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Abstract

We propose a multiscale multilevel Monte Carlo (MsMLMC) method to solve multiscale

elliptic PDEs with random coefficients in the multi-query setting. Our method consists of

offline and online stages. In the offline stage, we construct a small number of reduced basis

functions within each coarse grid block, which can then be used to approximate the multi-

scale finite element basis functions. In the online stage, we can obtain the multiscale finite

element basis very efficiently on a coarse grid by using the pre-computed multiscale basis.

The MsMLMC method can be applied to multiscale RPDE starting with a relatively coarse

grid, without requiring the coarsest grid to resolve the smallest-scale of the solution. We have

performed complexity analysis and shown that the MsMLMC offers considerable savings in

solving multiscale elliptic PDEs with random coefficients. Moreover, we provide convergence

analysis of the proposed method. Numerical results are presented to demonstrate the accuracy

and efficiency of the proposed method for several multiscale stochastic problems without scale

separation.
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Keywords: Random partial differential equations (RPDEs); uncertainty quantification

(UQ); multiscale finite element method (MsFEM); multilevel Monte Carlo (MLMC);
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1. Introduction

Many physical and engineering applications involving uncertainty quantification (UQ) can

be described by stochastic partial differential equations (SPDEs, i.e., PDEs driven by Brow-

nian motion) or partial differential equations with random coefficients (RPDEs). In recent

years, there has been an increased interest in the simulation of systems with uncertainties, and

several numerical methods have been developed in the literature to solve SPDEs and RPDEs;

see e.g. [15, 25, 38, 2, 27, 21, 35, 37, 28, 31, 33, 14]. These methods can be effective when

the dimension of stochastic input variables is low. However, their performance deteriorates

dramatically when the dimension of stochastic input variables is high because of the curse of

dimensionality.
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There are some attempts in developing sparsity or data-driven basis to attack these chal-

lenging problems. Most of them take advantage of the fact that even though the stochastic

input has high dimension, the solution actually lives in a relatively low dimensional space.

Therefore, one can develop certain sparsity or data-driven basis functions to solve the SPDEs

and RPDEs efficiently. In [8, 9, 7, 40, 39, 20], Hou et al. explored the Karhunen-Loève expan-

sion of the stochastic solution, and constructed problem-dependent stochastic basis functions

to solve these SPDEs and RPDEs. In [11, 26], the compressive sensing technique is employed

to identify a sparse representation of the solution in the stochastic direction. In [5, 6], Schwab

et al. studied the sparse tensor discretization of elliptic RPDEs.

In this paper, we consider another challenge in UQ, i.e., solving multiscale elliptic PDEs

with random coefficients. Due to the large range of scales in these solutions, it requires

tremendous computational resources to resolve the small scales of the solution. We propose a

multiscale multilevel Monte Carlo method (MsMLMC) to significantly reduce the computa-

tional cost in solving multiscale elliptic PDEs with random coefficients. We use the following

elliptic equation with multiscale random coefficient as an example to illustrate the main idea

of our approach:

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D,ω ∈ Ω, (1)

uε(x, ω) = 0, x ∈ ∂D, (2)

where D ∈ Rd is a bounded spatial domain, Ω is a sample space, and f(x) ∈ L2(D). The

multiscale information is described by the multiscale coefficient aε(x, ω). The precise definition

of the aε(x, ω) will be given in Section 3.1.

Our MsMLMC method consists of two steps. In the first step, we apply the non-intrusive

method (Monte Carlo or stochastic collocation method) to discretize the random coefficient

space and obtain a set of multiscale finite element basis realizations. The multiscale finite

element basis method has the advantage of requiring less memory consumption which is es-

sential for multiscale problems. Then, we extract a set of multiscale reduced basis functions

from these realizations using the proper orthogonal decomposition (POD) method. In the

second step of our method, we apply the MLMC to solve multiscale RPDE with the multi-

scale reduced basis functions. We can regard the first step as an offline computation. Once

we obtain the multiscale reduced basis functions, we can apply the MLMC to the multiscale

RPDEs with different force functions in the online step, which is very efficient. We also study

the complexity of the proposed method. We find that the MsMLMC can offer considerable

saving over the original MLMC. The level of saving is problem dependent. The saving is more

significant when we work on high space dimension and when the ratio between the largest and

the smallest scales is large; see Fig.12.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of

the MLMC method, and present a theorem that estimates the cost of the algorithm under cer-

tain problem-dependent assumptions. In Sections 3, we present our derivations of MsMLMC

method. Some numerical implementation issues are also discussed. In Section 4, we prove

that the asymptotic variance reduction requirement is satisfied in the MsMLMC under cer-

tain mild assumptions. In Section 5, we present several numerical results to demonstrate the
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accuracy and effectiveness of our method. We also study the computational complexity of the

MsMLMC. Finally, some concluding remarks are given in Section 6.

2. Multilevel Monte Carlo method

The MLMC was first introduced by Giles to solve SDEs arising from mathematical finance

[16], which was inspired by multigrid iterative solution methods. This work is related to

the earlier work of Heinrich for solving finite-dimensional parametric integration and integral

equations [18]. Later on, the MLMC method was extended to solve elliptic PDEs with random

coefficients; see e.g. [3, 10, 1, 12]. To make this paper self-contained, we give a brief review

of the basic ideas and the main result of the MLMC method.

In many applications, the quantity of interest is the expected value of a functional of

the solution uε(x, ω) of RPDE (1), which can be the mean or a high-order moment. Let

vε ∈ L2(Ω, H1(D)) denote this functional. In general, the expected value of vε(x, ω) can be

obtained by the standard Monte Carlo (MC) method. The standard MC estimator for the

mean, E[vε(x, ω)], is given as follows:

Yh =
1

N

N∑
i=1

vεh(x, ωi), (3)

where ωi is the i -th sample, h is the mesh size, vεh is a numerical approximation of vε(x, ω),

and N is the total number of MC samples. We define the mean square error (MSE) of Y as

e(Yh) =
∣∣∣∣Yh − E[vε(x, ω)]

∣∣∣∣2
L2(Ω,H1(D))

. Simple calculations show that e(Yh) satisfies

e(Yh) = E

[∣∣∣∣∣∣∣∣Yh(x, ω)− E[vε(x, ω)]

∣∣∣∣∣∣∣∣2
H1(D)

]

=

∣∣∣∣∣∣∣∣E[vεh(x, ω)]− E[vε(x, ω)]

∣∣∣∣∣∣∣∣2
H1(D)

+
1

N
V ar

[∣∣∣∣∣∣∣∣vεh(x, ω)

∣∣∣∣∣∣∣∣
H1(D)

]
. (4)

The first term in Eq.(4) gives the error introduced by the numerical discretization in physical

space, while the second term represents the sampling errors, which decays inversely propor-

tional to the number of samples. In this paper, we choose the mesh size h fine enough so

that the error from space discretization is negligible. Thus, the convergence rate of the root

mean square error (RMSE) of the MC method is merely O( 1√
N

), which means that many such

realizations are required to obtain accurate results. For the multiscale RPDE (1), it is very

time-consuming to obtain each realization. As a result, it is very expensive to solve (1) by

using the MC method.

The MC method can be accelerated by different variation reduction techniques, such as the

importance sampling method and the quasi Monte Carlo method. The MLMC method [16]

is a novel variance reduction technique for the standard MC method. It exploits the linearity

of expectation by expressing the quantity of interest on the finest spatial grid in terms of the

same quantity on a relatively coarse grid and a set of correction terms.
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First, the domain D is partitioned into a number of nested mesh grids, i.e., D0 ⊂ . . . ⊂
Dj−1 ⊂ Dj . . . ⊂ DL. Here the mesh size of the l-th level is hl = h02−l, l = 0, 1, . . . , L, and

h0 and hL = h02−L are the coarsest and finest level mesh size, respectively. The main idea of

MLMC method can be described easily. Linearity of the expectation operator implies that

E[vεL(x, ω)] = E[vε0(x, ω)] +
L∑
l=1

E[vεl (x, ω)− vεl−1(x, ω)], (5)

where vεl (x, ω) denotes the numerical approximation of the functional of the solution uε(x, ω)

obtained on the mesh grids Dl.

