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Abstract

For a continuous-time additive white Gaussian noise (AWGN) channel with possible
feedback, it has been shown that as sampling gets infinitesimally fine, the mutual
information of the associative discrete-time channels converges to that of the original
continuous-time channel. We give in this paper more quantitative strengthenings of this
result, which, among other implications, characterize how over-sampling approaches
the true mutual information of a continuous-time Gaussian channel with bandwidth
limit. The assumptions in our results are relatively mild. In particular, for the non-
feedback case, compared to the Shannon-Nyquist sampling theorem, a widely used
tool to connect continuous-time Gaussian channels to their discrete-time counterparts
that requires the band-limitedness of the channel input, our results only require some
integrability conditions on the power spectral density function of the input.

1 Introduction

In this paper, we are concerned with the following continuous-time AWGN channel:

Y (t) =

∫ t

0

X(s)ds+B(t), t ≥ 0, (1)

where {B(t)} denotes the standard Brownian motion. We will examine the channel (1) for
both the non-feedback and feedback cases. More specifically, the non-feedback case refers to
the scenario when the feedback is not allowed in the channel, and thereby the channel input
{X(s)} takes the following form:

X(s) = g(s,M), (2)

where g is a real-valued deterministic function, M is a random variable, independent of
{B(t)} and often interpreted as the message to be transmitted through the channel. By
contrast, for the feedback case, X(s) may also depend on the previous output with the
following form:

X(s) = g(s,M, Y s
0 ), (3)

where Y s
0 , {Y (r) : 0 ≤ r ≤ s} is the channel output up to time s that is fed back to the

sender, which will be referred to as the channel feedback up to time s. Here, we remark that
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for the non-feedback case as in (2), it can be verified that for any T > 0,

I(XT
0 ;Y T

0 ) = I(M ;Y T
0 ),

which however does not hold true for the feedback case as in (3) when the channel is intri-
cately characterized by the following stochastic differential equation:

Y (t) =

∫ t

0

g(s,M, Y s
0 )ds+B(t), t ≥ 0, (4)

rather than a simple input-output equation.
For any T > 0, we say that t0, t1, . . . , tn ∈ R 1 are evenly spaced over [0, T ] if t0 = 0,

tn = T and δT,n , ti − ti−1 = T/n for all feasible i. Sampling the continuous-time channel
(1) over the time window [0, T ] with respect to evenly spaced t0, t1, . . . , tn, we obtain the
following discrete-time Gaussian channel 2

Y (ti) =

∫ ti

0

X(s)ds+B(ti), i = 1, 2, . . . , n. (5)

It turns out that if the sampling is “fine” enough, the mutual information of the continuous-
time Gaussian channel (1) over [0, T ] can be “well-approximated” by that of the discrete-time
Gaussian channel (5). More precisely, it has been established in [13] that under some mild
assumptions,

lim
n→∞

I(M ;Y (∆T,n)) = I(M ;Y T
0 ), (6)

where
∆T,n , {t0, t1, . . . , tn}, Y (∆T,n) , {Y (t0), Y (t1), . . . , Y (tn)}.

This result connects a continuous-time Gaussian channels with its associative discrete-time
versions, which has been used to recover a classical information-theoretic formula [12].

Strictly speaking, the above result is not new; as a matter of fact, it has been “known”
for decades. Indeed, though not explicitly stated, a more general result, which implies (6) as
a special corollary, follows from an appropriately modified argument in [5] (see more details
in Section A). Moreover, the functional analysis approach as in [5] tackles more general
channels and thus reveals the essence beneath the connection as in (6). By comparison, when
it comes to merely establishing the result (6), our stochastic approach in [13] is indirect and
cumbersome, only scratching the surface of the connection.

That being said, the stochastic calculus approach does allow us to capitalize on the pe-
culiar characteristics of the continuous-time AWGN channel formulated as in (1), which is
already evidenced by the approximation theorems established therein that do not seem to
follow from the aforementioned functional analysis approach. The present paper will con-
tinue to employ the stochastic calculus approach to conduct a closer examination of (1) and
quantitatively strengthen (6), particularly by zooming in on its convergence behavior. Our
results encompass both the non-feedback case (Theorem 3.1) and the feedback case (Theo-
rem 4.3), which may be used for a finer analysis of the channel (1) with possible feedback

1Here and hereafter, all ti depend on T and n, however we suppress this notational dependence for brevity.
2The sampler associated with (5) has been examined from a communication system design perspective

and termed as the integrate-and-dump filter; see, e.g., [1] and references therein.
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from an information-theoretic perspective. In particular, among other possible implications,
our results characterize how over-sampling approaches the true mutual information of a
continuous-time band-limited AWGN channel over a finite time window (Corollary 3.2).

We would like to add that the assumptions imposed in our results are rather mild. Indeed,
the celebrated Shannon-Nyquist sampling theorem [24, 18], a widely used tool to connect a
continuous-time non-feedback AWGN channel to its discrete-time versions, requires the band-
limitedness of the channel input. By comparison, with considerably stronger conclusions,
Theorem 3.1 only require some integrability conditions on the power spectral density function
of the channel input and Theorem 4.3 only requires some mild regularity conditions that are
more or less standard in the theory of stochastic differential equations.

2 Notation and Preliminaries

We use (Ω,F ,P) to denote the underlying probability space, and E to denote the expectation
with respect to the probability measure P. As is typical in the theory of SDEs, we assume
the probability space is equipped with a filtration {Ft : 0 ≤ t < ∞}, which satisfies the
usual conditions [9] and is rich enough to accommodate the standard Brownian motion
{B(t) : 0 ≤ t <∞}. Throughout the paper, we will use uppercase letters (e.g., X, Y , Y (n))
to denote random variables or processes, and their lowercase counterparts (e.g., x, y, y(n))
to denote their realizations.

Let C[0,∞) denote the space of all continuous functions over [0,∞), and for any t > 0,
let C[0, t] denote the space of all continuous functions over [0, t]. As usual, we will equip
the space C[0,∞) with the filtration {Bt}0≤t<∞, where B∞ denotes the standard Borel σ-
algebra on the space C[0,∞) and Bt = π−1

t (B∞), where πt : C[0,∞) → C[0, t] is defined as
(πtx)(s) = x(t ∧ s).

For any ϕ ∈ C[0,∞), we use ϕ({t1, t2, . . . , tm}) to denote {ϕ(t1), ϕ(t2), . . . , ϕ(tn)} and
ϕt0 to denote {ϕ(s) : 0 ≤ s ≤ t}. The sup-norm of ϕt0, denoted by ‖ϕt0‖, is defined as
‖ϕt0‖ , sup0≤s≤t |ϕ(s)|; and similarly, we define ‖ϕt0 − ψt0‖ , sup0≤s≤t |ϕ(s)− ψ(s)|. For any

ϕ, ψ ∈ C[0,∞), slightly abusing the notation, we define ‖ϕs0 − ψt0‖ , ‖ϕ̂∞0 − ψ̂∞0 ‖, where

ϕ̂, ψ̂ ∈ C[0,∞) are “stopped” versions of ϕ, ψ at time s, t, respectively, with ϕ̂(r) , ϕ(r∧ s)
and ψ̂(r) , ψ(r ∧ t) for any r ≥ 0.

