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Abstract

The semiclassical Schrödinger equation with multiscale and random potentials often appears

when studying electron dynamics in heterogeneous quantum systems. As time evolves, the

wavefunction develops high-frequency oscillations in both the physical space and the random

space, which poses severe challenges for numerical methods. In this paper, we propose a

multiscale reduced basis method, where we construct multiscale reduced basis functions using

an optimization method and the proper orthogonal decomposition method in the physical

space and employ the quasi-Monte Carlo method in the random space. Our method is verified

to be efficient: the spatial gridsize is only proportional to the semiclassical parameter and

the number of samples in the random space is inversely proportional to the same parameter.

Several theoretical aspects of the proposed method, including how to determine the number of

samples in the construction of multiscale reduced basis and convergence analysis, are studied

with numerical justification. In addition, we investigate the Anderson localization phenomena

for Schrödinger equation with correlated random potentials in both 1D and 2D.

Keyword: random Schrödinger equation; multiscale reduced basis function; optimization

method; quasi-Monte Carlo method; Anderson localization.
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1. Introduction

The semiclassical Schrödinger equation describes electron dynamics in the semiclassical regime.

Applications of such an equation can be found in Bose-Einstein condensation, graphene, semi-

conductors, topological insulators, etc. When propagating in a (quasi-)periodic microstructure,

electrons experience a multiscale potential. As a consequence, the electron wavefunction devel-

ops high-frequency oscillations, which poses severe challenges from the numerical perspective.

Brute-force methods are very costly and asymptotics-based methods have been proposed in

the literature; see [26] for review and references therein.
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In [2], Anderson proposed to study localized eigenstates in a tight-binding model with

random potentials. This model was soon to be generalized to the random Schrödinger equation,

i.e., the Schrödinger equation with a random potential. In this case, electrons are found to

be localized provided that the strength of randomness is sufficiently large. The randomness

can be realized in an experiment by enhancing the disorder of impurities in a material. Due

to the importance of this model, Anderson was awarded the Nobel Prize in physics in 1977.

In the presence of multiscale and random potentials, the electron wavefunction develops high-

frequency oscillations in both the physical space and the random space, making numerical

approximations even more difficult.

In this paper, we study the following Schrödinger equation with random potential in the

semiclassical regime
iε∂tψ

ε = −ε
2

2
∆ψε + vε(x, ω)ψε, x ∈ D, ω ∈ Ω, t ∈ R,

ψε ∈ H1
P(D), ω ∈ Ω, t ∈ R,

ψε|t=0 = ψin(x), x ∈ D,

(1)

where 0 < ε � 1 is an effective Planck constant describing the microscopic and macroscopic

scale ratio, d is the spatial dimension, vε(x, ω) is the given random potential, ψε = ψε(t,x, ω)

is the electron wavefunction, and ψin(x) is the initial data. Here D = [0, 1]d is the spatial

domain and H1
P(D) = {ψ|ψ ∈ H1(D) and ψ is periodic over D}.

Equation (1) can be used to model electron transport in a disordered medium in a single-

electron picture where the electron interaction is ignored. It is customary to write the semiclas-

sical Schrödinger equation and the multiscale and random potential with a single parameter

ε. But there is no reason that the parameter of the multiscale and random potential should

be the same as the semiclassical parameter; see §5 for details on the parameterization of the

multiscale and random potential vε(x, ω).

The existence of Anderson localization is closely related to the electron wavefunction in

(1). To be specific, assume ψε(t,x, ω) has zero mean with respect to the measure ρ induced

by vε(x, ω) and denote A(t) = E[
∫
Rd
|x|2|ψε|2dx]ρ the second-order moment of the position

density. When the strength of disorder is small, an electron undergoes a diffusion process with

A(t) = 2Cdt, Cd > 0. In the presence of a strong disorder, however, A(t) converges to a time-

independent quantity, i.e., limt→∞A(t) = C, which implies the localization of the electron and

the system undergoes a metal-insulator transition [32, 14]. When d = 1, localization always

occurs for (1) with random potential [2]. When d ≥ 2, the situation becomes complicated.

Some analytical results show that localization occurs when the strength of disorder is large

[18, 1]. This motivates us to study Anderson localization in the presence of correlated random

potentials [34].

When the potential is deterministic, i.e., vε(x, ω) = vε(x), many numerical methods have

been proposed; see [4, 16, 39, 27, 15, 9, 8] for example. When the potential is random, few works

have been done; see [40, 25]. As mentioned above, the major difficulty is that the wavefunction

ψε develops high-frequency oscillations in both the physical space and the random space, which

requires tremendous computational resources.
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Our work is motivated by the multiscale finite element method (FEM) for solving elliptic

problems with multiscale coefficients [21, 13]. The multiscale FEM is capable of correctly cap-

turing the large scale components of the multiscale solution on a coarse grid without accurately

resolving all the small scale features in the solution. This is accomplished by incorporating

the local microstructures of the differential operator into the multiscale FEM basis functions.

Recently, several relevant works on constructing localized basis functions that approximate

the elliptic operator with heterogeneous coefficients have been proposed. In [31], Malqvist and

Peterseim construct localized multiscale basis functions using a modified variational multiscale

method. The exponentially decaying property of these modified basis has been shown both

theoretically and numerically. Meanwhile, Owhadi [35, 36] reformulates the multiscale prob-

lem from the perspective of decision theory using the idea of gamblets as the modified basis.

Hou et.al. [24] extend these works such that localized basis functions can also be constructed

for higher-order strongly elliptic operators. Recently, Hou, Ma, and Zhang propose to build

localized multiscale stochastic basis to solve elliptic problems with multiscale and random

coefficients [22].

In this paper, we propose a multiscale reduced basis method to solve the Schrödinger

equation with random potentials in the semiclassical regime. Our method consists of offline

and online stages. In the offline stage, we apply an optimization approach to systematically

construct localized multiscale reduced basis functions on each patch associated with each

coarse gridpoint. These basis functions provide nearly optimal approximation to the random

Schrödinger operator. In the online stage, we use these basis functions to approximate the

physical space of the solution and the quasi-Monte Carlo (qMC) method to approximate the

random space of the solution, respectively. We find the proposed method is efficient in the sense

that the number of basis functions is only proportional to ε and the number of samples in qMC

is inversely proportional to ε. Under some conditions, we conduct the convergence analysis

of the proposed method with numerical verifications. Moreover, we study how to determine

the number of samples in qMC such that the corresponding multiscale reduced basis functions

provide accurate approximation of the solution space. Finally we investigate the existence of

Anderson localization for correlated random potentials.

The rest of the paper is organized as follows. For completeness, in §2, we introduce mul-

tiscale basis functions for the deterministic Schrödinger equation in semiclassical regime and

discuss some properties of the basis functions. In §3, we propose a multiscale reduced basis

method to solve the random Schrödinger equation. Analysis results are presented in §4 and

numerical experiments, including both 1D and 2D examples, are conducted to demonstrate

the convergence and efficiency of the proposed method in §5. Conclusions and discussions are

drawn in §6.

2. Multiscale basis functions for deterministic Schrödinger equations

In this section, we briefly review the construction of multiscale basis functions based on an

optimization approach to solve the Schrödinger equation with a deterministic potential. Some

properties of the multiscale basis functions are also given.
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2.1. Construction of multiscale basis functions

In the deterministic case, we consider the following problem
iε∂tψ

ε = −ε
2

2
∆ψε + vε(x)ψε, x ∈ D, t ∈ R,

ψε ∈ H1
P(D),

ψε|t=0 = ψin(x).