The key point is to avoid estimating E[vεL(x, ω)] on the finest level, but instead to estimate

the expectation on the coarsest level, plus a sum of corrections adding the difference in ex-

pectation between simulations on consecutive levels. The multilevel idea is to independently

estimate each of these expectations such that the overall variance is minimized for a fixed

computational cost. We rewrite the estimate of the expected value of vε(x, ω) as

Y =
L∑
l=0

Yl, (6)

where

Yl =
1

Nl

Nl∑
i=1

[vεl (x, ω
(l)
i )− vεl−1(x, ω

(l)
i )], l = 1, . . . , L;

Y0 =
1

N0

N0∑
i=1

v0(x, ω
(0)
i ).

Here L+1 is the number of levels used in the MLMC, and Nl is the number of MC simulations

at the l-th level. Y0 is the coarsest level estimate, while Yl (l = 1, . . . , L) measures the

fluctuations of l-th and (l − 1)-th level. It is important to note that we have used the same

random sample ω
(l)
i to estimate both vl and vl−1 in the quantity Yl.

Simple calculations show that the e(Y ) satisfies the following equation:

e(Y ) = E

[∣∣∣∣∣∣∣∣ L∑
k=0

Yk(x, ω)− E[vε(x, ω)]

∣∣∣∣∣∣∣∣2
H1(D)

]

=

∣∣∣∣∣∣∣∣E[vεL(x, ω)]− E[vε(x, ω)]

∣∣∣∣∣∣∣∣2
H1(D)

+
L∑
l=1

1

Nl

V ar

[∣∣∣∣∣∣∣∣vεl (x, ω)− vεl−1(x, ω)

∣∣∣∣∣∣∣∣
H1(D)

]
+

1

N0

V ar

[∣∣∣∣∣∣∣∣vε0(x, ω)

∣∣∣∣∣∣∣∣
H1(D)

]
. (7)

The first term in Eq.(7) gives the error introduced by the numerical discretization at the finest

level L, while the second and third terms represent the sampling errors and decay inversely

proportional to the number of samples. Recall that hL is the finest mesh used in solving the
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multiscale RPDE (1). Again, we assume the mesh size hL fine enough so that the error from

space discretization is negligible.

The computational cost of the MLMC estimator is

C =
L∑
l=0

NlCl, (8)

where Cl represents the cost of a single sample of vεl (x, ω) − vεl−1(x, ω). Let us treat the MC

sample number Nl as continuous variables. Then the variance of the MLMC estimator is

minimized for a fixed computational cost by choosing the sample number Nl be proportional

to
√
V ar(vεl − vεl−1)/Cl, and the constant of proportionality is chosen to achieve a certain

MSE error; see [16].

We claim that to achieve an MSE of O(δ2), the MLMC method is cheaper than the MC

method. This analysis is made more precise in the following theorem. Its proof can be found

in Appendix A.

Theorem 2.1. Let Y be the MLMC estimator of the mean function E[vε(x, ω)] and hl = h02−l

be the mesh size of l-th level, with l = 0, 1, . . . , L. Let vε−1 = 0. We assume the following

estimate:

1.
∫

Var (vε0) dx = c1;

2.
∫

Var
(
vεl − vεl−1

)
dx = c2h

β
l ;

3. the computational complexity of the l-th level MC simulation is c3h
−γ
l .

Then the MLMC estimator Y has the δ2 MSE with a computational cost C2

C2 ≈


c5δ
−2 = c̃5h

γ
LC1, if β > γ;

c6δ
−2| lnhL|2 = c̃6h

γ
L| lnhL|2C1, if β = γ;

c7δ
−2h

−(γ−β)
L = c̃7h

β
LC1, if 0 ≤ β < γ.

Here ci’s are constants that do not depend on h, ε, and δ, and C1 is the cost of the MC method

achieving the same δ2 MSE at level hL, which is,

C1 = c3Nh
−γ
L = c1c3h

−γ
L δ−2.

The reduction in the computational cost associated with the MLMC method over the MC

method is due to the fact that most of the uncertainty can be captured on the coarse grids and

so the number of realizations needed on the finest grid is greatly reduced. However, we have

the observation that
∫

Var
(
vεl − vεl−1

)
dx = c2h

β
l is achieved only if hl−1 < ε; see Figure 5.

In other words, for multiscale problems the MLMC method becomes effective if the coarsest

level mesh size h0 is smaller than ε. Therefore, it could still be quite expensive to solve RPDE

(1) using the MLMC method, when the multiscale parameter ε is small. To alleviate the

difficulty of requiring h0 < ε, we propose a MsMLMC method to effectively solve RPDEs with

multiscale features.

Finally, we remark that the idea of MLMC can be combined with other well developed

methods, such as the stochastic collocation method, to further reduced the computational

cost in solving RPDEs. We refer the reader to the papers [17, 34] for details.
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3. Multiscale multilevel Monte Carlo method

3.1. Multiscale finite element basis functions

We consider the following multiscale elliptic PDE with a random coefficient:

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D,ω ∈ Ω, (9)

uε(x, ω) = 0, x ∈ ∂D, (10)

where D = [0, 1]× [0, 1] is a bounded spatial domain, Ω is a sample space, and f(x) ∈ L2(D).

To simplify our notations, we assume aε(x, ω) is a scalar function. The same approach can be

applied for general cases where aε(x, ω) is a multiscale coefficient matrix. Besides, we assume

a(x,w) satisfies uniform ellipticity almost surely, i.e. there exist amin, amax > 0, such that

P
(
ω ∈ Ω : aε(x, ω) ∈ [amin, amax],∀x ∈ D

)
= 1. (11)

Under the assumption (11), we can easily verify that

||uε(x, ω)||H1
0 (D) ≤ CD

||f ||L2(D)

amin

, a.s., (12)

where CD is the constant given by the Poincaré inequality. Moreover, we have

||uε(x, ω)||Lq(Ω,H1
0 (D)) ≤ CD

||f ||L2(D)

amin

, ∀q ≥ 1. (13)

In the MsMLMC method, we partition the domain D into a number of nested mesh grids,

i.e., D0 ⊂ . . . ⊂ Dj−1 ⊂ Dj . . . ⊂ DL. However, the coarsest mesh size h0 does not necessarily

well resolve the multiscale feature of the Eq.(9). In fact, we choose h0 � ε. This is achieved

with the help of the upscaling through the multiscale finite element method (MsFEM) [22].

Specifically, we assume that the j-th level grid Dj is partitioned into a finite set of compact

triangles or quadrilaterals {Dk
j , 1 ≤ k ≤ K}. The union of all triangles or quadrilaterals covers

the closure of D, and the intersection of different triangles or quadrilaterals is either empty, a

common node, or a common edge.

Within each block Dk
j , 1 ≤ k ≤ K, we solve the following cell problems to obtain the

multiscale finite element basis φkl(x, ω),

−∇ · (aε(x, ω)∇φkl(x, ω)) = 0, x ∈ Dk
j , ω ∈ Ω, (14)

φkl(x, ω) = pkl(x), x ∈ ∂Dk
j , l = 1, ..., d, (15)

where d is the number of nodes on Dk
j , and pkl(x) is the Dirichlet boundary condition defined

on the boundary of Dk
j . In practice, one can choose pkl(x) to be the standard bilinear or linear

basis functions.

Let φkl(x, ω) ∈ H1(Dk
j ) be the solution of Eq.(14) satisfying the boundary condition in

Eq.(15). It can be decomposed as

φkl(x, ω) = φkl0 (x, ω) + pkl(x). (16)
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The unknown homogeneous part φkl0 (x, ω) ∈ H1
0 (Dk

j ) is the solution of the following variational

formulation

aε(φkl0 (x, ω), v;ω) = f ε(v;ω), ∀v ∈ H1
0 (Dk

j ), (17)

where

aε(w, v;ω) =

∫
Dkj

aε(x, ω)∇w · ∇vdx, (18)

f ε(v;ω) = −
∫
Dkj

aε(x, ω)∇pkl(x) · ∇vdx. (19)

When the boundary conditions of the basis functions are linear, we can obtain the following

convergence results.

Proposition 3.1. Assume aε(x, ω) = a(x
ε
, ω) and satisfy assumption (11). Let uε(x, ω) be the

solution of (9) and uεhj(x, ω) be the numerical approximation obtained from the space spanned

by the multiscale basis with linear boundary conditions; see Eqns.(14)-(15). Then, we have

||uε − uεhj ||H1(D) ≤ C(hj + ε)||f ||L2(D) + C

√
ε

hj
, a.s. ω ∈ Ω, (20)

where hj � ε is the mesh size of the j-th level mesh grids and C does not depend on hj and

ε. Moreover, we have

||uε − uεhj ||Lq(Ω,H1(D)) ≤ C(hj + ε)||f ||L2(D) + C

√
ε

hj
, ∀q ≥ 1. (21)

The convergence of a multiscale finite element method for deterministic multiscale elliptic

problems was proved in [23]. The proposition 3.1 can be easily proved since for each realization

of aε(x, ω), the problem (9)-(10) is a deterministic problem.

