Sn − Sn∆t)f(χ) ≤ Eχ|Xω
n −Xω

n∆t|L. (48)

A basic comparison with Euler-Maruyama method [9] shows that Eχ|Xω
n −Xω

n∆t| < c2(∆t)2

for all χ with the bounded assumption for b; see Asm. 3.1.

Then, we show that under certain conditions the discrete-type corrector problem con-

verges to the continuous one, which facilitates the convergence analysis of our numerical

method in computing the effective diffusivity for random flows.

Theorem 4.2. The solution ψ∆t converges to the solution ψ of the continuous-type corrector

problem defined in (14) in L2(X ), as ∆t→ 0.

Proof. For any ε > 0, using the exponential decay properties of St and Sn, we first take T

big enough such that the following inequalities hold∣∣∣∣ ∫ ∞
T−∆t

Stbdt
∣∣∣∣
L2(X )

< ε, and
∣∣∣∣ ∞∑
n=[T/∆t]−1

SnB̃∆t

∣∣∣∣
L2(X )

≈ 1

c1

exp(−c1T ) < ε. (49)

Next we estimate the error between
∑N−1

n=0 SnB̃∆t and
∫ N∆t

0
Stbdt for N ≤ T/∆t. We know

that ∣∣∣∣ ∫ N∆t

0

Stbdt−
N−1∑
n=0

Sn∆tb∆t
∣∣∣∣
L2(X )

≤ C1∆t (50)

due to the strongly continuity of St (see Prop. 2.2) and

∣∣∣∣N−1∑
n=0

SnB̃∆t −
N−1∑
n=0

Sn∆tb∆t
∣∣∣∣
L2(X )

≤
∣∣∣∣N−1∑
n=0

SnB̃∆t −
N−1∑
n=0

Snb∆t
∣∣∣∣
L2(X )

+
∣∣∣∣N−1∑
n=0

Snb∆t−
N−1∑
n=0

Sn∆tb∆t
∣∣∣∣
L2(X )

. (51)

Since local truncation error of the numerical scheme (19) is at least second order, we have∣∣∣∣B̃∆t−b
∣∣∣∣
L2(X )

≤ O(∆t)2. The lemma 4.1 implies
∣∣∣∣(Sn−Sn∆t)b∆t

∣∣∣∣
L2(X )

≤ O(∆t)2 for all

n ≤ N . This gives the estimate∣∣∣∣N−1∑
n=0

SnB̃∆t −
N−1∑
n=0

Sn∆tb∆t
∣∣∣∣
L2(X )

≤ c2N(∆t)2 ≤ c2T∆t. (52)

Finally, we take ∆t ≤ ε/(c2T ) and obtain∣∣∣∣ ∫ ∞
0

Stbdt−
∞∑
n=0

SnB̃∆t

∣∣∣∣
L2(X )

≤ 3ε. (53)

We prove the assertion of the Theorem.

Remark 4.1. The constant c2 in Lemma 4.1 is actually exponentially depends on T , i.e.,

c2 = exp(c3T ). To balance each value of ε, we have K exp(−c1T ) = exp(c3T )T∆t, which

requires T ≈ −1/(c1 + c3) log ∆t and ε ≈ C∆t
c1

c1+c3 .
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4.2. Convergence of the numerical method in computing effective diffusivity

Now we are in a position to show the main results of our paper. We prove that the effective

diffusivity obtained by our numerical method converges to the exact one defined in (16).

Theorem 4.3. Let Xω
n, n = 0, 1, .... be the numerical solution of the stochastic structure-

preserving scheme (22) and ∆t be the time-step. Let X̄ω
n = Xω

n − nB̄∆t We have the conver-

gence estimate of the numerical method in computing effective diffusivity as

EX̄ω
n ⊗ X̄ω

n

n∆t
= σ2Id + 2S

∫
X
ψ ⊗ bdP0 + ρ(∆t) +O(

1

n∆t
), (54)

where ρ(∆t) is a function satisfying lim∆t→0 ρ(∆t) = 0 and independent of the computational

time T . The S represents the symmetrization operator on a matrix, i.e., SA = A+AT

2
.