(2)

ψin(x) is the initial data over D. Defining the Hamiltonian operator H(·) ≡ − ε2

2
∆(·)+vε(x)(·)

and introducing the following energy notation || · ||V for Hamiltonian operator

||ψε||V =
1

2
(Hψε, ψε) =

1

2

∫
D

ε2

2
|∇ψε|2 + vε(x)|ψε|2dx. (3)

Note that (3) does not define a norm since vε usually can be negative, and thus the bilinear

form associated to this notation is not coercive, which is quite different from the case of elliptic

equations. However, this does not mean that available approaches [23, 3, 31, 36, 24] cannot

be used for the Schrödinger equation. In fact, we shall utilize the similar idea to construct

localized multiscale basis functions on a coarse mesh by an optimization approach using the

above energy notation || · ||V for the Hamiltonian operator.

To construct such localized multiscale basis functions, we first partition the physical domain

D into a set of regular coarse elements with mesh size H. For example, we divide D into a

set of non-overlapping triangles TH = ∪{K}, such that no vertex of one triangle lies in the

interior of the edge of another triangle. On each element K, we define a set of nodal basis

{ϕj,K , j = 1, ..., k} with k being the number of nodes of the element. From now on, we neglect

the subscript K for notational convenience. The functions ϕi(x) are called measurement

functions, which are chosen as the characteristic functions on each coarse element in [24, 36]

and piecewise linear basis functions in [31]. In [29, 22], it is found that the usage of FEM nodal

basis functions reduces the approximation error and thus the same setting is adopted in the

current work.

Let N denote the set of vertices of TH (removing the repeated vertices due to the periodic

boundary condition) and NH be the number of vertices. For every vertex xi ∈ N , let ϕHi (x)

denote the corresponding nodal basis function, i.e., ϕHi (xj) = δij. Since all the nodal basis

functions ϕi(x) are continuous across the boundaries of the elements, we have

V H = {ϕHi (x) : i = 1, ..., NH} ⊂ H1
P(D).

Then, we can solve optimization problems to obtain the multiscale basis functions. Specifically,

let φi(x) be the minimizer of the following constrained optimization problem

φi = arg min
φ∈H1

P(D)

||φ||V (4)

s.t.

∫
D

φϕHj dx = δi,j, ∀1 ≤ j ≤ NH . (5)
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The superscript ε is dropped for notation simplicity and the periodic boundary condition is

incorporated into the above optimization problem through the solution space H1
P(D).

In general, one cannot solve the above optimization problem analytically. Therefore, we use

numerical methods to solve it. Specifically, we partition the physical domain D into a set of

non-overlapping fine triangles with size h� ε. Then, we use standard FEM to discretize φi(x),

ϕHj (x), 1 ≤ i, j ≤ NH . In the discrete level, the optimization problem (4)-(5) is reduced to a

constrained quadratic optimization problem; see (19) in Section 3.3, which can be efficiently

solved using Lagrange multiplier methods. Finally, with these multiscale FEM basis functions

{φi(x)}NHi=1, we can solve the Schrödinger equation (2) using the Galerkin method.

Remark 2.1. In analogy to the multistate FEM [21, 13], the multiscale basis functions {φi(x)}NHi=1

are defined on coarse elements with mesh size H. However, they are represented by fine-scale

FEM basis with mesh size h, which can be pre-computed and done in parallel.

Remark 2.2. The notation || · ||V in (3) does not define a norm. However, as long as the

potential vε(x) is bounded from below and the fine mesh size h is small enough, the discrete

problem of (4) - (5) is convex and thus admits a unique solution; see [24, 29] for details.

2.2. Exponential decay of the multiscale finite element basis functions

It can be proved that the multiscale basis functions {φi(x)}NHi=1 decay exponentially fast away

from its associated vertex xi ∈ Nc under certain conditions. This allows us to localize the basis

functions to a relatively smaller domain and reduce the computational cost. We first define a

series of nodal patches {D`} associated with xi ∈ N as

D0 := supp{ϕi} = ∪{K ∈ TH |xi ∈ K}, (6)

D` := ∪{K ∈ TH |K ∩D`−1 6= ∅}, ` = 1, 2, · · · . (7)

Assumption 2.1. We assume the potential vε(x) is bounded, i.e., V0 := ||vε(x)||L∞(D) < +∞
and the mesh size H of TH satisfies √

V0H/ε . 1, (8)

where . means bounded from above by a constant.

Under this resolution assumption for the coarse mesh, many typical potentials in the Schrödinger

equation (2) can be treated as a perturbation to the kinetic operator. Thus, they can be com-

puted using our method. Then, we can show that the multiscale finite element basis functions

have the exponentially decaying property.

Proposition 2.2 (Exponentially decaying property). Under the resolution condition of the

coarse mesh, i.e., (8), there exist constants C > 0 and 0 < β < 1 independent of H, such that

||∇φi(x)||L2(D\D`) ≤ Cβ`||∇φi(x)||L2(D), (9)

for any i = 1, 2, ..., NH .
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Proof of (9) will be given in [7]. The main idea is to combine an iterative Caccioppoli-type

argument [31, 29] and some refined estimates with respect to ε.

The exponential decay of the basis functions enables us to localize the support sets of

the basis functions {φi(x)}NHi=1, so that the corresponding stiffness matrix is sparse and the

computational cost is reduced. In practice, we define a modified constrained optimization

problem as follows

φloc
i = arg min

φ∈H1
P(D)

||φ||V (10)

s.t.

∫
Dl∗

φϕHj dx = δi,j, ∀1 ≤ j ≤ NH , (11)

φ(x) = 0, x ∈ D\Dl∗ , (12)

where Dl∗ is the support set of the localized multiscale basis function φloc
i (x) and the choice

of the integer l∗ depends on the decaying speed of φloc
i (x). In (11) and (12), we have used the

fact that φi(x) has the exponentially decaying property so that we can localize the support

set of φi(x) to a smaller domain Dl∗ . In numerical experiments, we find that a small integer

l∗ ∼ log(L/H) will give accurate results, where L is the diameter of domain D. Moreover,

the optimization problem (10)-(12) can be solved in parallel. Therefore, the exponentially

decaying property significantly reduces our computational cost in constructing basis functions

and computing the solution of the Schrödinger equation (2).

With the localized multiscale finite element basis functions {φloc
i (x)}NHi=1, we can approxi-

mate the wavefunction by ψε(x, t) =
∑NH

i=1 ci(t)φ
loc
i (x) using the Galerkin method.

3. Multiscale reduced basis functions for the random Schrödinger equation

3.1. Parametrization of the random potential

The random potential vε(x, ω) is used to model the disorder in a given material. Specifi-

cally, we assume vε(x, ω) is a second order random field, i.e., vε(x, ω) ∈ L2(D,Ω), with mean

E [vε(x, ω)] = v̄ε(x) and covariance kernel C(x,y). For example, we can choose the covariance

kernel as

C(x,y) = σ2 exp
(
−

d∑
i=1

|xi − yi|2

2l2i

)
, (13)

where σ is a constant and li’s are the correlation lengths in each dimension. We also assume

that the random potential vε(x, ω) is almost surely bounded, namely there exist vmax and vmin,

such that

P (ω ∈ Ω | vε(x, ω) ∈ [vmin, vmax], ∀x ∈ D) = 1. (14)

Circulant embedding method [12] and Karhunen-Loève (KL) expansion method [28, 30] are

commonly used to generate samples of vε(x, ω), and the latter will be used in the current work.