One can use oversampling technique [22, 13] to improve the convergence result in proposi-

tion 3.1, i.e. replacing the error term C
√

ε
hj

by C ε
hj

. The main idea is to solve Eqns.(14)-(15)

in a larger domain and use only the interior information to construct the basis, which can

significantly reduce the effect of the boundary layer on the basis functions.

Specifically, let ψkl be solution of the following problem in a larger domain Skj ⊃ Dk
j (with

dist(∂Skj , D
k
j ) > ε), 1 ≤ k ≤ K,

−∇ · (aε(x, ω)∇ψkl(x, ω)) = 0, x ∈ Skj , ω ∈ Ω, (22)

ψkl(x, ω) = pkl(x), x ∈ ∂Skj , l = 1, ..., d, (23)

where d is the number of nodes on Skj and pkl(x) is a linear basis function defined on the

boundary of Skj . Then, we form the actual MsFEM basis φki(x, ω) by linear combination of

ψkl(x, ω), i.e.,

φki(x, ω) =
d∑
l=1

cilψ
kl(x, ω)|Dkj , i = 1, ..., d. (24)
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The coefficients cil’s are determined by condition φki(xl, ω) = δil, where xl, l = 1, ..., d are

the nodes of domain Dk
j . The over-sampling technique results in a non-conforming MsFEM

method. We refer the interested reader to [13] for the convergence analysis of the oversampling

MsFEM. Later on, a Petrov-Galerkin MsFEM formulation with nonconforming multiscale

trial functions and linear test functions was proposed in [24], which further improves the

convergence result in proposition 3.1.

3.2. Construction of multiscale reduced basis functions

We can solve Eq.(14) (or its corresponding weak form Eq.(17)) by partitioning the coarse

block Dk
j into a fine grid with mesh size h, where h � ε. Let Ndof denote the degree of

freedom (DOF) of the fine grid inside Dk
j . If we solve Eqns. (14)-(15) for each sample ω

using the standard FEM, the computational cost will be prohibitively expensive. To reduce

the computational cost in computing the mulsticale basis function φkl(x, ω), we will construct

a small number of multiscale reduced basis {ζkl,i(x)}mi=1 within each block Dk
j of each level

using the proper orthogonal decomposition (POD) method [32, 4, 36].

First, we use MC method or stochastic collocation method to compute Q solution samples

{φkl(x, ωq)}Qq=1 of the multiscale FEM basis functions within each Dk
j . Given Q snapshots of

solution samples, we subtract pkl(x) and obtain a linear space Vsnap, denoted as

Vsnap ={φkl0 (x, ω1), φkl0 (x, ω2), ..., φkl0 (x, ωQ)}. (25)

Then, we apply POD method to build a set of multiscale reduced basis {ζkl,1(x), ..., ζkl,m(x)}
with m� min(Q,Ndof ) that optimally approximates the input solution snapshots. Given any

integer m, the POD basis functions minimize the following error

1

Q

Q∑
q=1

∣∣∣∣φkl0 (·, ωq)−
m∑
s=1

(
φkl0 (·, ωq), ζkl,s(·)

)
X
ζkl,s(·)

∣∣∣∣2
X
, (26)

subject to the constraints that
(
ζkl,s1(·), ζkl,s2(·)

)
X

= δs1s2 , 1 ≤ s1, s2 ≤ m, where δs1s2 = 1 if

s1 = s2, otherwise δs1s2 = 0, where X = H1(D).

Using the method of snapshot proposed by Sirovich [32], we know that the optimization

problem (26) can be reduced to an eigenvalue problem

Kv = λv, (27)

where K ∈ RQ×Q is the correlation matrix with (i, j)-element Kij = 1
Q

(
φkl0 (·, ωi), φkl0 (·, ωj)

)
X

and is symmetric and semi-positive definite. We sort the eigenvalues in a decreasing order as

λ1 ≥ λ2 ≥ ... ≥ λQ > 0 and the corresponding eigenvectors are denoted by vs, s = 1, ..., Q. It

can be shown that the POD basis functions are constructed by

ζkl,s(·) =
1√
λs

Q∑
q=1

(vs)qφ
kl
0 (·, ωq), 1 ≤ s ≤ Q, (28)

where (vs)q is the q-th component of the eigenvector vs. The basis functions {ζkl,s(·)}ms=1

minimizes the error (26). This result as well as the error formula were proved in [19].
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Proposition 3.2 (Sec. 3.3.2, [19]). Let λ1 ≥ λ2 ≥ ... ≥ λQ > 0 denote the positive eigenvalues

of K in (27). Then {ζkl,s(·)}ms=1 constructed according to (28) is the set of POD basis functions,

and we have the following error formula:

∑Q
q=1

∣∣∣∣φkl0 (·, ωq)−
∑m

s=1

(
φkl0 (·, ωq), ζkl,s(·)

)
X
ζkl,s(·)

∣∣∣∣2
X∑Q

q=1

∣∣∣∣φkl0 (·, ωq)
∣∣∣∣2
X

=

∑Q
k=m+1 λk∑Q
k=1 λk

, (29)

where X = H1(D) and the number m is determined according to the ratio ρ =
∑Q
k=m+1 λk∑Q
k=1 λk

.

In practice, we shall make use of the decay property of eigenvalues in λk and choose the

first m dominant eigenvalues such that the ratio ρ is small enough to achieve an expected

accuracy, for instance ρ = 1%. To compute the multiscale reduced basis requires a certain

amount of computational cost in the offline stage. However the multiscale reduced basis can

be repeatedly used in the online stage for different realizations of the coefficient aε(x, ω) and

deterministic forcing function f(x), which gives considerable savings if we need to solve the

Eq.(9) with many different forcing functions. We will demonstrate this through numerical

examples in Section 5.

With the multiscale reduced basis {ζkl,i(x)}mi=1, we can approximate φkl(x, ω) by

φ̃kl(x, ω) = pkl(x) + Σm
i=1ci(ω)ζkl,i(x). (30)

Then, we substitute (30) into Eqns. (14)-(15) and use Galerkin method to obtain {ci}mi=1. The

multiscale reduced basis {ζkl,i(x)}mi=1 will be efficient since m � Ndof . Finally, we use {φ̃kl}
to assemble the stiffness matrix of the Eq.(9) for each sample ω, just as we did in MsFEM.

3.3. The affine parameterization to speedup

We discuss the offline-online computational procedure [29, 30] that allows us to efficiently

compute {ci}mi=1 in Eq.(30). We assume that aε(x, ω) in Eq.(14) satisfies the affine parameter

dependence property. With this assumption, we can pre-compute the main part of the stiffness

matrix in the offline stage. This leads to considerable saving in assembling the stiffness matrix

for each ω in the online stage. Specifically, we assume aε(x, ω) can be expressed as follows

aε(x, ω) =
R∑
r=1

ξr(ω)aεr(x), (31)

where {ξr(ω)}Rr=1 are R i.i.d. random variables that are L2-intergrable and aεr(x) ∈ L∞(D)

depends only on x. Then the bilinear forms and linear functionals defined in Eqns.(18) and

(19) can be written as

aε(w, v;ω) =
R∑
r=1

ξr(ω)aεr(w, v), (32)

f ε(v;ω) =
R∑
r=1

ξr(ω)f εr (w, v), (33)
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where

aεr(w, v) =

∫
Dk
aεr(x)∇w · ∇vdx, (34)

f εr (v) = −
∫
Dk
aεr(x)∇pkl(x) · ∇vdx. (35)

One can see that aεr(w, v) and f εr (v) are independent of the random sample ω. Thus, they can

be pre-computed and saved in the offline stage.

We now describe the computational procedure for constructing the multiscale finite element

basis. Recall that in Eq.(16), we assume that φkl0 (x, ω) ∈ span{ζkl,i(x)}mi=1, where {ci}mi=1 are

expansion coefficients which can be determined by using the Galerkin method. Substituting

the ansatz (30) into Eq.(17) and choosing the test function v = ζkl,i(x), i = 1, ...,m, we get

the linear equation system for ckl as

Akl(ω)ckl(ω) = Fkl(ω), (36)

where Akl(ω) is anm×m symmetric positive definite matrix with entries Akl
pq(ω) = aε(ζkl,p, ζkl,q;ω),

1 ≤ p, q ≤ m, and Fkl(ω) is the load vector with entries Fkl
q (ω) = f ε(ζkl,q;ω), 1 ≤ q ≤ m.

