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Abstract. We first introduce hyperbolic analogues of Belyi maps, Shabat

polynomials and Grothendieck’s dessins d’enfant. We then give arithmetic
properties of the coefficients of the Chebyshev-Blaschke products and prove

some Landen-type identities for theta functions.

1. Introduction

It is well known that there is a bijective correspondence between the connected
compact Riemann surfaces and the nonsingular irreducible complex projective curves
[12, p. 22-24]. In 1979, G. V. Belyi proved the following theorem:

Theorem 1.1 (Belyi, [2]). A connected compact Riemann surface X is defined over
the field Q of algebraic numbers if and only if there exists a nonconstant holomorphic

map f : X → Ĉ with at most 3 critical values in the Riemann sphere Ĉ. In such
case, f is isomorphic to a branched covering that is defined over Q.

A branched covering X of the Riemann sphere Ĉ ramified over at most three
points a, b, c has then been called a Belyi map. Inspired by Belyi’s theorem,
Grothendieck introduced in 1984 the theory of dessin d’enfant in his Esquisse d’un
programme [9] in the hope of a better understanding of the absolute Galois group
Gal(Q/Q). The dessin d’enfant of a Belyi map has been defined to be the preim-
age under the Belyi map of the geodesic between a and b.

Let F2 = 〈g1, g2〉 be the free group of rank 2 and Sn be the symmetric group
acting on {1, . . . , n}. A monodromy representation is a group homomorphism
ρ : F2 → Sn. We say a monodromy representation ρ : F2 → Sn is transitive if
ρ(F2) acts on {1, . . . , n} transitively. Two monodromy representations ρ1 : F2 → Sn
and ρ2 : F2 → Sn are said to be equivalent if there exists a permutation ι on
{1, . . . , n} such that ρ1(gi) ◦ ι = ι ◦ ρ2(gi) for each i = 1, 2. It is easy to check
that this indeed defines an equivalence relation on the collection of all monodromy
representations, and that if two monodromy representations are equivalent and one
of them is transitive, then so is the other. The category of Belyi maps, the category
of dessins d’enfant and the category of transitive monodromies are all equivalent to
each other. The detailed explanations can be found in [8] and [13]. In particular,
one has
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Theorem 1.2 ([8, p. 148-155]). There is a bijective correspondence between the
equivalence classes of Belyi maps onto the Riemann sphere and the equivalence
classes of transitive monodromy representations.

Roughly speaking, monodromies and dessins d’enfant, which are discrete ob-
jects, determine uniquely the Belyi maps which are arithmetic objects. Moreover,
Grothendieck introduced the Galois action of Gal(Q/Q) on the Belyi maps, and
hence on the dessins d’enfant [9].

Definition 1.3. Let F2 := 〈g1, g2〉 be the rank 2 free group. Given a transitive
monodromy representation ρ : F2 → Sn. Denote the numbers of cycles in ρ(g1) and
ρ(g2) by c1 and c2 respectively. We say that ρ is a tree if c1 + c2 = n+ 1.

It is easy to check that if ρ and ρ′ are equivalent transitive monodromy represen-
tations, then ρ(gi) and ρ′(gi) have the same number of cycles, for i = 1, 2. Hence
if one of ρ and ρ′ is a tree, then so is the other. A polynomial with at most two
finite critical values is called a Shabat polynomial, which is clearly a Belyi map.
The following subcorrespondence was proved by Shabat and Voevodsky [24]:

Theorem 1.4 ([13, p. 84-85], [24]). An equivalence class of transitive monodromy
representations is a tree if and only if the corresponding equivalence class of Belyi
maps consists of a Shabat polynomial.

There is also a Galois action of Gal(Q/Q) on the Shabat polynomials, and hence
on the trees. It was proved by Lenstra and Schneps [23] that this action is faithful.
Following Grothendieck, one hopes that the structures of Gal(Q/Q) can be revealed
from the combinatorial properties of the trees or the dessins d’enfants.

We will establish a hyperbolic analogue (Theorem 3.4) of Grothendieck’s theory

of dessins d’enfant by replacing the Riemann sphere Ĉ with three marked points by
the open unit disk D with two marked points. However, in this analogue the hyper-
bolic Belyi maps constructed from a given transitive monodromy are not rigid,
i.e. they depend on the hyperbolic distance between the two marked points under
the Poincaré metric. Moreover, we will establish a hyperbolic analogue (Theorem
5.2) of Shabat’s correspondence. Indeed, the tree monodromies will correspond
to finite Blaschke products with at most two critical values in D, and such finite
Blaschke products will be called Shabat-Blaschke products. Again, Shabat-
Blaschke products constructed from a tree monodromy are not rigid and they de-
pend on the hyperbolic distance between the two critical values in D. We will also
introduce and study the size of the hyperbolic dessin d’enfant of a Shabat-Blaschke
product in Section 6.

It is natural to ask if there is a hyperbolic analogue of Belyi’s theorem when one

replaces the Riemann sphere Ĉ by the open unit disk D andX is a noncompact topo-
logically finite Riemann surface. To formulate such a result, there are two problems
one needs to address first: i) What should be the algebraic object associated with
the noncompact topologically finite Riemann surface X? ii) What should be used
to replace Q? We do not know how to answer the first question, except some specu-
lation given in Section 11. For the second question, it would be helpful to first study
some concrete examples, in particular, the case X = D and the hyperbolic Belyi
maps are Shabat-Blaschke products. It is known that the Chebyshev polynomi-
als are examples of Shabat polynomials and their coefficients are integers. We will
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prove a hyperbolic analogue of this statement. Chebyshev-Blaschke products,
which are hyperbolic analogues of Chebyshev polynomials, were studied by Ng,
Tsang and Wang [18][19][20]. The Chebyshev-Blaschke products are examples of
Shabat-Blaschke products. We will first recall the definition of Chebyshev-Blaschke
products. Then we prove that the Chebyshev-Blaschke products are defined over

Z
[√

k,
√
k ◦ sn,

ω1 ◦ sn
ω1

]
⊆ Q(j),

where n is the degree of the Chebyshev-Blaschke product, sn is the scaling by n, k
and ω1 are defined in terms of Jacobi theta functions, and j is the j-invariant. This
leads us to eventually show that the Chebyshev-Blaschke products are defined over
Z[[q1/4]], the ring of power series in q1/4 over Z, where q = e2πiτ . Finally, we also
obtain a family of Landen-type identities for theta functions as byproducts, which
can degenerate to a family of trigonometric identities.

2. Preliminaries

Many properties of hyperbolic Belyi maps are topological, so we first recall some
well-known results in topology that we are going to use.

Lemma 2.1 (Homotopy lifting property, [10, p. 60]). Suppose X, Y and Z are
topological spaces, p : X → Y is a topological covering, and ft : Z → Y , t ∈ [0, 1],
is a homotopy. Let g : Z → X be a continuous map such that p ◦ g = f0. Then

there exists a unique homotopy f̃t : Z → X such that f̃0 = g and p ◦ f̃t = ft for all
t ∈ [0, 1].

In particular, if Z is a point, then we have the following:

Lemma 2.2 (Path lifting property). Suppose X and Y are topological spaces and
p : X → Y is a topological covering. Let γ : [0, 1] → Y be a continuous path
in Y . For any x ∈ X with p(x) = γ(0), there exists a unique continuous path
γ̃x : [0, 1]→ X such that γ̃x(0) = x and p ◦ γ̃x = γ.

Lemma 2.3. Suppose X and Y are topological spaces and p : X → Y is a finite
topological covering of degree n. Let γ : [0, 1] → Y be a continuous path in Y .
Let E := p−1(γ(0)) = {x1, . . . , xn} and F := p−1(γ(1)). Define σ : E → F by
σ(xi) = γ̃xi(1) for each i, where γ̃xi is defined in Lemma 2.2. Then σ is bijective.

Proof. Since E and F have the same finite cardinality, it suffices to show that
σ is injective. Let the reversed path of γ be defined by γ−1(t) := γ(1 − t) for
all t ∈ [0, 1]. For each i and each t ∈ [0, 1], let γ̃−1xi (t) := γ̃xi(1 − t), we have

p ◦ γ̃−1xi (t) = p(γ̃xi(1− t)) = γ(1− t) = γ−1(t), so p ◦ γ̃−1xi = γ−1 for each i. Suppose

xi, xj ∈ E and σ(xi) = σ(xj). Then γ̃−1xi and γ̃−1xj are liftings of γ−1, and both

start at the point γ̃xi(1) = γ̃xj (1). By the uniqueness in Lemma 2.2, γ̃−1xi = γ̃−1xj .