Let X, Y, Z be random variables defined on the probability space (Ω,F ,P), which will
be used to illustrate most of the notions and facts in this section (note that the same
notations may have different connotations in other sections). Note that in this paper, a
random variable can be discrete-valued with a probability mass function, real-valued with a
probability density function or path-valued (more precisely, C[0,∞) or C[0, t]-valued).

For any two probability measures µ and ν, we write µ ∼ ν to mean they are equivalent,
namely, µ is absolutely continuous with respect to ν and vice versa. For any two path-valued
random variables X t

0 = {X(s); 0 ≤ s ≤ t} and Y t
0 = {Y (s); 0 ≤ s ≤ t}, we use µXt

0
and

µY t
0

to denote the probability distributions on Bt induced by X t
0 and Y t

0 , respectively; and if
µY t

0
is absolutely continuous with respect to µXt

0
, we write the Radon-Nikodym derivative of

µY t
0

with respect to µXt
0

as dµY t
0
/dµXt

0
. We use µY t

0 |Z=z denote the probability distribution
on Bt induced by Y t

0 given Z = z, and dµY t
0 |Z=z/dµXt

0|Z=z to denote the Radon-Nikodym
derivative of Y t

0 with respect to X t
0 given Z = z. Obviously, when Z is independent of X,

dµY t
0 |Z=z/dµXt

0|Z=z = dµY t
0 |Z=z/dµXt

0
.
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By definition, for E[X|σ(Y, Z)], the conditional expectation of X with respect to the
σ-algebra generated by Y and Z, there exists a σ(Y )⊗σ(Z)-measurable function Ψ(·, ·) such
that Ψ(Y, Z) = E[X|σ(Y, Z)]. For notational convenience, we will in this paper simply write
E[X|σ(Y, Z)] as E[X|Y, Z], and Ψ(y, z) as E[X|y, z] and furthermore, Ψ(Y, z) as E[X|Y, z].

A partition of the probability space (Ω,F ,P) is a disjoint collection of elements of F
whose union is Ω. It is well known there is a one-to-one correspondence between finite
partitions and finite sub-σ-algebras of F . For a finite sub-σ-algebra H ⊂ F , let η(H) denote
the corresponding finite partition. The entropy of a finite partition ξ = {A1, A2, · · · , Am},
denoted by H(ξ), is defined as H(ξ) ,

∑m
i=1−P(Ai) logP(Ai), whereas the conditional

entropy of ξ given another finite partition ζ = {B1, B2, . . . , Bn}, denoted by H(ξ|ζ), is
defined as H(ξ|ζ) ,

∑n
j=1

∑m
i=1−P(Ai ∩Bj) logP(Ai|Bj). The mutual information between

the above-mentioned two partitions ξ and ζ, denoted by I(ξ; ζ), is defined as I(ξ; ζ) ,∑n
j=1

∑m
i=1−P(Ai ∩Bj) logP(Ai ∩Bj)/P(Ai)P(Bj).

For the random variable X, we define

η(X) , {η(H) : H is a finite sub-σ-algebra of σ(X)}.

The entropy of the random variable X, denoted by H(X), is defined as

H(X) , sup
ξ∈η(X)

H(ξ).

The conditional entropy of Y given X, denoted by H(Y |X), is defined as

H(Y |X) , inf
ξ∈η(X)

sup
ζ∈η(Y )

H(ζ|ξ).

Here, we note that if X and Y are independent, then obviously it holds that

H(Y |X) = H(Y ). (7)

The mutual information between X and Y , denoted by I(X;Y ), is defined as

I(X;Y ) , sup
ξ∈η(X), ζ∈η(Y )

I(ξ; ζ).

A couple of properties of mutual information are in order. First, it can be shown, via
a concavity argument, that the mutual information is always non-negative. Second, the
mutual information is determined by the σ-algebras generated by the corresponding random
variables. For example, for any random variables X ′, Y ′, X ′′, Y ′′,

I(X ′;Y ′) = I(X ′;Y ′′) if σ(X ′) = σ(X ′′) and σ(Y ′) = σ(Y ′′) (8)

and
I(X ′;Y ′) ≤ I(X ′;Y ′′) if σ(X ′) ⊂ σ(X ′′) and σ(Y ′) ⊂ σ(Y ′′). (9)

For another example, we have

I(X;Y ) = I(X,X;Y, Y +X), I(X;Y ) ≤ I(X;Y, Z).
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It turns out that for the case that X, Y, Z are all discrete random variables, all the
above-mentioned notions are well-defined and can be computed rather explicitly: H(X) can
be computed as H(X) = E[− log pX(X)], where pX(·) denotes the probability mass function
of X; H(Y |X) can be computed as H(Y |X) = E[− log pY |X(Y |X)], where pY |X(·|·) denotes
the conditional probability mass function of Y given X; I(X;Y ) can be computed as

I(X;Y ) = E
[
log

pY |X(Y |X)

pY (Y )

]
. (10)

The mutual information is intimately related to entropy. As an example, one verifies that

I(X;Y ) = H(Y )−H(Y |X). (11)

Note that the quality (11) may fail if non-discrete random variables are involved, since the
corresponding entropies H(Y ) and H(Y |X) can be infinity. For the case of real-valued
random variables with density, this issue can be circumvented using the notion of differential
entropy, as elaborated below.

Now, assume that Y is real-valued with probability density function fY (·). The dif-
ferential entropy of Y , denoted by h(Y ), is defined as h(Y ) , E[− log fY (Y )]. And the
differential conditional entropy of Y given a finite partition ξ, denoted by h(Y |ζ), is defined
as h(Y |ζ) ,

∑n
j=1 P(Ai)

∫
fY |Ai

(x) log fY |Ai
(x)dx. The differential conditional entropy of Y

given X (which can be discrete-, real- or path-valued), denoted by h(Y |X), is defined as
h(Y |X) , infξ∈η(X) h(Y |ξ) (which, similarly as in (7), reduces to h(Y ) if Y is independent of
X); in particular, if the conditional probability density function fY |X(·|·) exists, then h(Y |X)
can be explicitly computed as E[− log fY |X(Y |X)]. As mentioned before, the aforementioned
failure of (11) can be salvaged with the notion of differential entropy:

I(X;Y ) = h(Y )− h(Y |X). (12)

Here we emphasize that all the above-mentioned definitions naturally carry over to the
setting when some/all of the invovled random variables are replaced by vectors of random
variables. For a quick example, let Y = {Y1, Y2, . . . , Yn}, where each Yi is a real-valued
random variable with density. Then, the differential entropy h(Y ) of Y is defined as

h(Y ) = h(Y1, Y2, . . . , Yn) , E[− log fY1,Y2,...,Yn(Y1, Y2, . . . , Yn)],

where fY1,Y2,...,Yn is the joint probability density function of Y1, Y2, . . . , Yn.
The notion of mutual information can be further extended to generalized random pro-

cesses, which we will only briefly describe and we refer the reader to [5] for a more compre-
hensive exposition.