Since m� Nh (DOF of reduced basis is far less than that of the linear FEM basis), Eq. (36)

can be solved very efficiently.

Next, we apply the affine decomposition (32) and (33) and obtain

Akl(ω) =
R∑
r=1

ξr(ω)Akl
r , (37)

Fkl(ω) =
R∑
r=1

ξr(ω)Fkl
r , (38)

where Akl
r and Fkl

r are given by Akl
r,pq(ω) = aεr(ζ

kl,p, ζkl,q), 1 ≤ p, q ≤ m, and Fkl
r,q(ω) = f εr (ζkq),

1 ≤ q ≤ m, respectively. We can efficiently assemble the stiffness matrix Akl(ω) and load

vector Fkl(ω) for each sample ω, since Ak
r and Fkl

r have been pre-computed and saved in the

offline stage.

3.4. Online computation

The online computation of our MsMLMC is essentially the application of the standard

MLMC method. Since the multiscale finite element basis obtained from Eq.(14) have contains

the multiscale information of the Eq.(9), the coarsest level mesh size h0 does not necessarily

well resolve the smallest-scale of the Eq.(9). Thus, we choose h0 � ε.

On the level j, we use the precomputed multiscale reduced basis {ζkl,i}mi=1 to compute the

multiscale finite basis within each block Dk
j , 1 ≤ k ≤ K, and use these multiscale finite basis

elements to obtain the multiscale solution for each sample ω.

We briefly discuss how to assemble the global stiffness matrix and the right hand side for

the weak form of Eq. (9). On each block Dk
j , 1 ≤ k ≤ K, we solve Eqns. (14) and (15) using
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the multiscale reduced basis to obtain the MsFEM basis, and form the local stiffness matrix

Sk (an 3× 3 or 4× 4 matrix for triangular or quadrilateral element, respectively) and vector

bk (an 3× 1 or 4× 1 vector accordingly). In this paper, we choose the quadrilateral element.

Then Sk and bk have entries

Skij(ω) =

∫
Dk
aε(x, ω)∇(φki0 (x, ω) + pki(x)) · ∇(φkj0 (x, ω) + pkj(x))dx, 1 ≤ i, j ≤ 4, (39)

bkj (ω) =

∫
Dk
f(x)(φkj0 (x, ω) + pkj(x))dx, 1 ≤ j ≤ 4. (40)

Substituting the ansatzs (30) and (31) into (39), (40), we get

Skij(ω) =
R∑
r=1

ξr(ω)(cki(ω)TAk,ij
r ckj(ω) + 2cki(ω)TBk,ij

r + Ck,ij
r ), 1 ≤ i, j ≤ 4, (41)

bkj (ω) = ckj(ω)TDk + Ekj, 1 ≤ j ≤ 4, (42)

where

Ak,ij
r,mn =

∫
Dk
aεr(x)∇ζki,m · ∇ζkj,ndx, Bk,ij

rn =

∫
Dk
aεr(x)∇ζki,n · ∇pkj(x)dx,

Ck,ij
r =

∫
Dk
aεr(x)∇pki(x) · ∇pkj(x)dx, Dk,j

n =

∫
Dk
f(x)ζkj,ndx,

Ek,j =

∫
Dk
f(x)pkj(x)dx. (43)

Recall that in (41) and (42), the quantities A, B, C, D, and E do not depend on the sample

ω and can be pre-computed and saved in the offline stage. In the online computing, for each

sample ω, we can solve Eq. (36) to obtain cki(ω) and assemble the local stiffness matrix Sk

and vector bk by using (41) and (42). Therefore, we can efficiently solve an algebraic system

and obtain the multiscale solution of Eq.(9).

In practice, we can also choose the Petrov-Galerkin MsFEM formulation with noncon-

forming multiscale trial functions (obtained by the over-sampling technique) and linear test

functions. Through numerical experiments, we find that this does reduce the numerical error

significantly. In the Petrov-Galerkin MsFEM framework, we can still pre-compute and save

all the data that do not depend on the sample ω, and can be used to form the stiffness matrix

and load vector in the online stage. This can be done by using the similar idea as we did in

(39)-(43). Thus, we omit details here.

3.5. The MsMLMC algorithm

In this subsection, we give the algorithm of the MsMLMC to solve the multiscale stochas-

tic equation in a multiquery setting. Our method consists of the offline and online stages.

They are summarized in Algorithm 1 and 2, respectively. The implementation of the Petrov-

Galerkin MsFEM with over-sampling technique can be developed similarly.

One important issue of the Algorithm 2 is how to decide the sample numbers at different

levels. In [16], Giles proposed an effective way to estimate the variance and cost on each level,
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and used this to determine the optimal number of samples on each level. In the MsMLMC, the

online computational cost consists of several parts, such as the solving local cell problem to

decide multiscale basis functions, assembling the global stiffness matrix, and solving a linear

equation to obtain the global multiscale solution. Thus, we cannot directly apply the strategy

used in [10] to estimate the cost per sample. We propose an idea based on the variance decay

property and run-time execution time to obtain a sub-optimal number of samples on each

level.

We first use Q0 Monte Carlo samples to compute the expectation on the coarsest grid.

Meanwhile, we estimate the computational cost of per sample, denoted by t0, on the coarsest

grid level. Roughly speaking, the computational cost of per sample on j-th level can be esti-

mated as 4jt0. In addition, we generate certain number of Monte Carlo samples to estimate

the empirical variance of the variance decay. Based on the run-time information about em-

pirical variance and cost per sample, we decide how many Monte Carlo samples, denoted by

Qj, are used in computing the expectation of the difference of solutions between levels j and

j − 1, j = 1, ..., L.

Algorithm 1 The offline stage of MsMLMC

1: Partition the domain D into a number of nested mesh grid blocks, i.e., D0 ⊂ . . . ⊂ Dj−1 ⊂
Dj . . . ⊂ DL. The mesh size of j-th level is hj = h02−j and h0 is the coarsest level mesh

size.

2: for j = 0→ L do

3: for k = 1→ Kj do

4: On each element Ek, we do only once:

5: Solve Eqns.(14) and (15) with MC or SC method to obtain samples {φkl(x, ωq)}Qq=1,

l = 1, ..., 4.

6: Apply POD to compute the reduced basis {ζkl,i(x)}mi=1.

7: Compute and save all the relevant quantities A, B, C, D, and E from Eq.(43).

8: end for

9: end for

4. Some analyses

One essential requirement in the MLMC method is the asymptotic variance reduction

between two consecutive coarse grid levels. We will prove that this requirement is satisfied

in the MsMLMC method. Specifically, let ũεj(x, ω) and ũεj−1(x, ω) denote numerical solutions

of the MsMLMC method obtained at the j-th level and (j − 1)-th level, respectively. We

will prove that
∫

Var
(
vεj − vεj−1

)
dx = c2h

β
j , where vεj is a numerical approximation of the

functional of the solution ũεj(x, ω) (the definition for vεj−1 is the same) and hj is the mesh size

of the grids of the j-th level. Recall that ũεj(x, ω) is the numerical solution obtained in the

space span{φ̃kl(x, ω)} (see (30)) at the j-th level. We first estimate the error between uε(x, ω)

and ũεj(x, ω). Before that, we need two assumptions.
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Algorithm 2 The online stage of MsMLMC

1: For each query f(x) in Eq.(9), we calculate expected values of a functional of uε(x, ω).

2: Calculate the coarsest level solution, uε0(x, ω) with Q0 samples {ω0
q}

Q0

q=1.

3: for q = 1→ Q0 do

4: for k = 1→ K0 do

5: Assemble Akl(ω
(0
q ) and Fkl(ω0

q ) from (37) and (38), and solve (36) to obtain ckl(ω0
q ).

6: Assemble Sk(ω0
q ) and bk(ω0

q ) from (41) and (42).

7: Form and solve the global linear equation system to obtain uε0(x, ω0
q ).

8: end for

9: end for

10: Calculate the solution differences on consecutive levels.

11: for j = 1→ L do

12: Generate Qj samples {ωjq}
Qj
q=1 used for both levels.