6



The KL expansion of vε(x, ω) reads as

vε(x, ω) = v̄ε(x) +
∞∑
i=1

√
λiξi(ω)vi(x), (15)

where ξi(ω)’s are mean-zero and uncorrelated random variables, i.e., E [ξi] = 0, E [ξiξj] = δij,

and {λi, vi(x)}∞i=1 are the eigenpairs of the covariance kernel C(x,y). Generally, λi’s are sorted

in a descending order and their decay rates depend on the regularity of the covariance kernel.

It has been proven that an algebraic decay rate, i.e. λi = O(i−γ), is achieved asymptotically if

the covariance kernel is of finite Sobolev regularity, and an exponential decay rate is achieved,

i.e., λi = O(e−γi) for some γ > 0, if the covariance kernel is piecewisely analytic [37].

In practice, we truncate the KL expansion (15) into its firstm terms and obtain a parametriza-

tion of the random potential as

vεm(x, ω) = v̄ε(x) +
m∑
i=1

√
λiξi(ω)vi(x), (16)

which will be used in both analysis and numerics in the remaining part of the paper.

Remark 3.1. In general, the decay rate of λi depends on the correlation lengths li, i = 1, ..., d

of the random field vε(x, ω). Small correlation length results in slow decay of the eigenvalues.

When the correlation lengths approach zero, the random field vε(x, ω) becomes a spatially

white noise, which is the case used in the original physics paper [2].

3.2. Construction of the multiscale reduced basis functions

For the random Schrödinger equation (1), it is prohibitively expensive to construct multiscale

basis functions for each realization of the random potential using (10) - (12). To address this

issue, we use a model reduction method to build a small number of reduced basis functions that

enable us to obtain multiscale basis functions in a cheaper way without loss of approximation

accuracy.

For every xk ∈ N , we first compute a set of samples of multiscale basis functions associated

to the vertex xk. Specifically, let {vε(x, ωq)}Qq=1 be samples of the random potential that

are obtained using Monte Carlo (MC) method or qMC method, where Q is the number of

samples. Denote ζk0 (x) = 1
Q

∑Q
q=1 φ

loc
k (x, ωq) the sample mean of the basis functions, and

φ̃loc
k (x, ωq) = φloc

k (x, ωq)− ζk0 (x) is the fluctuation of the k−th basis function.

We apply the proper orthogonal decomposition (POD) method [5, 38] to V = {φ̃loc
k (x, ωq)}Qq=1

and build a set of basis functions {ζk1 (x), ζk2 (x), ..., ζkmk(x)} with mk � Q that optimally ap-

proximates V . Quantitatively, we have the following approximating property.

Proposition 3.1. Let λ1 ≥ λ2 ≥ ... ≥ λmk ≥ λmk+1
≥ ... > 0 be positive eigenvalues of

the covariance kernel associated with the snapshot of the fluctuations V and the corresponding

eigenfunctions are ζk1 (x), ..., ζkmk(x),.... Then, the reduced basis functions {ζkl (x)}mkl=1 have the

following approximation property∑Q
q=1

∣∣∣∣∣∣φ̃loc
k (x, ωq)−

∑mk
l=1

(
φ̃loc
k (x, ωq), ζ

k
l (x)

)
X
ζkl (x)

∣∣∣∣∣∣2
X∑Q

q=1

∣∣∣∣∣∣φ̃loc
k (x, ωq)

∣∣∣∣∣∣2
X

=

∑Q
s=mk+1 λs∑Q
s=1 λs

, (17)
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where X = L2(D) or X = H1(D) and the number mk is determined according to the ratio

ρ =
∑mk
s=1 λs∑Q
s=1 λs

.

In practice, we choose the first mk dominant reduced basis functions such that ρ is close

enough to 1 to achieve a desired accuracy, say ρ = 99%. More details of the POD method can

be found in [5, 38]. Notice that reduced basis functions ζk0 (x) and ζkl (x), l = 1, ...,mk approx-

imately capture the mean profile and the fluctuation of multiscale basis functions associated

with xk, respectively. Thus, it is expected that for each realization of the random potential

the associated multiscale basis functions can be approximated by the reduced basis functions,

i.e.,

φloc
k (x, ω) ≈ ζk0 (x) +

mk∑
l=1

cl(ω)ζkl (x). (18)

Remark 3.2. To construct the multiscale reduced basis functions, we partition the coarse grids

Dk into fine-scale quadrilateral elements with meshsize h � ε, which requires additional

computational cost in the offline stage. However, the precomputed reduced basis functions

can be used repeatedly to solve (1) for each realization of the random potential and different

initial data, which results in considerable savings.

3.3. Estimation of the number of learning samples

We shall study the continuous dependence of multiscale basis functions on the random poten-

tial, which provide a guidence on how to determine the number of samples in the construction

of multiscale basis functions. For notational simplification, we carry out the analysis for mul-

tiscale basis functions without localization.

Let ϕhs (x), s = 1, ..., Nh denote the finite element basis functions defined on fine mesh with

size h and Nh is the number of fine-scale finite element basis functions. When we numerically

solve (4)-(5), we represent the multiscale basis function as φi(x) =
∑Nh

s=1 csϕ
h
s (x) and obtain

the following quadratic programming problem with equality constraints min
c

1

2
cTQc,

s.t. Ac = b,
(19)

where c = [c1, ..., cNh ]T is the coefficients and Q is a symmetric positive definite matrix on the

fine triangularization Th with the (i, j) component

Qij =
ε2

2
(∇ϕhi ,∇ϕhj ) + (vε(x, ωq)ϕ

h
i , ϕ

h
j ). (20)

In (19), A is an Nh-by-NH matrix with Aij = (ϕhi , ϕ
H
j ) and b an Nh-by-1 vector with only the

i−th entry being 1 and others being 0.

The following result states the continuous dependence of multiscale basis functions on the

random potential.
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Theorem 3.2. Assume the random potential vε(x, ω) is almost surely bounded, i.e. (14) is

satisfied and mesh size of the fine-scale triangles is small such that: (1) h/ε = κ is small;

and (2) hd‖vε(·, ω1)− vε(·, ω2)‖L∞(D) < 1. Then for two realizations ω1 and ω2 of the random

potential vε(x, ω), the corresponding multiscale basis functions satisfy

‖φ(·, ω1)− φ(·, ω2)‖L∞(D) ≤
C

κ6
ε−2‖vε(·, ω1)− vε(·, ω2)‖L∞(D), (21)

where the constant C is independent of h, ε, and ‖vε(·, ω1)− vε(·, ω2)‖L∞(D).