In particular, xi = γ̃xi(0) = γ̃−1xi (1) = γ̃−1xj (1) = γ̃xj (0) = xj . �

Lemma 2.4. Suppose X and Y are topological spaces, p : X → Y is a topological
covering, and ft : [0, 1] → Y , t ∈ [0, 1], is a homotopy such that ft(0) = f0(0)
and ft(1) = f0(1) for all t ∈ [0, 1]. Suppose g0 and g1 are liftings of f0 and f1
respectively and g0(0) = g1(0). Then g0 and g1 are homotopic and g0(1) = g1(1).
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Proof. By Lemma 2.1, there exists a homotopy f̃t : [0, 1]→ X such that f̃0 = g0 and

p ◦ f̃t = ft for all t ∈ [0, 1]. Since the path ft(0) is a constant, by the uniqueness in

Lemma 2.2, f̃t(0) = f̃0(0) for all t ∈ [0, 1]. Similarly, f̃t(1) = f̃0(1) for all t ∈ [0, 1].

Now both f̃1 and g1 are liftings of f1, and f̃1(0) = f̃0(0) = g0(0) = g1(0). By

Lemma 2.2, g1 = f̃1, which is homotopic to f̃0 = g0. Moreover, g0(1) = f̃0(1) =

f̃1(1) = g1(1). �

Lemma 2.5 ([6, p. 22]). Suppose X is a connected Riemann surface, Y is a
Hausdorff topological space and f : Y → X is a local homeomorphism. Then there
is a unique complex structure on Y such that f is holomorphic.

Lemma 2.6 ([6, p. 29]). Suppose X and Y are connected Riemann surfaces, and
f : X → Y is a nonconstant proper holomorphic mapping. Let B be the set of all
critical values of f , X ′ := X \ f−1(B) and Y ′ = Y \ B. Then f : X ′ → Y ′ is an
unbranched holomorphic covering.

Lemma 2.7 ([6, p. 51]). Suppose X is a Riemann surface, A ⊂ X is a closed
discrete subset. Let X ′ := X \A. If Y ′ is a Riemann surface and f ′ : Y ′ → X ′ is an
unbranched holomorphic covering, then f ′ can be extended to a branched covering
of X, i.e. there exists a Riemann surface Y , a nonconstant proper holomorphic
mapping f : Y → X, and a biholomorphism φ : Y \ f−1(A) → Y ′ such that
f |Y \f−1(A) = f ′ ◦ φ.

Lemma 2.8 ([6, p. 52]). Suppose X,Y and Z are connected Riemann surfaces,
f : Y → X and g : Z → X are nonconstant proper holomorphic mappings.
Let A ⊂ X be a closed discrete subset. Let X ′ := X \ A, Y ′ := f−1(X ′) and
Z ′ := g−1(X ′). If φ′ : Y ′ → Z ′ is a biholomorphism such that g ◦ φ′ = f |Y ′ , then
φ′ can be extended to a biholomorphism φ : Y → Z such that g ◦ φ = f .

Let n be a positive integer. The Hecke congruence subgroup of level n is
defined to be

Γ0(n) :=

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod n)

}
.

Let H be the open upper half plane, and k be a positive even integer. A function
f : H → C is said to be a modular form of weight k and of level n, if all of
the following conditions hold:

(1) f is holomorphic;

(2) For any

(
a b
c d

)
∈ Γ0(n) and τ ∈ H,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ);

(3) f is holomorphic at all the cusps [5, p. 16-17].

A function f : H→ C satisfying condition (2) is said to be of weight k invariant
under Γ0(n).

Lemma 2.9 ([5, p. 21, 24]). If f : H → C is a modular form of weight k and of
level n, then f(mτ) is a modular form of weight k and of level mn.
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A function f : H → C ∪ {∞} is said to be a modular function of level n if
all of the following conditions hold:

(1) f is meromorphic,
(2) f is invariant (i.e. weight 0 invariant) under Γ0(n),
(3) f is meromorphic at all the cusps.

For any positive integer, let j to be the j-invariant and jn(τ) = j(nτ). We have
the following:

Lemma 2.10 ([4, p. 229]). Let f : H→ C be a modular function of level n whose
Fourier expansion at ∞ has rational coefficients. Then f ∈ Q(j, jn).

Lemma 2.11 ([4, p. 210]). For any positive integer n, there exists a nonconstant
polynomial Φn ∈ Q[X,Y ] such that Φn(j, jn) = 0.

3. Hyperbolic Belyi maps

A domain U ⊂ C is said to be n-connected if Ĉ \ U has n+ 1 components. A
simply connected domain is a 0-connected domain. A doubly connected domain
is a 1-connected domain. A domain is finitely connected if it is n-connected for
some n ≥ 0. The open unit disk is denoted by D.

Each doubly connected domain U in C can be mapped conformally onto an an-

nulus Ar := {z : r < |z| < 1}, for some r ∈ [0, 1), or to Ĉ \ {0,∞}. Moreover, two
annuli Ar1 and Ar2 are conformally equivalent if and only if r1 = r2, and none of

the annuli is conformally equivalent to Ĉ \ {0,∞}, see for example [3, p. 96] and
[22, p. 283]. The modulus of U , denoted by M(U), is defined to be 1

2π log(1/r)
if 0 < r < 1, and to be +∞ if r = 0, when U is conformally equivalent to Ar.

Also, M(U) is defined to be 0 if U is conformally equivalent to Ĉ \ {0,∞}. For
each t ∈ (0, 1), the Grötzsch’s ring domain Gt is the doubly connected domain
D− [0, t]. The modulus of the Grötzsch’s ring domain, M(Gt), is a strictly decreas-
ing continuous function in t that maps onto (0,+∞) [15, p. 59-62]. Suppose l is
a geodesic between two distinct points a, b ∈ D equipped with the Poincaré metric
[1]. Then D− l is conformal to a Grötzsch’s ring domain. The modulus M(D− l) is
uniquely determined by the hyperbolic length of l. Hence, if l1 and l2 are hyperbolic
line segments of different lengths, then M(D− l1) 6= M(D− l2).

A hyperbolic Belyi map is a tuple (X, f, a, b), whereX is a connected Riemann
surface, a, b are two distinct points in the standard unit disk D, and f : X → D is a
nonconstant proper holomorphic mapping whose critical values all lie in {a, b}. The
modulus of a hyperbolic Belyi map (X, f, a, b) is defined to be M(D− l), where l
is the geodesic between a and b under the Poincaré metric. Two hyperbolic Belyi
maps (X1, f1, a1, b1) and (X2, f2, a2, b2) are said to be equivalent if there exists
φ ∈ Aut(D) and biholomorphism ϕ : X1 → X2 such that φ(a1) = a2, φ(b1) = b2,
and f2 ◦ ϕ = φ ◦ f1. It is easy to check that this indeed defines an equivalence
relation on the collection of all hyperbolic Belyi maps.
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Given a hyperbolic Belyi map (X, f, a, b), we can associate a transitive mon-
odromy representation to it in the following way:

Let y ∈ D \ {a, b}. Let γ1, γ2 : [0, 1] → D \ {a, b} be some continuous paths
both starting and ending at y such that γ1 is homotopic to an anticlockwise small
circle around a that separates the two points a and b, and γ2 is homotopic to an
anticlockwise small circle around b that separates the two points a and b. Let
n := deg f and E := f−1(y) = {x1, . . . , xn}. By Lemma 2.6 and the path lift-
ing property (Lemma 2.2), γ1 is lifted to n paths γ̃1x1

, . . . , γ̃1xn . Similarly for the
path γ2. Now define σ1 : E → E by σ1(xi) = γ̃1xi(1) for each i = 1, . . . , n, and
σ2 : E → E by σ2(xi) = γ̃2xi(1) for each i = 1, . . . , n. Then by Lemma 2.3, σ1
and σ2 are bijections on E. Let δ : E → {1, . . . , n} be a bijection. We define the
group homomorphism ρ : F2 → Sn by gi 7→ δ ◦ σi ◦ δ−1, i = 1, 2. It is easy to show
that this construction of ρ is up to equivalence independent of the choice of the
bijection δ. By Lemma 2.4, σ1, σ2 and hence ρ are independent of the choices of γ1
and γ2. Suppose x is another point in D \ {a, b}, and suppose β1, β2 are homotopic
to γ1, γ2 respectively and they start and end at x. Let D := f−1(x). Define the
bijections λ1, λ2 : D → D from β1, β2 in the same way as we define σ1, σ2 from
γ1, γ2. There exists a continuous path α : [0, 1] → D \ {a, b} such that α(0) = x
and α(1) = y. Define η : D → E by sending a point p in D to the endpoint of the
lifting of α starting at p. By Lemma 2.3, η is a bijection. By Lemma 2.4, we have
λi = η−1 ◦ σi ◦ η for i = 1, 2. Therefore, the construction of ρ is independent of the
choice of the base point y.