13: for q = 1→ Qj do

14: Compute on level j

15: for k = 1→ Kj do

16: Assemble Akl(ωjq) and Fkl(ωjq) from (37) and (38), and solve (36) to obtain

ckl(ωjq).

17: Assemble Sk(ωjq) and bk(ωjq) from (41) and (42).

18: Form and solve the global linear equation system to obtain uεj(x, ω
j
q).

19: end for

20: Compute on level j − 1

21: for k = 1→ Kj−1 do

22: Assemble Akl(ωjq) and Fkl(ωjq) from (37) and (38), and solve (36) to obtain

ckl(ωjq).

23: Assemble Sk(ωjq) and bk(ωjq) from (41) and (42).

24: Form and solve the global linear equation system to obtain uεj−1(x, ωjq).

25: end for

26: end for

27: end for

28: Adopt the MLMC formulation (6) to calculate expected values of a functional of uε(x, ω).
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Assumption 4.1. Suppose aε(x, ω) has following property: ∀δ1 > 0, there exists a Qδ1 and a

choice of snapshots {aε(x, ωq)} such that

E

[
inf

1≤q≤Qδ1

∣∣∣∣aε(x, ω)− aε(x, ωq)
∣∣∣∣
L∞(D)

]
≤ δ1, (44)

Remark 4.1. Under the affine parameterization assumption (31), we can easily verify assump-

tion 4.1 and even give a way to choose snapshots {aε(x, ωq)} if we know the probability density

functions of all random variables ξr(ω), r = 1, ..., R.

Assumption 4.2. For any δ2 > 0, we can choose m large enough such that the m-term

approximation φ̃kl satisfies

||φ̃kl0 (x, ωq)− φkl0 (x, ωq)||H1(Dkj ) ≤ δ2, ∀1 ≤ q ≤ Q (45)

The Asm.4.2 can be verified according to the approximating property of the reduced basis

stated in Prop.3.2.

For each ω ∈ Ω, the MsFEM basis function φkl(x, ω) = pkl(x)+φkl0 (x, ω) is obtained by solv-

ing Eqns.(14)-(15), where pkl(x) is the boundary condition. Let φ̃kl(x, ω) = pkl(x) + φ̃kl0 (x, ω)

denote the approximated MsFEM basis functions, where φ̃kl0 (x, ω) =
∑m

i=1 ci(ω)ζkl,i(x). We

now estimate the error between φkl(x, ω) and φ̃kl(x, ω).

Theorem 4.3. Under assumptions 4.1 and 4.2 and the assumption for the coefficient aε(x, ω)

(11), for any δ > 0, we can choose coefficient samples {aε(x, ωq)}1≤q≤Q and the number of the

mulsticale reduced basis m such that

E
[
max
kl

∣∣∣∣φkl(x, ω)− φ̃kl(x, ω)
∣∣∣∣p
H1(Dkj )

]
≤ Cδ3, for p = 1, 2, (46)

where C is a generic constant depending on amin, amax and the size of the coarse sub-domain,

and δ3 = δ1h
−1
j + δ2 with δ1 and δ2 being defined in Asm.4.1 and Asm.4.2.

Proof. Let φkl0 (x, ω) = φkl(x, ω) − pkl(x), φ̃kl0 (x, ω) = φ̃kl(x, ω) − pkl(x), where pkl(x) is the

boundary condition defined in (15). We have the estimate,∣∣∣∣φkl(x, ω)− φ̃kl(x, ω)
∣∣∣∣
H1(Dkj )

=
∣∣∣∣φkl0 (x, ω)− φ̃kl0 (x, ω)

∣∣∣∣
H1(Dkj )

≤
∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)

∣∣∣∣
H1(Dkj )

+
∣∣∣∣φkl0 (x, ωq)− φ̃kl0 (x, ωq)

∣∣∣∣
H1(Dkj )

+
∣∣∣∣φ̃kl0 (x, ωq)− φ̃kl0 (x, ω)

∣∣∣∣
H1(Dkj )

:=I1 + I2 + I3 (47)

We estimate the term I1 first. Let V (Dk
j ) be a piecewise linear finite element space over Dk

j ,

where the grid size is much smaller than ε. Let V0(Dk
j ) = {f |∂Dkj = 0

∣∣f ∈ V (Dk
j )}. Then

φkl0 (x, ω) ∈ V0(Dk
j ) is the solution to the equation

aε(φkl0 , v;ω) = −aε(pkl, v;ω), ∀v ∈ V0(Dk
j ), (48)
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where the bilinear form aε(·, ·;ω) is defined in (18) and φkl0 (x, ωi) ∈ V0(Dk
j ) is the solution to

the equation

aε(φkl0 , v;ωq) = −aε(pkl, v;ωq), ∀v ∈ V0(Dk
j ). (49)

We choose φkl0 (x, ωq) as the test function in (48) and (49) and obtain

amin

∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)
∣∣∣∣2
H1(Dkj )

,

≤
∫
Dkj

aε(x, ω)
(
∇φkl0 (x, ω)−∇φkl0 (x, ωq)

)
·
(
∇φkl0 (x, ω)−∇φkl0 (x, ωq)

)
dx,

=

∫
Dkj

(
aε(x, ωq)− aε(x, ω)

)
∇(φkl0 (x, ωq) + pkl(x)) · ∇

(
φkl0 (x, ω)− φkl0 (x, ωq)

)
dx,

≤
∣∣∣∣aε(x, ωq)− aε(x, ω)

∣∣∣∣
L∞(Dkj )

∣∣∣∣φkl(x, ωq)∣∣∣∣H1(Dkj )

∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)
∣∣∣∣
H1(Dkj )

. (50)

Dividing the term
∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)

∣∣∣∣
H1(Dkj )

on both sides of (50), we get∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)
∣∣∣∣
H1(Dkj )

≤ C
∣∣∣∣aε(x, ωq)− aε(x, ω)

∣∣∣∣
L∞(Dkj )

∣∣∣∣φkl(x, ωq)∣∣∣∣H1(Dkj )
. (51)

Additionally, we choose φkl0 (x, ωq) as the test function in (49) and obtain

amin

∣∣∣∣φkl0 (x, ωq)
∣∣∣∣2
H1(Dkj )

≤
∫
Dkj

aε(x, ω)∇φkl0 (x, ωq) · ∇φkl0 (x, ωq)dx

=−
∫
Dkj

aε(x, ω)∇pkl(x) · ∇φkl0 (x, ωq)dx ≤ C
∣∣∣∣φkl0 (x, ωq)

∣∣∣∣
H1(Dkj )

∣∣∣∣pkl(x)
∣∣∣∣
H1(Dkj )

. (52)

Therefore, we have

||φkl0 (x, ωq)||H1(Dkj ) ≤
C

amin
||pkl(x)||H1(Dkj ).

Since pkl is a linear function in the MsFEM, we know that ||pkl(x)||H1(Dkj ) ≤ h−1
j , where C is

a constant related to the domain. Therefore,

||φkl(x, ωq)||H1(Dkj ) ≤ ||φkl0 (x, ωq)||H1(Dkj ) + ||pkl(x)||H1(Dkj ) ≤ (
C

amin
+ 1)h−1

j (53)

Substituting (53) into (51), we obtain the estimate for the term I1∣∣∣∣φkl0 (x, ω)− φkl0 (x, ωq)
∣∣∣∣
H1(Dkj )

≤ C
∣∣∣∣aε(x, ωq)− aε(x, ω)

∣∣∣∣
L∞(Dkj )

(
C

amin
+ 1)h−1

j . (54)

For the term I3 in Eq.(47), we can similarly get that∣∣∣∣φ̃kl0 (x, ω)− φ̃kl0 (x, ωq)
∣∣∣∣
H1(Dkj )

≤ C
∣∣∣∣aε(x, ωq)− aε(x, ω)

∣∣∣∣
L∞(Dkj )

(
C

amin
+ 1)h−1

j . (55)
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The term I2 in Eq.(47) can be controlled according to the POD method in 4.2. Combin-

ing the estimates for terms I1, I2 and I3, we can choose the number of coefficient samples

{aε(x, ωq)}1≤q≤Q in Asm.4.1 and number of the multiscale reduced basis in Asm.4.2, such that∣∣∣∣φkl(x, ω)− φ̃kl(x, ω)
∣∣∣∣
H1(Dkj )

≤ 2C
∣∣∣∣aε(x, ωq)− aε(x, ω)

∣∣∣∣
L∞(Dkj )

(
C

amin
+ 1)h−1

j + δ2 ≤ δ3.