Proof. First of all, from direct computations we can obtain that

EX̄ω
n ⊗ X̄ω

n = E
(
X̄ω
n−1 + B̃

ω((n−1)∆t)
∆t (Xω

n−1) + σξn−1

)
⊗
(
X̄ω
n−1 + B̃

ω((n−1)∆t)
∆t (Xω

n−1) + σξn−1

)
,

=EX̄ω
n−1 ⊗ X̄ω

n−1 + σ2Id∆t+ 2SEX̄ω
n−1 ⊗ B̃

ω((n−1)∆t)
∆t (Xω

n−1) + EB̃
ω((n−1)∆t)
∆t (X̄ω

n−1)⊗ B̃
ω((n−1)∆t)
∆t (Xω

n−1),

=EX̄ω
0 ⊗ X̄ω

0 + σ2Idn∆t+ 2
n∑
i=1

SEX̄ω
i−1 ⊗ B̃

ω((i−1)∆t)
∆t (X̄ω

i−1) +
n∑
i=1

EB̃
ω((i−1)∆t)
∆t (Xω

i−1)⊗ B̃
ω((i−1)∆t)
∆t (Xω

i−1),

(55)

where we use the condition that ξn−1 is independent with X̄ω
n−1 and S is the symmetrization

operator. Notice that
EX̄ω

0⊗X̄ω
0

n∆t
vanishes as n → +∞ and σ2Idn∆t

n∆t
= σ2Id. We main need to

estimate the third term and fourth term on the right hand side of (55), separately.

For the third term on the right hand side of (55), using the property of the discrete-type

corrector problem (40), we obtain that

−
n∑
i=1

EX̄ω
i−1 ⊗ B̃

ω(i∆t)
∆t (Xω

i−1) =
n−1∑
i=0

EX̄ω
i−1 ⊗

(
E[ψ

ω(i∆t)
∆t (Xω

i )|Xω
i−1]−ψω((i−1)∆t)

∆t (Xω
i−1)
)
,

=
n∑
i=1

EX̄ω
i−1 ⊗

(
ψ
ω(i∆t)
∆t (Xω

i )−ψω((i−1)∆t)
∆t (Xω

i−1)
)
,

=
n∑
i=1

E(X̄ω
i−1 − X̄ω

i )⊗ψω(i)
∆t (Xω

i ) + X̄ω
0 ⊗ψ

ω(0)
∆t (Xω

0 )− EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n),

=
n∑
i=1

−E
(
B̃
ω((i−1)∆t
∆t (Xω

i−1) + σξi−1)
)
⊗ψω(i∆t)

∆t (Xω
i ) + X̄ω

0 ⊗ψ
ω(0)
∆t (Xω

0 )− EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n).

(56)

Notice that

2E(X̄ω
n)i(ψ

ω(n∆t)
∆t (X̄ω

n))j ≤ εE[(X̄ω
n)i]

2 + ε−1E[(ψ
ω(n∆t)
∆t (Xω

n))j]
2, 1 ≤ i, j ≤ d. (57)
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We choose ε small enough, then move εE[(X̄ω
n)i]

2 to the left hand side of the equation 55,

then the remaining terms on the right hand side are all bounded due to the ergodicity of

X̄ω
n. Thus we can obtain that 1

n
E||X̄ω

n||2 is bounded by the ergodicity of X̄ω
n. Thus

1

n
EX̄ω

n ⊗ψ
ω(n∆t)
∆t (Xω

n)→ 0, as n→ 0. (58)

Using the property that Si is measure-preserving 3.4 and Theorem 3.7, we get

1

n

n−1∑
i=0

EB̃
ω(i∆t)
∆t (Xω

i )⊗ B̃ω(i∆t)
∆t (Xω

i ) =
1

n
nEB̃∆t ⊗ B̃∆t = O(∆t)2. (59)

For the leftmost term on the right hand side of the last equation (56), we have

E
(
B̃
ω((i−1)∆t)
∆t (Xω

i−1) + σξi−1

)
⊗ψω(i∆t)

∆t (Xω
i ),

=E
(
B̃
ω((i−1)∆t)
∆t (Xω

i−1) + σξi−1

)
⊗ψω(i∆t)

∆t

(
Xω
i−1 + Bω

∆t(X
ω
i−1) + σξi−1

)
,

=EB̃
ω((i−1)∆t)
∆t (Xω

i−1)⊗ψω(i∆t)
∆t (Xω

i ) + Eσξi−1 ⊗ψω(i∆t)
∆t

(
Xω
i−1 + B

ω((i−1)∆t)
∆t (Xω

i−1) + σξi−1

)
.

(60)

By the Fubini’s theorem, we know that the second term on the last line of (60) vanishes.