Next, we want to prove that ρ is transitive. Suppose xi, xj ∈ E. Since X is
a connected Riemann surface, X is path connected. Since X is a path connected
Riemann surface and f−1({a, b}) is a finite set, X \ f−1({a, b}) is still path con-
nected. So there exists a path β : [0, 1] → X \ f−1({a, b}) such that β(0) = xi
and β(1) = xj . Then f ◦ β is a closed path that starts and ends at y. Since the
fundamental group π1(D \ {a, b}, y) is generated by γ1 and γ2, we have that f ◦β is
homotopic (with endpoint y fixed) to γm1 · · · γmk , where m1, . . . ,mk = 1, 2. Define

p1 := γ̃m1xi
(1), p2 := γ̃m2p1

(1), . . . , pk := γ̃mkpk−1
(1).

Then

f ◦ (γ̃m1xi
γ̃m2p1

· · · γ̃mkpk−1
) = (f ◦ γ̃m1xi

)(f ◦ γ̃m2p1
) · · · (f ◦ γ̃mkpk−1

)

= γm1γm2 · · · γmk .
By Lemma 2.4, γ̃m1xi

γ̃m2p1
· · · γ̃mkpk−1

ends at xj . Define σ := σmk ◦ · · · ◦ σm1
.

Then σ(xi) = pk = xj , so ρ is transitive.

Lemma 3.1. Suppose (X, f, a, b) and (X ′, f ′, a′, b′) are two equivalent hyperbolic
Belyi maps. Then the transitive monodromy representations ρ and ρ′ associated
respectively to these two hyperbolic Belyi maps are equivalent.

Proof. Let y, γ1, γ2, E, σ1, σ2 be as above. Since (X, f) and (X ′, f ′) are equivalent,
there exists a biholomorphism ϕ : X → X ′ and φ ∈ Aut(D) such that φ(a) = a′,
φ(b) = b′ and f ′ ◦ ϕ = φ ◦ f . Let E′ := f ′−1(φ(y)). Since winding numbers are in-
variant under biholomorphism, the closed paths φ◦γ1 and φ◦γ2 are representatives
of generators of π1(D \ {a′, b′}). Let σ′1, σ

′
2 be the bijections on E′ obtained respec-

tively from φ◦γ1 and φ◦γ2. It is easy to check that ϕ(E) = E′, so ϕ|E : E → E′ is
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a bijection. Let xi ∈ E. Since f ′ ◦ ϕ ◦ γ̃1xi = φ ◦ γ1, we know that both φ̃ ◦ γ1ϕ(xi)
and ϕ◦ γ̃1xi are liftings of φ◦γ1 by f ′, and both paths start from ϕ(xi). By Lemma

2.2, φ̃ ◦ γ1ϕ(xi)(1) = ϕ ◦ γ̃1xi(1), so σ′1 ◦ ϕ|E(xi) = ϕ|E ◦ σ1(xi). This is true for

each xi ∈ E, so σ′1 ◦ ϕ|E = ϕ|E ◦ σ1. Similarly, σ′2 ◦ ϕ|E = ϕ|E ◦ σ2. �

We also have the converse of the above lemma:

Lemma 3.2. If (X, f, a, b) and (X ′, f ′, a′, b′) are hyperbolic Belyi maps of the same
modulus whose associated transitive monodromy representations ρ and ρ′ are equiv-
alent, then (X, f, a, b) and (X ′, f ′, a′, b′) are equivalent.

Proof. Let y,E, γ1, γ2, σ1, σ2 be the intermediate notations previously defined corre-
sponding to (X, f, a, b). Let y′, E′, γ′1, γ

′
2, σ
′
1, σ
′
2 be that corresponding to (X ′, f ′, a′, b′).

Then there exists a bijection ϕ : E → E′ such that σ′i ◦ϕ = ϕ ◦ σi, for i = 1, 2. Let
xi ∈ E and (f |X\f−1{a,b})∗ be the induced group homomorphism of f |X\f−1{a,b}
pointed at xi. We know that

(f |X\f−1{a,b})∗(π1(X \ f−1{a, b}, xi)) = {γ ∈ π1(D \ {a, b}, y)|γ̃xi(1) = xi},
which is in turn equal to the preimage under the group homomorphism π1(D \
{a, b}, y)→ Bij(E) of the subgroup of bijections on E fixing xi. Since σ′i◦ϕ = ϕ◦σi,
for i = 1, 2, this group is then isomorphic (via γi 7→ γ′i) to the preimage under the
group homomorphism π1(D \ {a′, b′}, y′) → Bij(E′) of the subgroup of bijections
on E′ fixing ϕ(xi), which is equal to

{γ ∈ π1(D \ {a′, b′}, y′)|γ̃ϕ(xi)(1) = ϕ(xi)}
= (f ′|X′\f ′−1{a′,b′})∗(π1(X ′ \ f ′−1{a′, b′}, ϕ(xi))).

Since the two hyperbolic Belyi maps are of the same modulus, there exists φ ∈
Aut(D) such that φ(a) = a′ and φ(b) = b′. By Proposition 1.37 in [10, p. 67], the
two coverings

X \ f−1{a, b} f−→ D \ {a, b}
and

X ′ \ f ′−1{a′, b′} f ′−→ D \ {a′, b′} φ−1

−−→ D \ {a, b}
are isomorphic as topological coverings. By Lemma 2.5, these two holomorphic
coverings are isomorphic. By Lemma 2.8, the two hyperbolic Belyi maps are equiv-
alent. �

We also have the following variant of the Riemann existence theorem:

Lemma 3.3. Given a λ ∈ (0,+∞) and a transitive monodromy representation
ρ, there exists a hyperbolic Belyi map (X, f, a, b) of modulus λ whose associated
transitive monodromy representation is equivalent to ρ.

Proof. Suppose the codomain of ρ is Sn for some positive integer n. Let ∆1, . . . ,∆n

be copies of the open unit disk slitted along [0, 1). Let t ∈ (0, 1) such that the
modulus of D\ [0, t] is λ. Assume along the slit, each slitted disk ∆i has two disjoint
copies of (0, t) attached, named αui and αli, and has two disjoint copies of (t, 1)
attached, named βui and βli. We construct a connected topological space Z from
ti∆i by gluing the edges αli and αuj together whenever ρ(g1)(i) = j, and gluing the

edges βli and βuj together whenever ρ(g2)(ρ(g1)(i)) = j. We define g : Z → D\{0, t}
to be the canonical projection onto D \ {0, t}, which is a topological covering. By
Lemma 2.5, there exists a complex structure on Z such that g : Z → D \ {0, t} is a
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holomorphic covering. By Lemma 2.7, g extends to a branched covering f : X → D
whose critical values all lie in the set {0, t}. Now f is the desired hyperbolic Belyi
map. �

By Lemma 3.1, Lemma 3.2 and Lemma 3.3, we have the following:

Theorem 3.4. For each λ ∈ (0,+∞), there is a bijective correspondence between
the equivalence classes of hyperbolic Belyi maps of modulus λ and the equivalence
classes of transitive monodromy representations.

This theorem is the hyperbolic analogue of Theorem 1.2. The main difference
between the two versions is that in the hyperbolic analogue, we have the extra pa-
rameter λ that depends on the hyperbolic distance between the two critical values
in D.

