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Abstract. Recently Luo and Zhou showed that for a fixed GL(2) Hecke-Maass cusp
form, the natural density of primes at which the Satake parameters fail the Ramanujan
Conjecture does not exceed 1/35. In this short note, we investigate the GL(3) case and
obtain two similar (conditional) results.

1. Introduction

The classical Ramanujan conjecture, due to Ramanujan ([22]), is about the size of the
Fourier coefficients τ(n) of the discriminant modular form ∆(z), asserting that |τ(n)| ≤
n11/2d(n) where d(n) =

∑
d|n 1. Deligne [5] confirmed the Ramanujan conjecture for

∆(z) as well as holomorphic Hecke cusp forms of weight k ≥ 2. However the classical
Ramanujan conjecture for Maass forms is still open. Nevertheless, it is believed to be true
in a wider context. The Generalized Ramanujan Conjecture (GRC) for generic cuspidal
automorphic representations of GL(n) is formulated as that all the Satake parameters
of the corresponding representation are of modulus 1. The GRC is deep and currently
beyond our reach. In the literature, there has been some work on estimating the number
of forms that fail GRC at a fixed prime p. Readers are referred to [23, 11, 25] for GL(2),
[2] for GL(3) and [12, 10, 16] for GL(n) with n ≥ 3.

Naturally, one is interested in knowing the density of primes at which the Ramanujan
conjecture holds for a given Hecke-Maass cusp form on GL(n). When n = 2, Ramakr-
ishnan [18] proved that the set of such primes has a lower Dirichlet density of at least
9/10. Later Kim and Shahidi [9] improved Ramakrishnan’s result to 34/35 by using the
cuspidality of third and fourth symmetric powers of a cusp form on GL(2). Recently,
Luo and Zhou [15] refined Kim and Shahidi’s result and showed that the natural density
of such primes (at which the Ramanujan conjecture holds) should be at least 34/35.

When n ≥ 3, let φ be any element of the orthonormal basis H of Hecke-Maass cusp
forms for SLn(Z) and let p be any prime. Denote αφ,1(p), αφ,2(p), . . . , αφ,n(p) the corre-
sponding Satake parameters of φ at p. It is known that

αφ,1(p)αφ,2(p) · · ·αφ,n(p) = 1(1.1)

and (the unitary condition)

{αφ,1(p), αφ,2(p), . . . , αφ,n(p)} =
{
αφ,1(p)−1, αφ,2(p)−1, . . . , αφ,n(p)−1

}
.(1.2)
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GRC asserts that

(1.3) |αφ,1(p)| = |αφ,2(p)| = · · · = |αφ,n(p)| = 1,

which is out of our reach. The best bound towards GRC is

(1.4) |α`(p)| ≤ pθn for ` = 1, 2, . . . , n,

where (see [8] for n = 3, 4 and [14] for n ≥ 5)

θ3 =
5

14
, θ4 =

9

22
, θn =

1

2
− 1

n2 + 1
(n ≥ 5).

Let S(φ) denote the set of primes p that |αφ,1(p) +αφ,2(p) + · · ·+αφ,n(p)| ≤ n. Ramakr-
ishnan [18] proved that S(φ) has a lower Dirichlet density of at least 1− 1/n2. However,
unlike the GL(2) case, this gives no information on the set of primes at which GRC holds.

When n = 3, more information is particularly known. Ramakrishnan [19] proved that
there are infinitely many primes at which GRC holds. Later, Walji [24] proved that for
any α ≥ 1, the set

S(φ, α) =

{
p primes : max

1≤i≤3
|αφ,i(p)| ≤ α

}
has a lower Dirichlet density of 1− 1/(α+ 1/α− 1)2. Below we refine Walji’s result and
show that the natural density of S(φ, α) should be at least 1− 1/(α+ 1/α− 1)2.

Theorem 1.1. For any α ≥ 1, we have

lim sup
x→∞

1

π(x)

∣∣∣∣{p ≤ x : max
1≤i≤3

|αφ,i(p)| ≤ α
}∣∣∣∣ ≥ 1− 1

(α+ α−1 − 1)2

where π(x) is the number of primes not exceeding x.