Specifically, we can compute it as follows,

Eσξi−1 ⊗ψω(i∆t)
∆t

(
Xω
i−1 + b

ω((i−1)∆t)
∆t (Xω

i−1) + σξi−1

)
,

=

∫
X

∫
Rd

p0(0,y)σy ⊗ψ∆t

(
τσyτXω

i−1+b∆t(ηi−1)ω(i∆t)
)
dyP0(dχ),

=

∫
Rd

p0(0,y)σy ⊗
∫
X
ψ∆t

(
τσyτXω

i−1+b∆t(ηi−1)ω(i∆t)
)
P0(dχ)dy,

=

∫
Rd

p0(0,y)σy ⊗
∫
X
ψ∆t(τX̃ω

i
ω(i∆t))P0(dχ)dy,

=

∫
Rd

p0(0,y)σy ⊗ Eψdy = 0. (61)

where the last two equations in (61) come from Lemma 3.5 and X̃ω
i = Xω

i−1+b
ω((i−1)∆t)
∆t (Xω

i−1)+

σξ̃i−1 with another i.i.d ξ̃i−1 as before.

For the first term on the last line of (60), i.e., EB̃
ω((i−1)∆t)
∆t (Xω

i−1) ⊗ ψω(i∆t)
∆t (Xω

i ), notice

that

EB̃
ω((i−1)∆t)
∆t (Xω

i−1)⊗ψω(i∆t)
∆t (Xω

i ) = EB̃∆t(ηn−1)⊗ Eηn−1ψ∆t(η
′
1),

=EB̃∆t(ηn−1)⊗ S1ψ∆t(ηn−1) = EB̃∆t(ηn−1)⊗ (ψ∆t(ηn−1)− B̃∆t(ηn−1)). (62)

From the property that Si is measure-preserving 3.4, we have

1

n

n∑
i=1

EB̃
ω((i−1)∆t)
∆t (Xω

i−1)⊗ψω(i∆t)
∆t (Xω

i ) = EB̃∆t ⊗ψ∆t − EB̃∆t ⊗ B̃∆t. (63)
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Thus, we get that

lim
n→∞

EX̄ω
n ⊗ X̄ω

n

n∆t
= σ2Id + 2SEψ∆t ⊗ b̃∆t/∆t+O((∆t)). (64)

Since the exponential-decay rate for Sn is exp(−c1n∆t), we know that the convergence rate

for the above convergence is 1
n

1−exp(−c1n∆t)
1−exp(−c1∆t)

= O( 1
c1n∆t

). Finally, according to Theorem 4.2,

we have the estimate

||2SEψ∆t ⊗ B̃∆t/∆t− 2SEψ ⊗ b||L2(X) = ρ(∆t), (65)

where lim∆t→0 ρ(∆t) = 0. Thus, the statement in (54) is proved.

Notice that in the Theorem 4.3, we assume X̄ω
n = Xω

n − nB̄∆t are given. In practice,

we cannot calculate the drift term B̄∆t exactly. Therefore, we directly estimate the term

EXω
n ⊗Xω

n, which is stated in the following corollary.

Corollary 4.4. Let Xω
n, n = 0, 1, .... be the numerical solution obtained by using our nu-

merical scheme and ∆t denote the time-step. Suppose n(∆t)3 is small enough, we have

EXω
n ⊗Xω

n

n∆t
= σ2In + 2S

∫
X

ψ ⊗ bdP0 + ρ(∆t) +O(
1

n∆t
) +O(n(∆t)3), (66)

where ρ(∆t) is a function satisfying lim∆t→0 ρ(∆t) = 0 and independent of the computational

time T , and the S represents the symmetrization operator.

Proof. Using the observation that

EXω
n ⊗Xω

n

n∆t
=

EX̄ω
n ⊗ X̄ω

n

n∆t
+

2SEX̄ω
n ⊗ B̄∆t

∆t
+
n2B̄∆t ⊗ B̄∆t

n∆t
(67)

and the proposition 3.7, we can straightforwardly get the proof.

Remark 4.2. Corollary 4.4 shows that given a fixed time-step ∆t,

lim
n→∞

EXω
n ⊗Xω

n

n∆t
= σ2Id + 2S

∫
X
ψ ⊗ bdP0 + ρ(∆t), (68)

which reveals the connection of the definition of the effective diffusivity by solving discrete-

type and continuous-type corrector problems.