4. Difference in Euler characteristics

A Riemann surface is said to be topologically finite if it is homeomorphic to
a closed surface with at most finitely many closed disks and points removed.

Lemma 4.1 (Riemann-Hurwitz: topologically finite version, [20][25]). Suppose f :
X → Y is a nonconstant proper holomorphic mapping between Riemann surfaces.
If Y is topologically finite and f has finitely many critical values, then X is also
topologically finite and the following Riemann-Hurwitz formula holds,

degRf = deg f · χ(Y )− χ(X),

where Rf is the ramification divisor of f , hence degRf is the sum of the order of
the critical points of f , and χ(X) and χ(Y ) are Euler characteristic of X and Y
respectively.

By Lemma 4.1, given any hyperbolic Belyi map (X, f, a, b), we know that X
is topologically finite. Moreover, since D is noncompact, and f is continuous and
surjective, we know X is also noncompact, so X is homeomorphic to a closed surface
with at least a disk or a point removed.

Lemma 4.2. Let (X, f, a, b) be a hyperbolic Belyi map and σ1, σ2 be defined as in
Section 3. Then the number of cycles of σ1 equals the cardinality of f−1(a) and the
number of cycles of σ2 equals the cardinality of f−1(b).

Proof. By a theorem on the local behavior of a holomorphic mapping [6, p. 10], we
can choose a small circle β around a such that it is lifted by f to |f−1(a)| cycles of
paths, each cycle goes around a preimage of a and the number of paths the cycle
contains is equal to the multiplicity of that preimage. Next, we join the base point
y to the circle β by a path α in D \ {a, b}. Then the closed path αβα−1 is lifted
to cycles of paths having the same property. Since αβα−1 is homotopic to γ1, by
Lemma 2.4, the lifting of γ1 is again cycles of paths having the same property.
Hence, the number of cycles of σ1 equals |f−1(a)|. Similarly, the number of cycles
of σ2 equals |f−1(b)|. �

Fix a λ ∈ (0,+∞). Given a transitive monodromy representation ρ : F2 :=
〈g1, g2〉 → Sn. Let (X, f, a, b) be the hyperbolic Belyi map of modulus λ associated
to ρ. Let (X, f, c, d, e) be the Belyi map onto the Riemann sphere associated to
ρ. We have that deg f = n = deg f . By Lemma 4.2 and its analogue for Belyi
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maps onto the Riemann sphere, |f−1(c)| = c1 = |f−1(a)|, similarly |f−1(d)| = c2 =
|f−1(b)|. By the Riemann-Hurwitz formula in Lemma 4.1,

χ(X)− χ(X) = deg f · χ(C)− degRf − deg f · χ(D) + degRf

= 2 deg f − degRf − deg f + degRf

= deg f − (3 deg f − |f−1(c)| − |f−1(d)| − |f−1(e)|)
+(2 deg f − |f−1(a)| − |f−1(b)|)

= |f−1(e)|.
Therefore, χ(X) is χ(X) minus the number of cycles in ρ(g1)−1 ◦ ρ(g2)−1, as

γcγdγe = 1, where γc, γd, γe are closed continuous paths in Ĉ with the same base

point in Ĉ \ {c, d, e} that goes around c, d and e respectively, just like how γ1, γ2
goes around a and b in Section 3.

Remark 4.3. Alternatively, by comparing X and X constructed using the cutting
and pasting surgery in the Riemann Existence Theorem, one can see that X differs
from X by missing c3 number of closed disks, where c3 is the number of cycles in
ρ(g1)−1 ◦ ρ(g2)−1. Since taking away a disk from a surface will decrease its Euler
characteristic by 1, we obtain the same formula as before.

When X = Ĉ, f is a nonconstant Shabat polynomial, and e = ∞, we have

|f−1(e)| = 1. Then χ(X) = χ(X) − |f−1(e)| = 2 − 1 = 1. By Liouville’s the-
orem, X cannot be biholomorphic to C, so X is biholomorphic to D. Therefore,
in the next section we will study the hyperbolic Belyi maps (X, f, a, b) when X = D.

5. Shabat-Blaschke products

Definition 5.1. A Shabat-Blaschke product is a triple (g, a, b), where g : D→
D is a finite Blaschke product whose critical values all lie in {a, b}. The modulus of
a Shabat-Blaschke product is defined to be M(D−l), where l is the geodesic between
a and b. We say that two Shabat-Blaschke products (g1, a1, b1) and (g2, a2, b2) are
equivalent if there exists φ, ϕ ∈ Aut(D) such that φ(a1) = b1, φ(b1) = b2, and
g2 ◦ ϕ = φ ◦ g1.

The following result gives a characterization of Shabat-Blaschke products:

Theorem 5.2. An equivalence class of hyperbolic Belyi maps consists of a hyper-
bolic Belyi map of the form (D, g, a, b), where (g, a, b) is a Shabat-Blaschke product,
if and only if the corresponding equivalence class of transitive monodromy represen-
tations is a tree.

Proof. Let (X, f, a, b) be a hyperbolic Belyi map and let ρ : F2 → Sn be its corre-
sponding transitive monodromy representation. By the Riemann-Hurwitz formula
in Lemma 4.1 and by Lemma 4.2,

χ(X) = deg f · χ(D)− degRf

= n− (2n− |f−1(a)| − |f−1(b)|)
= −n+ c1 + c2.

If ρ is a tree, then χ(X) = 1, so X is homeomorphic to the open unit disk D. By Li-
ouville’s theorem, X cannot be biholomorphic to C. By the uniformization theorem,
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X is thus biholomorphic to D. Hence (X, f, a, b) is equivalent to a hyperbolic Belyi
map (D, g, a, b). Since g : D → D is a nonconstant proper holomorphic mapping,
g is a finite Blaschke product by a theorem of Fatou [21, p. 212]. Hence (g, a, b)
is a Shabat-Blaschke product. Conversely, if (X, f, a, b) is equivalent to (D, g, a, b),
where (g, a, b) is a Shabat-Blaschke product, then χ(X) = 1, so c1 + c2 = n+ 1, i.e.
its corresponding transitive monodromy representation is a tree. �

Via the transitive monodromy representations, we obtain for each fixed λ ∈
(0,+∞), a bijective correspondence between the equivalence classes of Belyi maps
onto the Riemann sphere and the equivalence classes of hyperbolic Belyi maps of
modulus λ. By Belyi’s theorem, in each equivalent class of Belyi map onto the
Riemann sphere, there is a representative element (X, f, a, b, c) such that X and f
are defined over Q. There is a group action by the absolute Galois group Gal(Q/Q)
on the set of equivalence classes of Belyi maps onto the Riemann sphere, which is
defined by acting on the algebraic coefficients of X and f [13, p. 115-117][8, p.
250][9]. Thus for each fixed λ, there is an induced Galois action on the set of
equivalence classes of hyperbolic Belyi maps of modulus λ. Similarly, there is a
Galois action on the set of equivalence classes of Shabat polynomials and we have
the following:

Theorem 5.3. For each fixed λ ∈ (0,+∞), there is a bijective correspondence
between the eqivalence classes of Shabat polynomials and the equivalence classes of
Shabat-Blaschke products of modulus λ, we also have an induced Galois action on
the set of equivalence classes of Shabat-Blaschke products of modulus λ.

Proof. Theorem 1.4 says that there is a bijective correspondence between the equiv-
alence classes of tree monodromies and the equivalence classes of Shabat polyno-
mials. Theorem 5.2 implies that for each fixed λ ∈ (0,+∞), there is a bijective
correspondence between the equivalence classes of tree monodromies and the equiv-
alence classes of Shabat-Blaschke products of modulus λ. The first claim follows by
compositing the two correspondences. The Galois action on the set of equivalence
classes of Shabat-Blaschke products of modulus λ is induced from that on the set
of equivalence classes of Shabat polynomials. �

6. Size of hyperbolic dessins d’enfant in D

The dessin d’enfant of a Belyi map (X, f, a, b, c) onto the Riemann sphere is

defined to be the preimage of a geodesic in Ĉ joining a and b [13, p. 80][9]. We can
define the hyperbolic dessin d’enfant of a hyperbolic Belyi map (X, f, a, b) simi-
larly to be the preimage of the geodesic l joining a and b under the Poincaré metric.
We regard the preimages of a and b as the white and black vertices respectively of
the dessin, while the n liftings of the geodesic as the edges of the dessin, where n is
the degree of f . If the associated transitive monodromy representation of a (hyper-
bolic) Belyi map is a tree, then by Lemma 4.2, |f−1(a)|+ |f−1(b)| = c1+c2 = n+1,
so its associated dessin has n+1 vertices and n edges, and such dessin is a connected

bipartite tree embedded in X, where X = Ĉ if the Belyi map is onto Ĉ, and X = D
if the Belyi map is hyperbolic.
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Let (B, a, b) be a Shabat-Blaschke product and l be the geodesic joining a and
b under the Poincaré metric of D. Then D \ B−1(l) is doubly connected and the
modulus of it will be called the size of the hyperbolic dessin d’enfant B−1(l).