Remark 1.1. Our method for Theorem 1.1 works well in the GL(2) case and yields that

lim sup
x→∞

1

π(x)

∣∣∣∣{p ≤ x : max
1≤i≤2

|αf,i(p)| ≤ α
}∣∣∣∣ ≥ 1− 1

(α+ α−1)2

for any α ≥ 1 and for any Hecke-Maass cusp form f for SL2(Z). This result can be
viewed as a supplement to Theorem 1.2 in [15].

Theorem 1.1 becomes trivial when α = 1. It is plausible that one needs more informa-
tion so as to get a non-trivial result for the marginal case (of α = 1). Hence we are led
to establish a conditional result, which is done under the mild Hypothesis (MS) below.

To state the hypothesis, let us firstly recall the Rankin-Selberg L-function

L(s, φ× φ̃) =
∏
p

3∏
i=1

3∏
j=1

(1− αφ,i(p)αφ,j(p)−1p−s)−1 =:
∑
n≥1

λφ×φ̃(n)n−s

(φ̃ denotes the dual form of φ) and the symmetric square L-function

L(s, sym2φ) =
∏
p

∏
1≤i≤j≤3

(1− αφ,i(p)αφ,j(p)p−s)−1 =:
∑
n≥1

λsym2φ(n)n−s

for <e s � 1.1 Both L-functions have meromorphic continuation to the whole complex
plane and satisfy functional equations of Riemann type, cf. [7] and [4] for instance. The

1Here we consider the case that the automorphic representation πφ associated to φ is unramified at
all finite primes. The Satake parameter αφ,i(p) at ramifed primes may be zero. The local factors of

L(s, φ× φ̃) at ramified primes will be different, see [3, Section 1].
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Rankin-Selberg L-function L(s, φ×φ̃) has a pole at s = 1 and one may derive an analogue
of Prime Number Theorem (for example, see [13, (1.3)])

(1.5)
∑
p≤x
|Aφ(p, 1)|2 ∼ π(x).

The continuation of L(s, sym2φ) is meromorphic with a simple pole at s = 1 or entire
depending on whether φ is self-dual or not, cf. [4, p.139]. It is known that φ is a self-dual
form for GL(3) if and only if φ is a symmetric square lift of a GL(2) form, cf. [21]. Hence
the Satake parameters for a self-dual φ are α2, 1, β2 where α, β are Satake parameters of a
GL(2) form. The density of exceptional primes (for which max{|α|, |β|} ≥ 1}) is at most
1/35 by [15]. Actually the self-dual forms are of density zero amongst all Hecke-Maass
forms for SL3(Z), cf. [17].

We may confine to the non-self dual case, and state now our hypothesis and result.

Hypothesis (MS).

(1.6)
∑
p≤x

λφ×φ̃(p)2 ∼ 2π(x)

and

(1.7)
∑
p≤x
|λsym2φ(p)|2 ∼ π(x).

Theorem 1.2. Let φ be a non-self dual Hecke-Maass cusp form for SL3(Z). Under
Hypothesis (MS), we have

lim sup
x→∞

1

π(x)

∣∣∣∣{p ≤ x : max
1≤i≤3

|αφ,i(p)| > 1

}∣∣∣∣ ≤ 12

25
.(1.8)

Remark 1.2. If φ is a GL(2) non-CM form, then the corresponding statements in
Hypothesis (MS) are already proved. Both (1.6) and (1.7) are expected by Langlands
functoriality. Moreover the constants in front of π(x) are predicted by the (unsettled)
Sato-Tate distribution of the Satake parameters, cf. Section 2. From the proof, we still
can get a non-trivial but weaker bound 14/25 for (1.8) if only (1.7) is assumed.

2. Satake parameters and Sato-Tate distribution

A Hecke-Maass cusp form φ ∈ H for SL3(Z) admits a Fourier series (as a double
sum over (m,n) ∈ N × N) whose normalized coefficients Aφ(m,n) are multiplicative.

Moreover, let k = (k1, k2) ∈ N2
0. The coefficients Aφ(pk) := Aφ(pk1 , pk2) are (Hecke)

eigenvalues of Hecke operators and can be expressed in terms of the Satake parameters
of φ. For instance,

Aφ(p, 1) =
∑

1≤i≤3
αφ,i(p) and Aφ(1, p) =

∑
1≤i<j≤3

αφ,i(p)αφ,j(p).