Remark 4.3. In our convergence analysis, we interpret the solution process generated by our

numerical scheme as a Markov process. By using the central limit theorem for the solution

process (i.e., Markov process), we give a sharp error estimate of the proposed numerical

scheme in computing effective diffusivity. If one chooses the Gronwall inequality in the error

estimate, one cannot get rid of the exponentially growth prefactor in the error term.
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5. Numerical Results

The aim of this section is two-fold. First, we will verify the convergence results obtained

in Section 4.2. Second, we will use the proposed method to compute effective diffusivity

in random flows. Incompressible random flows in two- and three-dimensional space will

be studied. Without loss of generality, we compute the quantity
E[(Xω

n,1)2]

2n∆t
, which is used

to approximate DE
11 in the effective diffusivity matrix DE. Notice that Xω

n,1 is the first

component of the vector Xω
n. One can obtain DE

11 by choosing v = (1, 0)T in the equation

(16) of the Prop. 2.5.

5.1. Numerical methods for generating random flows

To start with, we discuss how to generate random flows that will be used in our numerical

experiments. Assume the vector field b(t,X(t), ω) has a spectral measure

exp(−r(k)|t|)Γ(k)(I− k⊗ k

|k|2
), (69)

where k = (k1, k2)T or k = (k1, k2, k3)T , r(k) > c0 for some positive constant c0, and Γ(k)

is integrable and decays fast for large k. Under such settings, the velocity field b(t,X(t), ω)

satisfies the ρ mixing condition and is stationary and divergence free [16, 4]. In order to

mimic the energy spectrum of real flows, we assume Γ(k) ∝ 1/|k|2α+d−2 with ultraviolet

cutoff |k| ≤ K <∞ and r(k) ∝ |k|2β. The spectral gap condition 4 requires β ≤ 0 and the

integrability of Γ(k) requires α < 1. Here for simplicity, we choose β = 0.

Given the spectral measure (69), we use the randomization method [11, 13] to generate

realizations of the velocity field. Specifically, we approximate it as

b(t,x) =
1√
M

M∑
m=1

[um cos(km · x) + vm sin(km · x)]. (70)

Notice that we have suppressed the dependence of the velocity on ω for notation simplicity

here. In fact, the parameters km, um and vm contain randomness. The spectrum points km
were chosen independently according to the spectral measure Γ(k). Due to the isotropicity,

we first generate a point uniformly distributed on the unit sphere or unit circle, which

represents the direction of the km. Then we generate the length r of km, which satisfies a

density function ρ(r) ∝ 1/r2α−1, 0 < r ≤ K.

For the random flows in two-dimensional space, we have

um = ξm(t)
k⊥m
|k⊥m|

, vm = ηm(t)
k⊥m
|k⊥m|

, km = (k1
m, k

2
m), m = 1, ...,M, (71)

where k⊥m = (−k2
m, k

1
m), ξm(t) and ηm(t) are independent 1D Ornstein-Uhlenbeck (OU)

processes with covariance function Cov(ξm(t1), ξm(t2)) = Cov(ηm(t1), ηm(t2)) = exp(−θ|t1−
t2|). Here θ > 0 is a parameter to control the roughness of the OU process. To obtain the

OU path for ξm(t), we generate a series of {ξm(n∆t)} satisfies

ξm(n∆t) = e−θ∆tξm((n− 1)∆t) +
√

1− e−2θ∆tζn, n = 1, 2, 3, ... (72)
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where ξm(0), ζn n = 1, 2, 3, ... are i.i.d. N(0, 1) distributed random variables. One can

easily verify that Cov(ξm(i∆t), ξm(j∆t)) = exp(−θ|i − j|∆t). The OU path for ηm(t) can

be generated by using the same approach.

For the random flows in three-dimensional space, we have

um = ξm(t)× km
|km|

, vm = ηm(t)× km
|km|

, km = (k1
m, k

2
m, k

3
m), (73)

where the samples ξm(t) and ηm(t) are independent 3D random vectors, whose components

are independent stationary OU process having the covariance function Cov(ξm(t1), ξm(t2)) =

Cov(ηm(t1),ηm(t2)) = exp(−θ|t1 − t2|)I3. Each component of ξm(t) and ηm(t) can be

generated by using the method (72). One can easily verify that in both the 2D and 3D

cases the velocity fields generated by (70) satisfy the divergence free condition.

5.2. Verification of the convergence analysis

In this subsection, we study the convergence rate of our method in computing incompressible

random flow in 2D and 3D space.