Let Ar := {z : r < |z| < 1}. We have the following lemma:

Lemma 6.1. If f : U → Ar is a proper unbranched covering of degree n, then U
is biholomorphic to the doubly-connected domain Ar1/n .

Proof. The fundamental group π1(Ar) is Z. There is a bijective correspondence
between the subgroups of π1(Ar) and the power maps gm : Ar1/m → Ar, m ≥ 1,
defined by gm(z) = zm. This implies that the power maps are all the proper
unbranched coverings of Ar up to isomorphism. Since f is of degree n, we know
that f is isomorphic to the power map gn, so the domain U is biholomorphic to
Ar1/n . �

Theorem 6.2. Suppose (B, a, b) is a Shabat-Blaschke product of degree n and of
modulus λ. Let l be the geodesic between a and b under the Poincaré metric of D.
Then the modulus of D−B−1(l) is λ/n.

Proof. There exists a biholomorphism φ that maps D − l onto an annulus Ar for
some r ∈ (0, 1). The map φ◦B : D−B−1(l)→ Ar is a proper unbranched covering.
By Lemma 6.1, we have

M(D−B−1(l)) = M(Ar1/n) =
1

2π
log(1/r1/n) =

1

n
M(Ar) =

1

n
M(D− l) = λ/n.

�

Loosely speaking, the above theorem showed quantitatively how the size of a hy-
perbolic dessin d’enfant of a Shabat-Blaschke product depends on the degree and
the modulus of the Shabat-Blaschke product. Note however that there is no such
concept of the size of a dessin d’enfant of a Shabat polynomial, since the Riemann
sphere with a connected tree taken away is a simply-connected domain.

7. Jacobi elliptic functions

For any τ in the open upper-half plane H, and q = e2πiτ , the Jacobi theta
functions are defined as follows:

ϑ1(v, τ) =

∞∑
n=−∞

i2n−1q(n+1/2)2e(2n+1)iv,

ϑ2(v, τ) =

∞∑
n=−∞

q(n+1/2)2e(2n+1)iv,

ϑ3(v, τ) =

∞∑
n=−∞

qn
2

e2niv,

ϑ0(v, τ) =

∞∑
n=−∞

(−1)nqn
2

e2niv.
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We also define

ω1(τ) = ϑ23(0, τ), k(τ) =
ϑ22(0, τ)

ϑ23(0, τ)
,
√
k(τ) =

ϑ2(0, τ)

ϑ3(0, τ)
.

The theta functions can be expressed in terms of each other, for example:

ϑ0(v, τ) = ϑ3(v + 1/2, τ). (1)

The modular transformations [26, p. 475][14, p. 17] for the theta functions ϑ3 and
ϑ2 are:

ϑ3(v, τ + 1) = ϑ3(v, τ), (2)

ϑ2(v, τ + 1) = ϑ2(v, τ), (3)

ϑ3(v,−1/τ) = (−iτ/2)1/2e
iτv2

2π ϑ3(τv/2, τ/4), (4)

and

ϑ2(v,−1/τ) = (−iτ/2)1/2e
iτv2

2π ϑ0(τv/2, τ/4). (5)

We also have

ϑ3(0, τ − 1/2) = ϑ0(0, τ) (6)

and

ϑ43(0, τ) = ϑ42(0, τ) + ϑ40(0, τ). (7)

The Jacobi elliptic functions are defined as follows:

sn(u, τ) =
ϑ3(0, τ)

ϑ2(0, τ)
· ϑ1(u/ω1(τ), τ)

ϑ0(u/ω1(τ), τ)
,

cn(u, τ) =
ϑ0(0, τ)

ϑ2(0, τ)
· ϑ2(u/ω1(τ), τ)

ϑ0(u/ω1(τ), τ)
,

dn(u, τ) =
ϑ0(0, τ)

ϑ3(0, τ)
· ϑ3(u/ω1(τ), τ)

ϑ0(u/ω1(τ), τ)
,

cd(u, τ) =
cn(u, τ)

dn(u, τ)
.

It is known that [14, p. 26]

lim
τ→+i∞

cd(u, τ) = cos(u). (8)

8. Chebyshev-Blaschke products

Let n be a positive integer, τ ∈ R>0i, and D be the open unit disk. The
Chebyshev-Blaschke product fn,τ : D→ D introduced in [20][18][19] is defined
by

fn,τ (z) =
√
k(nτ)cd(nω1(nτ)u, nτ), (9)

where

z =
√
k(τ)cd(ω1(τ)u, τ).

The Chebyshev-Blaschke products fn,τ , τ ∈ R>0i, are hyperbolic analogues of the
Chebyshev polynomial Tn : C→ C defined by

Tn(z) = cos(nu), z = cos(u).
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Chebyshev polynomials are examples of Shabat polynomials since they have exactly
two critical values in C.

If we regard fn,τ as a rational function on Ĉ and let Tn,τ : Ĉ→ Ĉ be defined by

Tn,τ (z) =
fn,τ (

√
k(τ)z)√

k(nτ)
,

then Tn,τ is referred to as an elliptic rational function. The elliptic rational
functions have applications in filter design in engineering [16, Chapter 12]. It was
shown in [19] that

lim
τ→+i∞

Tn,τ (z) = Tn(z). (10)

The zeros of this Chebyshev-Blaschke product is computed in [18][19], so it can
also be written as a rational function,

fn,τ (z) = z(1−(−1)
n)/2

bn/2c∏
i=1

z2 − bi
1− biz2

, (11)

where

bi =
ϑ22((2i− 1)π/2n, τ)

ϑ23((2i− 1)π/2n, τ)
, 1 ≤ i ≤ bn/2c. (12)

The Chebyshev-Blaschke product fn,τ has exactly two critical values in D,
√
k(nτ)

and −
√
k(nτ) [19]. Therefore, the Chebyshev-Blaschke products fn,τ , n ≥ 1, τ ∈

R>0i, are examples of Shabat-Blaschke products, whose modulus is λn,τ = nπτ/(4i)
[20]. For all τ , the monodromy of the Chebyshev-Blaschke product fn,τ is the same
as that of the Chebyshev polynomial Tn [20][19]. The hyperbolic dessins d’enfant
of the Chebyshev-Blaschke products are chains in D.

9. Rings of definition of Chebyshev-Blaschke products

For each j = 1, . . . , bn/2c, let

Sn,j =
∑

1≤i1<···<ij≤bn/2c

bi1 . . . bij , (13)

where bi is given by (12). The Sn,j are ± of the coefficients of fn,τ when expanded,
as

fn,τ (z) = z(1−(−1)
n)/2

z2bn/2c +
∑bn/2c
j=1 (−1)jSn,j(τ)z2bn/2c−2j

1 +
∑bn/2c
j=1 (−1)jSn,j(τ)z2j

. (14)

Since the bi’s, as functions in τ , are actually defined and meromorphic on the

open upper half plane H, so are Sn,j and f
(k)
n,τ (0).

Lemma 9.1. For each positive integer n ≥ 2, and j = 1, . . . , bn/2c,

Sn,j ∈ Q(fn,τ (0), f ′n,τ (0), f ′′n,τ (0), . . . ),

a subfield of the field M(H) of meromorphic functions on the upper half plane.
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Proof. From (14) we have for each τ ∈ R>0i,

fn,τ (z)

1 +

bn/2c∑
j=1

(−1)jSn,jz
2j

 = z(1−(−1)
n)/2

z2bn/2c +

bn/2c∑
j=1

(−1)jSn,jz
2bn/2c−2j

 .