Proof. Under the assumptions that vε(x, ω) is almost surely bounded and h/ε = κ is small,

we know that Q is a positive definite matrix. Moreover, we know that A has full rank, i.e.,

rank(A) = NH . Therefore, the quadratic optimization problem (19) has a unique minimizer,

satisfying the Karush-Kuhn-Tucker condition. Specifically, the unique minimizer of (19) can

be explicitly written as

c = Q−1AT (AQ−1AT )−1b. (22)

For two realizations ω1 and ω2, we define δV = Q1 −Q2. Then

(δV )ij =
(
(v(·, ω1)− v(·, ω2))ϕhi , ϕ

h
j

)
, (23)

and thus

‖δV ‖∞ ≤ hd‖vε(·, ω1)− vε(·, ω2)‖L∞(D). (24)

We choose h to be small enough such that ‖δV ‖∞ ≤ 1, and have

Q−1
2 =

∞∑
n=0

(
Q−1

1 δV
)n
Q−1

1 ,

and thus

c2 − c1 =
[
Q−1

2 −Q−1
1

]
AT (AQ−1

1 AT )−1b+Q−1
2 AT

[
(AQ−1

2 AT )−1 − (AQ−1
1 AT )−1

]
b,

= Q−1
1 δV Q−1

1 AT (AQ−1
1 AT )−1b

−Q−1
2 AT (AQ−1

1 AT )−1(AQ−1
1 δV Q−1

1 AT )(AQ−1
1 AT )−1b+ o(‖δV ‖∞),

= Q−1
1 δV Q−1

1 AT (AQ−1
1 AT )−1b

−Q−1
1 AT (AQ−1

1 AT )−1(AQ−1
1 δV Q−1

1 AT )(AQ−1
1 AT )−1b+ o(‖δV ‖∞).

Therefore,

|c2 − c1|∞ ≤ C‖A‖∞‖Q−1
1 ‖2

∞‖(AQ−1
1 AT )−1‖∞|b|∞

(
1 + ‖A‖2

∞‖Q−1
1 ‖∞‖(AQ−1

1 AT )−1‖∞
)
‖δV ‖∞.

By their definitions, we have

‖A‖∞ ≤ Chd, |b|∞ = 1, ‖Q−1
1 ‖∞ ≤ Ch−2, ‖Q1‖∞ ≤ C max{ε2, h2} ≤ Cε2,

and thus

|c2 − c1|∞ ≤ Cε4h−6h−d‖δV ‖∞ ≤ Cε4h−6‖vε(·, ω2)− vε(·, ω1)‖L∞(D).

We complete the proof since h/ε = κ and ‖φ(·, ω2)− φ(·, ω1)‖L∞(D) ≤ |c2 − c1|∞.
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Equipped with Theorem 3.2, we can estimate the number of samples in the construction

of multiscale reduced basis functions. Suppose the random potential is of the form (16). For

any δ > 0, we choose an integer Qδ and a set of random samples {vε(x, ωq)}Qδq=1 such that

E

[
inf

1≤q≤Qδ

∣∣∣∣vεm(x, ω)− vεm(x, ωq)
∣∣∣∣
L∞(D)

]
≤ δ, (25)

where the expectation is taken over the random variables in vεm(x, ω) of the form (16). We can

give a way to choose the random samples {vε(x, ωq)}Qδq=1 since the distribution of the random

variables ξi(ω), i = 1, ...,m is known.

For every xk ∈ N , let {φk(x, ωq)}Qδq=1 be the samples of multiscale basis functions associated

with xk. Then, we have

E

[
inf

1≤q≤Qδ

∣∣∣∣φk(x, ω)− φk(x, ωq)
∣∣∣∣
L∞(D)

]
≤ C

κ6
ε−2δ. (26)

Given parameters ε and h, we choose δ and Qδ so that the right-hand side of (26) is small.

Then the space of multiscale basis functions can be well approximated by the samples of

multiscale basis functions {φk(x, ωq)}Qδq=1 with controllable accuracy and the POD method is

further applied to construct multiscale reduced basis functions.

3.4. Derivation of our method based on the multiscale reduced basis functions

In this section, we present our method for solving the random Schrödinger equation: in the

physical space, we use the multiscale reduced basis functions obtained in §3.2; in the random

space, we use the qMC method.

The implementation of the qMC method is fairly easy. For instance, given a set of qMC

samples, expectation of the solution is approximated by

E [ψε(t,x, ω)] ≈ 1

n

n∑
i=1

ψε(t,x, ωi), (27)

where n is the number of qMC samples. Details of the generation of qMC samples and its

convergence analysis will be discussed in §4.

Now, we focus on how to approximate the wavefunction in the physical space for each qMC

sample ωs. For each node point xk ∈ N , we have constructed a set of multiscale reduced basis

functions {ζki }
mk
i=0 and represent the wavefunction by

ψε(t,x, ωs) =

NH∑
k=1

mk∑
l=0

ckl (t, ωs)ζ
k
l (x), (28)

where mk is the number of multiscale reduced basis functions associated with the node xk. In

the Galerkin formulation, we have the following weak form(
iε∂t

NH∑
k=1

mk∑
l=0

ckl (t, ωs)ζ
k
l (x), ζjr (x)

)
=

(
H(x, ωs)

NH∑
k=1

mk∑
l=0

ckl (t, ωs)ζ
k
l (x), ζjr (x)

)
,

x ∈ D, t ∈ R, j = 1, · · · , NH , r = 0, · · · ,mk, (29)
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where H(x, ωs) is a deterministic operator. To numerically solve (29), we introduce some

notations. Let S, M , and V (ωs) be matrices with dimension
∑NH

k=1(mk + 1)×
∑NH

k=1(mk + 1).

Their entries are given by

S∑k
i=1(mi+1)+l,

∑j
i=1(mi+1)+r =

∫
D

∇ζkl · ∇ζjrdx,

M∑k
i=1(mi+1)+l,

∑j
i=1(mi+1)+r =

∫
D

ζkl ζ
j
rdx,

V∑k
i=1(mi+1)+l,

∑j
i=1(mi+1)+r(ωs) =

∫
D

ζkl v
ε(x, ωs)ζ

j
rdx.

Then, we can reduce the weak formulation (29) into the following ODE system

iεM
dc(t, ωs)

dt
=

(
ε2

2
S + V (ωs)

)
c(t, ωs), (30)

where the column vector c(t, ωs) = (c1
0(t, ωs), ..., c

1
mk

(t, ωs), ..., c
NH
0 (t, ωs), ..., c

NH
mk

(t, ωs))
T con-

sisting of all expansion coefficients of the solution ψε(t,x, ωs) onto multiscale reduced basis

functions. We can further rewrite (30) as

dc(t, ωs)

dt
=

1

iε
B(ωs)c(t, ωs) (31)

where B(ωs) = M−1A(ωs) and A(ωs) = ε2

2
S+V (ωs). In the end, we can solve the above ODE

system using existing ODE solvers.

Before ending this section, we shall explain why we choose the qMC method to approxi-

mate the random space of the electron wavefunction. Since the parameterization of a random

potential may have high dimension, i.e., m is large in (15), non-intrusive methods, such as

sparse grid method [6] and stochastic collocation method [33], become prohibitively expensive

to solve PDEs with random coefficients. Polynomial chaos expansion (PCE) methods [19, 41]

are also frequently used in the literature to solve PDEs with random coefficients. This type of

methods is useful if the solution is sufficiently smooth in the random space with small dimen-

sionality. The performance of MC method does not depend on the dimension of the random

space. However, its convergence rate is merely O( 1√
n
). The convergence rate of the qMC

method is better both theoretically and numerically; see (45) in Theorem 4.5. Therefore, we

choose the qMC method and its implementation is almost the same as the MC method.