In fact, define the degenerate Schur polynomial Sk (see [6, p.233])

Sk(x1, x2, x3) :=
det
(
x
∑3−i
l=1(kl+1)

j

)
1≤i,j≤3

det
(
x
∑3−i
l=1 1

j

)
1≤i,j≤3

.
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We have, for any prime p,

(2.1) Aφ(pk) = Sk(αφ,1(p), αφ,2(p), αφ,3(p)).

Using (1.1) and (1.2), we see that Aφ(pk1 , pk2) = Aφ(pk2 , pk1) and hence Aφ(m,n) =

Aφ(n,m). Also it follows from the definitions that

λφ×φ̃(p) = |Aφ(p, 1)|2 and λsym2φ(p) = Aφ(p, 1)2 −Aφ(1, p).(2.2)

(We have suitably applied (1.1), (1.2) and Aφ(1, p) = Aφ(p, 1).) The Hecke relation (see
[6, p.173]) yields Aφ(p, 1)2 = Aφ(p2, 1) +Aφ(1, p), and thus

λφ×φ̃(p)2 = (Aφ(p2, 1) +Aφ(1, p))(Aφ(1, p2) +Aφ(p, 1))(2.3)

and

|λsym2φ(p)|2 = Aφ(p2, 1)Aφ(1, p2).(2.4)

Now we turn to some conjectural properties of the Satake parameters. In light of (1.1)
and (1.2), we may write

αφ,j(p) = eiθφ,j(p) for 1 ≤ j ≤ 3,

where θφ,j(p) ∈ [0, 2π)∪{a+bi : a ∈ [0, 2π), b ∈ R×}. This θφ,j(p) is uniquely determined.
The conjecture (GRC) asserts that

θφ(p) := (θφ,1(p), θφ,2(p), θφ,3(p)) ∈ [0, 2π)3

or αφ(p) := (αφ,1(p), αφ,2(p), αφ,3(p)) ∈ S13 where S13 is the product of 3 unit circles.
As the Satake parameters parametrize conjugacy classes, the triples under permutation
of entries by the symmetric group S3 of degree 3 are identified. Hence under GRC,

we may view αφ(p) (or θφ(p)) as a point S13/S3 (or [0, 2π)3/S3), and moreover, for a

primitive2 form φ, it is believed that the Satake parameter αφ(p) satisfies an analogue of

the Sato-Tate conjecture: for any fixed non-self dual φ, the sets
{
αφ(p) : p ≤ x

}
become

equidistributed on S13/S3 with respect to the Sato-Tate measure

dµST =
1

3!(2π)2

∏
1≤`<m≤3

|eiθ` − eiθm |2dθ1dθ2,

where
∑3

`=1 θ` = 0, as x → ∞. (Recall that the Sato-Tate conjecture for GL(2) is
expected unless πφ is solvable polyhedral or icosahedral3, cf. [20].) It is known that
Schur polynomials Sk are orthonormal with respect to the Sato-Tate measure

(2.5) 〈Sk, Sk′〉 :=

∫
[0,2π]2

SkSk′ dµST = δk=k′ .

Consequently, we expect via the Sato-Tate conjecture that

lim
x→∞

1

π(x)

∑
p≤x

λφ×φ̃(p)2 =

∫
[0,2π]2

(S(2,0) + S(0,1))(S(2,0) + S(0,1)) dµST = 2

and

lim
x→∞

1

π(x)

∑
p≤x
|λsym2φ(p)|2 =

∫
[0,2π]2

S(2,0)S(2,0) dµST = 1

2Here we mean the associated automorphic representation πφ is primitive in the sense of Arthur [1],
see §7.2 (iv) and §7.5.

3The representations symmπφ, m ∈ N, are not all cuspidal assuming πφ has trivial central character.
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by (2.3), (2.4), (2.1) and (2.5). This explains the constants proposed in Hypothesis (MS).