(56)

Since this estimate (56) holds almost surely for each realization ω ∈ Ω, we integrate over the

random space and prove the theorem.

Theorem 4.4. For each ω, let uεhj(x, ω) be the solution obtained by using the MsFEM basis

on coarse mesh with size hj, and ũεhj(x, ω) be the solution obtained by using the multiscale

reduced basis. We have the estimate for the error between uεhj(x, ω) and ũεhj(x, ω)

E
[
||uεhj(x, ω)− ũεhj(x, ω)||pH1(D)

]
≤ Cδ3, a.s., ω ∈ Ω, p = 1, 2, (57)

where C is a generic constant, δ3 = δ1h
−1
j + δ2, and the parameters δ1 and δ2 are defined in

Asm.4.1 and Asm.4.2.

Proof. For each ω, we have uεhj(x, ω) =
∑K

k=1 uk(ω)φk(x) and ũεhj(x, ω) =
∑K

k=1 ũk(ω)φ̃k(x),

where φk(x) denotes the MsFEM basis associated with the coarse grids on level j, φ̃k(x)

denotes the multiscale reduced basis associated with the coarse grids on level j, and K is the

degree of freedom of the coarse grids.

Let B = (bij) and B̃ = (b̃ij) denote the stiffness matrices associated with the MsFEM and

our method, where the entries in the matrices are defined as

bij =

∫
∇φi(x, ω)aε(x, ω) · ∇φj(x, ω)dx, (58)

b̃ij =

∫
∇φ̃i(x, ω)aε(x, ω) · ∇φ̃j(x, ω)dx. (59)

We estimate the difference between the entries bij and b̃ij by

|bij − b̃ij| =
∣∣∣ ∫ ∇φi(x, ω)aε(x, ω) · ∇φj(x, ω)dx−

∫
∇φ̃i(x, ω)aε(x, ω) · ∇φ̃j(x, ω)dx

∣∣∣,
≤
∣∣∣ ∫ ∇φiaε · ∇φjdx− ∫ ∇φ̃iaε · ∇φjdx∣∣∣+

∣∣∣ ∫ ∇φ̃iaε · ∇φjdx− ∫ ∇φ̃iaε · ∇φ̃jdx∣∣∣,
≤ ||aε||L∞(D)

(
||φj||H1(D)||∇φi −∇φ̃i||L2(D) + ||φ̃i||H1(D)||∇φj −∇φ̃j||L2(D)

)
. (60)

Notice that aε(x, ω) is bounded almost surely, ||φj(x, ω)||H1(D) ≤ Ch−1
j , and ||φ̃i(x, ω)||H1(D) ≤

Ch−1
j , where C depends on amin. Using the same argument in Theorem 4.3, we can prove that

E
[
|bij − b̃ij|

]
≤ C(δ1h

−2
j + δ2h

−1
j ), (61)
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where C depends on amin. When the mesh size of the coarse grid hj is given, one can choose

δ1 and δ2 so that |bij − b̃ij| is small.

Let Ea = Ea(δ1, δ2, H) denote the error between B and B̃, i.e., B̃ = B+Ea. Let f = (fi) and

f̃ = (f̃i) denote the right-hand side vectors with fi =
∫
φi(x)f(x)dx and f̃i =

∫
φ̃i(x)f(x)dx,

respectively. Using a similar argument as (60) and the Poincaré inequality, we get

E
[
|fi − f̃i|

]
≤ C(δ1h

−1
j + δ2), (62)

where C depends on amin. Let ef = ef (δ1, δ2, H) denote the error between f and f̃, i.e.,

f̃ = f + ef .

Recall that uεhj(x, ω) =
∑K

k=1 uk(ω)φk(x) and ũεhj(x, ω) =
∑K

k=1 ũk(ω)φ̃k(x). Let u =

(u1, ..., uK)T and ũ = (ũ1, ..., ũK)T . They satisfy Bu = f and B̃ũ = f̃, respectively. After

simple calculations, we get u− ũ = B−1(Eaũ− ef ) and the estimate

||u− ũ||2 ≤ ||B−1||2
(
||Ea||2||ũ||2 + ||ef ||2

)
,

≤ 1

amin

(√
K||Ea||∞||ũ||2 +

√
K||ef ||∞

)
, (63)

where C depends on K, hj, amin and f(x). In addition, we have used the fact that ||ũ||2 is

bounded since there is an isomorphism between ũ and ũεhj(x, ω).

Let Φ =
(
φ1(x), ..., φK(x)

)T
and Φ̃ =

(
φ̃1(x), ..., φ̃K(x)

)T
. We have the estimate

||uεh(x, ω)− ũεh(x, ω)||H1(D) = ||ΦTu− Φ̃T ũ||H1(D),

≤||ΦTu− Φ̃Tu||H1(D) + ||Φ̃Tu− Φ̃T ũ||H1(D),

≤||u||2 max
1≤k≤K

||φk(x)− φ̃k(x)||H1(D) +

√√√√ K∑
k=1

||φ̃k||2H1(D)||u− ũ||2 (64)

Integrating over the random space, we got that

E
[
||uεh(x, ω)− ũεh(x, ω)||pH1(D)

]
≤ Cδp3 (65)

where C a generic constant depending on K, amin, amax, and f(x). Thus we complete the

proof.

According to Theorem 4.4, we can choose δ1 and δ2 (that are controlled by the number of

coefficient samples and the number of the POD basis) so that

E
[
||uεhj(x, ω)− ũεhj(x, ω)||pH1(D)

]
≤ Chpj , p = 1, 2. (66)

Corollary 4.5. Suppose ε � hj < 1 and ε < ch3+η
j for some c > 0 and η > 0. We can get

the error between the exact solution uε(x, ω) and multiscale reduced basis solution ũεhj(x, ω) as

E
[
||uε − ũεh||

p
H1(D)

]
≤ Chpj , p = 1, 2 (67)

for some constant C.
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Proof. According to (20) and (66) and the fact that when ε < ch3+η
j for some c > 0 and η > 0,√

ε/hj = o(hj), we can easily get the result.

Finally, we can prove the required property that the asymptotic variance reduction between

two consecutive coarse grid levels.

Theorem 4.6. The difference between ũεhj(x, ω) and ũεhj−1
(x, ω) can be bounded by

E
[
||ũεhj(x, ω)− ũεhj−1

(x, ω)||
]
≤ Ch2

j . (68)

The proof is a simply application of the triangle inequality and Corollary 4.5. The asymp-

totic variance reduction between two consecutive coarse grid levels can be obtained immedi-

ately since Var
(
ũεhj(x, ω)− ũεhj−1

(x, ω)
)
≤ E

[
||ũεhj(x, ω)− ũεhj−1

(x, ω)||2
]
.

5. Numerical examples

In this section we will present various numerical results to demonstrate the accuracy and

efficiency of our proposed MsMLMC method.

5.1. An example with an oscillatory coefficient

We consider the following multiscale elliptic PDE with random coefficient on D = [0, 1]×
[0, 1]:

−∇ · (aε(x, y, ω)∇uε(x, y)) = f(x, y, θ), (x, y) ∈ D,ω ∈ Ω, (69)

uε(x, y, ω) = 0, (x, y) ∈ ∂D. (70)

The multiscale and random coefficient is given by

aε(x, y, ω) = 0.1 +
ξ1(ω)

2 + P sin(2π(x− y)/ε1)
+

ξ2(ω)

4 + P (sin(2πx/ε2) + sin(2πy/ε2))

+
ξ3(ω)

10(2 + P sin(2π(x− 0.5)/ε3))(2 + P sin(2π(y − 0.5)/ε3))
, (71)

where P = 1.9, ε1 = 1
3
, ε2 = 1

27
and ε3 = 1

51
, and {ξi}3

i=1 are independent uniform random

variables in [0, 1].

In our computations, we use the FEM to discretize the spatial dimension. We choose

a 512 × 512 fine mesh grid to well resolve the spatial dimension of the stochastic solution

uε(x, y, ω). Due to the high computational cost, we use the Monte Carlo method with 104

samples to calculate the reference solution.

To implement the MsMLMC, the coarsest mesh grid is chosen as 4 × 4, i.e., h0 = 1
4
, and

hj = h0
2j

, j = 1, ..., L is the jth level grid size with the coarsening factor 2. The expectation

solution on the coarsest grid is obtained by 104 Monte Carlo samples, and the expectation of

the difference of solutions between levels j and j− 1, j = 1, ..., 3 are obtained by the run-time

information. In this example, they are computed by Monte Carlo method with 4029, 1705,
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and 861 samples, respectively. When we construct the reduced basis in the offline stage, we

use 500 Monte Carlo samples. Because the error in the solution can be corrected in subsequent

level, the reduced basis in the current level does not necessarily need to be accurate enough.