4. Convergence analysis

We shall analyze the approximation error of the proposed method, where the emphasis is put

on computing functionals of the wavefunction.
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4.1. Regularity of the wavefunction with respect to the random variables

Since the potential vε(x, ω) in (1) is parametrized by m random variables ξi(ω), i = 1, ...,m in

(16), i.e., vεm(x, ω) = vε(x, ξ1(ω), ..., ξm(ω)). The wavefunction ψεm(t,x, ω) satisfies
iε∂tψ

ε
m = −ε

2

2
∆ψεm + vεm(x, ω)ψεm, x ∈ D, t ∈ R,

ψεm ∈ H1
P(D),

ψεm|t=0 = ψin(x).

(32)

The Doob-Dynkin’s lemma implies the wavefunction ψεm(t,x, ω) in (32) can also be represented

by a functional of these random variables, i.e., ψε(t,x, ω) = ψε(t,x, ξ1(ω), ..., ξm(ω)).

First of all, we analyze the error introduced by the parameterization of the random poten-

tial. We have the following estimate result.

Lemma 4.1. The difference between wavefunctions to (32) and (1) satisfies

‖ψεm − ψε‖L2(Ω,D) ≤
T

ε
‖vεm − vε‖L∞(Ω,D), ∀t ∈ [0, T ]. (33)

Proof. The difference δψ = ψεm − ψε satisfies
iε∂tδψ = −ε

2

2
∆δψ + vεmδψ + (vεm − vε)ψε, x ∈ D, t ∈ R,

δψ ∈ H1
P(D),

δψ|t=0 = 0.

By a direct calculation, we have

d

dt
‖δψ‖2

L2(Ω,D) =
1

iε

∫
Ω

∫
D

(
δψ(vεm − vε)ψε − ψε(vεm − vε)δψ

)
dxdρ(ω),

where ρ(ω) is the probability measure induced by the randomness in the potential (16) and

thus

d

dt
‖δψ‖2

L2(Ω,D) ≤
2

ε

∫
Ω

∫
D

|δψ(vεm − vε)ψε|dxdρ(ω) ≤ 2

ε

∫
Ω

‖δψ‖L2(D)‖vεm − vε)ψε‖L2(D)dρ(ω),

≤ 2

ε

∫
Ω

‖δψ‖L2(D)‖vεm − vε‖L∞(D)dρ(ω) ≤
2‖vεm − vε‖L∞(D,Ω)

ε
‖δψ‖L2(D,Ω).

Therefore, we obtain

‖δψ‖L2(Ω,D) ≤
T

ε
‖vεm − vε‖L∞(Ω,D), ∀t ∈ [0, T ],

which completes the proof.

To analyze the qMC method, it is crucial to bound the mixed first derivatives of ψεm with

respect to ξi(ω). Denote ξ(ω) = (ξ1(ω), · · · , ξm(ω))T for convenience. Let ν = (ν1, · · · , νm)

denote a multi-index of non-negative integers, with |ν| =
∑m

j=1 νj and |ν|∞ = max1≤j≤m νj .

The value of νj determines the number of derivatives to be taken with respect to ξj, and ∂νψεm
denotes the mixed derivative of ψεm with respect to all variables specified by the multi-index

ν.
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Lemma 4.2. For any ω ∈ Ω, any time T , and for any multi-index ν with |ν| <∞, the partial

derivative of ψεm(t,x, ω) satisfies the following a-priori estimate

‖∂νψεm(t, ·, ω)‖L2(D) ≤
|ν|! T |ν|

ε|ν|

{∏
j≥1

(√
λj‖vj‖C0(D̄)

)νj}
, ∀ t ∈ [0, T ]. (34)

Proof. When |ν| = 1, we take the derivative of (32) with respect to ξj(ω). Let ∂jψm = ∂ξjψ
ε
m

and ∂jvm = ∂ξjv
ε
m, we have

iε (∂jψm)t = −ε
2

2
∆ (∂jψm) + (∂jvm)ψεm + vεm (∂jψm) .

Thereafter, we have the following estimate by a direction calculation

d

dt
‖∂jψm‖2

L2(D) =

∫
D

{(
∂jψm

)
t
(∂jψm) +

(
∂jψm

)
(∂jψm)t

}
dx,

=

∫
D

(
− 1

iε
(∂jvm)ψεm (∂jψm) +

1

iε

(
∂jψm

)
(∂jv)ψεm

)
dx,

≤ 2

ε
‖∂jψm‖L2(D)‖∂jvψεm‖L2(D) ≤

2

ε
‖∂jψm‖L2(D)‖∂jvm‖L∞(D),

and

‖∂jψm‖L2(D) ≤
T

ε
‖∂jvm‖L∞(D) ≤

T

ε

√
λj‖φj‖C0(D̄). (35)

When |ν| ≥ 2, we have

iε (∂νψm)t = −ε
2

2
∆ (∂νψm) +

∑
µ�ν
µ 6=ν

(
ν

µ

)(
∂ν−µvm

)
(∂µψm) + vεm (∂νψm) .

According to the definition of the random potential (15), we have ∂ν−µvεm = 0 if |ν − µ| ≥ 2.

Thus the above equation can be simplified as

iε (∂νψm)t = −ε
2

2
∆ (∂νψm) +

∑
|ν−µ|=1

(
|ν|
1

)(
∂ν−µvm

)
(∂µψm) + vεm (∂νψm) .

Similarly, we obtain

d

dt
‖∂νψm‖2

L2(D) =

∫
D

{(
∂νψm

)
t
(∂νψm) +

(
∂νψm

)
(∂νψm)t

}
dx,

=
∑
|ν−µ|=1

(
|ν|
1

)∫
D

(
− 1

iε

(
∂ν−µvm

)
(∂µψm) (∂νψm) +

1

iε

(
∂νψm

) (
∂ν−µvm

)
(∂µψm)

)
dx,

≤ 2|ν|
ε
‖∂νψm‖L2(D)

∑
|ν−µ|=1

‖
(
∂ν−µvm

)
‖L∞(D)‖(∂µψm)‖L2(D),
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and

‖∂νψm‖L2(D) ≤
T |ν|
ε

∑
|ν−µ|=1

‖
(
∂ν−µvm

)
‖L∞(D)‖(∂µψm)‖L2(D). (36)

Now we are ready to prove the theorem by mathematical induction. From (35), we know that

(34) holds for |ν| = 1. Assume that (34) holds for µ with |ν − µ| = 1. Substituting this into

(36) yields the desired estimate for the ν case.

Remark 4.1. The above derivation is similar to that in [25], where an estimate in L2(D,Ω)

norm is obtained. Here, for each random realization ω, we have the esitmate (34) in L2(D)

norm, which will be used to prove the convergence in qMC.

4.2. Main result of the error analysis

In the framework of uncertainty quantification, we are interested in computing some statistical

quantities of the electron wavefunction. As such, we shall present the error analysis of our

method in computing functionals of ψεm.