The mutual information between two generalized random processes X = {X(t)} and
Y = {Y (t)} is defined as

I(X;Y ) = sup I(X(φ1), X(φ2), . . . , X(φm);Y (ψ1), Y (ψ2), . . . , Y (ψn)), (13)

where the supremum is over all possible n,m ∈ N and all possible testing functions φ1, φ2, . . . , φm
and ψ1, ψ2, . . . , ψn, and we have defined

X(φi) =

∫
X(t)φi(t)dt, i = 1, 2, . . . ,m, and Y (ψj) =

∫
Y (t)ψj(t)dt, j = 1, 2, . . . , n.
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It can be verified that the general definition of mutual information as in (13) includes all
previous definitions as special cases; moreover, when one of X and Y , say, Y , is a random
variable, the general definition boils down to

I(X;Y ) = sup I(X(φ1), X(φ2), . . . , X(φm);Y ),

where the supremum is over all possible n ∈ N and all possible testing functions φ1, φ2, . . . , φm.
For the channel (1) with the input as in (2) or (3) , it is known that its mutual information

over [0, T ] can be computed as (see, e.g., [20, 8]):

I(M ;Y T
0 ) =

E
[
log

dµ
M,Y T

0

dµM×µY T
0

(M,Y T
0 )

]
, if

dµ
M,Y T

0

dµM×µY T
0

exists ,

∞, otherwise ,
(14)

where dµM,Y T
0
/dµM × µY T

0
denotes the Radon-Nikodym derivative of µM,Y T

0
with respect to

µM × µY T
0

.

3 The Non-Feedback Case

In this section, we examine the AWGN channel (1) for the non-feedback case and give
quantitative strengthenings of (6), detailed in the following theorem.

Theorem 3.1. For the continuous-time AWGN channel (1), suppose that the channel input
{X(t)} is a stationary stochastic process with power spectral density function f(·) 3. Then,
the following two statements hold:

(a) Suppose
∫
f(λ)|λ|dλ <∞. Then, for any T and n,

√
I(XT

0 ;Y T
0 ) ≤

√
2TδT,n

∫
f(λ)|λ|dλ+

√
2TδT,n

∫
f(λ)|λ|dλ+ 4I(XT

0 ;Y (∆T,n))

2
.

(b) Suppose
∫
f(λ)|λ|dλ <∞ and

∫
f(λ)dλ <∞. Then, for any T and n,

I(XT
0 ;Y T

0 )− I(XT
0 ;Y (∆T,n)) ≤ T

√
δT,n

(∫
f(λ)|λ|dλ

)1/2(∫
f(λ)dλ

)1/2

.

Consequently, for any T , choosing n = n(T ) such that limT→∞ δT,n(T ) = 0, we have

I(XT
0 ;Y T

0 )

T
−
I(XT

0 ;Y (∆T,n(T )))

T
= O

(√
δT,n(T )

)
,

as T tends to infinity.

3More precisely, the channel input {X(t) : t ≥ 0} can be extended to a bi-infinite stationary stochastic
process {X(t) : −∞ < t <∞} with power spectral density function f(·).
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Proof. Consider the following parameterized version of the channel (1):

Z(t) =
√
snr

∫ t

0

X(s)ds+B(t), t ∈ [0, T ], (15)

where the parameter snr > 0 can be regarded as the signal-to-noise ratio of the channel.
Obviously, when snr is fixed to be 1, Z(t) = Y (t) for any t ∈ [0, T ], and moreover, the
channel (15) is exactly the same as the channel (1).

Sampling the channel (15) with respect to sampling times t0, t1, . . . , tn that are evenly
spaced over [0, T ], we obtain the following discrete-time Gaussian channel:

Z(ti)− Z(ti−1) =
√
snr

∫ ti

ti−1

X(s)ds+B(ti)−B(ti−1), i = 1, 2, . . . , n, (16)

which can be “normalized” as follows:

Z(ti)− Z(ti−1)√
δT,n

=
√
snr

∫ ti
ti−1

X(s)ds√
δT,n

+
B(ti)−B(ti−1)√

δT,n
, i = 1, 2, . . . , n, (17)

where, at each time i, the channel noise B(ti)−B(ti−1)√
δT,n

is a standard Gaussian random variable,∫ ti
ti−1

X(s)ds√
δT,n

and Z(ti)−Z(ti−1)√
δT,n

should be regarded as the channel input and output, respectively.

By the continuous-time I-MMSE relationship [6] applied to the channel (15), the mutual
information of the channel (1) can be computed as

I(XT
0 ;Y T

0 ) =
1

2

∫ 1

0

∫ T

0

E[
(
X(s)− E[X(s)|ZT

0 ]
)2

]dsdsnr.

And by the discrete-time I-MMSE relationship [6] (or more precisely, its extension [7] to
Gaussian memory channels) applied to the channel (17), we have

I(XT
0 ;Y (∆T,n)) =

1

2

∫ 1

0

n∑
i=1

E

(∫ titi−1
X(s)ds√
δT,n

− E

[ ∫ ti
ti−1

X(s)ds√
δT,n

∣∣∣∣∣Z(∆T,n)

])2
 dsnr.

Obviously, by (9), it holds true that I(XT
0 ;Y T

0 ) ≥ I(XT
0 ;Y (∆T,n)). In the following, we

will give an upper bound on their difference I(XT
0 ;Y T

0 )−I(XT
0 ;Y (∆T,n)), thereby character-

izing the closeness between the two quantities. Towards this goal, using the following easily
verified that for each i,

E

[(∫ ti

ti−1

X(s)− E[X(s)|ZT
0 ] ds

)2
]
≤ E

[(∫ ti

ti−1

X(s)− E[X(s)|Z(∆T,n)] ds

)2
]
,
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we first note that

I(XT
0 ;Y T

0 )− I(XT
0 ;Y (∆T,n))

=
1

2

∫ 1

0

∫ T

0

E[
(
X(s)− E[X(s)|ZT

0 ]
)2

]ds−
n∑
i=1

E

(∫ ti

ti−1

X(s)− E[X(s)|Z(∆T,n)]√
δT,n

ds

)2
 dsnr

≤ 1

2

∫ 1

0

∫ T

0

E[
(
X(s)− E[X(s)|ZT

0 ]
)2

]ds−
n∑
i=1

E

(∫ ti

ti−1

X(s)− E[X(s)|ZT
0 ]√

δT,n
ds

)2
 dsnr

=
1

2

∫ 1

0

∫ T

0

E[R2[X(s);ZT
0 ]]ds−

n∑
i=1

E

(∫ ti

ti−1

R[X(s);ZT
0 ]√

δT,n
ds

)2
 dsnr

=
1

2
(S1 + S2)

where we have used the shorthand notation R[X(s);ZT
0 ] for X(s)− E[X(s)|ZT

0 ] and

S1 ,
n∑
i=1

∫ 1

0

∫ ti

ti−1

E[R2[X(s);ZT0 ]]ds−
n∑
i=1

∫ ti

ti−1

E
[
R[X(s);ZT0 ]R[X(ti−1);ZT0 ]

]
dsdsnr,

S2 ,
n∑
i=1

∫ 1

0
E

[(∫ ti

ti−1

R[X(s);ZT0 ]ds

)
R[X(ti−1);ZT0 ]

]
−

n∑
i=1

E

(∫ ti

ti−1

R[X(s);ZT0 ]√
δT,n

ds

)2
 dsnr.