By expanding fn,τ in power series at 0 and comparing coefficients on both sides,
and using the identity theorem, the tuple (Sn,1, . . . , Sn,bn/2c) satisfies a system (∗)
of countably many linear equations in bn/2c M(H)-variables whose coefficients are
in

Q(fn,τ (0), f ′n,τ (0), f ′′n,τ (0), . . . ).

On the other hand, suppose (T1(τ), . . . , Tbn/2c(τ)) ∈ M(H)bn/2c is a solution to
(∗). Since the poles of Tj are discrete, there exists τ ∈ R>0i and a small open ball
N around τ such that Tj is analytic on N for all j. Then for each τ ∈ R>0i ∩ N ,
we have

fn,τ (z)

1 +

bn/2c∑
j=1

(−1)jTjz
2j

 = z(1−(−1)
n)/2

z2bn/2c +

bn/2c∑
j=1

(−1)jTjz
2bn/2c−2j


on D, and hence on P1 by the identity theorem. Therefore,

z(1−(−1)
n)/2

z2bn/2c +
∑bn/2c
j=1 (−1)jSn,jz

2bn/2c−2j

1 +
∑bn/2c
j=1 (−1)jSn,jz2j

= z(1−(−1)
n)/2

z2bn/2c +
∑bn/2c
j=1 (−1)jTjz

2bn/2c−2j

1 +
∑bn/2c
j=1 (−1)jTjz2j

on P1. Since the numerators of both sides are monic, we have Sn,j(τ) = Tj(τ) for
all j = 1, . . . , bn/2c. Since this holds for all τ ∈ R>0i∩N , by the identity theorem,
Sn,j = Tj on the upper half plane, for all j. This shows that (Sn,1, . . . , Sn,bn/2c)
is the unique solution to (∗). By Gaussian elimination, the infinite system (∗)
is equivalent to a system (∗∗) of at most bn/2c linear equations in bn/2c M(H)-
variables, whose coefficients are again in

Q(fn,τ (0), f ′n,τ (0), f ′′n,τ (0), . . . ).

Now (Sn,1, . . . , Sn,bn/2c) is the unique solution to (∗∗), so the system (∗∗) should
have exactly bn/2c linear equations, and by Cramer’s rule,

Sn,j ∈ Q(fn,τ (0), f ′n,τ (0), f ′′n,τ (0), . . . )

for all j = 1, . . . , bn/2c. �

From (11), we know that the Chebyshev-Blaschke product fn,τ is even if n is
even and it is odd if n is odd. By (9) and the properties on the Jacobi elliptic
functions [26, p. 499-500], we have

fn,τ (0) =

{
(−1)n/2

√
k(nτ) if n is even;

0 if n is odd.
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By differentiating (9) and putting z = 0, we have

f ′n,τ (0) =


0 if n is even;

(−1)(n−1)/2 ·
nω1(nτ)

√
k(nτ)

ω1(τ)
√
k(τ)

if n is odd.

It was proved in [18] that for each n ≥ 1 and τ ∈ R>0i, the Chebyshev-Blaschke
product fn,τ satisfies the following nonlinear differential equation:

ω2
1(τ)(k(τ)− z2)(1− k(τ)z2)d

2w
dz2 + ω2

1(τ)[2k(τ)z3 − (1 + k2(τ))z]dwdz
+n2ω2

1(nτ)[(1 + k2(nτ))w − 2k(nτ)w3] = 0. (15)

Hence we have

f ′′n,τ (0) =

(−1)n/2 ·
n2ω2

1(nτ)
√
k(nτ)

ω2
1(τ)k(τ)

(k2(nτ)− 1) if n is even;

0 if n is odd.

Let

A(z) := ω2
1(τ)(k(τ)− z2)(1− k(τ)z2)

and

B(z) := ω2
1(τ)[2k(τ)z3 − (1 + k2(τ))z].

Denote the binomial coefficients by Cαβ . By applying Leibniz rule twice, for i ≥ 2,

(w3)(i) = 3(w2w(1))(i−1)

= 3

i−1∑
j=0

Ci−1j (w2)(j)w(i−j)

= 3w2w(i) + 3

i−1∑
j=1

Ci−1j (2ww(1))(j−1)w(i−j)

= 3w2w(i) + 6

i−1∑
j=1

j−1∑
k=0

Ci−1j Cj−1k w(k)w(j−k)w(i−j),

so by taking the i-th derivative of (15), we have for i ≥ 2,

Aw(i+2) +

i∑
j=1

(CijA
(j) + Cij−1B

(j−1))w(i−j+2) +B(i)w′ + n2ω2
1(nτ)(1 + k2(nτ))w(i)

−6n2ω2
1(nτ)k(nτ)

w2w(i) + 2

i−1∑
j=1

j−1∑
k=0

Ci−1j Cj−1k w(k)w(j−k)w(i−j)

 = 0. (16)

For j ≥ 5, the j-th derivatives of the polynomials A and B vanish, so for i ≥ 4,

Aw(i+2) +

4∑
j=1

(CijA
(j) + Cij−1B

(j−1))w(i−j+2) + n2ω2
1(nτ)(1 + k2(nτ))w(i)

−6n2ω2
1(nτ)k(nτ)

w2w(i) + 2

i−1∑
j=1

j−1∑
k=0

Ci−1j Cj−1k w(k)w(j−k)w(i−j)

 = 0.
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Putting w = fn,τ , z = 0, we get for i ≥ 4,

ω2
1(τ)k(τ)f (i+2)

n,τ (0)− i2ω2
1(τ)(1 + k2(τ))f (i)n,τ (0)

+i(i− 1)2(i− 2)ω2
1(τ)k(τ)f (i−2)n,τ (0) + n2ω2

1(nτ)(1 + k2(nτ))f (i)n,τ (0)

−6n2ω2
1(nτ)k(nτ)

fn,τ (0)2f (i)n,τ (0) + 2

i−1∑
j=1

j−1∑
k=0

Ci−1j Cj−1k f (k)n,τ (0)f (j−k)n,τ (0)f (i−j)n,τ (0)

 = 0.

(17)

If n and i are of the same parity and i ≥ 4, then by (17),

f (i+2)
n,τ (0) +

[
n2ω2

1(nτ)[1 + (3(−1)n−1 − 2)k2(nτ)]

ω2
1(τ)k(τ)

− i2
(

1

k(τ)
+ k(τ)

)]
f (i)n,τ (0)

+i(i− 1)2(i− 2)f (i−2)n,τ (0)

−12n2ω2
1(nτ)k(nτ)

ω2
1(τ)k(τ)

i−1∑
j=1

j−1∑
k=0

Ci−1j Cj−1k f (k)n,τ (0)f (j−k)n,τ (0)f (i−j)n,τ (0) = 0. (18)

Differentiating (15) once, and putting w = fn,τ and z = 0, we have

ω2
1(τ)k(τ)f (3)n,τ (0) + [n2ω2

1(nτ)(1 + k2(nτ))− ω2
1(τ)(1 + k2(τ))]f ′n,τ (0)

−6n2ω2
1(nτ)k(nτ)f2n,τ (0)f ′n,τ (0) = 0.

Then if n is odd,

f (3)n,τ (0) = (−1)(n+1)/2 ·
nω1(nτ)

√
k(nτ)

ω1(τ)
√
k(τ)

3

[
n2ω2

1(nτ)

ω2
1(τ)

(1 + k2(nτ))− (1 + k2(τ))

]
.

If n is even, f
(3)
n,τ (0) = 0.

By (16), if n is even,

f (4)n,τ (0) = (−1)n/2·
n2ω2

1(nτ)
√
k(nτ)

ω2
1(τ)k2(τ)

(1−k2(nτ))

[
n2ω2

1(nτ)

ω2
1(τ)

(1− 5k2(nτ))− 4(1 + k2(τ))

]
.

If n is odd, then f
(4)
n,τ (0) = 0.