Let G(·) be a continuous linear functional on L2(D), then there exists a constant CG such

that

|G(u)| ≤ CG‖u‖L2(D),

for all u ∈ L2(D). Consider the following integral

Im(F ) =

∫
ξ∈[0,1]m

F (ξ)dξ (37)

with F (ξ) = G(ψεm(·, ξ)). We approximate the integral over the unit cube by randomly shifted

lattice rules

Qm,n(∆;F ) ,
1

n

n∑
i=1

F
(
frac(

iz

n
+ ∆)

)
,

where z ∈ Nm is the (deterministic) generating vector and ∆ ∈ [0, 1]m is the random shift

which is uniformly distributed over [0, 1]m. Notice that m is the dimension of the random

vector ξ in the random potential and n is the number of the sample point in implementing

the qMC method. The interested reader is referred to [11] for more details of the randomly

shifted lattice rules in the qMC method.

Lemma 4.3. Let F be the integrand in (37). Given m,n ∈ N with n ≤ 1030, weights γ =

(γu)u⊂N, a randomly shifted lattice rule with n points in m dimensions can be constructed by a

component-by-component algorithm such that, for all λ ∈ (1/2, 1],√
E∆|Im(F )−Qm,n(·;F )|2 ≤ 9C∗Cγ,m(λ)n−1/(2λ), (38)

with

Cγ,m(λ) =

 ∑
∅6=u⊆{1:m}

γλu
∏
j∈u

%(λ)

1/(2λ) ∑
u⊆{1:m}

(|u|!)2T 2|u|

γuε2|u|

∏
j∈u

λj‖φj‖2
C0(D̄)

1/2

. (39)
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Proof. The proof of this result is essentially an application of the Koksma-Hlawka inequality,

which is the same as the proofs of Theorem 15, Theorem 16, and Theorem 17 in [20], or

Theorem 5.10 in [11] with the following modification of estimates:

%(λ) = 2

( √
2π

π2−2η∗(1− η∗)η∗

)λ

ζ(λ+
1

2
), η∗ =

2λ− 1

4λ
(40)

with ζ(x) =
∑∞

j=1 j
−x the Riemann zeta function, and C∗ = ‖G‖L2(D).

To analyze the error of our method, we need to make some assumptions on the regularity

of the eigenfunctions and the decay rate of the eigenvalues in the KL expansion (16) of the

random potential.

Assumption 4.4. (a) There exist C > 0 and Θ > 1 such that λj ≤ Cj−Θ for j ≥ 1;

(b) The Karhunen-Loéve eigenfunctions vj(x) are continuous and there exist C > 0 and

η ∈ [0, Θ−1
2Θ

) such that ‖vj‖C0(D̄) ≤ Cλ−ηj for j ≥ 1;

(c) The sequence defined by
√
λj‖vj‖C0(D̄), j ≥ 1 satisfies

∑
j≥1

(√
λj‖vj‖C0(D̄)

)p
< ∞ for

some p ∈ (0, 1], and
∑

j≥1

√
λj‖vj‖C0(D̄) <

ε
T

√
%(λ) for λ ∈ (1/2, 1].

Recall that ψε and ψεm are solutions to (1) and (32), respectively. Denote ψεH,m the solution

obtained by our method using the multiscale reduced basis functions in the physical space and

the qMC method in the random space. Under the assumptions for the random potential, we

have the error estimate.

Theorem 4.5. Consider the approximation of E[G(ψε)] via qMC multiscale finite element

methods, denoted by Qm,n(·;G(ψεH,m)), where we assume ψε ∈ L2(Ω;H2(D)). A randomly

shifted lattice rule Qm,n is applied to G(ψεm). Then, we can bound the root-mean-square error

with respect to the uniformly distributed shift ∆ ∈ [0, 1]m by√
E∆
[(
E[G(ψε)]−Qm,n(·;G(ψεH,m))

)2
]
≤ C

(
H2

ε2
+
m−χ

ε
+ n−r

)
, 0 < t ≤ T, (41)

for 0 < χ ≤ (1/2−η)Θ−1/2, and with r = 1/p−1/2 for p ∈ (2/3, 1] and r = 1−δ for p ≤ 2/3,

with δ arbitrarily small. Here the constant C is independent of ε, m, and n but depends on T .

Proof. The linearity of operator G implies

G(ψε)− G(ψεH,m) = G(ψε)− G(ψεH) + G(ψεH)− G(ψεH,m). (42)

Under the assumption ψε ∈ L2(Ω;H2(D)), we have, see for example [7],

|E[G(ψε)− G(ψεH)]| ≤ C
H2

ε2
. (43)

Under the assumptions (b) and (c) in Assumption 4.4, we have, based on Lemma 4.1,

|G(ψεH)− G(ψεH,m)| ≤ C
m−χ

ε
(44)
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for all 0 < χ ≤ (1/2 − η)Θ − 1/2. Detailed derivation is essentially the same as the proof of

Theorem 8 in [20].

Finally, when applying the qMC method to (42), we need to analyze the error in the

qMC method. We adopt the standard framework, i.e., the Koksma-Hlawka inequality. Under

Assumption 4.4, we have, based on Lemma 4.2 and Lemma 4.3,√
E∆|Im(F )−Qm,n(·;F )|2 ≤ Cn−r, (45)

where r = 1/p − 1/2 for p ∈ (2/3, 1] and r = 1 − δ for p ≤ 2/3, with δ arbitrarily small.

Detailed derivation is essentially the same as the proof of Theorem 20 in [20]. A combination

of above estimates completes the proof.

Remark 4.2. The term m−χ

ε
in the error estimate (41) can be viewed as a modeling error. When

the m-term KL truncation potential vεm(x, ω) in (16) provides an accurate approximation to

the potential vε(x, ω), the term m−χ

ε
becomes small or negligible.

Remark 4.3. In §5, we will show the proposed method works well for a large class of random

potentials, even when the eigenvalues in the KL expansion have a relatively slow decay rate.

Therefore, Assumption 4.4 is a rather technical assumption for the convergence analysis of

the proposed method.

Remark 4.4. In the error analysis for the qMC method, we assume ξ = (ξ1, ..., ξm) ∈ [0, 1]m

for notational convenience; see (37), where ξi are i.i.d. uniform random variables. In the KL

expansion (16) representation for vεm(x, ω), we choose ξi ∈ [−
√

3,
√

3], i = 1, ...,m so that the

conditions E [ξi] = 0, E [ξiξj] = δij are satisfied. The same convergence result can be obtained

with little modification of the current proof.

5. Numerical examples

In this section, we conduct numerical experiments to test the accuracy and the efficiency

of our method. Specifically, we will present convergence tests with respect to the physical

meshsize, the number of multiscale reduced basis functions, and the number of qMC samples.

In addition, we will investigate the existence of Anderson localization in both 1D and 2D. For

convenience, we first introduce L2 norm and H1 norm as

||ψε||2L2 =

∫
D

|ψε|2dx, ||ψε||2H1 =

∫
D

|∇ψε|2dx +

∫
D

|ψε|2dx.