3. Proof of Theorem 1.1

If GRC fails at p, then by (1.2), we put αφ,1(p) = ρeiθ, αφ,2(p) = ρ−1eiθ and αφ,3(p) =

e−2iθ, where ρ is a non-zero real number with ρ > 1 and θ ∈ [0, 2π). (Here we suppress
the dependence of φ and p in the notation ρ and θ for simplicity.) Then Aφ(p, 1) =

eiθ(ρ+ ρ−1 + e−i3θ), and by (2.2) and ρ > α,

λφ×φ̃(p) =
∣∣∣ρ+ ρ−1 + e−i3θ

∣∣∣2 ≥ (α+ α−1 − 1)2,

as ρ + ρ−1 lies on the real axis and is at least α + α−1 while ei3θ lies on the unit circle.
With the non-negativity of λφ×φ̃(p), we infer that

(α+ α−1 − 1)2
|{p ≤ x : ρφ(p) > α}|

π(x)
≤
∑

p≤x λφ×φ̃(p)

π(x)
.

By (1.5), we have

lim sup
x→∞

1

π(x)

∑
p≤x

λφ×φ̃(p) = 1

and Theorem 1.1 follows plainly.

4. Proof of Theorem 1.2

The key is to construct a suitable symmetric function. Consider

S(x1, x2, x3)

=
1

16

∑
1≤i<j≤3

(xi + xj)
2(x−1i + x−1j )2 +

1

32

∏
1≤i<j≤3

(xi + xj)(x
−1
i + x−1j )

=
1

16
U(x1, x2, x3) +

1

32
V (x1, x2, x3), say.

If αφ,1(p) = ρeiθ, αφ,2(p) = ρ−1eiθ and αφ,3(p) = e−2iθ for some ρ ∈ (1,∞) and θ ∈ [0, 2π),

then with αφ(p) := (αφ,1(p), αφ,2(p), αφ,3(p)) and z2 = ρei3θ (z ∈ C),

U(αφ(p)) = (ρ+ ρ−1)4 + 2<e (z + z−1)4

and

V (αφ(p)) = (ρ+ ρ−1)2
∣∣z + z−1

∣∣4 ≥ 4
∣∣z + z−1

∣∣4 .
Hence S(αφ(p)) ≥ 1 if GRC for φ fails at p.

Next by expanding out directly, one checks that

U(α1, α2, α3) =3 + 4

( ∑
1≤i≤3

αi

)( ∑
1≤i≤3

α−1i

)
+

( ∑
1≤i≤3

α2
i

)( ∑
1≤i≤3

α−2i

)
;

when α1, α2, α3 satisfy the unitary condition (1.2), we have

U(α1, α2, α3) =3 + 4

∣∣∣∣ ∑
1≤i≤3

αi

∣∣∣∣2 +

∣∣∣∣ ∑
1≤i≤3

α2
i

∣∣∣∣2.
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Moreover, 1 + (α1 + α2)(α1 + α3)(α2 + α3) =
(∑

1≤i≤3 αi
)(∑

1≤i≤3 α
−1
i

)
if α1α2α3 = 1.

Hence if α1, α2, α3 satisfy (1.1) and (1.2), then

V (α1, α2, α3) =

(∣∣∣ ∑
1≤i≤3

αi

∣∣∣2 − 1

)2

.

This follows that S(αφ(p)) = 7
32 + nonnegative terms for all p. As before, we deduce that

|{p ≤ x : ρφ(p) > 1}|
π(x)

+
7

32

(
1−
|{p ≤ x : ρφ(p) > 1}|

π(x)

)
≤ 1

π(x)

∑
p≤x

S(αφ(p)).(4.1)

By the definitions of λφ×φ̃(p) and λsym2φ(p), we see that

U(αφ(p)) =3 + 4|A(p, 1)|2 +
∣∣λsym2φ(p)−A(1, p)

∣∣2
V (αφ(p)) =

(
λφ×φ̃(p)− 1

)2
.

Since λsym2φ(p) +A(1, p) = A(p, 1)2, we obtain with (2.2) that

|λsym2φ(p)|2 + |A(p, 1)|2 + 2<e λsym2φ(p)A(1, p) = λφ×φ̃(p)2

and thus

S(αφ(p)) =
3 + 6|Aφ(p, 1)|2 + 2|λsym2φ(p)|2 − λφ×φ̃(p)2

16

+
λφ×φ̃(p)2 − 2|Aφ(p, 1)|2 + 1

32
.

Theorem 1.2 follows readily from Hypothesis (MS), (1.5) and (4.1).
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