By (16) again, if n is odd,

f (5)n,τ (0) = (−1)(n−1)/2 ·
nω1(nτ)

√
k(nτ)

ω1(τ)
√
k(τ)

5

[
n4ω4

1(nτ)

ω4
1(τ)

(k4(nτ) + 14k2(nτ) + 1)

−10
n2ω2

1(nτ)

ω2
1(τ)

(1 + k2(τ))(1 + k2(nτ)) + 3(3k4(τ) + 2k2(τ) + 3)

]
.

If n is even, then f
(5)
n,τ (0) = 0. By the expressions for fn,τ (0), f ′n,τ (0), · · · , f (5)n,τ (0),

together with (18) and induction, we know that for each n and i, as a function in
τ on the upper half plane,

f (i)n,τ (0) ∈ Q
(√

k(τ),
√
k(nτ),

ω1(nτ)

ω1(τ)

)
.

Hence by Lemma 9.1, we have the following:
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Theorem 9.2. For each n ≥ 1, the coefficients of the Chebyshev-Blaschke product
fn,τ are in the field

Q
(√

k,
√
k ◦ sn,

ω1 ◦ sn
ω1

)
,

where sn(τ) = nτ . By multiplying both the numerator and denominator of fn,τ by
the product of the denominators of the Sn,j, j = 1, . . . , bn/2c, we know that fn,τ is
defined over the ring

Z
[√

k,
√
k ◦ sn,

ω1 ◦ sn
ω1

]
.

Moreover,
ϑ2((2i− 1)π/2n, τ)

ϑ3((2i− 1)π/2n, τ)
, i = 1, . . . , bn/2c,

are algebraic over this field since they are zeros of fn,τ .

This theorem is analogous to the fact that the coefficients of the Chebyshev
polynomials are in Z, and also the fact that for each n ≥ 2 and i = 1, . . . , bn/2c,

cos

(
(2i− 1)π

2n

)
is an algebraic number. Note also that when τ → +i∞,√

k(τ)→ 0 and
ω1(nτ)

ω1(τ)
→ 1,

so the ring in the theorem degenerates to Z when τ → +i∞.

Remark 9.3. Another result similar to Theorem 9.2 is Theorem 4.1 in the paper
[11] of Ismail and Zhang. It was proved that the coefficients of Ramanujan entire
functions are lying in a polynomial ring over C(q) generated by expressions in terms
of q1/4, ϑ2(0, τ) and ϑ3(0, τ).

Next, we will prove that the coefficients of the Chebyshev-Blaschke products are
in the algebraic closure Q(j), where j is the j-invariant.

Lemma 9.4. For any positive integer n, ϑ42(0, nτ) and ϑ43(0, nτ) are modular forms
of weight 2 with respect to the Hecke congruence subgroup Γ0(4n).

Proof. By (1), (5) and [7, p. 338], both ϑ3(0, τ) and ϑ2(0, τ) are holomorphic on
the open upper half plane H. By (2) and (4), we have

ϑ3(0, τ + 1) = ϑ3(0, τ) and ϑ3

(
0,

τ

4τ + 1

)
= (4τ + 1)1/2ϑ3(0, τ).

Since Γ0(4) is generated by

±
(

1 1
0 1

)
and ±

(
1 0
4 1

)
,

see [5, p. 21], we have that ϑ43(0, τ) is weight 2 invariant under Γ0(4). Similarly,
by (3) and (5), ϑ42(0, τ) is weight 2 invariant under Γ0(4). It is known that the
nth-coefficient dn of the Fourier series of ϑ43(0, τ) is the number of ways to express
n as an ordered sum of squares of four integers, so |dn| ≤ (2n+1)4 ≤ 34n4 for n > 0,
so the n-th coefficient en of the Fourier series in q1/4 satisfies |en| ≤ (3/4)4n4 for
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n > 0. By Proposition 1.2.4 in [5, p. 17], ϑ43(0, τ) is a weight 2 modular form with
respect to Γ0(4). Let q̃ = q1/4. Then

ϑ42(0, τ) =

( ∞∑
n=−∞

q̃(2n+1)2

)4

whose n-th coefficient cn count the number of ways to express n as an ordered sum
of squares of four odd integers, so cn satisfies a similar bound for n > 0, and hence
ϑ42(0, τ) is a weight 2 modular form with respect to Γ0(4). By Lemma 2.9, ϑ42(0, nτ)
and ϑ43(0, nτ) are weight 2 modular forms with respect to Γ0(4n). �

Corollary 9.5. The functions k2(τ), k2(nτ), and
ω2

1(nτ)

ω2
1(τ)

are modular functions

with respect to Γ0(4n).

Theorem 9.6. For each positive integer n, the coefficients of the Chebyshev-
Blaschke product fn,τ are in the algebraic closure Q(j), where j is the j-invariant.

Proof. Since the coefficients of the Fourier expansions at∞ of ϑ43(0, nτ) and ϑ42(0, nτ)

are rational, those of k2(τ), k2(nτ) and
ω2

1(nτ)

ω2
1(τ)

are also rational. Hence by Corollary

9.5 and Lemma 2.10,

k2(τ), k2(nτ),
ω2
1(nτ)

ω2
1(τ)

∈ Q(j, j4n),

where j4n(τ) = j(4nτ). By Lemma 2.11, there exists nonconstant polynomial
Φ4n ∈ Q[X,Y ] such that

Φ4n(j, j4n) = 0.

This shows that j4n ∈ Q(j), so Q(j, j4n) ⊆ Q(j). Then√
k(τ),

√
k(nτ),

ω1(nτ)

ω1(τ)
∈ Q(j).

Hence by Theorem 9.2, the coefficients of fn,τ are in Q(j). �

Theorem 9.7. For each positive integer n, the coefficients of the Chebyshev-
Blaschke product fn,τ are in Frac(Z[[q1/4]]), the field of fraction of the ring of

power series in q1/4 over Z. By multiplying both the numerator and the denomina-
tor of fn,τ by a suitable element in Z[[q1/4]], the denominators of the coefficients

are cleared out and hence fn,τ is defined over Z[[q1/4]].

Proof. By abuse of notations, we use
√
k(q) and ω1(q) to denote the q-expansions

of
√
k(τ) and ω1(τ) respectively. Since

Q
(√

k(q),
√
k(qn), ω1(q

n)
ω1(q)

)
⊆ Q(ϑ2(0, q), ϑ3(0, q), ϑ2(0, qn), ϑ3(0, qn))

⊆ Frac(Z[[q1/4]]),

by Theorem 9.2, the coefficients of fn,τ are in Frac(Z[[q1/4]]). �

Remark 9.8. It would be interesting to find more examples of other family of
Shabat-Blaschke products that are defined over a finite extension of Frac(Z[[q1/4]]),

or defined over a finite extension of Q
(√

k,
√
k ◦ sn, ω1◦sn

ω1

)
, or defined over Q(j).

One would also like to see if there is a deformation of the Belyi’s theorem formu-
lated using the above fields.
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10. Landen-type identities for theta functions

In this section, we will obtain some Landen-type identities for theta functions,
which will degenerate to some trigonometric identities.

From (13), we know that for each positive integer n ≥ 2, and j = 1, . . . , bn/2c,
Sn,j can be expressed in terms of

ϑ2((2i− 1)π/2n, τ) and ϑ3((2i− 1)π/2n, τ),

where 1 ≤ i ≤ bn/2c. On the other hand, we know from Theorem 9.2 that Sn,j can
be expressed in terms of

ϑ2(0, τ), ϑ3(0, τ), ϑ2(0, nτ), ϑ3(0, nτ).

Therefore, for each positive integer n ≥ 2, and each j = 1, . . . , bn/2c, we have a
theta identity relating those theta functions. For example, when n is even and
j = bn/2c, we have ∏

1≤i≤bn/2c

ϑ22((2i− 1)π/2n, τ)

ϑ23((2i− 1)π/2n, τ)
=
ϑ2(0, nτ)

ϑ3(0, nτ)

which coincides with the Landen transformation of even order n evaluated at z = 0
[14, p. 23, 253-254, 259]. When n is odd and j = bn/2c, we have∏

1≤i≤bn/2c

ϑ22((2i− 1)π/2n, τ)

ϑ23((2i− 1)π/2n, τ)
=
nϑ2(0, nτ)ϑ3(0, nτ)

ϑ2(0, τ)ϑ3(0, τ)

which coincides with the Landen transformation of odd order n evaluated at z = 0
[14, p. 253-256]. However, we also get other theta identities in which the left hand
sides are other symmetric polynomials in

ϑ22((2i− 1)π/2n, τ)

ϑ23((2i− 1)π/2n, τ)
, i = 1, . . . , bn/2c.