In what follows, we compare the relative error between expectations of the numerical solution

ψεnum and the reference solution ψεref in both L2 norm and H1 norm

ErrorL2 =
||E[ψεnum]− E[ψεref]||L2

||E[ψεref]||L2

,

ErrorH1 =
||E[ψεnum]− E[ψεref]||H1

||E[ψεref]||H1

.
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Here E[ψεnum] =
∫

Ω
ψεnum(t,x, ω)dρ(ω), E[ψεref] =

∫
Ω
ψεref(t,x, ω)dρ(ω), Ω is the random space,

and ρ(ω) is the probability measure induced by the randomness in (16). The reference solu-

tion refers to the numerical wavefunction using a very fine mesh and a large amount of qMC

samples. In numerical experiments, we use the MATLAB’s Statistics Toolbox to generate the

Sobol sequence to implement the qMC method. When we use the POD method to construct

multiscale reduced basis functions, we observed similar decay behaviors of the associated eigen-

values at each coarse grid point. Therefore, we choose the same reduced basis number mk for

all the coarse grid points.

5.1. Convergence in the physical space

Consider the 1D Schrödinger equation over D = [−π, π]

iε∂tψ
ε = −ε

2

2
∂xxψ

ε + vε(x, ω)ψε, (46)

where the periodic condition is imposed, the initial data ψin(x) = (10
π

)1/4e−20(x−0)2 , and the

random potential vε(x, ω) is defined as

vε(x, ω) = 1 + σ
3∑
j=1

sin(jx2) sin(
x

Ej
)ξj(ω). (47)

In the random potential (47), σ is used to control the strength of the random potential, and

ξj(ω)’s are mean-zero and independent random variables uniformly distributed in [−
√

3,
√

3].

Moreover, we choose ε = 1
16

, σ = 1 and E = [1
9
, 1

13
, 1

11
], i.e., the characteristic length scale of

randomness is different from the semiclassical parameter.

Convergence with respect to the coarse mesh size H. In our numerical test, we set

the final computational time T = 1. For the reference solution, we choose the fine mesh to be

h = 2π
2048

and the qMC sample number to be n = 16000. For our method, we choose the POD

modes mk = 3, the sampling number in the offline training stage to be 200 and the number of

qMC samples in the online stage to be 2560.

In Table 1, we compute the relative errors of the expectation of the wavefunction in both

L2 norm and H1 norm for a series of coarse meshes with meshsize ranging from H = 2π
32

to

H = 2π
256

. Nice convergence in the physical space is observed.

H ErrorL2 Order ErrorH1 Order

2π/32 0.09862312 0.32096262

2π/64 0.00129644 6.25 0.01449534 4.47

2π/128 0.00002892 5.49 0.00076150 4.25

2π/256 0.00000950 1.61 0.00014161 2.42

Table 1: Relative L2 and H1 errors for the expectation of the wavefunction when ε = 1/16.

Verification of the exponential decay of multiscale basis functions. For the same

problem as above, we choose four different realizations of the multiscale basis functions centered
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at x = 0, i.e. φ(x, ξ(ωi)), i = 1, 2, 3, 4, which are generated in the offline training stage of our

previous experiment when H = 2π
256

. In Figure 1a, we plot |∇φ(x, ξ(ωi))|/||∇φ(x, ξ(ωi))||L2(D),

i = 1, 2, 3, 4. In Figure 1b, we plot the quantity Erelative =
||∇φ(x,ξ(ωi))||L2(D)−||∇φ(x,ξ(ωi))||L2(D`)

max(||∇φ(x,ξ(ωi))||L2(D)−||∇φ(x,ξ(ωi))||L2(D`)
)

with respect to the patch size `, which shows the decay rate of Erelative with respect to `.

One can see that each realization of the multiscale basis functions decays exponentially

fast away from the center x = 0. Since the multiscale basis functions have exponential decay

property, the approximated multiscale basis using the reduced basis functions (see (18)) still

has the same property.
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Figure 1: Exponentially decaying properties of the multiscale basis functions for four different realizations.

Convergence with respect to the number of multiscale reduced basis functions.

We study how the approximation error depends on the number of multiscale reduced basis

used at each coarse mesh node xk, i.e., changing the POD modes mk. Again, we solve (46) -

(47) when ε = 1
16

, σ = 1 and E = [1
9
, 1

13
, 1

11
]. The final computational time T = 1. For the

reference solution, we choose the meshsize to be h = 2π
2048

and the number of qMC samples to

be n = 16000. For our method, we choose the number of samples in the offline training stage

to be 200 and the number of qMC samples in the online stage to be 2560. We fix the coarse

mesh size H = 2π
128

and record the relative errors as a function of the number of multiscale

reduced basis functions.

In Figure 2, we plot the relative L2 and H1 errors with respect to the number of multiscale

reduced basis functions. It is observed that results when mk = 2 or mk = 3 have already

been good enough in the sense that relative errors are less than 1%. These numerical results

indicate that multiscale reduced basis functions can efficiently approximate the physical space

of the wavefunction.

5.2. Convergence in the random space

Again, we use the same example: (46) - (47) and D = [−π, π], but we shall focus on the

convergence of our method in random space.
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Figure 2: Relative errors with respect to the number of the multiscale reduced basis functions.

Convergence with respect to the number of qMC samples. In this numerical

experiment, parameters of the random potential are the same as those in §5.1, i.e., σ = 1 and

E = [1
9
, 1

13
, 1

11
]. Set ε = 1

16
and the final time T = 1. For the reference solution, we choose

the meshsize to be h = 2π
2048

and the number of qMC samples to be n = 16000. For our

method, we choose the coarse meshsize to be H = 2π
256

and the number of multiscale reduced

basis functions to be mk = 4, such that the error in the physical space be small enough. To

study the convergence rate of the qMC method, we change the number of the qMC samples

successively from n = 160 to n = 5120 and compute the relative L2 errors. We also compute

the relative errors of the MC method with the same setting in the physical space and the same

number of samples.

In Figure 3, we show the convergence result of our method. We find that the convergence

rate of the qMC method is close to O(n−1), which is consistent with results in Lemma 4.3

and in Theorem 4.5. Meanwhile, we compare the performance of the qMC method and the

MC method. One can see that the convergence rate of the MC method is close to O(n−
1
2 ),

which is also consistent with the error estimate of the MC method. This result clearly show

that qMC method is more accurate and efficient than the MC method.

Estimation of sampling numbers in the construction of multiscale reduced basis

functions. In §3.3, we obtain qualitative estimates on the choice of sampling numbers in the

construction of multiscale reduced basis functions; see (25) and (26). In this experiment, we

first generate Q qMC samples of the random potential: {vε(x, ωq)}Qq=1. Then, for each sample

vε(x, ωq), we compute the corresponding multiscale basis functions. Finally, we construct

multiscale reduced basis functions using the POD method. In the online stage, we solve (32)

using the obtained multiscale reduced basis functions. The numerical setting for the reference

solution is the same as before. For our method, we choose H = 2π
128

, mk = 3, and n = 2560.

In Table 2, we show relative errors of numerical solutions obtained using different sampling

numbers of the random potential. When the sampling number Q is small, say Q = 10, the

error is big and the corresponding multiscale reduced basis functions cannot approximate the
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Figure 3: Comparison of the qMC method and the MC method. Convergence rate for qMC and MC are 1.13

and 0.57, respectively.

random space of the wavefunction well. When we increase Q, i.e., add more samples of the

random potential in the construction of multiscale reduced basis functions, we obtain much

better results. Notice that mk is fixed to be 3. This means when Q is of order 100, the sampling

number of the random potential is large enough to ensure the excellent approximation accuracy

of multiscale reduced basis functions. One interesting topic on this issue is an optimal sampling

strategy in the construction of multiscale reduced basis functions, which will be explored in a

subsequent work.

qMC number ErrorL2 ErrorH1

10 0.11800774 0.46614288

100 0.00136249 0.01497658

200 0.00130909 0.01455442

400 0.00129678 0.01449570

Table 2: Relative L2 and H1 errors in terms of sampling numbers of the qMC method in the offline stage.