The coarsest mesh grid of MLMC is chosen as 52×52, i.e., h0 = 1
52

, and hj = h0
2j

, j = 1, ..., L

is the jth level grid size with the coarsening factor 2. The Monte Carlo samples on different

levels are chosen in the same way as the MsMLMC. In addition, we implement the MLMC

with the coarsest mesh grid chosen as 4 × 4, i.e., h0 = 1
4
, and hj = h0

2j
, j = 1, ..., L is the jth

level grid size with the coarsening factor 2.

Multiquery results in the online stage. We randomly generate 20 force functions of the

form f(x, y) ∈ {sin(kiπx + φi) cos(liπy + ϕi)}20
i=1, where ki and li are uniformly distributed

over the interval [0, 2], while φi and ϕi are uniformly distributed over the interval [0, 1]. In

Fig.1 and Fig.2, we show the relative errors of the mean and the STD of the solution in L2

norm and H1 norm, respectively. The MsMLMC method gives very accurate results. The

MLMC method that uses very coarse mesh grids generates a relatively large error. We show

only the error in L2 norm, since the accuracy in the H1 norm is quite large. If we set the

coarsest mesh grids to well resolve the multiscale feature, the MLMC method improves the

accuracy, but the computational cost will increase dramatically.
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Figure 1: The mean and STD error in L2 norm.

In Fig.3, we show the mean and STD of the exact and MsMLMC solutions corresponding

to f(x, y) = sin(1.75πx + 0.6) cos(0.75πy + 0.5). It can be seen that the mean and STD of

the MsMLMC solution match those of the exact solution very well. We also show the contour

plot of the mean of the solution in Fig.8. One can see the heterogeneous structures of the

multiscale solution. Thanks to the multiscale of our MsMLMC, we can obtain the multiscale

feature of the solution on a relative coarse mesh grid, i.e., we can apply the MLMC method

without assuming the coarsest grid should resolve the multiscale features.

Variance decay results in the online stage. Fig.5 shows the variance decay result for the

solution corresponding to f(x, y) = sin(1.75πx + 0.6) cos(0.75πy + 0.5) by using different

methods. The blue line with cross denotes the solution obtained on single level, which indicates
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Figure 2: The mean and STD error in H1 norm.

that variance does not decay. The red line with circle denotes the
∫
V ar(ul−ul−1)dx obtained

by MsMLMC. The slope of the line is approximately equal to 3.74, indicating that
∫
V ar(ul−

ul−1)dx ≈ Ch3.74. If we implement the MLMC with the coarsest mesh grid h0 � ε, as shown

in the green line with square, the variance does not decay. When we choose the coarsest mesh

grid h0 < ε (in this case h0 = 1
52

), as shown in the black line with triangle, the variance

decays. However, the computational cost increases dramatically. The slope of the line is

approximately equal to 4.35, indicating that
∫
V ar(ul − ul−1)dx ≈ Ch4.35.

5.2. An example with a high-dimensional random and multiscale coefficient

We consider the RPDE (69) with a high-dimensional random input and multiscale features

on D = [0, 1]× [0, 1]. The coefficient is given by

aε(x, y, ω) =
15∑
i=1

ξi(ω)
2 + Pi sin(2πx/εi)

2 +Qi cos(2πy/εi)
, (72)

where {ξi} are independent uniform random variables in [0, 1], Pi, Qi ∈ (1.8, 1.9) are ran-

domly generated, and (ε1, ..., ε15) = ( 1
n1
, ..., 1

n15
), where the integer 3 ≤ nj ≤ 31 are randomly

generated.

The stochastic collocation method are computationally prohibitive due to the curse of

dimensionality. We implement our method in the Monte Carlo method setting. We use

the standard FEM to discretize the spatial dimension. We choose a 384 × 384 fine mesh

grid to well resolve the spatial dimension of the stochastic solution uε(x, y, ω). Due to the

high computational cost, we use the Monte Carlo method with 104 samples to calculate the

“reference” solution.

To implement the MsMLMC, the coarsest mesh grid of MsMLMC is chosen as 4× 4, i.e.,

h0 = 1
4
, and hj = h0

2j
, j = 1, ..., 3. Similarly, the coarsest mesh grid of MLMC is chosen as

48 × 48, i.e., h0 = 1
48

, and hj = h0
2j

, j = 1, ..., 3. The coarsest grid expectation solution is

obtained by 104 Monte Carlo samples, and the difference of the expectation solutions between
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Figure 3: Profiles of the mean and STD solution.

j and j− 1, j = 1, ..., 3 grids are obtained by the run-time information. In this example, they

are chosen as 4428, 1960, and 968 respectively.

Multiquery results in the online stage. We randomly generate 20 force functions of the

form f(x, y) ∈ {sin(kiπx + φi) cos(liπy + ϕi)}20
i=1, where ki and li are uniformly distributed

over the interval [0, 2], while φi and ϕi are uniformly distributed over the interval [0, 1]. In

Fig.6, we show the relative errors of the mean and the STD of the solution in L2 norm. The

MsMLMC method gives accurate results. The MLMC method that uses very coarse mesh grids

generates very poor results (not shown here). If we set the coarsest mesh grids to well resolve

the multiscale feature, the MLMC method improves the accuracy in the mean solution, but the

computational cost for the MC method will increase dramatically. In Fig.7, we show the mean

of the exact and MsMLMC solutions corresponding to f(x, y) = sin(2πx+0.25) cos(2πy+0.50).

It can be seen that the mean of the MsMLMC solution match the exact solution very well. We

also show the contour plot of the mean of the solution in Fig.8. One can see the heterogeneous

structures of the multiscale solution.

Comparison of the computational costs of MsMLMC and MLMC. We follow the same

strategy in comparing the computational costs of MC, MLMC and MsMLMC in the multiquery

setting. It takes 451.30 and 504.84 seconds for the MC and MLMC method respectively in

the offline preparation stage. For the MC method, it will take 33942.57 seconds to solve

Eq.(69) with one specific forcing term f(x, y). Thus in a multiquery problem, if we need

to solve Eq.(69) with n different forcing term f(x, y), the total computational cost will be

t1 = 451.30 + 33942.57n. In the online stage of the MLMC, it takes 3514.94 seconds to
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compute each query, thus, the total computational cost will be t2 = 504.84 + 3514.94n. In

our MsMLMC method, the offline computation costs 5719.13 seconds, which includes the

computational time of solving cell problem, constructing the reduced basis, and computing

the fixed data structure for the global stiffness matrix. In the online stage of the MsMLMC,

it takes 693.91 seconds to compute each query, thus, the total computational cost will be

t3 = 4036.21 + 693.91n. We achieve 5.1X speedup in the MsMLMC over MLMC in the online

stage. We plot the total computational time in Fig.9. One can see that the MsMLMC offers

considerable computational savings over the MLMC if we need to solve the original RPDE

with more than two different forcing functions. In addition, we can see that MLMC is superior

to the MC method. Higher speedup ratio can be achieved for Eq.(69) with smaller multiscale

parameters.
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Figure 7: Profiles of the mean solution.

5.3. An example to investigate the computational complexity

Choosing the reduced basis number m and coarsest levels of the MsMLMC and MLMC to

obtain an accurate solution is problem dependent. In this subsection, we test a model problem

to understand this issue. In addition, we numerically study the computational complexity of

the MsMLMC method.

We consider the Eq.(9) on D = [0, 1]× [0, 1] with the coefficient given by

aε(x, y, ω) = 0.1 + ξ1(ω)
2 + 1.8 sin(2πx

ε1
)

2 + 1.8 sin(2πy
ε1

)
+ ξ2(ω)

2 + 1.8 sin(2πy
ε2

)

2 + 1.8 cos(2πx
ε2

)
+ ξ3(ω)

2 + 1.8 cos(2πx
ε3

)

2 + 1.8 sin(2πy
ε3

)
,

(73)

where ε1, ε2, and ε3 are multiscale parameters, and {ξi}3
i=1 are independent uniform random

variables in [0, 1].

In our computations, we use 2000 Monte Carlo samples to discretize the random space.