We display some examples of theta identities when n is small below. When n = 2,
we only have one identity

ϑ22(π/4, τ)

ϑ23(π/4, τ)
=
ϑ2(0, 2τ)

ϑ3(0, 2τ)
.

By (8), we know that

lim
τ→+i∞

1

k(τ)

ϑ22(π/4, τ)

ϑ23(π/4, τ)
= cos2

(π
4

)
.

By considering the Fourier expansions, we have

lim
τ→+i∞

1

k(τ)

ϑ2(0, 2τ)

ϑ3(0, 2τ)
=

1

2
.

By the above identity and limits, we get

cos2
(π

4

)
=

1

2
.

When n = 3, we again only have one identity

ϑ22(π/6, τ)

ϑ23(π/6, τ)
=

3ϑ2(0, 3τ)ϑ3(0, 3τ)

ϑ2(0, τ)ϑ3(0, τ)
.
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By multiplying 1/k(τ) on both sides and taking limits, we get the trigonometric
identity

cos2
(π

6

)
=

3

4
.

When n = 4, we have two theta identities,

ϑ22(π/8, τ)

ϑ23(π/8, τ)
+
ϑ22(3π/8, τ)

ϑ23(3π/8, τ)
=

8ϑ2(0, 4τ)

ϑ22(0, τ)ϑ23(0, τ)
· ϑ

4
3(0, 4τ)− ϑ42(0, 4τ)

ϑ3(0, 4τ)− ϑ2(0, 4τ)

and
ϑ22(π/8, τ)

ϑ23(π/8, τ)

ϑ22(3π/8, τ)

ϑ23(3π/8, τ)
=
ϑ2(0, 4τ)

ϑ3(0, 4τ)
.

By multiplying 1/k(τ) on both sides of the first identity and taking limits, and by
multiplying 1/k2(τ) on both sides of the second identity and taking limits, we get
the trigonometric identities

cos2
(π

8

)
+ cos2

(
3π

8

)
= 1

and

cos2
(π

8

)
cos2

(
3π

8

)
=

1

8
.

When n = 5, we have two theta identities,

ϑ22(π/10, τ)

ϑ23(π/10, τ)
+
ϑ22(3π/10, τ)

ϑ23(3π/10, τ)

=
5ϑ2(0, 5τ)ϑ3(0, 5τ)

6ϑ22(0, τ)ϑ23(0, τ)
· ϑ

4
3(0, τ) + ϑ42(0, τ)− 25(ϑ43(0, 5τ) + ϑ42(0, 5τ))

5ϑ2(0, 5τ)ϑ3(0, 5τ)− ϑ2(0, τ)ϑ3(0, τ)

and
ϑ22(π/10, τ)

ϑ23(π/10, τ)

ϑ22(3π/10, τ)

ϑ23(3π/10, τ)
=

5ϑ2(0, 5τ)ϑ3(0, 5τ)

ϑ2(0, τ)ϑ3(0, τ)
.

By multiplying 1/k(τ) on both sides of the first identity and taking limits, and by
multiplying 1/k2(τ) on both sides of the second identity and taking limits, we get
the trigonometric identities

cos2
( π

10

)
+ cos2

(
3π

10

)
=

5

4

and

cos2
( π

10

)
cos2

(
3π

10

)
=

5

16
.

When n = 6, we have three theta identities,

ϑ22(π/12, τ)

ϑ23(π/12, τ)
+
ϑ22(3π/12, τ)

ϑ23(3π/12, τ)
+
ϑ22(5π/12, τ)

ϑ23(5π/12, τ)

=
6ϑ2(0, 6τ)(ϑ22(0, 6τ) + ϑ23(0, 6τ))

ϑ22(0, τ)ϑ23(0, τ)

·3ϑ
2
2(0, τ)ϑ23(0, τ)ϑ2(0, 6τ)− ϑ3(0, 6τ)[ϑ42(0, τ) + ϑ43(0, τ) + 45ϑ42(0, 6τ)− 9ϑ43(0, 6τ)]

ϑ22(0, τ)ϑ23(0, τ)− 18ϑ2(0, 6τ)ϑ3(0, 6τ)(ϑ22(0, 6τ) + ϑ23(0, 6τ))
,
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ϑ22(π/12, τ)

ϑ23(π/12, τ)

ϑ22(3π/12, τ)

ϑ23(3π/12, τ)
+
ϑ22(π/12, τ)

ϑ23(π/12, τ)

ϑ22(5π/12, τ)

ϑ23(5π/12, τ)
+
ϑ22(3π/12, τ)

ϑ23(3π/12, τ)

ϑ22(5π/12, τ)

ϑ23(5π/12, τ)

=
6ϑ2(0, 6τ)(ϑ22(0, 6τ) + ϑ23(0, 6τ))

ϑ22(0, τ)ϑ23(0, τ)

·3ϑ
2
2(0, τ)ϑ23(0, τ)ϑ3(0, 6τ)− ϑ2(0, 6τ)[ϑ42(0, τ) + ϑ43(0, τ)− 9ϑ42(0, 6τ) + 45ϑ43(0, 6τ)]

ϑ22(0, τ)ϑ23(0, τ)− 18ϑ2(0, 6τ)ϑ3(0, 6τ)(ϑ22(0, 6τ) + ϑ23(0, 6τ))
,

and
ϑ22(π/12, τ)

ϑ23(π/12, τ)

ϑ22(3π/12, τ)

ϑ23(3π/12, τ)

ϑ22(5π/12, τ)

ϑ23(5π/12, τ)
=
ϑ2(0, 6τ)

ϑ3(0, 6τ)
.

By multiplying 1/k(τ) on both sides of the first identity and taking limits, by
multiplying 1/k2(τ) on both sides of the second identity and taking limits, by
multiplying 1/k3(τ) on both sides of the third identity and taking limits, we get
the trigonometric identities

cos2
( π

12

)
+ cos2

(
3π

12

)
+ cos2

(
5π

12

)
=

3

2
,

cos2
( π

12

)
cos2

(
3π

12

)
+ cos2

( π
12

)
cos2

(
5π

12

)
+ cos2

(
3π

12

)
cos2

(
5π

12

)
=

9

16
,

and

cos2
( π

12

)
cos2

(
3π

12

)
cos2

(
5π

12

)
=

1

32
.

11. Conjecture

Finally, we list some further problems that one may try to study. Suppose ρ
is a tree monodromy representation that gives rise to Shabat-Blaschke products of
degree n with exactly two critical values in D. For each fixed τ ∈ R>0i, motivated
by the critical values of the Chebyshev-Blaschke products, let Bτ : D → D be the
Shabat-Blaschke product associated to ρ whose critical values are −

√
k(nτ) and√

k(nτ). Let sn(τ) = nτ for all τ ∈ H. We have the following conjecture:

Conjecture 11.1. There exists a1, . . . , an, b1, . . . , bm in

Q
(√

k,
√
k ◦ sn,

ω1 ◦ sn
ω1

)
⊆M(H)

(whereM(H) is the field of meromorphic functions on the upper half-plane H) such
that

• for any τ ∈ R>0i, a0(τ), . . . , an(τ), b0(τ), . . . , bm(τ) ∈ C.
• for any τ ∈ R>0i and z ∈ D,

Bτ (z) =
an(τ)zn + an−1(τ)zn−1 + · · ·+ a0(τ)

bm(τ)zm + bm−1(τ)zm−1 + · · ·+ b0(τ)
.

One can also have weaker conjectures by replacing the algebraic closure in the

above conjecture by Q(j) or Frac(Z[[q1/4]]).

In a paper [17] by Maskit, there is a way to embed a topologically finite Riemann
surface into a compact Riemann surface. One may try to use such embedding to
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formulate a deformation of Belyi’s theorem.

Another version of the Belyi’s theorem says that a compact Riemann surface X
admits a Belyi map if and only if X can be uniformized by a finite index subgroup
of a Fuchsian triangle group [12, p. 71]. One may try to formulate a deformation
of this version of Belyi’s theorem.
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