For the first term, we have

S2
1 =

(
n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds−

n∑
i=1

∫ ti

ti−1

∫ 1

0

E
[
R[X(s);ZT

0 ]R[X(ti−1);ZT
0 ]
]
dsnrds

)2

=

(
n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R[X(s);ZT
0 ]R[X(s)−X(ti−1);ZT

0 ]]dsnrds

)2

≤ n
n∑
i=1

(∫ ti

ti−1

∫ 1

0

E[R[X(s);ZT
0 ]R[X(s)−X(ti−1);ZT

0 ]]dsnrds

)2

≤ n
n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds

∫ ti

ti−1

∫ 1

0

E[R2[X(s)−X(ti−1);ZT
0 ]]dsnrds, (18)

where we have used the Cauchy-Scharz inequality for the last inequality. Now, noticing the
fact that

E[R2[X(s)−X(ti−1);ZT
0 ]] ≤ E[(X(s)−X(ti−1))2],

we continue as follows:

S2
1 ≤ n

n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds

∫ ti

ti−1

∫ 1

0

E[(X(s)−X(ti−1))2]dsnrds (19)

= n
n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds

∫ ti

ti−1

∫ 1

0

E[X2(s) +X2(ti−1)− 2X(s)X(ti−1)]dsnrds.

(20)
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Now, using the fact that, for any u, v ∈ R,

E[X(u)X(u+ v)] =

∫
f(λ)eivλdλ,

we have

S2
1 ≤ n

n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds

∫ ti

ti−1

∫ 1

0

∫
2f(λ)|1− eiλ(s−ti−1)|dλdsnrds (21)

≤ n
n∑
i=1

∫ ti

ti−1

∫ 1

0

E[R2[X(s);ZT
0 ]]dsnrds

∫ ti

ti−1

∫ 1

0

∫
2f(λ)|λ|(s− ti−1)dλdsnrds (22)

≤ nδ2
T,n

∫
f(λ)|λ|dλ

∫ 1

0

n∑
i=1

∫ ti

ti−1

E[R2[X(s);ZT
0 ]]dsdsnr (23)

= TδT,n

∫
f(λ)|λ|dλ

∫ 1

0

∫ T

0

E[(X(s)− E[X(s)|ZT
0 ])2]dsdsnr (24)

= 2TδT,n I(XT
0 ;Y T

0 )

∫
f(λ)|λ|dλ. (25)

For the second term, we have

S2
2 =

(
n∑
i=1

∫ ti

ti−1

∫ 1

0

E
[
R[X(s);ZT

0 ]

∫ ti

ti−1

R[X(ti−1)−X(u);ZT
0 ]

δT,n
du

]
dsnrds

)2

.

Starting from this and proceeding in a similar fashion as in (18)-(25), we derive

S2
2 ≤ 2TδT,nI(XT

0 ;Y T
0 )

∫
f(λ)|λ|dλ.

Combining the bounds on S1 and S2, we have

I(XT
0 ;Y T

0 )− I(XT
0 ;Y (∆T,n)) ≤

√
2TδT,n

(
I(XT

0 ;Y T
0 )

∫
f(λ)|λ|dλ

)1/2

. (26)

It then immediately follows that

√
I(XT

0 ;Y T
0 ) ≤

√
2TδT,n

∫
f(λ)|λ|dλ+

√
2TδT,n

∫
f(λ)|λ|dλ+ 4I(XT

0 ;Y tn
t0 )

2
,

establishing (a). Moreover, together with the fact that

I(XT
0 ;Y T

0 ) ≤ 1

2

∫ T

0

E[X2(s)]ds =
T

2

∫
f(λ)dλ,

the inequality (26) implies that

∣∣I(XT
0 ;Y T

0 )− I(XT
0 ;Y (∆T,n))

∣∣ ≤ T
√
δT,n

(∫
f(λ)|λ|dλ

)1/2(∫
f(λ)dλ

)1/2

,

establishing (b).
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The following corollary, which immediately follows from Theorem 3.1, characterizes,
among others, how over-sampling approaches the true mutual information of the channel
(1) with bandwidth limit.

Corollary 3.2. For the continuous-time AWGN channel (1), suppose that the channel
input has bandwidth limit W and average power P , more precisely, f(λ) = 0 for any
λ ∈ (−∞,−W ] ∪ [W,∞) and E[X2(s)] ≤ P for any s ≥ 0. Then, the following two
statements hold:

(a) For any T and n,√
I(XT

0 ;Y T
0 ) ≤

√
2TPWδT,n +

√
2TPWδT,n + 4I(XT

0 ;Y (∆T,n))

2
.

(b) For any T and n,

I(XT
0 ;Y T

0 )− I(XT
0 ;Y (∆T,n)) ≤ TP

√
WδT,n.

Consequently, for each T , choosing n = n(T ) such that limT→∞ δT,n(T ) = 0, we have

I(XT
0 ;Y T

0 )

T
− I(XT

0 ;Y (∆T,n))

T
= O

(√
δT,n(T )

)
,

as T tends to infinity.

Remark 3.3. The I-MMSE relationship has played an important role in deriving our re-
sults for non-feedback AWGN channels. This powerful tool has been extended [7] to feedback
AWGN channels in both discrete and continuous time. A natural question is whether the ex-
tended relationship can help us to derive counterpart results to Theorem 3.1 for the feedback
case. As tempting and promising as this idea may look, we failed to find a way to effectively
apply the extended I-MMSE relationship, and our treatment for the feedback case, to be
detailed in the next section, will use other tools and techniques from the theory of stochastic
calculus. Here, we remark that the formulas derived in [7] are valid only with some extra
assumption imposed and yet fail to hold true in general. For more detailed explanations and
corrected formulas, see Arxiv:1401.3527.

4 The Feedback Case

In this section, we give quantitative strengthenings of (6) for the AWGN channel (1) in
the feedback case, which we remind the reader is characterized by the stochastic differential
equation in (4).

The following regularity conditions may be imposed:

(a) The solution {Y (t)} to the stochastic differential equation (4) uniquely exists.

(b)

P
(∫ T

0

g2(t,M, Y t
0 )dt <∞

)
= P

(∫ T

0

g2(t,M,Bt
0)dt <∞

)
= 1.

10



(c) ∫ T

0

E[|g(t,M, Y t
0 )|]dt <∞.

(d) The uniform Lipschitz condition: There exists a constant L > 0 such that for any
0 ≤ s1, s2, t1, t2 ≤ T , any Y T

0 , Z
T
0 ,

|g(s1,M, Y s2
0 )− g(t1,M,Zt2

0 )| ≤ L(|s1 − t1|+ ‖Y s2
0 − Zt2

0 ‖).