We use the standard finite element method to discretize the spatial space. The fine mesh

grid is chosen as 512 × 512 to well resolve the spatial dimension of the stochastic solution

uε(x, y, ω).
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Assume the MsMLMC has four levels, with the mesh size given by hc = 1
4
, 1

8
, 1

16
, and 1

32
.

Then the degrees of freedom (DOF) of the cell problem (14) on each level are approximately

given by N = 16384, 4096, 1024, and 256, respectively. In Fig.10, we plot the computational

time of the linear equation solver on each level, and we find that the computational complexity

of solving the linear equation with N unknowns is approximately given by O(N1.3). Then in

Fig.11, we plot the POD eigenvalues in decreasing order as a function of their index, for

different choices of the mesh size. We use the decaying property of eigenvalues to select

parameter m, i.e., to select m such that θm+1

θ1
is smaller than some predefined threshold, say,

10−4. We choose m = 6 in our numerical test.

We choose four different kinds of multiscale parameters in (73), i.e.,

{(ε1, ε2, ε3)|(1

3
,

1

12
,

1

21
), (

1

3
,

1

17
,

1

31
), (

1

3
,

1

22
,

1

41
), (

1

3
,

1

27
,

1

51
)}. (74)

The coarsest mesh of MsMLMC is chosen as hc = 1
4
, while the coarsest mesh of MLMC is

chosen as hc = 1
Nc

, with Nc = [ 1
ε3

] + 1. We calculate the computational time of obtaining
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one sample solution on the coarsest mesh by the MsMLMC and MLMC, respectively. In

Fig.12, we plot the speedup ratio of MsMLMC over MLMC for the four kinds of multiscale

parameters defined in (74). In addition, we use these data to interpolate a model for the

speedup ratio as a function of the smallest-scale parameter. One can see that small multiscale

parameter results in a significant speedup in the MsMLMC over the MLMC, which reveals

the power of the multiscale reduced basis. As we see in the plot of Fig.13, the asymptotic

variance reduction between two consecutive levels starts when hc = 1
4

in our MsMLMC, since

the multiscale finite element basis functions already capture the multiscale information of the

RPDE solution.
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Figure 10: Computational cost of the linear equation solver in the offline stage of MsMLMC. The slope of the

interpolated line is γ = 1.3.
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6. Conclusion remarks

In this paper, we developed a novel multiscale multilevel Monte Carlo method (MsMLMC)

to solve multiscale elliptic PDEs with random coefficients in a multiquery setting. These model

problems arise from various applications, such as the heterogeneous porous media flow problem

in the water aquifer and oil reservoirs simulation. Our method consists of offline and online

stages. In the offline stage, we construct a small number of reduced basis elements within each

coarse grid block, which can be used to approximate the multiscale finite element basis. In

the online stage, for each new realization of the random coefficient, we can efficiently obtain

the corresponding multiscale finite element basis with the help of these reduced basis and

solve the multiscale RPDEs on coarse mesh grid. By applying the MLMC method, we can

solve the RPDEs efficiently without requiring the coarsest mesh size to be smaller than the
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smallest-scale parameter in the coefficient.

We presented numerical examples to demonstrate the accuracy and efficiency of the pro-

posed method. These numerical examples indicate the following advantages of the proposed

MsMLMC: (1) By combining the upscaling technique with the MLMC, the MsMLMC provides

an effective alternative to solve multiscale RPDEs with desirable accuracy on a coarse grid;

(2) The construction of the reduced basis is independent of the forcing functions, thus the

MsMLMC can be used for the same multiscale RPDEs with a large number of deterministic

forcing functions; (3) Comparing to the other existing numerical solvers, such as the MC and

MLMC method, the MsMLMC offers considerable computational savings in solving multiscale

RPDEs in a multiquery setting.
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Appendix A. Computational cost analysis of MLMC

Proof. Without loss of generality, we choose |D| = 1. For single level MC (SLMC) method,

we have the averaged-mean-square error

e(Y ) =
1

N
c1 = δ2. (A.1)

Hence the number of SLMC simulations is N = c1
δ2

. Then the computational cost is

C1 = c3Nh
−γ
L = c1c3h

−γ
L δ−2.

In practice, the number of simulations N is chosen as integer, which should be the smallest

integer greater or equal to N . So without confusion, we treat N as a continuous quantity

throughout the proof. The same applies to the implementation of Nk in MLMC.

Now we turn to MLMC and minimize the cost

C2 = c3NLh
−γ
L +

L−1∑
k=0

c3(Nk+1 +Nk)h
−γ
k

subjected to the δ2-MSE restriction

e(Y ) = c2

L∑
k=1

1

Nk

hβk +
1

N0

c1 = δ2. (A.2)
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For simply notation, we denote

Vk =

{
c2h

β
k , k 6= 0;

c1, k = 0,
(A.3)

and computational cost

Ṽk =

{
c3h
−γ
k + c3h

−γ
k−1, k 6= 0;

c3h
−γ
0 , k = 0.

(A.4)

Then the δ2-MSE (A.2) become

L∑
k=0

1

Nk

Vk = δ2, (A.5)

and the total computational cost of MLMC is

C2 =
L∑
k=0

NkṼk.

By the method of Lagrange multiplier, we can minimize the cost above for a fixed (A.5) and

conclude that Nk is proportional to
√
Vk/Ṽk, i.e., Nk = d

√
Vk/Ṽk, where the constant

d = δ−2

L∑
k=0

√
VkṼk. (A.6)

Hence the computational cost C2 is

C2 = ε−2
( L∑
k=0

√
VkṼk

)2

= ε−2
( L∑
k=1

h
β−γ
2

k

√
c2c3(1 +m−γ) +

√
c1c3h

− γ
2

0

)2

= c3ε
−2
( L∑
k=1

h
β−γ
2

k

√
c2(1 +m−γ) +

√
c1h
− γ

2
0

)2

. (A.7)

Then the ratio of the computational complexity of MLMC to that of SLMC is

C2

C1

=
hγL
c1

( L∑
k=1

h
β−γ
2

k

√
c2(1 +m−γ) +

√
c1h
− γ

2
0

)2

. (A.8)

Now we separate the discussion. When β = γ, we have

C2

C1

=
hγL
c1

(
L
√
c2(1 +m−γ) +

√
c1m

− γL
2 h
− γ

2
L

)2

(A.9)

=
(
L

√
c2(1 +m−γ)

c1

h
γ
2
L +m−

γL
2

)2

(A.10)
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Then the optimal level number L, treated as a continuous quantity, is

L = − 2

γ lnm
ln
{

2

√
c2(1 +m−γ)

c1

h
γ
2
L

γ lnm

}
,

and the minimized ratio (A.8) becomes

C2

C1

=
c2(1 +m−γ)

γ2c1 ln2m
hγL

{
ln

e2c1γ
2 ln2m

4c2(1 +m−γ)
− γ lnhL

}2

= c̃6h
γ
L| lnhL|

2 +O(hγL| lnhL|), (A.11)

with

c̃6 =
c2(1 +m−γ)

c1 ln2m
.

When β 6= γ, the ratio becomes:

C2

C1

= (c0h
β/2
L − c0h

β/2
L mL(β−γ)/2 +m−γL/2)2. (A.12)

The optimal choices of L and the computational cost are

L =
2

β lnm
ln
( −γh−β/2L

c0(β − γ)

)
, (A.13)

C2 = C1

{
c0h

β/2
L − β

γ − β

(c0(γ − β)

γ

)γ/β
h
γ/2
L

}2

,

= C1

{√
c̃7h

β/2
L −

√
c̃5h

γ/2
L

}2

(A.14)

where

c0 =

√
c2(1 +m−γ)m(γ−β)

c1

(m(γ−β)/2 − 1)−1, (A.15)

c̃5 =
β2

(γ − β)2

(c0(γ − β)

γ

)2γ/β

, (A.16)

c̃7 = c2
0. (A.17)

In the case of β > γ, the second term of right hand side (A.14) is dominant for hL � 1

and the cost of MLMC is

C2 = c̃5h
γ
LC1(1−

√
c̃7

c̃5

h
(β−γ)/2
L )2 = c1c3c̃5δ

−2 +O(δ−2h
(β−γ)/2
L ).

In the case of β < γ, the first term of right hand side (A.14) is dominant for ε � 1 and

the cost of MLMC is

C2 = c̃7h
β
LC1(1−

√
c̃5

c̃7

h
(γ−β)/2
L )2 = c1c3c̃7δ

−2h
−(γ−β)
L +O(δ−2h

−(γ−β)/2
L ).
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