For the random flow in 2D space, we solve the SDE (1), where the velocity filed is chosen as

(70) with the setting (71). The velocity field were simulated with M = 1000. The parameters

in the spectral measure Γ(k) are K = 10 and α = 0.75. The time-mixing constant θ = 10

in the covariance function. The molecular diffusivity σ = 0.1. We use Monte Carlo method

to generate dependent samples for the Brownian motion w(t) and velocity field b(t,x).

The sample number is denoted by Nmc. We choose ∆tref = 0.001 and Nmc = 100, 000 to

solve the SDE (1) and compute the reference solution, i.e., the “exact” effective diffusivity,

where the final computational time is T = 22 so that the calculated effective diffusivity

converges to a constant. It takes about 24 hours to compute the reference solution on a 64-

core server (Gridpoint System at HKU). The reference solution for the effective diffusivity

is DE
11 = 0.1736.

For the random flow in 3D space, we solve the SDE (1), where the velocity field is chosen as

(70) with the setting (73). The velocity field were simulated with M = 100. The parameters

in the spectral measure Γ(k) are K = 10 and α = 0.75. The time-mixing constant θ = 10

in the covariance function. The molecular diffusivity σ = 0.1. Again, we use Monte Carlo

method to generate dependent samples for the Brownian motion w(t) and velocity field

b(t,x). We choose ∆tref = 0.001 and Nmc = 180, 000 to solve the SDE (1) and compute

the reference solution, i.e., the “exact” effective diffusivity, where the final computational

time is T = 25 so that the calculated effective diffusivity converges to a constant. It takes

about 21 hours to compute the reference solution on a 64-core server (Gridpoint System at

HKU). The reference solution for the effective diffusivity is DE
11 = 0.1137. We remark that

in our numerical experiment, we choose M = 1000 for 2D random flow and M = 100 for 3D

random flow so that the velocity field numerically satisfies the ergodicity assumption.

In Fig.1a, we plot the convergence results of the effective diffusivity for the 2D random

flow using our method (i.e.,
E[(Xω

n,1)2]

2n∆t
) with respective to different time-step ∆t at T = 22,

where the number of the Monte Carlo samples Nmc = 50, 000. In addition, we show a fitted
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straight line with the slope 1.17, i.e., the convergence rate is about O(∆t)1.17. Similarly, we

show the convergence results of
E[(Xω

n,1)2]

2n∆t
for the 3D random flow in Fig.1b with respective

to different time-step ∆t at T = 25, where the number of the Monte Carlo samples Nmc =

50, 000. We also show a fitted straight line with the slope 0.98, i.e., the convergence rate is

about O(∆t)0.98. These numerical results agree with our error analysis.
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(a) 2D random flow, fitted slope ≈ 1.17
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(b) 3D random flow, fitted slope ≈ 0.98.

Figure 1: Error of DE
11 for random flows with different time-steps.

5.3. Verification of the exponential decay property.

The time relaxation property (4), which is equivalent to the exponential decay property (5),

plays an important role in the existence of the effective diffusivity; see Prop. 2.5. In Theorem

3.6, we prove that the numerical solution inherits the exponential decay property. Based on

this key fact, we can define the discrete-type corrector problem and prove the convergence

analysis of our method. In this subsection, we will verify that the velocity field propagated

by the random flow (70) has the exponential decay property, where both the 2D and 3D

cases will be tested.

In the experiment for 3D random flow, we choose the time step size ∆t = 0.05. The

velocity field will be approximated by M = 100 terms in (70). The parameters in the

spectral measure Γ(k) are K = 10 and α = 0.75. The molecular diffusivity σ = 0.1. We

randomly generate 200 samples {kim, ξim(0),ηim(0),m = 1, ...,M}, i = 1, ..., 200, which will

be used to generate initial states for the velocity field (70), i.e.,

bi(0,x) =
1√
M

M∑
m=1

[ξim(0)× kim
|kim|

cos(kim · x) + ηim(0)× kim
|kim|

sin(kim · x)], i = 1, ..., 200.

Then for each initial state bi(0,x), we generate 5000 different samples of the OU paths

ξi,pm (n∆t) and ηi,pm (n∆t) and Brownian motion paths wi,p(n∆t), 1 ≤ p ≤ 5000. Given the
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sample data, we calculate the corresponding solution paths {Xi,p
n }0≤n<∞ and then calculate

the value

bi,p(n∆t,Xi,p
n ) =

1√
M

M∑
m=1

[ξi,pm (n∆t)× kim
|kim|

cos(kim ·Xi,p
n ) + ηim(n∆t)× kim

|kim|
sin(kim ·Xi,p

n )],

i = 1, ..., 200, 1 ≤ p ≤ 5000. (74)

Finally, we compute b̄in = 1
5000

∑5000
p=1 bi,p(n∆t,Xi,p

n ) and calculate the variance of b̄in with

respect to i. The experiment for 2D random flow is almost the same except the setting of

the velocity filed (70) is replaced by (71) and we choose M = 1000.