(e) The uniform linear growth condition: There exists a constant L > 0 such that
for any M and any Y T

0 ,
|g(t,M, Y t

0 )| ≤ L(1 + ‖Y t
0 ‖).

We will need the following lemma, which has already been established [13] in a slightly
more general setting.

Lemma 4.1. Assume Conditions (d)-(e). Then, there exists a unique strong solution of (4)
with initial value Y (0) = 0. Moreover, there exists ε > 0 such that

E[eε‖Y
T
0 ‖2 ] <∞, (27)

which immediately implies Conditions (b) and (c).

We will also need the following lemma, whose proof is deferred to Section B.

Lemma 4.2. Let Zmax = max{Z1, Z2, . . . , Zn}, where the i.i.d. random variables Zi ∼
N(0, 1/n). Then, we have:

a) For any 0 < ε < 1, E[Z2
max] = O(n−(1−ε)).

b) For any 0 < ε < 1, E[Z4
max] = O(n−(2−ε)).

b) For any 0 < ε < 1, E[eZ
2
max ] = 1 +O(n−(1−ε)).

As detailed below, the following theorem gives the aforementioned quantitative strength-
ening of (6). Here, we mention that with the channel input as in (4), the discrete-time
channel (5) obtained by sampling the channel (1) over [0, T ] with respect to ∆T,n takes the
following form:

Y (ti) =

∫ ti

0

g(s,M, Y s
0 )ds+B(ti), i = 0, 1, . . . , n. (28)

Theorem 4.3. Fix T > 0 and assume Conditions (d)-(e). Then, for any 0 < ε < 1/2, we
have

I(M ;Y T
0 ) = I(M ;Y (∆T,n)) +O(δ

1/2−ε
∆T,n

),

where we recall from Section 2 that Y (∆T,n) = {Y (t0), Y (t1), . . . , Y (tn)}.
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Proof. First of all, recall from Section 2 that for a stochastic process {X(s)} and any t ∈ R+,
we use µXt

0
to denote the distribution on C[0, t] induced by X t

0. Throughout the proof, we
only have to deal with the case t = T , and so we will simply write µXT

0
as µX . Moreover, we

will rewrite ∆T,n as ∆n and δT,n as δn for notational simplicity.
Note that an application of Theorem 7.14 of [11] with Conditions (b) and (c) yields that

P
(∫ T

0

E2[g(t,M, Y t
0 )|Y t

0 ]dt <∞
)

= 1. (29)

Then one verifies that the assumptions of Lemma 7.7 of [11] are all satisfied (this lemma is
stated under very general assumptions, which are exactly Conditions (b), (c) and (29) when
restricted to our settings), which implies that for any m,

µY ∼ µY |M=m ∼ µB, (30)

and moreover, with probability 1,

dµY |M

dµB
(Y T

0 |M) =
1

E[eρ1(M,Y T
0 )|Y T

0 ,M ]
,

dµY
dµB

(Y T
0 ) =

1

E[eρ1(M,Y T
0 )|Y T

0 ]
, (31)

where

ρ1(m,Y T
0 ) , −

∫ T

0

g(s,m, Y s
0 )dY (s) +

1

2

∫ T

0

g(s,m, Y s
0 )2ds.

Here we note that E[eρ1(M,Y T
0 )|Y T

0 ,M ] is in fact equal to eρ1(M,Y T
0 ), but we keep it the way it

is as above for an easy comparison.
Note that it follows from E[dµB/dµY (Y T

0 )] = 1 that E[eρ1(M,Y T
0 )] = 1, which is equivalent

to
E[e−

∫ T
0 g(s,M,Y s

0 )dB(s)− 1
2

∫ T
0 g(s,M,Y s

0 )2ds] = 1. (32)

Then, a parallel argument as in the proof of Theorem 7.1 of [11] (which requires the condition
(32)) further implies that, for any n,

dµY (∆n)|M

dµB(∆n)
(Y (∆n)|M) =

1

E[eρ1(M,Y T
0 )|Y (∆n),M ]

,
dµY (∆n)

dµB(∆n)
(Y (∆n)) =

1

E[eρ1(M,Y T
0 )|Y (∆n)]

, a.s..

(33)

Next, by the definition of mutual information, we have

I(M ;Y (∆n)) = E
[
log fY (∆n)|M(Y (∆n)|M)

]
− E

[
log fY (∆n)(Y (∆n))

]
= E

[
log

dµY (∆n)|M

dµB(∆n)

(Y (∆n)|M)

]
− E

[
log

dµY (∆n)

dµB(∆n)

(Y (∆n))

]
, (34)

and

I(M ;Y T
0 ) = E

[
log

dµM,Y T
0

dµM × µY T
0

(M,Y T
0 )

]

= E
[
log

dµY |M
dµB

(Y T
0 |M)

]
− E

[
log

dµY
dµB

(Y T
0 )

]
, (35)
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where the well-definedness of the Radon-Nikodym derivatives are guaranteed by (30).
By (34), (31) and (33), we have

I(M ;Y (∆n)) = E
[
log

dµY (∆n)|M

dµB(∆n)
(Y (∆n)|M)

]
− E

[
log

dµY (∆n)

dµB(∆n)
(Y (∆n))

]
= −E[logE[eρ1(M,Y T

0 )|Y (∆n),M ]] + E[logE[eρ1(M,Y T
0 )|Y (∆n)]],

and

I(M ;Y T
0 ) = E

[
log

dµY |M

dµB
(Y T

0 |M)

]
− E

[
log

dµY
dµB

(Y T
0 )

]
= −E[logE[eρ1(M,Y T

0 )|Y T
0 ,M ]] + E[logE[eρ1(M,Y T

0 )|Y T
0 ]]

= −ρ1(M,Y T
0 ) + E[logE[eρ1(M,Y T

0 )|Y T
0 ]].

We next proceed in the following two steps.
Step 1. In this step, we show that for any 0 < ε < 1/2,

E
[
log

dµY |M
dµB

(Y T
0 |M)

]
− E

[
log

dµY (∆n)|M

dµB(∆n)

(Y (∆n)|M)

]
= O(δ1/2−ε

n ).

Apparently, it suffices to show that for any 0 < ε < 1/2,

E[| logE[eρ1(M,Y T
0 )|Y (∆n),M ]− ρ1(M,Y T

0 )|] = O(δ1/2−ε
n ). (36)

Let Ȳ T
∆n,0

denote the piecewise linear version of Y T
0 with respect to ∆n; more precisely, for

any i = 0, 1, . . . , n, let Ȳ∆n(ti) = Y (ti), and for any ti−1 < s < ti with s = λti−1 + (1− λ)ti
for some 0 < λ < 1, let Ȳ∆n(s) = λY (ti−1) + (1 − λ)Y (ti). Let ḡ∆n(s,M, Ȳ s

∆n,0
) denote

the piecewise “flat” version of g(s,M, Ȳ s
∆n,0

) with respect to ∆n; more precisely, for any

ti−1 ≤ s < ti, ḡ∆n(s,M, Ȳ s
∆n,0

) = g(ti−1,M, Ȳ
ti−1

∆n,0
).