Dependence of the number of qMC samples on ε and dimension of the random

space m. We use the random potential vε(x, ω) with decaying terms satisfying Assumption

4.4:

vε(x, ω) = 1 +
m∑
j=1

1

j2
sin(jx)ξj(ω) (48)

in 1D physical domain D = [−π, π] and ξj(ω)’s are mean-zero and independent random vari-

ables uniformly distributed in [−
√

3,
√

3].

Firstly, we set random dimension to be m = 8, the final time T = 1. Three values of

ε = 1
4
, 1

8
and 1

16
are tested. The reference solution is obtained in the same way as before. For

the numerical solution we use the same fine mesh as that for the reference solution but different

number of qMC samples. In Table 3, we list the number of qMC samples with respect to ε
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for the same accuracy requirement. It is observed that the number of qMC samples increases

proportionally to 1/ε2.5.

ε qMC number ErrorL2 ErrorH1

1/4 160 0.00469003 0.00654782

1/8 960 0.00399369 0.00767395

1/16 5120 0.00444144 0.00785192

Table 3: Number of qMC samples for different ε under the same accuracy requirement.

Secondly, we fix ε = 1
16

and change the dimension of the random space from m = 1, m = 2,

m = 4, to m = 8. The reference solution and numerical solution are obtained in the same

way as above. In Table 4, we list the number of qMC samples with respect to m for the same

accuracy requirement. A linear growth of the number of qMC samples is observed when m is

increased.

Dimension m qMC number ErrorL2 ErrorH1

1 520 0.00405535 0.00784524

2 1280 0.00341203 0.00667093

4 2560 0.00369911 0.00823515

8 5120 0.00444144 0.00785192

Table 4: Number of qMC samples for different dimension m under the same accuracy requirement.

A slower decay of eigenvalues in the KL expansion of the random potential requires more

qMC samples. For instance, when vε(x, ω) = 1+
∑m

j=1
1
j

sin(jx)ξj(ω), we observed a quadratic

growth of the number of qMC samples when m is increased. However, the qMC method is still

very efficient in solving this difficult problem. Moreover, the qMC method can be implemented

in a parallel fashion to further improve its efficiency.

5.3. Investigation of Anderson localization.

In this section, we investigate the Anderson localization phenomenon for the semiclassical

Schrödinger equaiton using our method. Physically, when the Anderson localization happens,

the electron transport stops under the strong disorder and the short-range correlation in space.

We emphasize that the short-range correlation is important for localization, while the long-

range correlation may lead to delocalization [14, 34]. To numerically measure the localization

of a wavefunction, we define

A(t) = E

[∫
D

|x|2|ψε(t,x, ω)|2dx

]
, (49)

where x = x when d = 1 and x = (x1, x2) when d = 2.
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1D Schrödinger equation. Consider the Schrödinger equation (46) with the periodic

boundary condition over D = [−π, π]. To approximate the spatially white noise in the poten-

tial, we employ the m-term KL expansion

vε(x, ω) = σ
m∑
j=1

sin(jx)
1

jβ
ξj(ω), (50)

where ξj(ω)’s are mean-zero and i.i.d. random variables uniformly distributed in [−
√

3,
√

3].

When β = 0, vε(x, ω) converges to the spatially white noise as m→∞. σ controls the strength

of randomness.

The setup is as follows: the fine scale meshsize h = 2π
600

, the coarse meshsize H = 2π
100

,

ε = 1
8
, σ = 5, and the initial data ψin(x) is

ψin(x) = (
10

π
)1/4e−20(x−0)2 . (51)

In Figure 4a, we plot A(t) as a function of t for different m when β = 0. When m increases,

the wavefunction quickly enters a localization phase. In Figure 4b, we plot the time evolution

of A(t) for different m when β = 1. Notice that β = 1 leads to a slower decay in the KL

expansion of the random potential (50). Therefore, more terms need to be added to the KL

expansion in order to generate a localization phase for the wavefunction. We also plot the time

evolution of A(t) for β ranging from 0 to 1.5 when σ = 5, m = 15 in Figure 5. The localization

phase is much easier to be approached as β goes to 0. Besides, we also observe that a larger σ

makes the wavefunction approach the localization phase more quickly with other parameters

fixed. To sum up, the localization phase can be approached easier when we have more terms

in the KL expansion, shorter range of randomness, or stronger randomness.
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Figure 4: Anderson localization for different parameters.
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Figure 5: Anderson localization for different β.

2D Schrödinger equation. Consider the Schrödinger equation (32) over D = [−π, π]×
[−π, π] and

vε(x1, x2, ω) = σ
m∑
j=1

sin(jx1) sin(jx2)
1

jβ
ξj(ω), (52)

where the setting of ξj(ω)’s is the same as the 1D case. σ, m and β are parameters that

controls the random potential.

Choose σ = 5, β = 0 and ε = 1
4
. Notice that β = 0 and (52) is used to model a short-

range random potential. For our method, the fine meshsize is h = 2π
400

and the coarse meshsize

is H = 2π
100

. In Figure 6, we plot the time evolution of A(t) when m = 10. One can see

that the wavefunction approaches a localization phase when t = 4. We remark that it is

computationally expensive to solve the 2D Schrödinger equation with random potentials. The

proposed method, however, is efficient to solve this problem.
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Figure 6: Anderson localization when σ = 5 and β = 0 in 2D.
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6. Conclusions and discussions

In this paper, we propose a multiscale reduced basis method to solve the Schrödinger equation

with random potential in the semiclassical regime. The physical space of the solution is ap-

proximated by a set of localized multiscale basis functions based on an optimization approach.

The proper orthogonal decomposition method is then applied to extract a smaller number of

multiscale reduced basis functions to further reduce the computational cost without loss of

approximation accuracy. The number of samples to learn the multiscale reduced basis func-

tions is also analyzed, which provides guidance in practical computations. The quasi-Monte

Carlo method is employed to approximate the random space of the solution. Approximation

accuracy of the proposed method is analyzed. It is observed that the spatial gridsize is propor-

tional to the semiclassical parameter and the number of samples is inversely proportional to the

same parameter. Finally we present several numerical examples to demonstrate the accuracy

and efficiency of the proposed method. Moreover, we investigate the Anderson localization

phenomena for Schrödinger equation with correlated random potentials in both 1D and 2D.

There are two lines of work which deserve explorations in the near future. Firstly, in

the physics community, the random Schrödinger equation in higher dimensions (2D and 3D)

has been frequently used to study Anderson localization; see [17] for example. Though the

random potential is assumed to be white noise without spatial correlation in the original paper

[2], correlated random potential is also found to generate localized states; see [10] for example.

In the mathematics community, it is also known that the existence or nonexistence of Anderson

localization for some types of 3D Schrödinger equations with random potentials remains open

[14]. It is thus quite interesting to explore this issue from a numerical perspective. Secondly,

we plan to solve the Helmholtz equation in random media using the multiscale reduced basis

basis method developed in this paper.
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