In Fig. 2a and Fig. 2b, we plot the calculated sample variance of the first component

of b̄in for the 2D random flow and 3D random flow, respectively. We observe exponential

decay of the sample variance with respect to time. Moreover, we find that larger θ leads

to a faster decay in the sample variance, since larger θ results in a fast decorrelation in the

random flow. Our numerical results show that the exponential decay property (see Theorem

3.6) holds for the random flows we studied here.
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Figure 2: Decay behaviors of the sample variance in 2D and 3D random flows.

5.4. Investigation of the convection-enhanced diffusion phenomenon

We first study the relation between the numerical effective diffusivity
E[(Xω

n,1)2]

2n∆t
and the pa-

rameter θ, which controls the de-correlation rate in the time space of the random flow. In

this experiment, the setting of the velocity field and the implementation of our method is

the same as we used in Section 5.3. We only choose different parameter θ to compute the

numerical effective diffusivity.

In Fig. 3a, we plot the numerical effective diffusivity of 2D random flow obtained at

different computational times, where the flow is generated with different θ. The result for
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Figure 3: The relation between numerical effective diffusivity and θ.

3D random flow is shown in Fig. 3b. We find that different θ affects the mixing time of the

system. When we increase the θ, the system will quickly enter a mixing stage.

Finally, we choose different molecular diffusivity σ to compute the corresponding numer-

ical effective diffusivity, which allows us to study the existence of residual diffusivity for this

random flow. The residual diffusivity, a special yet remarkable convection-enhanced diffu-

sion phenomenon, refers to the non-zero and finite effective diffusivity in the limit of zero

molecular diffusivity as a result of a fully chaotic mixing of the streamlines.

In the experiment for 2D random flow, we choose the time step size ∆t = 0.05, the

velocity field were simulated with M = 1000, the time-mixing constant θ = 0.1 and the

parameters in the spectral measure Γ(k) are K = 10 and α = 0.75. For the 3D random flow,

we choose M = 100 and keep other parameters the same.

Let κ = σ2/2. In Fig.4a, we show the relation between numerical effective diffusivity

of 2D random flow obtained at different computational times, where the result is generated

with different σ. The result for 3D random flow is shown in Fig. 4b. We find that as κ

approaches zero, the quantity
E[(X̄ω

n,1)2]

2n∆t
converges to a non-zero (positive) constant, which

indicates the existence of residual diffusivity in the random flows here.

In Fig.5a and Fig.5b, we plot the convergence behaviors of DE
11(κ) approaching DE

11(0)

for the 2D and 3D random flows, respectively, when the systems enter a mixing stage. The

convergence behaviors when κ approaches zero are slightly different though, both figures

show that residual diffusivity exists in the random flows we studied here.

6. Conclusion

In this paper, we studied the numerical homogenization of passive tracer models in random

flows. Based on a splitting method, we proposed stochastic structure-preserving schemes

to compute the effective diffusivity of the random flows. In addition, we provided rigorous
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Figure 4: The relation between numerical effective diffusivity and molecular diffusivity σ.
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Figure 5: Convergence behaviors of DE
11(κ) approaching DE

11(0).
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convergence analysis for the numerical schemes. Our error analysis is completely new in the

sense that it is based on a probabilistic approach. Specifically, we interpreted the solution

process generated by our numerical schemes as a Markov process. By using the central limit

theorem for the solution process, we gave a sharp error estimate for our numerical schemes

in computing the effective diffusivity. Finally, we present numerical results to verify the

convergence rate of the proposed method for incompressible random flows both in 2D and

3D spaces. In addition, we observed the exponential decay property and investigated the

residual diffusivity phenomenon in the random flows we studied here.

There are two directions we plan to explore in our future work. First, we shall extend the

probabilistic approach to provide sharp convergence analysis in computing effective diffusiv-

ity for time-dependent chaotic flows, such as time-dependent ABC flows. In addition, we

shall investigate the convection-enhanced diffusion phenomenon for general spatial-temporal

stochastic flows [12, 13] and develop convergence analysis for the corresponding numerical

methods.
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