Letting

ρ2(∆n,m, Y
T

0 ) , −
∫ T

0

ḡ∆n(s,m, Ȳ s
∆n,0)dY (s) +

1

2

∫ T

0

ḡ2
∆n

(s,m, Ȳ s
∆n,0)ds,

we have

logE[eρ1(M,Y T
0 )|Y (∆n),M ] = logE[eρ2(∆n,M,Y T

0 )+ρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]

= log eρ2(∆n,M,Y T
0 )E[eρ1(M,Y T

0 )−ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

= ρ2(∆n,M, Y T
0 ) + logE[eρ1(M,Y T

0 )−ρ2(∆n,M,Y T
0 )|Y (∆n),M ],

where we have used the fact that

E[eρ2(∆n,M,Y T
0 )|Y (∆n),M ] = eρ2(∆n,M,Y T

0 ), (37)

since ρ2(∆n,M, Y T
0 ) only depends on M and Y (∆n).
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We now prove the following rate of convergence:

E
[
(ρ1(M,Y T

0 )− ρ2(∆n,M, Y T
0 ))2

]
= O(δ1−ε

n ), (38)

where 0 < ε < 1. To this end, we note that

ρ1(M,Y T
0 )− ρ2(∆n,M, Y T

0 ) = −
∫ T

0

(g(s)− ḡ∆n(s))dB(s)− 1

2

∫ T

0

(g(s)− ḡ∆n(s))2ds, (39)

where we have rewritten g(s,M, Y s
0 ) as g(s), and ḡ∆n(s,M, Ȳ s

∆n,0
) as ḡ∆n(s). It then follows

that (38) boils down to

E

[(
−
∫ T

0

(g(s)− ḡ∆n(s))dB(s)− 1

2

∫ T

0

(g(s)− ḡ∆n(s))2ds

)2
]

= O(δ1−ε
n ). (40)

To establish (40), notice that, by the Itô isometry [19], we have

E

[(∫ T

0

(g(s)− ḡ∆n(s))dB(s)

)2
]

= E
[∫ T

0

(g(s)− ḡ∆n(s))2ds

]
.

We next prove that for any 0 < ε < 1,

E
[∫ T

0

(g(s)− ḡ∆n(s))2ds

]
= O(δ1−ε

n ). (41)

To see this, we note that, by Conditions (d) and (e), there exists L1 > 0 such that for any
s ∈ [0, T ] with ti−1 ≤ s < ti,

|g(s,M, Ȳ s
∆n,0)− ḡ∆n(s,M, Ȳ s

∆n,0)| = |g(s,M, Ȳ s
∆n,0)− g(ti−1,M, Ȳ

ti−1

∆n,0
)|

≤ L1(|s− ti−1|+ ‖Ȳ s
∆n,0 − Ȳ

ti−1

∆n,0
‖)

≤ L1(|s− ti−1|+ |Y (ti)− Y (ti−1)|)
≤ L1δn + L1δn + L1δn‖Y T

0 ‖+ |B(ti)−B(ti−1)|. (42)

Similarly, there exists L2 > 0 such that for any s ∈ [0, T ],

|g(s,M, Y s
0 )− g(s,M, Ȳ s

∆n,0)|
≤ L2δn + L2δn‖Y T

0 ‖+ max
i

max
s∈[ti−1,ti]

max{|B(s)−B(ti−1)|, |B(s)−B(ti)|}

≤ L2δn + L2δn‖Y T
0 ‖+ max

i

(
max{ max

s∈[ti−1,ti]
(B(s)−B(ti−1)),− min

s∈[ti−1,ti]
(B(s)−B(ti−1)),

max
s∈[ti−1,ti]

(B(s)−B(ti)),− min
s∈[ti−1,ti]

(B(s)−B(ti))}
)

≤ L2δn + L2δn‖Y T
0 ‖+ max

i

{
max

s∈[ti−1,ti]
(B(s)−B(ti−1))

}
+ max

i

{
− min

s∈[ti−1,ti]
(B(s)−B(ti−1))

}
+ max

i

{
max

s∈[ti−1,ti]
(B(s)−B(ti))

}
+ max

i

{
− min

s∈[ti−1,ti]
(B(s)−B(ti))

}
.
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It is well-known (see, e.g., Theorem 2.21 in [16]) that maxs∈[ti−1,ti](B(s) − B(ti−1)) is dis-
tributed as |B(ti) − B(ti−1)|, which, together with the fact that {B(t)} has independent
increments, leads to

E

[(
max
i

{
max

s∈[ti−1,ti]
(B(s)−B(ti−1))

})2
]

= E
[(

max
i
{|B(ti)−B(ti−1)|}

)2
]

≤ E
[(

max
i
{B(ti)−B(ti−1)}

)2
]

+ E
[(

min
i
{B(ti)−B(ti−1)}

)2
]
.

Now, applying Lemma 4.2 a), we conclude that for any 0 < ε < 1,

E

[(
max
i

{
max

s∈[ti−1,ti]
(B(s)−B(ti−1))

})2
]

= O(δ1−ε
n ).

And a completely parallel argument yields that for any 0 < ε < 1,

E

[(
max
i

{
− min

s∈[ti−1,ti]
(B(s)−B(ti−1))

})2
]

= O(δ1−ε
n ),

and moreover,

E

[(
max
i

{
− min

s∈[ti−1,ti]
(B(s)−B(ti))

})2
]

= O(δ1−ε
n ),

E

[(
max
i

{
− min

s∈[ti−1,ti]
(B(s)−B(ti))

})2
]

= O(δ1−ε
n ),

where for the latter two, we have used, in addition, the well-known fact that the time
reversed Brownian motion is still a Brownian motion. Noticing that, by Lemma 4.1, ‖Y T

0 ‖2

is integrable, we arrive at (41), up to an arbitrarily small ε > 0.
A similar argument as above, coupled with Lemma 4.2 b) (rather than Lemma 4.2 a)),

will yield that for any 0 < ε < 1,

E

[(∫ T

0

(g(s)− ḡ∆n(s))2ds

)2
]

= O(δ2−ε
n ), (43)

which, together with (40) and (41), implies (38), as desired.
We now prove the following rate of convergence:

E[logE[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]] = O(δ1−ε
n ), (44)

where 0 < ε < 1. To this end, we first note that

E[logE[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]] ≤ logE[E[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]]

= logE[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )]

(a)
= logE[e−

∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2

∫ T
0 (g(s)−ḡ∆n (s))2ds]

≤ 0,
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where for (a), we have used (39), and for the last inequality, we have used the fact that

E[e−
∫ T
0 (g(s)−ḡ∆n (s))dB(s)− 1

2

∫ T
0 (g(s)−ḡ∆n (s))2ds] ≤ 1,

which is a well-known fact that follows from Fatou’s lemma. For another direction, we have

E[logE[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]] ≥ E[E[log eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),M ]]

= E[E[ρ1(M,Y T
0 )− ρ2(∆n,M, Y T

0 )|Y (∆n),M ]]

= E[ρ1(M,Y T
0 )− ρ2(∆n,M, Y T

0 )]

= −1

2

∫ T

0

E[(g(s)− ḡ∆n(s))2]ds,

which, together with (41), leads to (44).
Step 2. In this step, we will prove that for any 0 < ε < 1/2, there exists a constant

C > 0 such that for all n,

− E
[
log

dµY
dµB

(Y T
0 )

]
+ E

[
log

dµY (∆n)

dµB(∆n)

(Y (∆n))

]
≤ Cδ1/2−ε

n . (45)

First of all, note that by Theorem 6.2.2 in [8], we have,

dµY
dµB

(Y T
0 ) = e

∫ T
0 ĝ(Y s

0 )dY (s)− 1
2

∫ T
0 ĝ2(Y s

0 )ds,

where ĝ(Y s
0 ) = E[g(s,M, Y s

0 )|Y s
0 ]. Moreover, by Theorem 7.23 of [11], we have,

dµY
dµB

(Y T
0 ) =

∫
dµY |M
dµB

(Y T
0 |m)dµM(m),

where
dµY |M
dµB

(Y T
0 |m) = e

∫ T
0 g(s,m,Y s

0 )dY (s)− 1
2

∫ T
0 g2(s,m,Y s

0 )ds.

Similarly, we have

dµY (∆n)

dµB(∆n)

(Y (∆n)) =

∫
dµY (∆n)|M

dµB(∆n)

(Y (∆n)|m)dµM(m)

=

∫
1

E[eρ1(M,Y T
0 )|Y (∆n),m]

dµM(m).

It then follows that

−E
[
log

dµY
dµB

(Y T
0 )

]
+ E

[
log

dµY (∆n)

dµB(∆n)

(Y (∆n))

]
= −E

[
log e−ρ̂1(Y T

0 )
]

+ E
[
log

∫
1

E[eρ1(M,Y T
0 )|Y (∆n),m]

dµM(m)

]
= E

[
log

∫
eρ̂1(Y T

0 )−ρ2(∆n,m,Y T
0 )

E[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),m]
dµM(m)

]
,
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where we have used the shorthand notation ρ̂1(Y T
0 ) for −

∫ T
0
ĝ(Y s

0 )dY (s) + 1
2

∫ T
0
ĝ2(Y s

0 )ds,
and we have used (37) in deriving the last equality. It then follows that

E

[
log

∫
eρ̂1(Y T

0 )−ρ2(∆n,m,Y T
0 )

E[eρ1(M,Y T
0 )−ρ2(∆n,M,Y T

0 )|Y (∆n),m]
dµM(m)

]

≤ E
[
log

∫
eρ̂1(Y T

0 )−ρ2(∆n,m,Y T
0 )E[e−ρ1(M,Y T

0 )+ρ2(∆n,M,Y T
0 )|Y (∆n),m]dµM(m)

]
≤ logE

[
eρ̂1(Y T

0 )−ρ2(∆n,M,Y T
0 )E[e−ρ1(M,Y T

0 )+ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

(
dµY
dµB

(Y T
0 )

)
/

(
dµY |M
dµB

(Y T
0 |M)

)]
= logE

[
eρ1(M,Y T

0 )−ρ2(∆n,M,Y T
0 )E[e−ρ1(M,Y T

0 )+ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

]
.

Now, applying the Cauchy-Schwarz inequality, we have

E2
[
eρ1(M,Y T

0 )−ρ2(∆n,M,Y T
0 )E[e−ρ1(M,Y T

0 )+ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

]
≤ E

[
e2ρ1(M,Y T

0 )−2ρ2(∆n,M,Y T
0 )
]
E
[
E2[e−ρ1(M,Y T

0 )+ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

]
≤ E

[
e2ρ1(M,Y T

0 )−2ρ2(∆n,M,Y T
0 )
]
E
[
E[e−2ρ1(M,Y T

0 )+2ρ2(∆n,M,Y T
0 )|Y (∆n),M ]

]
= E

[
e2ρ1(M,Y T

0 )−2ρ2(∆n,M,Y T
0 )
]
E
[
e−2ρ1(M,Y T

0 )+2ρ2(∆n,M,Y T
0 )
]
.

Again, applying the Cauchy-Schwarz inequality, we have

E2[e2ρ1(M,Y T
0 )−2ρ2(∆n,M,Y T

0 )] = E2[e−2
∫ T
0 (g(s)−ḡ∆n (s))dB(s)−

∫ T
0 (g(s)−ḡ∆n (s))2ds]

= E2[e−2
∫ T
0 (g(s)−ḡ∆n (s))dB(s)−4

∫ T
0 (g(s)−ḡ∆n (s))2ds+3

∫ T
0 (g(s)−ḡ∆n (s))2ds]

≤ E[e−4
∫ T
0 (g(s)−ḡ∆n (s))dB(s)−8

∫ T
0 (g(s)−ḡ∆n (s))2ds]E[e6

∫ T
0 (g(s)−ḡ∆n (s))2ds]

≤ E[e6
∫ T
0 (g(s)−ḡ∆n (s))2ds],

where for the last inequality, we have used Fatou’s lemma. Now, using a largely parallel
argument as in Step 1 coupled with Lemma 4.2 c), we conclude that for any 0 < ε < 1,

E2[e2ρ1(M,Y T
0 )−2ρ2(∆n,M,Y T

0 )] ≤ E[e6
∫ T
0 (g(s)−ḡ∆n (s))2ds] = 1 +O(δ1−ε

n ),

which further leads to (45).
The theorem then immediately follows from Steps 1, 2 and the fact that

0 ≤ I(M ;Y T
0 )− I(M ;Y (∆T,n)).

5 Concluding Remarks

As opposed to the Brownian motion formulation in (1), a continuous-time AWGN channel
can be alternatively characterized by the following white noise formulation:

Y (t) = X(t) + Z(t), t ∈ R
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where {Z(t)} is a white Gaussian noise with flat spectral density 1, and slightly abusing
the notation, we have still used X and Y , parameterized by t ∈ R, to represent the channel
input and output, respectively. While there is a comprehensive comparison between these
two models in [13], we emphasize here that the Browninan motion formulation enables a more
rigorous information-theoretic examination of AWGN channels and empowers the tools in
the theory of stochastic calculus that seem to be essential for more quantitative results for
such channels.

Indeed, we believe the framework and techniques developed in this work can be applied
to a more quantitative investigation of sampling a wider range of Gaussian channels possibly
with different input constraints and related issues, detailed below. First, it is possible that
our approach can be applied to obtain a faster rate of convergence for sampling of a peak-
power constrained AWGN channel since, as observed in [17], the peak-power constraint can
provide some much needed uniformity property. Second, a result by Elias [3] has been
used to re-derive [4] the somewhat surprising result that for feedback AWGN channels,
the Schalkwijk-Kailath scheme yields the decoding error probability that decreases as a
second-order exponent in block length. Noticing that Elias’ argument in fact used discrete-
time MMSE and our treatment essentially quantifies the difference between discrete-time
and continuous-time MMSEs, it is worthwhile to investigate whether a rate of convergence
result on the decoding error probability can be established for continuous-time feedback
AWGN channels. Third, we can also consider sampling of continuous-time additive non-
white Gaussian channels. To the best of our knowledge, results in this direction are scarce,
but there are a great deal of efforts devoted to discrete-time feedback non-white Gaussian
channels (see, e.g., [10] and references therein). Given the recently obtained counterpart
results in discrete time [14], it is promising that our treatment can be adapted to such
channels, in particular, additive channels with continuous-time auto-regressive and moving
average Gaussian noises.

Acknowledgement. This work is supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China, under Project 17301017 and by the Na-
tional Natural Science Foundation of China, under Project 61871343.

Appendices

A Proof of (47)

Consider the continuous-time AWGN channel (1) with the input as in (2) or (3). Assuming
that the channel input {X(t)} is integrable over [0, T ], T > 0, that is,∫ T

0

|X(t)|dt <∞, a.s. (46)

we will in this section prove that

lim
n→∞

I(M ;Y (∆T,n)) = I(M ;Y T
0 ). (47)
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As previously mentioned, this result has been implicitly derived in [5], and so we only sketch
its proof for brevity.

First of all, an appropriately modified version of the proof of Theorem 1.3 in [5] can be
used to establish that

I(M ;Y T
0 ) = sup I(M ;Y ({t1, t2, . . . , tn})),

where the supremum is over all possible n ∈ N and t1, t2, . . . , tn ∈ [0, T ]. It immediately
follows that

lim sup
n→∞

I(M ;Y (∆T,n)) ≤ I(M ;Y T
0 ).

So, to prove (47), it suffices to prove the other direction:

lim inf
n→∞

I(M ;Y (∆T,n)) ≥ I(M ;Y T
0 ).

To this end, for each m ∈ N, we choose a finite subset Π
(m)
T ⊆ [0, T ] such that

I(XT
0 ;Y T

0 ) = lim
m→∞

I(XT
0 ;Y (Π

(m)
T )).

Now, for fixed Π
(m)
T and for each n ∈ N, we choose Π̂

(m)
T,n ⊂ ∆T,n so that Y (Π̂

(m)
T,n ) is convergent

to Y (Π
(m)
T ) in distribution. Here we note that the existence of {Π̂(m)

T,n} can be justified by
the continuity of {Y (t)}, which is due to the assumed integrability of {X(t)}. Then, by
Property II at Page 211 of [5], we have

lim inf
n→∞

I(M ;Y (Π̂
(m)
T,n )) ≥ I(M ;Y (Π

(m)
T )).

Taking m to infinity and using the fact that Π̂
(m)
T,n ⊂ ∆T,n for all n, we have

lim inf
n→∞

I(M ;Y (∆T,n)) ≥ I(M ;Y T
0 ),

as desired.

B Proof of Lemma 4.2

We will only prove a), the proof of b) being largely parallel.
First of all, it can be verified that

E[Z2
max] = − tP(Z2

max ≥ t)
∣∣∞
0

+

∫ ∞
0

P(Z2
max ≥ t)dt

= − lim
t→∞

tP(Z2
max ≥ t) +

∫ ∞
0

P(Zmax ≤ −
√
t)dt+

∫ ∞
0

P(Zmax ≥
√
t)dt,

Note that

P(Zmax ≤ −
√
t) = P(Z1 ≤ −

√
t, Z2 ≤ −

√
t, . . . , Zn ≤ −

√
t)

= P(
√
nZ1 ≥

√
nt,
√
nZ2 ≥

√
nt, . . . ,

√
nZn ≥

√
nt)

=

(∫ ∞
√
nt

1√
2π
e−x

2/2dx

)n
,
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where we used the fact that each
√
nZi is a standard normal random variable. Now, using

the well-known fact that for any x > 0,

2√
π

∫ ∞
x

e−t
2

dt ≤ e−x
2

,

we derive

P(Zmax ≤ −
√
t) =

(∫ ∞
√
nt

1√
2π
e−x

2/2dx

)n
=

(
1

2

2√
π

∫ ∞
√

nt
2

e−s
2

ds

)n

≤
(

1

2

)n
e−n

2t/2. (48)

And moreover,

P(Zmax ≥
√
t) = 1− P(Zmax ≤

√
t)

= 1− P(
√
nZ1 ≤

√
nt,
√
nZ2 ≤

√
nt, . . . ,

√
nZn ≤

√
nt)

= 1−

(∫ √nt
−∞

1√
2π
e−x

2/2dx

)n

= 1−
(

1−
∫ ∞
√
nt

1√
2π
e−x

2/2dx

)n
.

Now, using the well-known fact that for any x > −1,

x

1 + x
≤ log(1 + x),

and for any x ≤ 0,
1 + x ≤ ex,

we derive that for any x with |x| < 1,

(1− x)n = en log(1−x) ≥ e−nx/(1−x) ≥ 1− nx

1− x
.

It then follows that

P(Zmax ≥
√
t) = 1−

(
1−

∫ ∞
√
nt

1√
2π
e−x

2/2dx

)n
≤ 1−

(
1− 1

2
e−nt/2

)n
≤ 1−

(
1−

n
2
e−nt/2

1− 1
2
e−nt/2

)

=
n
2
e−nt/2

1− 1
2
e−nt/2

. (49)

Now, using (48) and (49), we have that for any t > 0,

tP(Z2
max ≥ t) = tP(Zmax ≤ −

√
t) + tP(Zmax ≥

√
t)

≤ t

(
1

2

)n
e−n

2t/2 + t
n
2
e−nt/2

1− 1
2
e−nt/2

,
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which immediately implies that

lim
t→∞

tP(Z2
max ≥ t) = 0. (50)

Moreover, using (48), we derive∫ ∞
0

P(Zmax ≤ −
√
t)dt ≤

(
1

2

)n ∫ ∞
0

e−n
2t/2dt =

2

n2

(
1

2

)n
. (51)

And, using (49), we have that for any 0 < a < 1,∫ ∞
0

P(Zmax ≥
√
t)dt =

∫ ∞
0

1−
(

1−
∫ ∞
√
nt

1√
2π
e−x

2/2dx

)n
dt

≤
∫ n−a

0

1−
(

1− 1

2
e−nt/2

)n
dt+

∫ ∞
n−a

1−
(

1− 1

2
e−nt/2

)n
dt

≤
∫ n−a

0

dt+

∫ ∞
n−a

1−

(
1−

n
2
e−nt/2

1− 1
2
e−nt/2

)
dt

≤
∫ n−a

0

dt+

∫ ∞
n−a

n
2
e−nt/2

1− 1
2
e−nt/2

dt

= O(n−a) +O(e−n
1−a

)

= O(n−a). (52)

Finally, combining (50), (51) and (52), we conclude that for any 0 < a < 1,

E[Z2
max] = O(n−a),

as desired.
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